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Scattering of two baryons in the large-N Gross-Neveu model via the time-dependent Dirac-Hartree-

Fock approach has recently been solved in closed analytical form. Here, we generalize this result to

scattering processes involving any number and complexity of the scatterers. The result is extrapolated

from the solution of few baryon problems, found via a joint ansatz for the scalar mean field and the Dirac

spinors, and presented in analytical form. It has been verified numerically for up to 8-baryon problems so

far, but a full mathematical proof is still missing. Examples shown include the analogue of proton-nucleus

and nucleus-nucleus scattering in this toy model. All the parameters of the general result can be fixed by 1-

and 2-baryon input only. We take this finding as evidence for factorized scattering, but on the level of

composite multifermion states rather than elementary fermions.
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I. INTRODUCTION

The massless Gross-Neveu (GN) model [1] is the 1þ 1
dimensional quantum field theory of N flavors of mass-
less Dirac fermions, interacting through a scalar-scalar
contact interaction. Suppressing flavor labels as usual, its
Lagrangian reads

L ¼ �c i@6 c þ g2

2
ð �c c Þ2: (1)

The physics phenomena inherent in this simple-looking
Lagrangian are particularly rich and accessible in the
’t Hooft limit (N ! 1, Ng2 ¼ const), to which we
restrict ourselves from here on. The GN model can be
thought of as a relativistic version of particles moving
along a line and interacting via an attractive �-potential.
However, it exhibits many nontrivial features character-
istic for relativistic quantum fields, such as covariance,
renormalizability, asymptotic freedom, dimensional
transmutation, spontaneous symmetry breaking, and in-
teracting Dirac sea. It is also one of the few models
known where most of the nonperturbative questions of
interest to strong interaction physics can be answered in
closed analytical form. Such calculations have turned out
to be both challenging and instructive, generating a
continued interest in this particular ‘‘toy model’’ over
several decades; see e.g. the review articles [2–4].

In the present paper we address the problem of time-
dependent scattering of multifermion bound states in full
generality. As will be recalled in more detail in the next
section, the GNmodel possesses bound states which can be
viewed as ‘‘baryons,’’ with fermions bound in a dynami-
cally created ‘‘bag’’ of the scalar field �c c [5]. There are
even multibaryon bound states which might be identified
with ‘‘nuclei’’ [3]. Standard large N arguments tell us that

all of these bound states can be described adequately
within a relativistic version of the Hartree-Fock (HF)
approach.
Turning to the baryon-baryon scattering problem, the

tool of choice is the time-dependent version of Hartree-
Fock (TDHF), as originally suggested by Witten [6]. The
basic equations in that case are easy to state,

ði@6 � SÞc � ¼ 0; S ¼ �g2
Xocc
�

�c �c �; (2)

but are hard to solve, even in 1þ 1 dimensions. One of the
reasons is the fact that the sum over occupied states in-
cludes the Dirac sea, so that one is dealing with an infinite
set of coupled, nonlinear partial differential equations. No
systematic, analytical method for solving such a compli-
cated problem is known. Nevertheless, the exact solution
for the time-dependent scattering problem of two baryons
has recently been found in closed analytical form by means
of a joint ansatz for S and c � [7]. It provides us with a
microscopic solution of the scattering of two composite,
relativistic objects, exact in the large N limit. The neces-
sary details will be briefly summarized below. This result
encourages us to go on and try to solve more ambitious
scattering problems involving any number of bound states,
including nuclei in addition to the ‘‘nucleons’’ considered
so far.
The paper is organized as follows. In Sec. II we briefly

summarize what is known about multifermion bound states
and their interactions in the GN model. We also remind the
reader how the baryon-baryon scattering problem has been
solved recently, since we shall use the same strategy in the
present work. Section III is devoted to the Dirac equation
and the ansatz for scalar potential and continuum spinors.
Sections IV and V contain the central results of this work,
namely, the coefficients entering the ansatz, presented in
the form of an algorithm. In Sec. VI, we explain the extent
to which the general result has been checked so far.
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Section VII deals with the bound state spinors which are
then used in Sec. VIII to discuss the issue of self-
consistency and the fermion density. Section IX addresses
scattering observables like time delays or deformations of
bound states. Section X contains a few illustrative ex-
amples, followed by a short summary and outlook in
Sec. XI.

