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We present an explicit and exact boost of a relativistic bound state defined at equal time of the

constituents in the Born approximation (lowest order in ℏ). To this end, we construct the Poincaré

generators of QED and QCD in D ¼ 1þ 1 dimensions, using Gauss’ law to express A0 in terms of the

fermion fields in A1 ¼ 0 gauge. We determine the fermion-antifermion bound states in the Born

approximation as eigenstates of the time and space translation generators P0 and P1. The boost operator

is combined with a gauge transformation so as to maintain the gauge condition A1 ¼ 0 in the new frame.

We verify that the boosted state remains an eigenstate of P0 and P1 with appropriately transformed

eigenvalues and determine the transformation law of the equal-time, relativistic wave function. The shape

of the wave function is independent of the center-of-mass momentumwhen expressed in terms of a variable

which is quadratically related to the distance x between the fermions. As a consequence, the Lorentz

contraction of the wave function is / 1=ðE� VðxÞÞ and thus depends on x via the linear potential VðxÞ.
DOI: 10.1103/PhysRevD.85.105016 PACS numbers: 11.10.St, 11.15.Bt, 11.30.Cp, 12.20.Ds

I. INTRODUCTION

Physical gauge field theories are Poincaré invariant, i.e.,
their action is symmetric under space-time translations,
rotations, and boosts. In a Hamiltonian treatment the quan-
tization surface is, however, not left invariant by all 10
Poincaré generators. An equal-time (t ¼ 0) surface is
invariant under space translations and rotations, which
allows one to construct explicit and exact eigenstates of
the 3-momentum P and angular momentum J operators:
These symmetries are ‘‘kinematic.’’ Time translations and
boosts on the other hand transform the equal-time surface.
Those symmetries are termed ‘‘dynamic’’ and in practice
cannot be implemented exactly [1]. Thus the eigenstates of
the time translation operator P0 ¼ H (the Hamiltonian)
can usually be found only in some approximation. Simi-
larly, the boost operators are dynamic operators, which
create and destroy particles.

The gauge coupling � is a free parameter of the
Lagrangian. This ensures the Poincaré invariance of each
order of a perturbative expansion of the Smatrix. In a time-
ordered expansion boost invariance is obtained only after
summing over all states at any intermediate time (at the
given order of �). Relativistic bound states have an infinite
number of Fock components. Consequently, their equal-
time wave functions (which contain all powers of �) trans-
form in a highly nontrivial way under boosts. In practice,
no explicit, exact relation between the wave functions
of relativistic states in different frames can be found:
Boosting an equal-time state is as difficult as finding the
eigenstates of the Hamiltonian directly in the new frame.

At the lowest order in � scattering amplitudes are given
by tree diagrams, whose internal propagators are off-shell.
These Born amplitudes are independent of the i" prescrip-
tion used in the propagators. For retarded propagators

SRðp0;pÞ, with poles at p0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p � i", inter-
mediate states of both positive and negative energy move
forward in time: SRðt;pÞ / �ðtÞ. The absence of backward
propagation (‘‘Z’’ diagrams) avoids intermediate pairs
and thus simplifies time ordering, without changing the
actual values of the scattering amplitudes in the Born
approximation.
Analogously, the bound state energies of an electron in a

static external Coulomb potential are (at tree-level) inde-
pendent of the i" prescription used in the electron propa-
gator. In order to determine the equal-time Fock structure
of the bound states, i.e., the wave function of the electron,
one needs to time-order the propagators. The time ordering
of Feynman propagators gives a wave function with any
number of eþe� pair components, which arise from Z
diagrams. Using retarded propagators, there are no Z con-
tributions, and one obtains the standard Dirac wave func-
tion describing a single particle with both positive and
negative energy components. Remarkably, the same rela-
tivistic bound state can thus, at Born level, be equivalently
described using two quite different wave functions [2]. The
i"-prescription invariance ensures that the bound state
energies are independent of the choice of wave function.
The possibility to describe relativistic bound states,

which have an infinite sea of constituents, using few-
particle ‘‘valence’’ wave functions reopens the issue of
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explicit Poincaré covariance. Since ℏ is a fundamental
parameter of the Lagrangian each order in an ℏ expansion,
and, in particular, the Born term, will have exact Poincaré
invariance [3]. In the present paper we discuss cases where
the wave functions of relativistic bound states in different
frames can thus be related explicitly.

The Dirac bound states mentioned above are not trans-
lation invariant due to the external potential. We need to
consider freely moving bound states formed by the inter-
action between two (or more) particles, such as QED
atoms. The equal-time wave function of an atom in motion
was considered in [4]. In the rest frame, and at lowest order
in � (and ℏ) the interaction is given by the standard
Coulomb potential VðrÞ ¼ ��=r. Since atoms are non-
relativistic, the Z diagrams are suppressed also for
Feynman propagators. After a boost, however, the interac-
tion (in Coulomb gauge) acquires also a propagating,
transverse photon component. Thus, in a moving positro-
nium atom jeþe��i Fock states must be included even at
lowest order in �. Adding relativistic corrections will
increase the number of Fock states, further complicating
the transformation of atomic wave functions under boosts.

An explicit transformation law for relativistic states can
be found for QED and QCD in D ¼ 1þ 1 dimensions.
Since there are no transverse photons, the interaction is
fully given by the instantaneous (nonpropagating) A0 field
in Coulomb gauge. We derive below the Poincaré algebra
for QED starting from the nonlocal fermionic action,
which is obtained by eliminating the A0 field. This dem-
onstrates that only interactions via a linear potential
between the fermions, as stipulated by QED, lead to a
Poincaré-covariant theory. The fact that the Lorentz boost
operator must involve a gauge transformation in order to
keep the Coulomb gauge condition satisfied in the boost is
also illustrated.

