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We carry out the N ¼ 1 supersymmetrization of a physical non-Abelian tensor with nontrivial

consistent couplings in four dimensions. Our system has three multiplets: (i) The usual non-Abelian

vector multiplet ðA�
I; �IÞ, (ii) A non-Abelian tensor multiplet (TM) ðB��

I; �I; ’IÞ, and (iii) A compen-

sator vector multiplet (CVM) ðC�
I; �IÞ. All of these multiplets are in the adjoint representation of a non-

Abelian group G. Unlike topological theory, all of our fields are propagating with kinetic terms. The

C�
I-field plays the role of a Stueckelberg compensator absorbed into the longitudinal component of B��

I.

We give not only the component Lagrangian, but also a corresponding superspace reformulation,

reconfirming the total consistency of the system. The adjoint representation of the TM and CVM is

further generalized to an arbitrary real representation of general SOðNÞ gauge group. We also couple the

globally N ¼ 1 supersymmetric system to supergravity, as an additional nontrivial confirmation.
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I. INTRODUCTION

Recently, the long-standing problem with non-Abelian
tensors [1] has been solved by de Wit, Samtleben, and
Nicolai [2,3]. The original motivation in Ref. [2] was to
generalize the tensor and vector field interactions in man-
ifestly E6ðþ6Þ-covariant formulation of five-dimensional

(5D) maximal supergravity by gauging non-Abelian sub-
groups. In Ref. [3], this work was further related to
M-theory [4] by confirming the representation assignments
under the duality group of the gauge charges. The under-
lying hierarchies of these tensor and vector gauge fields are
presented with the consistency of general gaugings.

The hierarchy in Refs. [2,3] has been further applied to
the conformal supergravity in 6D [5]. In Ref. [5], the
‘‘minimal tensor hierarchy’’ as a special case of the more
general hierarchy in Refs. [2,3] has been discussed. This
hierarchy consists of A�

r and 2-form gauge potentials

B��
I, with two labels, r and I. Also introduced is the 3-

form gauge potential C���r with the index r, which is dual

to r of A�
r. The field strengths of vector and 2-form gauge

potentials are defined by [5]

F ��
r � 2@½�A��

r þ hI
rB��

I; (1.1a)

H ���
I � 3D½�B���

I þ 6drs
IA½�

r@�A��
s

� 2fpq
sdrs

IA½�
rA�

pA��
q þ gIrC���r: (1.1b)

The prescription for tensor-vector system, which we will
be based upon, is described with Eq. (3.22) in Ref. [5]. To
be more specific, we consider in the present paper the
product of two identical gauge groups G�G [6], whose
adjoint indices are, respectively, r; s; � � � and r0; s0; � � � .
Accordingly, we use the coefficients

frs
t ¼ frs

t; frs0
t0 ¼ �fs0r

t0 ¼ þ 1

2
frs0

t0 ; (1.2a)

dtrs0 ¼ dts0r ¼ � 1

2
frs0

t; hr
0
s ¼ �r0

s ; (1.2b)

where frs
t is the structure constant of a non-Abelian gauge

group.Weuse thesamefieldcontentarisingby thisprescription.
Since the outstanding paper Ref. [5] gives the extensive

details of how to get our system from Refs. [2,3,6], there is
nothing new to explain, except for our notational prepara-
tion. In our notation, the field strengths of the B- and
C-fields are, respectively, G and H, defined by

G���
I � þ3D½�B���

I � 3fIJKC½�
JF���

K; (1.3a)

H��
I � þ2D½�C��

I þ gB��
I: (1.3b)

The gauge transformations for B, C, and A-fields are

��ðB��
I;C�

I;A�
IÞ¼ð�fIJK�JB��

K;

�fIJK�JC�
K;þD��

IÞ; (1.4a)

��ðB��
I;C�

I;A�
IÞ¼ðþ2D½����

I;�g��
I;0Þ; (1.4b)

�	ðB��
I;C�

I;A�
IÞ¼ð�fIJKF��

J	K;D�	
I;0Þ: (1.4c)

As Eq. (1.3b) or Eq. (1.4b) shows, C�
I is a vectorial

Stueckelberg field, absorbed into the longitudinal compo-
nent of B��

I. Because of the general hierarchy [2,3], all

field strengths are invariant:

��ðG���
I; H��

I; F��
IÞ ¼ �fIJK�JðG���

K;H��
K; F��

KÞ;
(1.5a)

��ðG���
I; H��

I; F��
IÞ ¼ 0;

�	ðG���
I; H��

I; F��
IÞ ¼ 0: (1.5b)

Since the hierarchy given in Refs. [2,3] guarantees the
gauge invariance of all field strengths, the construction of
purely bosonic Lagrangian is straightforward. Consider the
action I1 �

R
d4xg2L1
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L 1 � � 1

12
ðG���

IÞ2 � 1

4
ðH��

IÞ2 � 1

4
ðF��

IÞ2: (1.6)

The gauge invariances of all field strength also guarantee
the consistency of the A-, B-, andC-field equations, such as
the divergence D�ð�L1=�B��

IÞ ¼: 0.2 Since we will do

similar confirmation for supersymmetric system later, we
skip the details for the purely bosonic system.

The purpose of our present paper is to supersymmetrize
this system. The rest of our paper is organized as follows.
In Sec. II, we give the component formulation of N ¼ 1
TM. In Sec. III, we give the superspace reformulation of
component result. In Sec. IV, we give the generalization to
non-adjoint representation of G ¼ SOðNÞ case. In Sec. V,
we give the supergravity coupling to non-Abelian TM, as
supporting evidence for the consistency of the global case.

Sec. VI is for concluding remarks. The Appendix is devoted
to purely bosonic systems of non-Abelian tensors with much
simpler structures than have been presented in arbitrary
space-time dimensions with arbitrary signature. An example
of tensor-vector duality G ¼ F� in D ¼ 2þ 4 dimensions,
and its dimensional reduction (DR) into the self-dual Yang-
Mills F ¼ F� in D ¼ 2þ 2, is also presented.