II. STATE OF THE ART

To put this study into perspective, we summarize what is
known about multifermion bound states and their mutual
interactions in the massless GN model, Eq. (1).

A. Static solutions

Static multifermion bound states have been derived
systematically with the help of inverse scattering theory
and resolvent methods [3]. The best known examples are
the Callan-Coleman-Gross-Zee kink (cited in [8]) and the
Dashen-Hasslacher-Neveu (DHN) baryon [5], both of
which can accommodate up to N fermions. The kink is
topologically nontrivial, reflecting the Z2 chiral symmetry
of the massless GN model. Its shape (shown in Fig. 1) and
mass are independent of its fermion content. The DHN
baryon is topologically trivial and stabilized by the bound
fermions which affect its shape and mass, as illustrated in
Fig. 2.

Multibaryon bound states have been constructed system-
atically by Feinberg [3]. They possess continuous parame-
ters related to the position of the baryon constituents
on which the mass of the bound state does not depend
(‘‘moduli’’). They may be topologically trivial like the
DHN baryon or nontrivial like the kink, depending on the
(spatial) asymptotic behavior of S. Some examples are
shown in Figs. 3 and 4. A common feature of all static
solutions is the fact that the scalar potential is transparent,

i.e., the fermion reflection coefficient vanishes for all en-
ergies. Consequently the self-consistent, static solutions of
the GN model coincide with the transparent scalar poten-
tials of the Dirac equation, investigated independently by
Nogami and coworkers [9,10]. Since the static Dirac equa-
tion can be mapped onto a pair of (supersymmetric)
Schrödinger equations, this also yields a bridge between
static, self-consistent Dirac-HF solutions on the one hand
and transparent potentials of the Schrödinger equation on
the other hand, a problem solved long ago by Kay and
Moses [11]. The nonrelativistic limit of the topologically
trivial, static GN solutions are well-known multisoliton
solutions of coupled nonlinear Schrödinger (NLS) equa-
tions, arising in the Hartree approximation to particles in
one dimension with attractive �-interactions [12].

FIG. 1. Scalar potential of kink (rising) and antikink (descend-
ing) in the GN model, interpolating between the two degenerate
vacua S ¼ �1 (units m ¼ 1).

FIG. 2. Scalar potential of DHN baryons in the GN model.
Values of the parameter y are 0.4, 0.7, 0.9, 0.99, 0.9999, from top
to bottom.

FIG. 3. Examples of (topologically trivial) 2-baryon bound
states in the GN model. y parameters: 0.9999 and 0.9. The two
curves differ in the relative position of the baryons (�1 ¼ 22:6,
�2 ¼ 0:06 for the symmetric, �1 ¼ 0:018, �2 ¼ 36:6 for the
asymmetric shape).
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By boosting any static solution, one can trivially gen-
erate solutions of the TDHF equation [13]. This kind of
solution enters in the asymptotic states of the scattering
problem which we are going to study.

B. Breather

The breather is a time-dependent, oscillating solution of
kink-antikink type. It was found by DHN, using the anal-
ogy with the sinh-Gordon breather [5]. Since it is neither a
conventional bound state nor a scattering state, it has no
analogue in real particle physics, but is reminiscent of
collective, vibrational excitations of heavy nuclei or mole-
cules. This underlines the classical character of the large N
limit. We shall not consider scattering of breathers in the
present work.

C. Kink dynamics

Following a suggestion in Ref. [5], kink-antikink scat-
tering was solved in TDHF by analytic continuation of
the breather [14]. Since the fermions do not react back,
it is possible to map this problem rigorously onto the
problem of kink-antikink scattering in sinh-Gordon the-
ory. If we set S2 ¼ e�, then � satisfies the classical sinh-
Gordon equation

@�@
��þ 4 sinh� ¼ 0 (3)

(in natural units), as first noticed by Neveu and
Papanicolaou [15]. This mapping can be generalized.
The known multisoliton solutions of the sinh-Gordon
equation yield the self-consistent scalar potential for
scattering of any number of kinks and antikinks [16].
A poor man’s simulation of nuclear interactions was the
scattering of ‘‘trains’’ of solitons moving with almost the
same speed in Ref. [16] (there are no multisoliton bound
states). Kink dynamics have no nonrelativistic analogue
since the internal structure of kink is ultrarelativistic, as

evidenced by a zero-energy bound state. Time-dependent
kink-antikink scattering is illustrated in Fig. 5.
A crucial ingredient in proving the correspondence

between kink dynamics and sinh-Gordon solitons is the
fact that kink solutions satisfy the self-consistency mode-
by-mode. They are of ‘‘type I’’ in the classification of [14],
i.e., �c �c � ¼ ��S with constant �� for every single par-
ticle state �. This is also the basis for an interesting
geometrical interpretation of TDHF solutions, relating
time-dependent solutions of the GN model to the embed-
ding of surfaces of constant mean curvature into three-
dimensional spaces [17].