We show how (Born level) two-body eigenstates of the
translation generators P0 and P1 may be found in QED,
making use of retarded propagation in analogy to the Dirac
case mentioned above [2]. We then apply the boost gen-
erator to obtain the bound state in another frame. The
boosted state remains an eigenstate of P0 and P1, with
appropriately transformed eigenvalues. The rate of Lorentz
contraction of the wave function turns out to depend on the
linear potential VðxÞ and thus on the distance x between the
constituents. The boost covariance of bound states of two
fermions interacting via a linear potential has been noticed
before as a property of their bound state equation [5].
Here we present the derivation from first principles, by
identifying the system with a relativistic two-fermion
bound state of 1þ 1 dimensional QED (or QCD) in the
Born approximation.

The rest of the paper is organized as follows. In Sec. II
we discuss the Poincaré algebra for 1þ 1 dimensional
QED in Coulomb gauge after integrating out the gauge
bosons, in Sec. III we present the corresponding bound

state equation, in Sec. IV we analyze the behavior of the
bound state wave function under boosts, and in Sec. V we
conclude the paper. Appendix A contains details on the
derivation of the generators of the Poincaré algebra from
Sec. II, and in Appendix B we present the generalization to
QCD, i.e., to non-Abelian gauge groups.

II. POINCARÉ GENERATORS OF QED2

We shall work in Coulomb gauge (here equivalent to
A1 ¼ 0) in order to avoid Fock states with longitudinal
photons. The QED action in D ¼ 1þ 1 for fermions of
flavor f is then

S ¼
Z

d2x

�
� 1

2
ð@1A0Þð@1A0Þ

þX
f

c yf ðxÞ�0ði6@�mf � e�0A0Þc fðxÞ
�
: (2.1)

The equation of motion for A0 (Gauss’ law),

� @21A
0ðxÞ ¼ e

X
f

c yfc fðxÞ; (2.2)

allows one to express A0 in terms of the fermion fields,

A0ðxÞ ¼ � e

2

X
f

Z
dy1jx1 � y1jc yfc fðx0; y1Þ; (2.3)

in the absence of a background field [6]. Using this in the
action (2.1) gives the nonlocal expression

S � SF þ SV

¼X
f

Z
d2xc yf ðxÞ�0ði6@�mfÞc fðxÞ

þ e2

4

X
f;f0

Z
d2xd2y�ðx0 � y0Þc yfc fðxÞ

� jx1 � y1jc y
f0c f0 ðyÞ: (2.4)

Since no approximations have been made, this action must
be invariant under time and space translations as well as
boosts, generated by the operators P0, P1, and M01, re-
spectively. Let us review the derivation of the Poincaré
generators for the nonlocal action (2.4), adapting the stan-
dard procedures (see, e.g., Sec. 7.3 in [7]).
Consider the infinitesimal space translation

c fðx0; x1Þ ! c fðx0; x1 � �ðx0Þd‘Þ; (2.5)

where the a priori arbitrary function �ðx0Þ will be a con-
stant for a true translation. The variation of the free fermion
action is

�SF ¼ �d‘
X
f

Z
d2x½c yf ðxÞ�0ði6@�mfÞ�ðx0Þ@1c fðxÞ

þ �ðx0Þð@1c yf ðxÞÞ�0ði6@�mfÞ�c fðxÞ; (2.6)
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where 6@ in the first term operates both on �ðx0Þ and the
fermion field. As seen by integrating the last term partially
over x1, all terms except the one where 6@ differentiates
�ðx0Þ cancel. Thus,

�SF ¼ �id‘
X
f

Z
d2x�0ðx0Þc yf ðxÞ@1c fðxÞ: (2.7)

The transformation of the potential term SV can be can-
celed by a shift of integration variables x1 ! x1 þ �ðx0Þd‘
and y1 ! y1 þ �ðx0Þd‘, since the �-function sets x0 ¼ y0

and the potential jx1 � y1j as well as �ðx0Þ are unchanged
by the shift. Therefore, �SV ¼ 0 and the variation of the
action becomes

�S ¼ d‘
Z

dx0�0ðx0ÞP1; (2.8)

where we identified the generator for spatial translations

P1 ¼ �iX
f

Z
dx1c yf ðxÞ@1c fðxÞ: (2.9)

Setting �ðx0Þ � 1 the generic transformation (2.5) becomes
a standard space translation and the variation (2.8) van-
ishes, which proves the covariance of the QED action
under space translations.

Let us then assume that the fermion fields satisfy their
equation of motion. Since the variation of the action
vanishes under every infinitesimal transformation of
c ðxÞ, the variation (2.8) now vanishes for any function
�ðx0Þ. Therefore,

0 ¼ d‘
Z

dx0�0ðx0ÞP1 ¼ �d‘
Z

dx0�ðx0Þ d

dx0
P1:

(2.10)

Since �ðx0Þwas arbitrary we conclude that P1 is conserved,

d

dx0
P1 ¼ 0; (2.11)

when c ðxÞ satisfies its equation of motion.
The analogous derivations of the time translation P0 and

boost generator M01 are given in Appendix A. Since the
gauge constraint A1 ¼ 0 is not invariant under boosts
M01 is actually a combination of a Lorentz boost and a
gauge transformation.1 Denoting P0 ¼ P0

F þ P0
V and

M01 ¼ M01
F þM01

V , the result is

P0
F ¼

X
f

Z
dx1c yf ðxÞð�i�0�1@1 þmf�

0Þc fðxÞ;