II. COMPONENT FORMULATION OF N ¼ 1 TM

The supersymmetrization of the purely bosonic system
Eq. (1.6) is rather straightforward, except for a subtlety to
be mentioned later. Our system has three multiplets: (i) A
TM ðB��

I; �I; ’IÞ, (ii) A CVM ðC�
I; �IÞ, and (iii) A YM

vector multiplet ðA�
I; �IÞ. Our total action I � R

d4xg2L
has the Lagrangian

L ¼ � 1

12
ðG���

IÞ2 þ 1

2
ð ��I 6D�IÞ � 1

2
ðD�’

IÞ2 � 1

2
g2ð’IÞ2 � gð ��I�IÞ � 1

4
ðH��

IÞ2 þ 1

2
ð ��I 6D�IÞ � 1

4
ðF��

IÞ2

þ 1

2
ð ��I 6D=�IÞ � 1

2
gfIJKð ��I�JÞ’K þ 1

2
fIJKð ��I	��JÞD�’

K þ 1

12
fIJKð ��I	����JÞG���

K

þ 1

4
fIJKð ��I	���JÞF��

K � 1

4
fIJKð ��I	���JÞH��

K � 1

2
fIJKF��

IH��J’K; (2.1)

up to quartic-order terms Oð
4Þ.
It is clear that the scalar ’I has its mass g, while there is a mixture between �I and �I, again with the same mass g. As

has been mentioned after Eq. (1.4), C�
I plays the role of Stueckelberg field [7], being absorbed into the longitudinal

component of B��
I. Eventually, the kinetic term of the C-field becomes the mass term of B��

I. Accordingly, the DOFs for

the massive TM fields are B��
I (3); �I and �I(4); and ’I (1), up to the adjoint index I.

Our action I is invariant under global N ¼ 1 supersymmetry

�QB��
I ¼ þð ��	���

IÞ � 2fIJKC½�j
Jð�QAj��

KÞ;
�Q�

I ¼ þ 1

6
ð	����ÞG���

I � ð	��ÞD�’
I (2.2a)

þ 1

2
fIJK½þ�ð ��J�KÞ � ð	5	

��Þð ��J	5	��
KÞ � ð	5�Þð ��J	5�

KÞ�; (2.2b)

�Q’
I ¼ þð ���IÞ; (2.2c)

�QC�
I ¼ þð ��	��

IÞ þ fIJKð ��	��
JÞ’K; (2.2d)

�Q�
I ¼ þ 1

2
ð	���ÞH��

I � g�’I � 1

2
fIJKð	���ÞF��

J’K þ 1

4
fIJK½þ�ð ��J�KÞ � ð	��Þð ��J	��

KÞ

þ 1

2
ð	���Þð ��J	���

KÞ � ð	5	
��Þð ��J	5	��

KÞ � ð	5�Þð ��J	5�
KÞ�; (2.2e)

�QA�
I ¼ þð ��	��

IÞ; (2.2f)

�Q�
I ¼ þ 1

2
ð	���ÞF��

I þ 1

2
fIJKð	5�Þð ��J	5�

KÞ; (2.2g)

up to cubic terms Oð
3Þ in fields. The fermionic quadratic
terms in Eqs. (2.2b), (2.2e), and (2.2g) are fixed in super-
space formulation, as will be explained later. In the con-
ventional dimensions with all the bosonic (or fermionic)

fields with 1 (or 3=2) mass dimensions,3 these terms lead to
nonrenormalizability. For example, the left side of (2.2b)
has dimension 3=2, while its right side for the �ð ��	�Þ term
has ð�1=2Þ þ ð3=2Þ þ ð3=2Þ ¼ 5=2. In other words, there

1The reason we need the factor g2 in the action is due to the mass-dimension assignments of our fields.
2We use the symbol ¼: for a field equation to distinguish from an algebraic equation.
3Our bosonic (or fermionic) fields have dimensions 0 (or 1=2), in contrast to the conventional dimensions 1 (or 3=2).
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is an implicit coupling constant ‘ with the dimension of
length in front of fermionic quadratic terms. This feature is
also related to the existence of Pauli terms which are non-
renormalizable, already at a globally supersymmetric sys-
tem. These features are similar to supergravity [8], even
though our system so far has only global supersymmetry.

The usual non-Abelian gauge transformation �� and our
tensorial gauge transformation �� and �	-transformation

are exactly the same as Eq. (1.4), while all the fermionic
fields are transforming only under ��, as the B andC-fields
do, so that there arises no problem with the �� and

�	-invariances of the field strengths as in Eq. (1.5).

These immediately lead to the invariances of our action
��I ¼ 0, ��I ¼ 0, and �	I ¼ 0.

The Bianchi identities (BIds) for our field strengths G,
H, and F are:

D½�G����
I � 3

2
fIJKF½��

JH���
K � 0; (2.3a)

D½�H���
I � 1

3
gG���

I � 0; (2.3b)

D½�F���
I � 0: (2.3c)

Relevantly, the nontrivial �Q-transformations of the field

strengths are

�QG���
I ¼ þ3ð ��	½��D���IÞ þ 3fIJKð�QA½�

JÞH���
K

� 3fIJKð�QC½�
JÞF���

K; (2.4a)

�QH��
I ¼ �2ð ��	½�D���IÞ þ gð ��	���

IÞ
þ 2fIJKD½�j½ð�QAj��

JÞ’K�; (2.4b)

�QF��
I ¼ �2ð ��	½�D���IÞ; (2.4c)

reflecting the presence of Chern-Simon terms.
Note that our YMVM and CVM have on-shell DOF 2þ

2, while off-shell DOF is 3þ 4, because we have not added
the D-auxiliary field. On the other hand, our TM is in the
off-shell formulation because the total off-shell DOF is 4þ
4, because the off-shell DOF of each field are ½ð4� 1Þ �
ð4� 2Þ�=2 ¼ 3 for B��, 4 for �, and 1 for ’.