D. Baryon-baryon scattering

Scattering of DHN baryons is significantly more in-
volved than kink-antikink scattering. Presumably because
the fermions react back, it does not seem possible to map
this problem onto any known soliton equation. The exact
TDHF solution for baryon-baryon scattering was found

FIG. 4. Example of a topologically nontrivial bound state of a
kink and 3 DHN baryons. y parameters: 1, 0.8, 0.7, 0.6.

FIG. 5. Time evolution of scalar potential for kink-antikink
scattering at velocity v ¼ �0:5 [14].

FIG. 6. Time evolution of scalar potential for baryon-baryon
scattering (parameters: y1 ¼ 0:8, y2 ¼ 1� 10�7, v ¼ �0:4) [7].
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recently in a different way, namely, by ansatz [7]. A
specific example is illustrated in Fig. 6. Since we shall
follow the same strategy in the present paper, we briefly
recall the main ideas behind the ansatz, referring the reader
to Ref. [7] for technical details.

The ansatz can best be described as follows. We start
from the scalar mean field of a single (boosted) DHN
baryon with label i. It can be cast into the form of a rational
function of an exponential Ui,

Si ¼ 1þ ai1Ui þU2
i

1þ bi1Ui þU2
i

; Ui ¼ �i expf2yi�iðx� vitÞg:
(4)

Here, yi is a parameter governing the size of the baryon and
related to its fermion number ni via

yi ¼ sin
�ni
2N

: (5)

vi denotes the baryon velocity, �i ¼ ð1� v2
i Þ�1=2, and �i

is an arbitrary real factor expressing the freedom of choos-
ing the initial baryon position. The Dirac components of
the continuum spinor have the same rational form with
different coefficients in the numerator only and an addi-
tional plane wave factor,

c k ¼
ci0 þ ci1Ui þ ci2U

2
i

di0 þ di1Ui þ di2U
2
i

 !
eiðkx�!tÞ

1þ bi1Ui þU2
i

: (6)

The asymptotic behavior at fixed t is c k � eikx for x !
�1, showing that the potential is transparent.
In order to solve the scattering problem for baryons i and

j, we start by multiplying Si and Sj and expand the

numerator and denominator,

SiSj ¼
1þ ai1Ui þ aj1Uj þU2

i þ ai1a
j
1UiUj þU2

j þ aj1U
2
i Uj þ ai1UiU

2
j þU2

i U
2
j

1þ bi1Ui þ bj1Uj þU2
i þ bi1b

j
1UiUj þU2

j þ bj1U
2
i Uj þ bi1UiU

2
j þU2

i U
2
j

: (7)

This may be viewed as scalar potential for noninteracting
baryons. The ansatz for interacting baryons proposed in
[7] now consists in assuming that the only effect of the
interaction is to change the coefficients in the numerator
and denominator of (7), keeping the polynomial depen-
dence on Ui, Uj the same. Likewise, the ansatz for the
spinor is obtained by multiplying the rational factors of
c k for baryons i and j and allowing for changes in the
coefficients only. The overall exponential factor is kept
unchanged, since it is expected that the potential is
reflectionless also in the interacting case. It turns out
that most of the coefficients in S and c k are in fact
determined by the asymptotic in- and out-states. Only 4
coefficients remain to be determined, namely, the factors
in front of the monomials UiUj in the three numerators
and the common denominator. Inserting this ansatz into
the Dirac equation determines the missing coefficients
and confirms that this simple idea yields the exact solu-
tion of the 2-baryon problem.