P0
V ¼ �

e2

4

X
f;f0

Z
dx1dy1c yfc fðx0; x1Þ

� jx1 � y1jc yf0c f0 ðx0; y1Þ; (2.12)

M01
F ¼ x0P1 þX

f

Z
dx1c yf ðxÞ

�
x1ði�0�1@1 � �0mfÞ

þ i

2
�0�1

�
c fðxÞ;

M01
V ¼

e2

8

X
f;f0

Z
dx1dy1c yfc fðx0; x1Þðx1 þ y1Þ

� jx1 � y1jc y
f0c f0 ðx0; y1Þ: (2.13)

Let us then check that these generators satisfy the D ¼
1þ 1 Poincaré Lie algebra. Using the anticommutation
relation

fc f�ðx0; x1Þ; c yf0�ðx0; y1Þg ¼ �ðx1 � y1Þ�ff0���; (2.14)

it is straightforward to verify that the free generators P0
F,

P1, and M01
F indeed satisfy

½P0; P1� ¼ 0; ½P0;M01� ¼ iP1; ½P1;M01� ¼ iP0

(2.15)

among themselves. It is also easy to see that ½P0; P1� ¼ 0
holds when the interactions are included since P0

V in (2.12)
is invariant under space translations.
Of the three contributions to ½P0;M01� that involve

interactions the term ½P0
V;M

01
V � ¼ 0 since P0

V and M01
V

involve neither derivatives nor Dirac matrices. The two
other terms

½P0
V;M

01
F �¼

e2

2

X
f;f0

Z
dx1dy1½c yf ðxÞi�0�1c fðxÞ�c yf0c f0 ðyÞ

�x1
@

@x1
jx1�y1j;

½P0
F;M

01
V �¼�

e2

4

X
f;f0

Z
dx1dy1½c yf ðxÞi�0�1c fðxÞ�c yf0c f0 ðyÞ

� @

@x1
½ðx1þy1Þjx1�y1j� (2.16)

cancel, ½P0
V;M

01
F � þ ½P0

F;M
01
V � ¼ 0, which ensures

½P0;M01� ¼ iP1. In the third Lie algebra relation

½P1;M01
V � ¼ �

ie2

8

X
f;f0

Z
dx1dy1½c yf ðxÞc fðxÞ�½c yf0c f0 ðyÞ�

�
��

@

@x1
þ @

@y1

�
ðx1 þ y1Þjx1 � y1j

�

¼ iP0
V (2.17)

1In any event, for massless gauge fields like the photon,
Lorentz and gauge transformations are entwined at the funda-
mental level, as these fields only represent a faithful vector
representation of the Lorentz group up to a gauge transforma-
tion. (See, e.g., Sec. 5.9 in [7].)
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ensures ½P1;M01� ¼ iP0 with interacting generators. Note
that the generator algebra (2.15) is satisfied only for the
linear potential specified by QED2.

III. TWO-BODY BOUND STATES IN QED2

As mentioned in the Introduction and further explained
in [2], a relativistic gauge theory bound state may be
described by valencelike Dirac-type wave functions pro-
vided instantaneous Coulomb exchange dominates and one
uses retarded propagators. At the Born level (lowest order
in ℏ) the bound state energies will agree with the result
using Feynman propagators, even though the wave func-
tions obtained with the two types of propagator are very
different.

In QED2 Coulomb interaction is ensured by the gauge
condition A1 ¼ 0. Retarded propagation for fermions is
achieved using the ‘‘retarded’’ vacuum (which is equiva-
lent to removing the Dirac sea)

j0iR ¼ N�1
Y
p1

dyðp1Þj0i; (3.1)

where the product is over antifermion creation operators of
all momenta p1 and N is a normalization factor. The Pauli
exclusion principle implies

c ðxÞj0iR ¼ 0 (3.2)

for all x. This ensures retarded propagation,
Rh0jT½c ðxÞ �c ð0Þ�j0iR / �ðx0Þ, and forbids intermediate
pairs. The unusual ‘‘vacuum’’ j0iR should be understood
as a method of selecting terms that contribute at lowest
order in ℏ. For perturbative loop corrections, the boundary
condition needs to be adjusted correspondingly to allow
single or multiple pair production.

We define our fermion-antifermion bound states of en-
ergy E and momentum k by2

jE; ki �
Z

dx1dx2 exp

�
1

2
ikðx1 þ x2Þ

�
�c 1ð0; x1Þ

� ei’�ðx1 � x2Þc 2ð0; x2Þj0iR: (3.3)

Since we are working at Born level, we may assume the
fermion flavors f ¼ 1, 2 to be distinct. The boundary
condition corresponding to (3.2) in the case of two flavors
is taken to be

c 1ðxÞj0iR ¼ c y2 ðxÞj0iR ¼ 0: (3.4)

In (3.3) the space coordinate of fermion j is denoted xj �
x1j (j ¼ 1, 2), and the state is defined at equal time, x0j ¼ 0.