The field equations for �I, �I, �I, A�
I, B��

I, ’I, and

C�
I are, respectively, 4

þ 6D�I�1

2
gfIJK�J’Kþ1

2
fIJKð	��JÞD�’

K�1

4
fIJKð	���JÞH��

Kþ 1

12
fIJKð	����JÞG���

K¼: 0; (2.5a)

þ 6D�I�g�Iþ1

2
gfIJK�J’K�1

4
fIJKð	���JÞH��

Kþ1

4
fIJKð	���JÞF��

K¼: 0; (2.5b)

þ 6D�I�g�Iþ1

2
fIJKð	��JÞD�’

K� 1

12
fIJKð	����JÞG���

Kþ1

4
fIJKð	���JÞF��

K¼: 0; (2.5c)

þD�F�
�IþgfIJK’JD�’

Kþ1

2
gfIJKð ��J	��

KÞþfIJKH��
JD�’K�1

2
fIJKG���

JH��K

þ1

2
fIJKð ��JD��

KÞþ1

2
fIJKð ��JD��

KÞ¼: 0; (2.5d)

þD�G
���I�gH��I�1

2
fIJKD�ð ��J	����KÞþgfIJKF��J’K�1

2
gfIJKð ��J	���KÞ¼: 0; (2.5e)

þD2
�’

I�gfIJKð ��J�KÞ�g2’I�1

2
fIJKF��

JH��K¼: 0; (2.5f)

þD�H
��I�1

2
fIJKF��

JG���K�1

2
fIJKð ��JD��KÞ�1

2
fIJKð ��JD��KÞþ1

2
gfIJKð ��J	��KÞ�fIJKF��JD�’

K¼: 0: (2.5g)

In the derivation of these field equations, we have also used
other field equations in order to simply their final expres-
sions, as a conventional prescription.

In the previous computation, we do not attempt to fix the
Oð
3Þ-terms in field equations, or equivalently the fermi-
onic Oð
4Þ-terms in the Lagrangian. There are several
remarks about these terms. First, our system is nonrenor-
malizable as supergravity theory [8], as has been men-
tioned after Eq. (2.2). Accordingly, the ðfermionÞ2-terms
in the fermionic transformations such as Eqs. (2.2b), (2.2e),
and (2.2g) are accompanied by the implicit constant ‘
carrying the dimension of (length). In supergravity theory
[8], this is the gravitational coupling 
. In our Lagrangian,
all the quartic-fermion terms carry ‘2, so that the

Lagrangian has the mass dimension þ4. Accordingly, a
typical Noether term has the structure ‘�2@�,
which produces the terms of the form ‘2��3@� via
�Q� � ‘��2. Here, � (or �) is a general fermionic (or

bosonic) fundamental field. These ‘2��3@�- terms are
canceled by the variation of the fermionic quartic terms
‘2�4, via �Q� � �@�. In other words, the structure of

these cancellations associated with quartic-fermion terms
is parallel to supergravity [8], since ‘ is analogous to 
.

4These equations are fixed up to Oð
3Þ-terms, due to the
quartic fermion terms in the Lagrangian.
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However, in our peculiar system, this cancellation
mechanism may be not simply parallel to conventional
supergravity [8]. For example, there may be
‘2�2�@�-type terms in the action, while ‘2��2�-type
terms in the transformation rules may exist, because both
of them yield ‘2��3@�-type terms, canceling each other in
�QI. At the present time, we do not know if such terms arise,

because the ‘2��2�-type terms in transformations are at
Oð
3Þ, while ‘2�2�@�-type terms in the action are at
Oð
4Þ. In fact, even in the superspace reconfirmation in
the next section, we have fixed only the Oð
1Þ- and
Oð
2Þ-terms in the transformation rules for fermions, such
as Eqs. (3.2d)–(3.2f), but not cubic terms Oð
3Þ. Our con-
sistent principle in this paper is to fix onlyOð
1Þ-, Oð
2Þ-,
and Oð
3Þ-terms in the Lagrangian and Oð
1Þ- and
Oð
2Þ-terms in all transformation rules, while fixing
Oð
1Þ- and Oð
2Þ-terms in all field equations. However,
we try to fix neither Oð
4Þ-terms in the Lagrangian nor
Oð
3Þ-terms in all transformation rules, nor Oð
3Þ-terms
in all field equations.We do not specify that each fieldmeant
by
 is fermionic or bosonic in this paper, either.

Second, as an additional difference from supergravity [8],
the fermionic quartic terms do not contain any gravitino. This
implies that we cannot use the conventional technique of
‘‘supercovariantizing’’ fermionic field equations. Because of
this feature, as well as the abovementioned possible non–
purely fermionic ‘2�2�@�-type terms, the quartic terms
Oð
4Þ at Oð‘2Þ will be more involved than conventional
supergravity [8], which are tedious. For these reasons, we do
not attempt to fix them in this paper.

Third, according to the past experience in supergravity
theory [8], it is understood that the series in terms of 
 in a

Lagrangian will stop at a finite order, such as the quartic-
fermion terms at Oð
2Þ [8]. However, at the present time,
we do not know whether this is also the case with our
globally supersymmetric system. This is because of the
abovementioned differences of our system from supergrav-
ity [8], and therefore the analogy with supergravity might
be not valid in our system.
Fourth, since we have already fixed the cubic terms in

the Lagrangian, they seem sufficient for nontrivial and
consistent couplings as a supersymmetric system.