So far, we have discussed only the fermion continuum
states. Bound states can be obtained by analytic continu-
ation in a spectral parameter (a function of k, !) and
subsequent normalization. Self-consistency can then be
checked explicitly, confirming that the ansatz solves the
TDHF problem. The solution is found to be of type III, i.e.,
the scalar density of any single particle orbit can be ex-
pressed as a linear combination of 3 distinct functions of
(x, t). We have no a priori argument why the ansatz should
be successful, but its simple form is most certainly a
large-N manifestation of the quantum integrability of
finite-N GN models.

The result for the nontrivial coefficients is rather com-
plicated, but by a proper choice of variables and light
cone coordinates, one manages to keep all coefficients in
rational form. Unlike in the kink-antikink case, the non-
relativistic limit is now accessible, since the DHN baryon
goes over into the soliton of the NLS equation in the limit
of small fermion number. Starting from the 2-baryon solu-
tion, one then recovers the time-dependent solutions of the
multicomponent NLS equation of Nogami and Warke for
N ¼ 2 [12].
This completes the overview of the present state of

the art. Here we propose to extend the 2-baryon TDHF
scattering solution of Ref. [7] to an arbitrary number of
composite colliding particles, including multibaryon
bound states (nuclei) in addition to baryons. The central
idea is to use an ansatz for the scalar potential inspired
by the product of N single baryon potentials, assum-
ing that only the coefficients of the resulting rational
function of U1; . . . ; UN will be affected by the
interactions.

III. ANSATZ AND DIRAC EQUATION

A convenient choice of the Dirac matrices in 1þ 1
dimensions is

�0 ¼ 	1; �1 ¼ i	2; �5 ¼ �0�1 ¼ �	3: (8)

Together with light cone coordinates

z ¼ x� t; �z ¼ xþ t; @0 ¼ �@� @;

@1 ¼ �@þ @;
(9)
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this simplifies the Dirac-TDHF equation to

2i �@c 2 ¼ Sc 1; 2i@c 1 ¼ �Sc 2: (10)

Here, c 1 is the upper, left-handed spinor component,
and c 2 is the lower, right-handed spinor component.
We posit the following ansatz for the scalar TDHF
potential,

S ¼ N
D

: (11)

As motivated in the preceding section, S is assumed to
be a rational function of N exponentials Ui, where N is
the number of baryons,

N ¼ X
fikg

a1...Ni1...iN
Ui1

1 . . .U
iN
N ;

D ¼ X
fikg

b1...Ni1...iN
Ui1

1 . . .U
iN
N :

(12)

Each summation index ik runs over the values 0,1,2,
and the coefficients a, b are real. The basic exponential
Ui has the form inferred from the single DHN baryon
in flight,

Ui ¼ �i expfyið
�1
i �zþ 
izÞg: (13)

The parameter yi specifies the size (or, equivalently,
fermion number) of the i-th baryon. 
i is related to
the baryon rapidity �i and velocity vi via


i ¼ e�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vi

1� vi

s
: (14)

For yi we shall use the parametrization

yi ¼ Z2
i � 1

2iZi

; Zi ¼ iyi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2i

q
; jZij2 ¼ 1;

(15)

to avoid the appearance of square roots. Apart from
the 2N parameters fZi; 
ig, the baryon constituents are
characterized by N arbitrary, real scale factors �i

needed to specify their initial positions. The Ui must
be ordered according to baryon velocities. We choose
the convention that vi � vj if i < j.

We now turn to the ansatz for the continuum spinors,
assuming from the outset that the TDHF potential is re-
flectionless,

c � ¼
�N 1

�N 2

 !
eið� �z�z=�Þ=2

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p : (16)

Here, � denotes the light cone spectral parameter related to
ordinary momentum and energy via

k ¼ 1
2ð� � ��1Þ; ! ¼ �1

2ð� þ ��1Þ: (17)

N 1, N 2 are multivariate polynomials in the Ui of the
same degree as N , D,

N 1 ¼
X
fikg

c1...Ni1...iN
Ui1

1 . . .U
iN
N ;

N 2 ¼
X
fikg

d1...Ni1...iN
Ui1

1 . . .U
iN
N ;

(18)

but now with complex coefficients c, d. In Eq. (16) we have
factored out the free Dirac spinor

c ð0Þ
� ¼

�
�

�1

�
eið� �z�z=�Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 1
p (19)

to ensure that all polynomials start with a ‘‘1.’’ The de-
nominator D in the spinor, Eq. (16), is assumed to be the
same as in the scalar potential, Eq. (11). Inserting this
ansatz into the Dirac Eq. (10) yields