The wave function is the product of a plane wave in the
center-of-mass (CM) position coordinate 1

2 ðx1 þ x2Þ and a

2� 2 matrix function �ðxÞei’ðxÞ of the relative coordinate

x � x1 � x2. As we shall see below, the extraction of the
phase ’ðxÞ makes the transformation of the wave function
�ðxÞ under boosts, i.e., its k dependence, more easily
tractable. The phase is defined by

’ðxÞ ¼ �ðm2
1 �m2

2Þð�þ �Þ"ðxÞ
e2

; (3.5)

where "ðxÞ � x=jxj is the sign function. The standard boost
parameter of the bound state (of rest massM) is denoted �,

sinh� ¼ k

M
; cosh� ¼ E

M
; (3.6)

whereas � is defined by

sinh� ¼ � kffiffiffiffiffiffi
p2

p ; cosh� ¼ E� VðxÞffiffiffiffiffiffi
p2

p ; (3.7)

and depends on the relative coordinate x through the linear
QED2 potential

VðxÞ ¼ 1
2e

2jxj: (3.8)

The x-dependent ‘‘momentum’’ p appearing in (3.7),

p � ðE� V;�kÞ; 6p ¼ ðE� VÞ�0 þ k�1;

p2 ¼ ðE� VÞ2 � k2;
(3.9)

is obtained by a � boost from the rest frame,

6p ¼ exp

�
1

2
��0�1

� ffiffiffiffiffiffi
p2

q
�0 exp

�
� 1

2
��0�1

�
: (3.10)

Equation (3.5) extends the definition of the phase ’ðxÞ first
found in [5] to x < 0. We also add the x-independent term
/ � which is required by the boost transformation to be
studied in the next section. Since Vð0Þ ¼ 0, p2 ¼ E2 �
k2 ¼ M2 and �þ � ¼ 0 at x ¼ 0. The parameter � in (3.7),
and consequently the phase ’ðxÞ, are, however, well-
defined only for p2 > 0. Therefore, we shall here restrict
to the region near the origin, with jxj< 2ðE� jkjÞ=e2,
where p2 remains positive. This range covers the whole
wave function in the weak coupling limit e! 0. Notice
also that this is only a restriction of the ‘‘covariant’’ for-
mulation involving the variable � and the particular choice
of the phase ’ðxÞ in (3.5), whereas the Poincaré algebra
defines the bound state equation and the transformation of
the wave function for all values of the coordinates.
In D ¼ 1þ 1 dimensions we may represent the Dirac

matrices in terms of the Pauli matrices as

�0 ¼ 	3; �1 ¼ i	2; �0�1 ¼ 	1: (3.11)

Applying the space translation generator (2.9) we may
verify that the state (3.3) has total momentum k,

P1jE; ki ¼ kjE; ki: (3.12)

Using (2.12) the energy eigenvalue condition P0jE; ki ¼
EjE; ki gives a bound state equation for the wave function
�ðxÞ,

2The present definition of the wave function is related to the

ðxÞ used in [2,5] as �ðxÞ ¼ �0
ðxÞ exp½�i’ðxÞ�.
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i@xf	1;�ðxÞg � ð@x’Þf	1;�ðxÞg � 1
2k½	1;�ðxÞ�

þm1	3�ðxÞ �m2�ðxÞ	3 ¼ ½E� VðxÞ��ðxÞ; (3.13)

where the x derivative of’ðxÞ at constant k is given by (3.5)
as

@x’ðxÞ � @’

@x

��������k
¼ ðm2

1 �m2
2Þ

k

2p2
: (3.14)

In terms of p, the bound state equation can be written as

i@xf	1;�ðxÞg � ð@x’Þf	1;�ðxÞg � 	3ð12 6p�m1Þ�ðxÞ
��ðxÞð12 6pþm2Þ	3 ¼ 0: (3.15)

We wish to ascertain that the bound state energy has the

correct k dependence, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2
p

. There is no pre-
vious experience (except [5]) of how the wave function �
should depend on k.

Since � is a 2� 2 matrix it has four independent
components, which may be taken to be the coefficients of
the unit and Pauli matrices,

�ðxÞ � �0ðxÞ þ
X3
j¼1

�jðxÞ	j

¼ �ðxÞ þ�2ðxÞ	2 þ�3ðxÞ	3; (3.16)

�ðxÞ � �0ðxÞ þ�1ðxÞ	1: (3.17)

As �2 and �3 do not contribute to the derivative
i@xf	1;�g in the bound state equation, these two compo-
nents can be expressed in terms of �. We find

�ðxÞ ¼ 6p
p2

�
1

2
6pþm1

�
�þ�

�
1

2
6p�m2

� 6p
p2

¼ �þ 1

p2
ðm1 6p��m2� 6pÞ: (3.18)

The bound state equation can be expressed in a frame-
independent way by introducing the new variable

sðxÞ � 1

2

Z x

0
du½E� VðuÞ� ¼ "ðxÞ

2e2
½2EVðxÞ � VðxÞ2�

¼ "ðxÞ
2e2
ðM2 � p2Þ;

ds

dx
¼ @s

@x

��������k
¼ 1

2
½E� VðxÞ�; (3.19)

where M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � k2
p

is the rest mass of the bound state.
Then (3.15) implies3

i@s	1�ðsÞ ¼
�
1�m2

1 þm2
2

p2

�
�ðsÞ þ 2m1m2

p2
	3�ðsÞ	3:

(3.20)

Equivalently, the bound state condition for the components
�0 and �1 of the wave function are

i@s�1ðsÞ ¼
�
1� ðm1 �m2Þ2

p2

�
�0ðsÞ;

i@s�0ðsÞ ¼
�
1� ðm1 þm2Þ2

p2

�
�1ðsÞ:

(3.21)

The conditions (3.20) and (3.21) are independent of the CM
momentum k, since according to (3.19), p2 is k indepen-
dent at fixed s and rest massM. This means that�0ðsÞ and
�1ðsÞ, and hence also �ðsÞ, are the same functions of s in
all reference frames. According to (3.10) and (3.18),
the full wave function �ðsÞ of a bound state with momen-
tum k is given by the rest frame (k ¼ 0) wave function