III. SUPERSPACE REFORMULATION
OF N ¼ 1 TM

As a reconfirmation of the total consistency of our
system, we reformulate our theory in terms of superspace
language. Our basic superspace BIds for the superfield
strengths FAB

I, GABC
I, and HI

AB are5

þ 1

6
r½AGBCDÞ

I � 1

4
T½ABj

EGEjCDÞ � 1

4
fIJKF½AB

JHCDÞ
K � 0;

(3.1a)

þ 1

2
r½AHBCÞ

I � 1

2
T½ABj

DH
DjCÞ

I � gGABC
I � 0; (3.1b)

þ 1

2
r½AFBCÞ

I � 1

2
T½ABj

DF
DjCÞ

I � 0: (3.1c)

These BIds are the superspace generalizations of the com-
ponent BIds in Eq. (2.3), with the supertorsion terms added
for local Lorentz indices, as usual in superspace.
Our basic superspace constraints at mass dimensions

0 � d � 1 are

T��
c ¼ þ2ð	cÞ��; G��c

I ¼ þ2ð	cÞ��’I; (3.2a)

G�bc
I ¼ �ð	bc�

IÞ�; H�b
I ¼ �ð	b�

IÞ� � fIJKð	b�
JÞ�’K; (3.2b)

F�b
I ¼ �ð	b�

IÞ�; r�’
I ¼ ���

I; (3.2c)

r���
I ¼ � 1

6
ð	cdeÞ��Gcde

I � ð	cÞ��rc’
I � 1

2
fIJK½þC��ð ��J�KÞ � ð	5	

cÞ��ð ��J	5	c�
KÞ � ð	5Þ��ð ��J	5�

KÞ�; (3.2d)

r���
I ¼ þ 1

2
ð	cdÞ��Hcd

I þ gC��’
I � 1

2
fIJKð	cdÞ��Fcd

J’K � 1

4
fIJK½þC��ð ��J�KÞ þ ð	cÞ��ð ��J	c�

KÞ

� 1

2
ð	cdÞ��ð ��J	cd�

KÞ � ð	5	
cÞ��ð ��J	5	c�

KÞ � ð	5Þ��ð ��J	5�
KÞ; (3.2e)

r���
I ¼ þ 1

2
ð	cdÞ��Fcd

I � 1

2
ð	5Þ��fIJKð ��J	5�

KÞ: (3.2f)

All other components, such as G��	
I, T��

	, Tab
c, H��

I, etc., at d � 1 are zero. Note that ðfermionÞ2-terms in
Eqs. (3.2d) through (3.2f) have been determined in superspace by satisfying BIds at d ¼ 1. Note that these results are
valid up toOð
3Þ-terms, which we do not attempt to fix in this paper. However, all theOð
2Þ-terms have been included, as
was also mentioned at the end of the previous section.

5Only in this superspace section, we use the indices A ¼ ða; �Þ, B ¼ ðb;�Þ; � � � for superspace coordinates, where a; b; � � � ¼ 0, 1,
2, 3 (or �;�; � � � ¼ 1, 2, 3, 4) are for bosonic (or fermionic) coordinates. In superspace, the (anti)symmetrization convention, e.g.,
X½ABÞ � XAB � ð�1ÞABXBA is different from our component notation.
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There are also useful relationships obtained from
d ¼ þ3=2 BIds:

r�Gbcd ¼ � 1

2
ð	½bcrd��IÞ� � 1

2
fIJKð	½bj�JÞ�Hjcd�

K

þ 1

2
fIJKð	½bj�JÞ�Fjcd�

K; (3.3a)

r�Hbc
I ¼ þð	½brc��IÞ� � gð	bc�

IÞ�
� fIJKr½b½ð	c��JÞ�’K�; (3.3b)

r�Fbc
I ¼ þð	½brc��IÞ�; (3.3c)

up to Oð
3Þ-terms. Note the existence of the Oð
2Þ-terms
in Eqs. (3.3a) and (3.3b), reflecting the corresponding terms
in the component results in Eqs. (2.4a) and (2.4b).

As usual, the satisfaction of all the BIds in superspace by
the constraints Eqs. (3.2) and (3.3) is straightforward to
perform, from the dimension d ¼ 0 to d ¼ 3=2, as usual.
In particular, the ðFermionsÞ2 terms in Eqs. (3.2d) through
(3.2f) are the results of our superspace reformulation.

The fermionic � and �-field Eqs. (2.5a) and (2.5c)
are obtained as usual by computing fr�;r�g��I and

fr�;r�g��I, while the �-field Eq. (2.5b) is shown to be

consistent with the component Lagrangian. As has been men-
tioned, since the TM is off-shell multiplet, we cannot get the
�-field Eq. (2.5b) in superspace directly, but we can show that
Eq. (2.5b) is consistent in superspace. The bosonic field
Eqs. (2.5d)–(2.5g) are obtained by applying another fermionic
derivative on the fermionic field Eqs. (2.5a)–(2.5c).

IV. GENERALIZATION TO NON-ADJOINT
REPRESENTATIONS OF G ¼ SOðNÞ

We have so far considered the case for the TM and CVM
both carrying only the adjoint representation. We can gen-
eralize this result to other, more general representations,
such as an arbitrary real representation of a SOðNÞ-type
gauge group.6

To be more specific, we consider the TM ðB��
i; �i; ’iÞ

and the CVM ðC�
i; �iÞ, where the index i is for any real

representation of a gauge group G ¼ SOðNÞ. Let ðTIÞjk be
the generator of the group G. Then our action I0 �R
d4xg2L0 has the Lagrangian 7

L0 ¼ � 1

12
ðG���

iÞ2 þ 1

2
ð ��i 6D�iÞ � 1

2
ðD�’

iÞ2 � 1

2
g2ð’iÞ2 � gð ��i�iÞ � 1

4
ðH��

iÞ2 þ 1

2
ð ��i 6D�iÞ � 1

4
ðF��

IÞ2

þ 1

2
ð ��I 6D�IÞ � 1

2
gðTIÞjkð ��I�jÞ’k þ 1

2
ðTIÞjkð ��I	��jÞD�’

k þ 1

12
ðTIÞjkð ��I	����jÞG���

k

þ 1

4
ðTIÞjkð ��j	���kÞF��

I � 1

4
ðTIÞjkð ��I	���jÞH��

k � 1

2
ðTIÞjkF��

IH��j’k (4.1)

up to quartic terms Oð
4Þ. Our action I0 is invariant under global N ¼ 1 supersymmetry