0 ¼ 2i��1ðN 2
�@D�D �@N 2Þ þN 2D�N 1N ;

0 ¼ 2i�ðD@N 1 �N 1@DÞ þN 1D�N 2N :
(20)

Actually, we can eliminate the variable � by rescaling z, �z
via z ! �z, �z ! ��1 �z. This transforms Ui into

Ui ¼ �i expfyið��1
i �zþ �izÞg; �i ¼ 
i�: (21)

The final form of the Dirac equation can then be obtained
by setting � ¼ 1 in Eq. (20),

0 ¼ 2iðN 2
�@D�D �@N 2Þ þN 2D�N 1N ;

0 ¼ 2iðD@N 1 �N 1@DÞ þN 1D�N 2N :
(22)

The numerator and denominator functions
ðN ;D;N 1;N 2Þ are polynomials in the Ui. Since the
Ui are eigenfunctions of @, �@, the Dirac Eq. (22) gets
converted into the condition that 2 polynomials vanish
identically. Thus each coefficient of the monomials

Ui1
1 . . .UiN

N must vanish separately. The number of terms

in each of the polynomials, Eqs. (12) and (18), is 3N for N
baryons, as Ui can appear with powers 0,1,2. In the final
Dirac equation, Ui appears with powers 0 . . . 4, so that
Eq. (22) is altogether equivalent to 2� 5N algebraic equa-
tions for the coefficients a, b, c, d of our ansatz.

IV. REDUCTION FORMULAS AND
REDUCIBLE COEFFICIENTS

In this and the following section, we present our results
for the coefficients entering the scalar potential and the
continuum spinors for N baryons, i.e., the coefficients of
the polynomialsN ,D,N 1,N 2 introduced above. They
fall naturally into 2 classes: ‘‘Reducible’’ coefficients
which can be related to the N � 1 baryon problem, and
‘‘irreducible’’ ones which cannot. The reducible coeffi-
cients are the subject of this section, and the irreducible
ones will be discussed in the next section.
There are two distinct ways of reducing the N baryon

problem to the N � 1 baryon problem, either by letting
Uk ! 0 or by letting Uk ! 1.
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In both cases, Uk drops out of the expressions for S and
c � . Since this can be done for any label k, one gets a large
number of recursion relations. As explained in greater
detail in Ref. [7], one has to take into account time delays
and (in the case of the spinors) transmission amplitudes for
final states, depending on whether the eliminated baryon k
has been scattered from the remaining N � 1 baryons or
not.

Let us consider the scalar potential first. Starting point
are the following basic relations,

lim
Uk!0

SðU1;...;UNÞ¼SðU1;...;Uk�1;�k;kþ1Ukþ1;...;�kNUNÞ;
lim

Uk!1SðU1;...;UNÞ¼Sð�k1U1;...;�k;k�1Uk�1;Ukþ1;...;UNÞ:
(23)

Uk is missing on the right-hand side, which therefore refers
to N � 1 baryons. The �ij are (real) time delay factors

satisfying [7]

�ij¼ 1

�ji

¼ð�jZiþ�iZjÞð�iZiþ�jZjÞð�iZiZj��jÞð�jZiZj��iÞ
ð�jZi��iZjÞð�iZi��jZjÞð�iZiZjþ�jÞð�jZiZjþ�iÞ
ði<jÞ: (24)

It is important to keep track of the ordering of the baryon
labels (vi � vj if i < j) when applying these formulas.

Relations (23) imply the following recursion relations for
the coefficients in (12),

a1...Ni1...iN
jik¼0 ¼ Cka

1... �k...N
i1...�ik...iN

YN
‘¼kþ1

�i‘
k‘;

b1...Ni1...iN
jik¼0 ¼ Ckb

1... �k...N
i1...�ik...iN

YN
‘¼kþ1

�i‘
k‘;

a1...Ni1...iN
jik¼2 ¼ C0

ka
1... �k...N
i1...�ik...iN

Yk�1

‘¼1

�i‘
k‘;

b1...Ni1...iN
jik¼2 ¼ C0

kb
1... �k...N
i1...�ik...iN

Yk�1

‘¼1

�i‘
k‘:

(25)