�ðk¼0ÞðsÞ as

�ðsÞ ¼ e	1�=2�ðk¼0ÞðsÞe�	1�=2; (3.22)

possibly up to an s-independent factor. The boost parame-
ter � is given in (3.7). The relation between s and x is k

dependent and thus different for �ðsÞ and �ðk¼0ÞðsÞ.
As seen from (3.19), the bound state Eq. (3.13) gives the

correct dependence between energy and momentum, E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2
p

, only for the linear potential of QED2. This is
ensured by the Lorentz invariance of the QED action and
the expansion in ℏ. The frame independence of the wave
function, when expressed as a function of s, was first
observed in [5]. It implies that the Lorentz contraction of
the bound state is x dependent: dx=ds ¼ 2=ðE� VðxÞÞ.
Nonrelativistic wave functions (V � E) transform glob-
ally, with a 1=E contraction [8].

IV. BOOST COVARIANCE OF THE
WAVE FUNCTION

In the previous section we found that the dependence on
the CM momentum k of the solutions to the bound state
Eq. (3.13) are related as in (3.22) (up to an x-independent
factor). We shall now demonstrate that this relation is
consistent with a direct boost of the bound states, using
the generator M01 derived in Sect. II.
The sign convention of the Lie algebra (2.15) implies

that the state jEþ d�k; kþ d�Ei of 2-momentum �k,
corresponding to the infinitesimal boost defined by (A8),
is generated by �id�M01,

P�ð1� id�M01ÞjE; ki ¼ k�ð1� id�M01ÞjE; ki
þ id�½M01; P��jE; ki

¼ ð�kÞ�ð1� id�M01ÞjE; ki: (4.1)

From its definition (3.3) the k dependence of the wave
function �ðxÞ at constant x � x1 � x2 is thus given by
the boost operator through

3For conciseness of notation we denote by �ðsÞ the wave
function �ðxðsÞÞ implicitly defined by (3.19).
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ð1� id�M01ÞjE; ki ¼ jEþ d�k; kþ d�Ei

¼
Z

dx1dx2e
ikðx1þx2Þ=2þi’ðxÞ �c 1ð0; x1Þ

�
�þ id�E

�
1

2
ðx1 þ x2Þ þ @’ðxÞ

@k

��������x

�
�þ d�E

@�ðxÞ
@k

��������x

�

� c 2ð0; x2Þj0iR; (4.2)

where the k dependence of ’ðxÞ at constant x is obtained from (3.5),

@’ðxÞ
@k

��������x
¼ ðm2

1 �m2
2Þ
E� V

2Ep2
x: (4.3)

Using the representation (2.13) of M01 we find (with @j � @=@xj)

M01jE; ki ¼
Z

dx1dx2 �c 1ð0; x1Þ
�
�
�
x1	1i ~@1 þ x1	3m1 þ 1

2
i	1

�
eikðx1þx2Þ=2þi’ðxÞ�ðxÞ

þ eikðx1þx2Þ=2þi’ðxÞ�ðxÞ
�
i@
 
2x2	1 þ x2	3m2 þ 1

2
i	1 � 1

2
ðx1 þ x2ÞVðxÞ�

�
c 2ð0; x2Þj0iR

¼
Z

dx1dx2e
ikðx1þx2Þ=2þi’ðxÞ �c 1ð0; x1Þ

�
1

2
ðx1 þ x2Þð�i@xf	1;�g þ ð@x’Þf	1;�g

þ 1

2
k½	1;�� �m1	3�þm2�	3 � V�Þ þ 1

2
x

�
�i@x½	1;�� þ ð@x’Þ½	1;�� þ 1

2
kf	1;�g

�m1	3��m2�	3

�
� 1

2
i½	1;��

�
c 2ð0; x2Þj0iR: (4.4)

The coefficient of 1
2 ðx1 þ x2Þ equals �E� by the bound

state Eq. (3.13). Hence it cancels against the corresponding
term on the right-hand side of (4.2). The remaining terms
specify the k dependence of the wave function (at fixed x)
implied by the boost operator,

E
@�ðxÞ
@k

��������x
¼ ix

2

�
i@x½	1;�� � @’

@x

��������k
½	1;��

� 1

2
kf	1;�g þm1	3�þm2�	3

�

� 1

2
½	1;�� � iE

@’ðxÞ
@k

��������x
�; (4.5)

where the derivatives of the phase ’ðxÞ are given by (3.14)
and (4.3). The result (4.5), however, actually holds inde-
pendently of the definition of ’ðxÞ and therefore defines
the transformation of the wave function for all x (not only
for p2 > 0) once the phase is defined properly.

As we saw in the previous section, the wave function has
the simple frame dependence (3.22) when the variable s
(3.19) rather than x is held fixed. With s fixed,

E
@�ðsÞ
@k

��������s
¼ E

@�ðxÞ
@k

��������x
þE@xðsÞ

@k

��������s

@�ðxÞ
@x

¼ E
@�ðxÞ
@k

��������x
� kx

E� VðxÞ
@�ðxÞ
@x

: (4.6)

According to (4.1) the boosted state is an eigenstate
of P�. As a consequence, its wave function has the form
(3.18), and it suffices to verify the k independence of

� ¼ 1
2	1f	1;�g suggested by (3.20). Taking the anticom-

mutator of (4.6) with 	1 eliminates the terms with ½	1;��
in (4.5), giving

	1

2E

ix

@�ðsÞ
@k

��������s
¼�k��m1	3

1

2
½	1;��þm2

1

2
½	1;��	3

�m2
1�m2

2

p2
ðE�VÞ	1�þki@s	1�

¼ 0; (4.7)

where the vanishing of the rhs.may be verified using (3.20)
and

1

2
½	1;�� ¼ 	1

p2
ðm1 6p��m2� 6pÞ: (4.8)

The frame independence of �ðsÞ establishes the k depen-
dence of the wave function � given by (3.22).