�QB��
i ¼ þð ��	���

iÞ � 2ðTJÞikC½�j
kð�QAj��

JÞ; (4.2a)

�Q�
i ¼ þ 1

6
ð	����ÞG���

i � ð	��ÞD�’
i � 1

2
ðTJÞik½þ�ð ��J�kÞ � ð	5	

��Þð ��J	5	��
kÞ � ð	5�Þð ��J	5�

kÞ�; (4.2b)

�Q’
i ¼ þð ���iÞ; (4.2c)

�QC�
i ¼ þð ��	��

iÞ � ðTJÞikð ��	��
JÞ’k; (4.2d)

�Q�
i ¼ þ 1

2
ð	���ÞH��

i � g�’i þ 1

2
ðTJÞikð	���ÞF��

J’k � 1

4
ðTJÞik½þ�ð ��J�kÞ � ð	��Þð ��J	��

kÞ

þ 1

2
ð	���Þð ��J	���

kÞ � ð	5	
��Þð ��J	5	��

kÞ � ð	5�Þð ��J	5�
kÞ�; (4.2e)

�QA�
I ¼ þð ��	��

IÞ; (4.2f)

�Q�
I ¼ þ 1

2
ð	���ÞF��

I � 1

2
ðTIÞjkð	5�Þð ��j	5�

kÞ: (4.2g)

The essential point is that all the cubic-order terms contain one component field A�
I or �I with the index I, and the

remaining two component fields out of either TM or CVM carry the indices j and k. So the cancellation structure is
parallel to the adjoint-representation case, e.g., with the structure constant fIJK replaced by the matrix �ðTJÞik in
D��

I ¼ @��
I þ gfIJKA�

J�K ���! D��
i ¼ @��

i � gðTJÞikA�
J�k. Accordingly, the Stueckelberg mechanism [7]

6We can also consider the complex representation for SUðNÞ-type gauge groups.
7Since the metric for the gauge group G ¼ SOðNÞ is positive definite, we do not distinguish the upper or lower indices for i; j; � � � ¼

1; 2; � � � ; dim R, where R is a real representation of G.

N ¼ 1 NON-ABELIAN TENSOR MULTIPLET IN FOUR . . . PHYSICAL REVIEW D 85, 105017 (2012)

105017-5



works in a parallel fashion, because C�
i is absorbed into the longitudinal component of B��

i, both in the same

representation R.

V. COUPLING TO N ¼ 1 SUPERGRAVITY

Once we have established the N ¼ 1 global system of non-Abelian TM with nontrivial and consistent interactions, the
next natural step is to make N ¼ 1 supersymmetry local, coupling to N ¼ 1 supergravity.

This coupling is rather straightforward because most of the basic structure is parallel to the usual matter coupling to
supergravity, except for certain couplings to be mentioned later. Our result for the Lagrangian
~L of our action is ~I � R

d4xg2 ~L:

e�1 ~L¼�1

4
Rð!Þ� ½ �c �	

���D�ð!Þc ��� 1

12
ðG���

IÞ2þ 1

2
½ ��I 6Dð!Þ�I�� 1

2
ðD�’

IÞ2� 1

4
ðF��

IÞ2þ 1

2
½ ��I 6D�I�

� 1

4
ðH��

IÞ2þ 1

2
½ ��I 6Dð!Þ�I��gð ��I�IÞ� 1

2
g2ð’IÞ2� 1

2
gfIJKð ��I�JÞ’K � 1

4
fIJKð ��I	���JÞH��

K

þ 1

12
fIJKð ��I	����JÞG���

K þ 1

4
fIJKð ��I	��JÞF��

K � 1

2
fIJKF��

IH��J’K þ 1

2
fIJKð ��I	���JÞD�’

K

þð �c �	
�	��IÞD�’

I þ 1

6
ð �c �	

���	��IÞG���
I � 1

2
ð �c �	

��	��IÞF��
I � 1

2
ð �c �	

��	��IÞH��
I �gð �c �	

��IÞ’I;

(5.1)

up to Oð
4Þ terms.
Our action ~I is now invariant under local N ¼ 1 supersymmetry

�Qe�
m ¼ �2ð ��	mc �Þ; (5.2a)

�Qc � ¼ þD�ð!̂Þ�� 1

6
ð	�

����ÞĜ���
I’I; (5.2b)

�QB��
I ¼ þð ��	���

IÞ � 2fIJKC½�j
Jð�QAj�ce

KÞ � 4ð ��	½�c ��Þ’I; (5.2c)

�Q�
I ¼ þ 1

6
ð	����ÞĜ���

I � ð	��ÞD̂�’
I þ 1

2
fIJK½þ�ð ��J�KÞ � ð	5	

��Þð ��J	5	��
KÞ � ð	5�Þð ��J	5�

KÞ�; (5.2d)

�Q’
I ¼ þð ���IÞ; (5.2e)

�QC�
I ¼ þð ��	��

IÞ þ fIJKð ��	��
JÞ’K; (5.2f)

�Q�
I ¼ þ 1

2
ð	���ÞĤ��

I � g�’I � 1

2
fIJKð	���ÞF̂��

J’K þ 1

4
fIJK½þ�ð ��J�KÞ � ð	��Þð ��J	��

KÞ

þ 1

2
ð	���Þð ��J	���

KÞ � ð	5	
��Þð ��J	5	��

KÞ � ð	5�Þð ��J	5�
KÞ�; (5.2g)

�QA�
I ¼ þð ��	��

IÞ; (5.2h)