We use the convention that barred indices have to be
omitted. The factors Ck, C

0
k appear here because relations

(23) determine only the ratio N =D. They can be fixed as
follows. We normalize the lowest and highest coefficients
of N , D to 1 for any number of baryons,

a1...N0...0 ¼ 1; b1...N0...0 ¼ 1; a1...N2...2 ¼ 1; b1...N2...2 ¼ 1:

(26)

This is always possible since we must recover the vacuum
potential S ¼ 1 in the limit where all Ui go to 0 or 1, and
the Ui contain arbitrary scale factors �i; see Eq. (13).
Specializing relations (25) to the cases where all indices
are 0 or all indices are 2 and using Eq. (24), we then find

Ck ¼ 1; C0
k ¼

Yk�1

‘¼1

�2
‘k: (27)

This yields the following final recursion relations for the
coefficients entering S,

a1...Ni1...iN
jik¼0 ¼ a1...

�k...N
i1...�ik...iN

YN
‘¼kþ1

�i‘
k‘;

b1...Ni1...iN
jik¼0 ¼ b1...

�k...N
i1...�ik...iN

YN
‘¼kþ1

�i‘
k‘;

a1...Ni1...iN
jik¼2 ¼ a1...

�k...N
i1...�ik...iN

Yk�1

‘¼1

�2�i‘
‘k ;

b1...Ni1...iN
jik¼2 ¼ b1...

�k...N
i1...�ik...iN

Yk�1

‘¼1

�2�i‘
‘k :

(28)

They determine all N-baryon coefficients containing at
least one 0 or one 2 in their subscripts in terms of
(N � 1)-baryon coefficients, leaving only the two irreduc-
ible coefficients a12...N11...1 , b12...N11...1 in front of U1 . . .UN

undetermined.
For the spinors, we have to take into account trans-

mission amplitudes in addition to the time delay factors.
Consequently the general reduction formulas (23) have to
be replaced by

lim
Uk!0

c � ðU1; . . . ; UNÞ ¼ c � ðU1; . . . ; Uk�1; �k;kþ1Ukþ1; . . . ; �kNUNÞ;
lim

Uk!1c � ðU1; . . . ; UNÞ ¼ Tkc � ð�k1U1; . . . ; �k;k�1Uk�1; Ukþ1; . . . ; UNÞ;
(29)

where Tk is the transmission amplitude of baryon k [7]

Tk ¼ ð�k þ ZkÞð�kZk � 1Þ
ð�k � ZkÞð�kZk þ 1Þ : (30)

It is unitary (jTkj ¼ 1) due to the reflectionless potential.
Using a normalization analogous to (26), i.e.,

c1...N0...0 ¼ 1; d1...N0...0 ¼ 1; c1...N2...2 ¼ T1 . . .TN;

d1...N2...2 ¼ T1 . . .TN;
(31)

we arrive at the recursion relations
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c1...Ni1...iN
jik¼0 ¼ c1...

�k...N
i1...�ik...iN

YN
‘¼kþ1

�i‘
k‘;

d1...Ni1...iN
jik¼0 ¼ d1...

�k...N
i1...�ik...iN

YN
‘¼kþ1

�i‘
k‘;

c1...Ni1...iN
jik¼2 ¼ c1...

�k...N
i1...�ik...iN

Tk

Yk�1

‘¼1

�2�i‘
‘k ;

d1...Ni1...iN
jik¼2 ¼ d1...

�k...N
i1...�ik...iN

Tk

Yk�1

‘¼1

�2�i‘
‘k ;

(32)

for the coefficients in N 1, N 2. Once again this leaves
only the two irreducible coefficients c12...N11...1 , d12...N11...1 of
U1 . . .UN undetermined. Altogether, there are 4� 3N co-
efficients in the ansatz for S and c � for N baryons. All but
the 4 irreducible ones are determined by normalization and
recursion relations.

The first step towards solving the N baryon problem
is to eliminate all reducible coefficients, expressing the
4 polynomials in terms of irreducible coefficients, time
delay factors and transmission amplitudes only. The
above recursion scheme enables us to do just this.
The result can most conveniently be cast into the
form of an algorithm. We first formulate the algorithm
and subsequently illustrate it with the explicit results for
N ¼ 2, 3 and point out its advantages. The algorithm
will be stated separately for the 4 polynomials: D, N ,
N 1, N 2.