V. DISCUSSION

We have studied the frame dependence of e��þ QED
bound states in D ¼ 1þ 1 dimensions. To our knowledge
this is the first demonstration of an explicit and exact boost
of a relativistic bound state defined at equal time of the
constituents. Two essential conditions had to be fulfilled in
order to make this possible. First, we work in the Born
approximation (no loops). The dynamics is then insensitive
to the i" prescription of the fermion propagators. With
a prescription giving retarded propagation, where both
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positive and negative energy fermions move forward in
time, it is possible to avoid ‘‘spurious’’ pair production due
to Z diagrams.4 True pair production is also suppressed due
to the absence of loops. Second, the interaction had to be
instantaneous in time (Coulombic), to avoid Fock states
with any number of propagating photons. We ensured this
by working in Coulomb gauge (A1 ¼ 0) and in D ¼ 1þ 1
dimensions. Gauss’ law allows to express A0 in terms of the
fermion fields as in (2.3), so that the dynamics can be
expressed solely in terms of the fermion fields.

The fact that the Poincaré generators (2.9), (2.1), and
(2.13) satisfy the Lie algebra (2.15) implies that the boosted
state remains an eigenstate of the Hamiltonian with appro-
priately modified energy and CM momentum. The frame
dependence (3.22) of the wave function, first noted in [5], is
remarkably simple yet enigmatic. The underlying reason
for the emergence of the invariant length sðxÞ, defined by
(3.19), is not clear from our derivation. The dependence on
the kinetic energy E� VðxÞ � i@0 � eA0 nevertheless
seems natural in a gauge theory framework. Further studies
are required to extend this simple formulation for boosting
the wave function to cover the cases where the square of
the ‘‘momentum’’ p in (3.9) is negative or zero, and hence
to all values of the coordinate x.

Understanding the frame dependence of bound states is
essential in studies of scattering amplitudes with bound
states as external particles. The usefulness of the present
approach will depend on its applicability to more physical
systems, the relevance of the Born approximation and the
possibility to calculate loop corrections. In Appendix B we
discuss the Poincaré generators ofQCD2. The non-Abelian
gauge invariance brings some new features, but the for-
mulation of QCD bound states and their frame dependence
is similar to the Abelian case [2].

It is obviously more challenging to generalize the
present approach to QCD bound states in D ¼ 3þ 1 di-
mensions. In order to avoid Fock states with any number of
propagating transverse gluons the interaction should, in all
frames, be dominated by instantaneous Coulomb ex-
change. The linear potential of QCD2 was moreover es-
sential for the closure of the Lie algebra in the nonlocal
formulation involving only quark fields. It appears possible
to apply the methods presented above also in D ¼ 3þ 1
dimensions by imposing a nonvanishing boundary condi-
tion on the solution of Gauss’ law for A0. This gives rise to
a linear instantaneous potential in all frames, which is of
OðgÞ in the coupling and thus leading compared to the
Oðg2Þ transverse gluon exchange [2]. The frame depen-
dence of the wave function turns out to be similar to the
D ¼ 1þ 1 case when the quark positions are aligned with

the CM momentum [5]. The other configurations of the
wave function may then be solved numerically using the
bound state equation.
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APPENDIX A: POINCARÉ GENERATORS

The derivation of the generators of time translations P0

and boostsM01 is analogous to that of the space translation
generator P1 and is given below. We assume a single
flavour f for simplicity of notation.
The generator P0 of time translations
In a generic time translation the fermion field trans-

forms as

c ðx0; x1Þ ! c ðx0 � �ðx0Þdt; x1Þ; (A1)

and the variation of the free fermion action (2.4) becomes

�SF ¼ �dt
Z

d2xc yðxÞ�0ði6@�mÞ�ðx0Þ@0c ðxÞ

� dt
Z

d2x�ðx0Þð@0c yðxÞÞ�0ði6@�mÞc ðxÞ:
(A2)

Integrating the last term partially over x0, we find a con-
tribution due to the dependence of � on x0,

�SF ¼ �dt
Z

d2x�0ðx0Þc yðxÞ�0ð�i�1@1 þmÞc ðxÞ:
(A3)

The variation of SV can be written as

�SV ¼ �dte2

4

Z
d2xd2y�ðx0 � y0Þ�ðx0Þ @

@x0
½c yc ðxÞ�

� jx1 � y1jc yc ðyÞ � dte2

4

Z
d2xd2y�ðx0 � y0Þ

� c yc ðxÞjx1 � y1j�ðy0Þ @

@y0
½c yc ðyÞ�: (A4)

A partial integration gives

�SV ¼ dte2

4

Z
d2xd2y�0ðx0Þ�ðx0 � y0Þc yc ðxÞ

� jx1 � y1jc yc ðyÞ: (A5)

Collecting the results,

4This is also how the single electron Dirac wave function can
describe relativistic electrons bound in an external potential,
even though those states have an indefinite number of eþe�
pair constituents. Such pairs may alternatively be avoided by
quantizing at equal light-front time, xþ ¼ x0 þ x1 [9].
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�S ¼ �dt
Z

dx0�0ðx0ÞP0; (A6)

where P0 is the Hamiltonian

P0 ¼
Z

dx1c yðxÞð�i�0�1@1 þm�0Þc ðxÞ

� e2

4

Z
dx1dy1c yc ðx0; x1Þjx1 � y1jc yc ðx0; y1Þ:

(A7)

The covariance of the action and the conservation of P0

follow as for space translations in the main text.
The boost generator M01

An infinitesimal boost in the x1 direction which trans-
forms the coordinates as

x0 ! x0 þ d�x1; x1 ! x1 þ d�x0 (A8)

also generates an A1 component of the gauge field:
ðA0; A1 ¼ 0Þ ! ðA0; d�A0Þ. In order to stay in the A1 ¼ 0
gauge we need to follow up with a gauge transformation

c ðxÞ ! expð�id��Þc ðxÞ (A9)

with

@1�ðxÞ ¼ eA0ðxÞ

¼ � e2

2

Z
d2y�ðx0 � y0Þjx1 � y1jc yc ðyÞ;

(A10)

where A0 was taken from (2.3). This gives

�ðxÞ ¼ � e2

4

Z
d2y�ðx0 � y0Þðx1 � y1Þjx1 � y1jc yc ðyÞ:

(A11)

Combined with the standard boost transformation we have
then

c ðx0;x1Þ!
�
1þ1

2
�ðx0Þ�0�1d�� i�ðx0Þ�ðx0;x1Þd�

�

� c ðx0��ðx0Þx1d�;x1��ðx0Þx0d�Þ: (A12)

We can decompose this into boost, spin, and gauge trans-
formations, defined as

c ðx0; x1Þ !boostc ðx0 � �ðx0Þx1d�; x1 � �ðx0Þx0d�Þ; (A13)

c ðx0; x1Þ!spin
�
1þ 1

2
�ðx0Þ�0�1d�

�
c ðx0; x1Þ; (A14)

c ðx0; x1Þ !gauge½1� i�ðx0Þ�ðx0; x1Þd��c ðx0; x1Þ: (A15)

Since SF in (2.4) is explicitly Lorentz covariant, we
expect that its combined boost and spin transformation
only involves terms with �0ðx0Þ. A straightforward calcu-
lation gives

�boostSF þ �spinSF ¼ 1

2
id�

Z
d2x�0ðx0Þc yðxÞ�0�1c ðxÞ

� d�
Z

d2x�0ðx0Þc yðxÞðix0@1
� ix1�0�1@1 þ x1�0mÞc ðxÞ:

(A16)

The variation under the gauge transformation (A15) is

�gaugeSF ¼ d�
Z

d2xc yðxÞ�0½��@��ðx0Þ�ðxÞ�c ðxÞ

¼ � d�e2

2

Z
d2xd2y�ðx0Þ�ðx0 � y0Þc yðxÞ�0�1

� c ðxÞjx1 � y1jc yc ðyÞ

� d�e2

4

Z
d2xd2y�ðx0Þ�ðx0 � y0Þðx1 � y1Þ

� jx1 � y1jc yc ðxÞ @

@y0
c yc ðyÞ; (A17)

where the first (second) term arises from the spatial (time)
derivative of �ðxÞ in (A11). The contribution involving
�0ðx0Þ vanishes due to the antisymmetry of the integrand
under x$ y.5

The fields in the potential term SV of (2.4) appear in the
gauge invariant combination c yðxÞc ðxÞ. Thus,

�gaugeSV ¼ 0: (A18)

The spin transformation becomes

�spinSV ¼ d�e2

2

Z
d2xd2y�ðx0Þ�ðx0 � y0Þc y�0�1c ðxÞ

� jx1 � y1jc yc ðyÞ (A19)

after using the symmetry of the integration measure under
x$ y. In the boost transformation we notice that, since
initially x0 ¼ y0 in SV , the shift of the space coordinate is
the same for all fields, and can be absorbed into a shift d�x0

of the integration variables x1, y1 similarly as in the treat-
ment of the space translations. The remaining contribution
from the transformation of the time coordinates can be
expressed as

�boostSV¼�d�e2

4

Z
d2xd2y�ðx0�y0Þjx1�y1jx1�ðx0Þ

� @

@x0
c yc ðxÞc yc ðyÞ�d�e2

4

Z
d2xd2y

��ðx0�y0Þjx1�y1jy1c yc ðxÞ�ðy0Þ @
@y0

c yc ðyÞ

(A20)

5The fermion fields at x anticommute with those at y due to the
factor �ðx0 � y0Þjx1 � y1j.
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¼ d�e2

4

Z
d2xd2y�ðx0Þ�ðx0 � y0Þðx1 � y1Þ

� jx1 � y1jc yc ðxÞ @

@y0
c yc ðyÞ þ d�e2

4

�
Z

d2xd2y�0ðx0Þx1c yc ðxÞ�ðx0 � y0Þ
� jx1 � y1jc yc ðyÞ; (A21)

where the latter expression was obtained by partial inte-
gration. Adding up the various contributions, only terms
involving the derivative of �ðx0Þ survive:

�S ¼ d�
Z

dx0�0ðx0ÞM01; (A22)

where, using again the x$ y symmetry of the integration
measure in the potential term,

M01 ¼ x0
Z

dx1c yðxÞð�i@1Þc ðxÞ þ
Z

dx1c yðxÞ

�
�
x1ði�0�1@1 � �0mÞ þ i

2
�0�1

�
c ðxÞ

þ e2

8

Z
dx1dy1c yc ðx0; x1Þðx1 þ y1Þ

� jx1 � y1jc yc ðx0; y1Þ: (A23)

In terms of the momentum densities

P 0 ¼ �c

�
� 1

2
i�1@

$
1 þm

�
c � e2

4

Z
dy1c yc ðx0; x1Þjx1

� y1jc yc ðx0; y1Þ;
P 1 ¼ �c

�
� 1

2
i�0@

$
1

�
c ;