�Q�
I ¼ þ 1

2
ð	���ÞF̂��

I þ 1

2
fIJKð	5�Þð ��J	5�

KÞ; (5.2i)

up to Oð
3Þ terms. The supercovariant field strengths are defined as usual in supergravity [8] by

F̂��
I � þ2@½�A��

I þ gfIJKA�
JA�

K � 2ð �c ½�	���IÞ ¼ F��
I � 2ð �c ½�	���IÞ; (5.3a)

Ĝ���
I � þ3D½�B���

I � 3fIJKC½�
JF���

K � 3ð �c ½�	����IÞ þ 6ð �c ½�j	j�jc j��Þ’I

¼ þG���
I � 3ð �c ½�	����IÞ þ 6ð �c ½�j	j�jc j��Þ’I; (5.3b)

Ĥ��
I � þ2D½�C��

I þ gB��
I � 2ð �c ½�	���IÞ ¼ H��

I � 2ð �c ½�	���IÞ; (5.3c)

D̂�’
I � þD�’

I � ð �c ��
IÞ: (5.3d)
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Certain remarks are in order. First, the last term in
Eq. (5.1) of the type gð �c	�Þ’ is related to the ’-linear
term in �Q� in Eq. (5.2g). Second, the �QB�� contains

the ð ��	c Þ’-term. This is consistent with G��c
I ¼

þ2ð	cÞ��’I in (3.2a) in superspace. Third, for the

gc��-terms, we need nontrivial Fierz rearrangement. To
be more specific, there are three contributions to this sector:
(i) gð �c	�Þ’, (ii) geð ���Þ, and (iii) ð �c		�ÞH-terms. This
rearrangement is highly nontrivial, showing the consistency
of our total system.

As the couplings to supergravity in Eq. (5.1) show, our
original globally supersymmetric system shares certain
features with supergravity, such as fermionic bilinear terms.
Such terms are common in supergravity [8] but not in
conventional global supersymmetry. Our original global
system already possessed the feature of local N ¼ 1 super-
symmetry. As was mentioned following Eq. (2.2), the con-
ventional dimensional analysis tells that such terms imply
nonrenormalizability. In other words, our globally super-
symmetric system already had a hidden gravitational con-
stant 
 providing negative mass dimension. In a sense, this
feature resembles �-models with nonrenormalizable cou-
plings, sharing certain features with gravity interactions.

VI. CONCLUDING REMARKS

In this paper, we have carried out the N ¼ 1 super-
symmetrization in 4D of a non-Abelian tensor with con-
sistent couplings, as a special case [6] of the minimal
tensor hierarchy discussed in Ref. [5], which is further a
special case of more general hierarchy in Refs. [2,3]. We
have given both the component and superspace formula-
tions of our system, providing the nontrivial consistency of
our system. Our CVM ðC�

I; �IÞ plays the role of a

Stueckelberg [7] compensator multiplet, being absorbed
into the TM ðB��

I; �I; ’IÞ, making the latter massive.

We have also generalized the adjoint-representation case
to the general real representation for G ¼ SOðNÞ. The
action invariance works in a fashion parallel to the former.
We foresee no obstruction against generalizing these re-
sults further to the complex representation of, e.g., G ¼
SUðNÞ group. Finally, we have also coupled the global
N ¼ 1 system to N ¼ 1 supergravity up to quartic terms.
This has provided a nontrivial confirmation for the total
consistency of the non-Abelian TM.

It has been known that certain problem exists in the
quantization of the Stueckelberg model [7] for non-
Abelian gauge groups [9]. The common problem is that
the longitudinal components of the gauge field do not
decouple from the physical Hilbert space, upsetting the
renormalizability and unitarity of the system [9]. For this
issue, we clarify our standpoints as follows: First of all, our
theory is not renormalizable from the outset due to Pauli
couplings. Our theory makes stronger sense when cou-
plings to supergravity are also taken into account, as we
have done in Sec. V. Moreover, there are certain theories in

4D, such as nonlinear sigma models, which are not renor-
malizable but are not excluded from the outset. So we do
not go into the renormalizability issue in this paper.
Second, thanks to N ¼ 1 supersymmetry, our system has
a good chance to have a better quantum behavior compared
with nonsupersymmetric systems.
As shown in the Appendix, the purely bosonic part of

our system can be generalized to arbitrary space-time
dimensions with arbitrary signatures. The key ingredient
is the tensor B�1����pþ1

I and a Stueckelberg-type [7] com-

pensator C�1����p

I.

The potential importance of the result in this paper is
N ¼ 1 supersymmetry that has better quantum behavior
compared with nonsupersymmetric cases. We have pre-
sented a new supersymmetric physical system with
Stueckelberg mechanism that solves both the problem with
non-Abelian tensor and the problem with extra vector fields
in the non-singlet representation of a non-Abelian gauge
group.
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APPENDIX: HIGHER-DIMENSIONAL
APPLICATION OF PURELY BOSONIC SYSTEM

In this appendix, we generalize the purely bosonic part
of our system in 4D into arbitrary space-time dimensions
with arbitrary signatures. We also apply it to the case of
tensor-vector duality in 6D, and perform a DR to 4D. Our
field content is ðA�

I; B½n�1�
I; C½n�2�

IÞ.8
We generalize the definitions of field strengths

Eqs. (1.3a) and (1.3b) to arbitrary space-time dimensionD as

G�1����n

I � þnD½�1
B�2����n�

I � nðn� 1Þ
2

� fIJKC½�1����n�2

JF�n�1�n�
K; (A1a)

H�1����n�1

I � þðn� 1ÞD½�1
C�2����n�1�

I þ gB�1����n�1

I:

(A1b)

TheYMfield strengthF is the same as inEq. (5.3a). TheBIds
for these field strengths are

D½�F���
I � 0; (A2a)

D½�1
G�2����nþ1�

I � þn

2
fIJKF½�1�2j

JHj�3����nþ1c
K; (A2b)

D½�1
H�2����n�

I � þ 1

n
gG�1����n

I: (A2c)

The �-, �-, and 	-transformations for A�
I, B½n�1�

I, and

C½n�2�
I are the generalizations of our 4D case:

8We use symbols like ½n� for totally antisymmetric indices
�1�2 � � ��n in order to save space.
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��ðA�
I; B½n�1�

I; C½n�2�
IÞ ¼ ðD��

I;�gfIJK�JB½n�1�
K;�gfIJK�JC½n�2�

KÞ; (A3a)

��ðF��
I; G½n�

I; H½n�1�
IÞ ¼ �gfIJK�JðF��

K;G½n�
K;H½n�1�

KÞ; (A3b)

��B�1����n�1

I ¼ þðn� 1ÞD½�1
��2����n�1�

I; ��A�
I ¼ 0; (A3c)

��C�1����n�2

I ¼ �g��1����n�2

I; (A3d)

��ðF��
I; G½n�1�

I; H½n�2�
IÞ ¼ 0; (A3e)

�	C�1����n�2

I ¼ þðn� 2ÞD½�1
	�2����n�2�

I; �	A�
I ¼ 0; (A3f)

�	B�1����n�1

I ¼ þðn� 1Þðn� 2Þ
2

fIJK	½�1����n�3�
JF½�n�2�n�1�

K; (A3g)

�	ðF��
I; G½n�1�

I; H½n�2�
IÞ ¼ 0: (A3h)

Eq. (A3d) shows that the C-field is a Stueckelberg field
absorbed into the longitudinal components of the B-field.

A typical action I00 � R
dDxg2L00 is given by the

Lagrangian

L00 ¼ � 1

2ðn!Þ ðG½n�
IÞ2 � 1

2 � ðn� 1Þ! ðH½n�1�
IÞ2 � 1

4
ðF��

IÞ2;
(A4)

yielding the B- and C-field equations

�L
�B½n�1�

I ¼
1

ðn� 1Þ! ðD�G
�½n�1�I � gH½n�1�IÞ¼: 0; (A5a)

�L
�C½n�2�

I ¼
1

ðn� 2Þ! ðD�H
�½n�2�I

þ 1

2
fIJKF��

JG½n�2���KÞ¼: 0: (A5b)

As in the 4D case, it is straightforward to show the con-
sistency

0¼? D�

�
�L

�B�½n�2�
I

�
� � 1

n� 1
g

�
�L

�C½n�2�
I

�
¼: 0; (A6a)

0¼? D�

�
�L

�C�½n�3�
I

�
� þ n� 1

2
fIJKF��

J

�
�L

�B½n�3���
K

�

¼: 0 ðQ:E:D:Þ: (A6b)

We next apply our result to 6D with the signature
ð�;�;þ;þ;þ;þÞ, and consider the duality condition

F��
I ¼� þ 1

24
���

����G����
I;

G����
I ¼� þ 1

2
�����

��F��
I:

(A7)

This duality looks similar to Eq. (3.6) in Ref. [5], but the
existence of the physical scalar field 
I in the latter makes
the fundamental difference.
We have first to confirm the consistency of Eq. (A7) with

theG andH-BIds. First, the rotation of the second equation
in Eq. (A7) gives

0¼? þ�������D�ðG����
I � 1

2
�����

!cF!c
IÞ

� þ�������ð2fIJKF��
JH���

KÞ � 24D�F
��I

¼ �24ðD�F
��I � 1

12
�������fIJKF��

JH���
KÞ: (A8)

In the second identity in Eq. (A8), we have used the G-BId
Eq. (A2b). The first term in the last line is the kinetic term
of A�

I, so that its last term is its source term. Second, in

order to see if Eq. (A8) has consistent solutions, we can
confirm the conservation of the source term by applying
D� on Eq. (A8) based on H-BId Eqs. (A2c) and (A7), but

we skip the details here.
We next show that the usual self-duality relationship in

D ¼ 2þ 2

F��
I ¼� þ 1

2
���

��F��
I (A9)

is embedded into Eq. (A7). To this end, we use hat symbols
both on fields and indices in 6D and no hats on 4D
quantities from now on. We also use �̂; �̂; � � � ¼ 1, 2, 3,
4, 5, 6 and �; �; � � � ¼ 1, 2, 3, 4, while �, �; � � � ¼ 5, 6.
Our basic ansätze for the DR are

Ĝ�̂ �̂ �̂ �̂
I ¼� þF̂½�̂ �̂

IP̂�̂ �̂�; P̂�̂ �̂ � þ@̂�̂X̂�̂ � @̂�̂X̂�̂; Ĥ�̂ �̂ �̂
I ¼� þ 1

2
gF̂½�̂ �̂

IX̂�̂�; (A10a)

P̂�̂ �̂ ¼ ��� ðfor �̂ ¼ �; �̂ ¼ �Þ; F̂�̂ �̂
I ¼ F̂��

I ¼ F��
I ðfor �̂ ¼ �; �̂ ¼ �Þ; (A10b)

�̂�̂ �̂ �̂ �̂ �̂ �̂ ¼ �̂������ ¼ �������� ðfor ½�̂ �̂ �̂ �̂ �̂ �̂� ¼ ½�������Þ: (A10c)

Other components, such as P̂��, are all zero. We can confirm that Eqs. (A10) are consistent with the BIds Eqs. (A2b) and
(A2c). It is easy to show that the ½��� and ½��� components of the first equation in Eq. (A7) are satisfied, while the ½���
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component gives directly the 4D self-duality Eq. (A9). Thus the 4D self-duality F¼� ~F is indeed embedded in the 6D
duality Eq. (A7).