(A24)

the boost density has the expected form,

M 01 ¼ x0P 1 � x1P 0: (A25)

APPENDIX B: POINCARÉ ALGEBRA OF QCD2

The derivation of the QED2 generators in Appendix A
can be carried out similarly for QCD2. In Coulomb gauge
the solution of Gauss’ law (without a constant background
field, and for a single flavor) gives

A0
aðxÞ ¼ � g

2

X
A;B

Z
d2y�ðx0 � y0Þ

� jx1 � y1jc yAðyÞTAB
a c BðyÞ: (B1)

Substituting this expression in the QCD2 action gives
(suppressing the quark color indices)

S¼
Z
d2xc yðxÞ�0ði6@�mÞc ðxÞþg2

4

X
a

Z
d2xd2y

��ðx0�y0Þc yðxÞTac ðxÞjx1�y1jc yðyÞTac ðyÞ: (B2)

The free parts of the QCD generators ðP1; P0
F;M

01
F Þ are the

same as the corresponding QED generators given in (2.9),
(2.12), and (2.13), when a sum over the quark color indices
is understood. The QCD interaction terms are

P0
V ¼ �

g2

4

X
a

Z
dx1dy1c yTac ðx0; x1Þ

� jx1 � y1jc yTac ðx0; y1Þ; (B3)

M01
V ¼

g2

8

X
a

Z
dx1dy1c yTac ðx0; x1Þðx1 þ y1Þ

� jx1 � y1jc yTac ðx0; y1Þ: (B4)

The boost operator M01 is again a combination of a
boost and a gauge transformation (A9) which ensures
that A1

a ¼ 0 after the boost. The gauge parameter corre-
sponding to (A11) is

�aðxÞ ¼ � g2

4

Z
d2y�ðx0 � y0Þðx1 � y1Þ

� jx1 � y1jc yðyÞTac ðyÞ: (B5)

The Poincaré Lie algebra (2.15) works out as in QED,
with one exception. Because of the color generators Ta in
P0
V and M01

V , these two terms do not commute in QCD.
Hence the Lie algebra does not close, as already observed
in [10]. In the shorthand

�aðxÞ � c yðxÞTac ðxÞ; (B6)

we have

½�aðxÞ; �bðyÞ� ¼ ifabc�cðxÞ�ðx� yÞ; (B7)

where a sum over repeated color indices is understood.
Since all operators are evaluated at a common time, we
here and in the following denote x � x1, etc. We then find

½P0;M01� � iP1 ¼ ½P0
V;M

01
V � ¼ �

g4

32

Z
dxdydudv½�aðxÞ�aðyÞ; �bðuÞ�bðvÞ�ðuþ vÞju� vjjx� yj

¼ i
g4

48
fabc

Z
dxdydu�aðxÞ�bðyÞ�cðuÞðu� xÞðu� yÞðx� yÞ: (B8)

In obtaining the final expression we made repeated use of the fact that commutators like (B7) vanish when multiplied by
x� y.
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The nonclosure of the Lie algebra is related to the gauge
transformation embedded in M01, which implies that op-
erators occurring before the boost are in a different gauge
compared to those occurring after the boost. If we consider
the commutation relation of the group elements rather than
the generators, we have

expð�idtP0
newÞexpðid�M01Þ�expðid�M01Þexpð�idtP0

oldÞ
¼dtd�½P0;M01�� idtðP0

new�P0
oldÞ¼ idtd�P1: (B9)

Here new and old refer to the operators after and before the
gauge transformation,6 i.e.,

c new ¼ ð1� id��aTaÞc old;

�new
a ðxÞ ��old

a ðxÞ ¼ d�fabcc
yðxÞ�bðxÞTcc ðxÞ; (B10)

with �b given by (B5). The gauge dependence of the
infinitesimal time translation in (B9) is then

� idtðP0
V;new � P0

V;oldÞ ¼ idtd�
g2

4
fabc

Z
dxdyfc yðxÞ�bðxÞTcc ðxÞ�aðyÞ þ�aðxÞc yðyÞ�bðyÞTcc ðyÞgjx� yj

¼ �idtd� g4

48
fabc

Z
dxdydu�aðxÞ�bðyÞ�cðuÞðu� xÞðu� yÞðx� yÞ: (B11)

According to (B8), this term cancels against dtd�½P0
V;M

01
V �

in the commutator (B9) of the group elements, giving the
pure translation already indicated in (B9).

The generalization of the QED bound states considered
in this paper to those of QCD is straightforward and is
unaffected by the contribution (B8). In analogy to (3.3) for
QED we define a color-singlet meson state by

jE;ki�X
A;B

Z
dx1dx2 exp

�
1

2
ikðx1þx2Þþ i’ðx1�x2Þ

�

� �c 1Að0;x1Þ�AB�ðx1�x2Þc 2Bð0;x2Þj0iR: (B12)

Requiring this to be an eigenstate of the QCD Hamiltonian
gives the bound state condition (3.13) on the wave function
�ðxÞ. The potential generated by P0

V in (B3),

VðxÞ ¼ 1
2g

2CFjxj; (B13)

includes the expected color coefficient CF ¼ ðN2 �
1Þ=2N. The contribution (B8) to ½P0;M01� � iP1 annihi-
lates on the bound state (B12), ensuring that the frame
dependence of the wave function is the same as in QED.
This is consistent with the observation of [10] that the
mismatch of the Lie algebra in (B8) is proportional to the
charge operator.
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