We next generalize the 6D result to the D ¼ 2mþ 2 with the signature ð�;�;þ; � � � ;þ
zfflfflfflfflffl}|fflfflfflfflffl{2m

Þ. The duality condition
Eq. (A7) is generalized to

F̂ �̂ �̂
I ¼� þ 1

ð2mÞ! �̂�̂ �̂
�̂1����̂2mĜ�̂1����̂2m

I; Ĝ�̂1����̂2m

I ¼� þ 1

2
�̂�̂1����̂2m

�̂ �̂F̂�̂ �̂
I: (A11)

As in the 6D case, we can first confirm the consistency with BIds. We can next confirm the current conservation, whose
details are skipped here.

The previous ansätze for 6D case in Eq. (A10) are generalized to

Ĝ�̂1����̂2m

I ¼� þcF̂½�̂1�̂2�
IP̂ð1Þ

j�̂3�̂4j � � � P̂
ðm�1Þ
j�̂2m�1�̂2m�; P̂ðkÞ

�̂ �̂ � @̂�̂X̂
ðkÞ
�̂ � @̂�̂X̂

ðkÞ
�̂ ; (A12a)

Ĥ�̂1����̂2m�1

I ¼� þ 1

m
cgF̂½�̂1�̂2j

IP̂ð1Þ
j�̂3�̂4j � � � P̂

ðm�2Þ
j�̂2m�3�̂2m�2jX̂j�̂2m�1�; (A12b)

P̂ðkÞ
�̂ �̂ ¼ P̂ðkÞ

2kþ3; 2kþ4 ¼ �P̂ðkÞ
2kþ4; 2kþ3 ¼ �ðkÞ2kþ3; 2kþ4 ¼ ��ðkÞ2kþ4; 2kþ3 ¼ þ1 ðfor �̂ ¼ 2kþ 3;

�̂ ¼ 2kþ 4; k ¼ 1; � � � ; m� 1Þ; (A12c)

F̂�̂ �̂
I ¼ F��

I ðfor �̂ ¼ �; �̂ ¼ �Þ; (A12d)

�̂�̂1����̂2mþ2 ¼ �������1����2m�2 ¼ ������½�1�2j
ð1Þ � � � �j�2m�3�2m�2�

ðm�1Þ ðfor ½�̂1 � � � �̂2mþ2� ¼ ½�����1 � � ��2m�2�Þ: (A12e)

where c is a constant to be fixed later.
As before, we can also confirm theG- andH-BIds for Eq. (A11). The constant c in Eq. (A12a) is fixed by getting the 4D

self-duality in the ½��� component of the first equation in Eq. (A11):

F��
I ¼� þ 1

ð2mÞ! �̂��
�̂1����̂2mĜ�̂1����̂2m

I ¼ þ ð2m2 Þ
ð2mÞ! �̂��

���1����2m�2Ĝ���1����2m�2

I

¼ þ 1

2
c

�
1

ðm� 1Þ! � ð2m� 3Þ!!
�
2
���

��F��
I: (A13)

For this to agree with F¼� ~F, we get c ¼ ½ðm� 1Þ! � ð2m� 3Þ!!�2. The remaining components ½��� and ½��� are trivially
satisfied.

The previous mechanism for D ¼ 2mþ 2 is further generalized to D ¼ 2mþ 1 with the signature

ð�;�;þ;þ; � � � ;þ
zfflfflfflfflffl}|fflfflfflfflffl{2m�1

Þ, with the duality condition

F̂ �̂ �̂
I ¼� þ 1

ð2m� 1Þ! �̂�̂ �̂
�̂1����̂2m�1Ĝ�̂1����̂2m�1

I; Ĝ�̂1����̂2m�1

I ¼� þ 1

2
�̂�̂1����̂2m�1

�̂ �̂F̂�̂ �̂
I: (A14)

The confirmation of G- and H-BIds is just parallel to the D ¼ 2mþ 2 case. The ansätze for DR is

Ĝ�̂1����̂2m�1

I ¼� þ 2c0

3
F̂½�̂1�̂2j

IP̂ð1Þ
j�̂3�̂4j � � � P̂

ðm�3Þ
j�̂2m�5�̂2m�4jQ̂j�̂2m�3�̂2m�2�̂2m�1�; (A15a)

Ĥ�̂1����̂2m�2

I ¼� þ 2c0g
2m� 1

F̂½�̂1�̂2j
IP̂ð1Þ

j�̂3�̂4j � � � P̂
ðm�3Þ
j�̂2m�5�̂2m�4jŶj�̂2m�3�̂2m�2�; (A15b)

P̂ðkÞ
�̂ �̂ � @̂�̂X̂

ðkÞ
�̂ � @̂�̂X̂

ðkÞ
�̂ ; Q̂�̂ �̂ �̂ � þ@̂�̂Ŷ�̂ �̂ þ @̂�̂Ŷ�̂ �̂ þ @̂�̂Ŷ�̂ �̂; (A15c)

P̂ðkÞ
�̂ �̂ ¼ P̂ðkÞ

2kþ3; 2kþ4 ¼ �P̂ðkÞ
2kþ4; 2kþ3 ¼ �ðkÞ2kþ3; 2kþ4 ¼ � �ðkÞ2kþ4; 2kþ3 ¼ þ1; (A15d)

Q̂�̂ �̂ �̂ ¼ Q̂2m�3;2m�2;2m�1 ¼ �2m�3;2m�2;2m�1 ¼ þ1 ðfor ½�̂ �̂ �̂� ¼ ½2m� 3; 2m� 2; 2m� 1�Þ; (A15e)

F̂�̂ �̂
I ¼ F��

I ðfor �̂ ¼ �; �̂ ¼ �Þ; (A15f)

�̂�̂1����̂2mþ1 ¼ �������1����2m�3 ¼ ������½�1�2j
ð1Þ � � � �j�2m�7�2m�6j

ðm�3Þ �j�2m�5�2m�4�2m�3�: (A15g)

The totally antisymmetric constant tensor ���	 is for the last three coordinates in D ¼ 2mþ 1. The satisfaction of the
duality Eq. (A14) fixes the constant c0 ¼ ½ðm� 3Þ! � ð2m� 7Þ!!�2.
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