(1) Denominator D of S.—
(a) Write down the product

D ¼ YN
i¼1

ðVi þWiÞ (33)

and expand it.
(b) If a term contains between 2 and N factors V, re-

place it by

ViVj . . . ! bij...11...

bi1b
j
1 . . .

ViVj . . . (34)

(c) Substitute

Wi ! 1þ
�
Vi

bi1

�
2

(35)

and expand again.
(d) If any term contains ðViVjÞn (i < j, n ¼ 1, 2), re-

place it by

ðViVjÞn !
ðViVjÞn
�n
ij

: (36)

(e) Set

Vk ¼ bk1Uk

Yk�1

‘¼1

�‘k: (37)

(2) Numerator N of S.—
The numerator N of S can be obtained from the
denominator D of S by replacing all b-coefficients
by a-coefficients,

bi1 ! ai1; bij11 ! aij11; . . . (38)

(3) Numerator N 1 of c 1.—
To getN 1, start fromD and perform the following
steps:

(a) Replace

U2
i ! TiU

2
i ; (39)

where Ti is the transmission amplitude of baryon i.
(b) Replace all b-coefficients by c-coefficients,

bi1 ! ci1; bij11 ! cij11; . . . (40)

(4) Numerator N 2 of c 2.—
To get N 2, start from N 1 and replace all
c-coefficients by d-coefficients,

ci1 ! di1; cij11 ! dij11; . . . (41)

To avoid misunderstandings, we illustrate the outcome of
the algorithm with a few explicit examples. For N ¼ 2 (9
terms), one finds

D ¼ 1þ b11U1 þ b21�12U2 þU2
1 þ b1211U1U2 þ �2

12U
2
2

þ b21U
2
1U2 þ b11�12U1U

2
2 þU2

1U
2
2;

N ¼ 1þ a11U1 þ a21�12U2 þU2
1 þ a1211U1U2 þ �2

12U
2
2

þ a21U
2
1U2 þ a11�12U1U

2
2 þU2

1U
2
2;

N 1 ¼ 1þ c11U1 þ c21�12U2 þ T1U
2
1 þ c1211U1U2

þ T2�
2
12U

2
2 þ c21T1U

2
1U2 þ c11T2�12U1U

2
2

þ T1T2U
2
1U

2
2;

N 2 ¼ 1þ d11U1 þ d21�12U2 þ T1U
2
1 þ d1211U1U2

þ T2�
2
12U

2
2 þ d21T1U

2
1U2 þ d11T2�12U1U

2
2

þ T1T2U
2
1U

2
2: (42)

These results are fully consistent with Ref. [7]. For N ¼ 3
(27 terms) the algorithm yields
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D ¼ 1þ b11U1 þ b21�12U2 þ b31�13�23U3 þU2
1 þ �2

12U
2
2 þ �2

13�
2
23U

2
3 þ b1211U1U2 þ b1311�23U1U3 þ b2311�12�13U2U3

þ b21U
2
1U2 þ b31�23U

2
1U3 þ b11�12U1U

2
2 þ b11�13�

2
23U1U

2
3 þ b21�12�

2
13�23U2U

2
3 þ b31�

2
12�13U

2
2U3 þ b123111U1U2U3

þU2
1U

2
2 þ �2

23U
2
1U

2
3 þ �2

12�
2
13U

2
2U

2
3 þ b2311U

2
1U2U3 þ b1211�13�23U1U2U

2
3 þ b1311�12U1U

2
2U3 þ b31U

2
1U

2
2U3

þ b21�23U
2
1U2U

2
3 þ b11�12�13U1U

2
2U

2
3 þU2

1U
2
2U

2
3;

N ¼ 1þ a11U1 þ a21�12U2 þ a31�13�23U3 þU2
1 þ �2

12U
2
2 þ �2

13�
2
23U

2
3 þ a1211U1U2 þ a1311�23U1U3 þ a2311�12�13U2U3

þ a21U
2
1U2 þ a31�23U

2
1U3 þ a11�12U1U

2
2 þ a11�13�

2
23U1U

2
3 þ a21�12�

2
13�23U2U

2
3 þ a31�

2
12�13U

2
2U3 þ a123111U1U2U3

þU2
1U

2
2 þ �2

23U
2
1U

2
3 þ �2

12�
2
13U

2
2U

2
3 þ a2311U

2
1U2U3 þ a1211�13�23U1U2U

2
3 þ a1311�12U1U

2
2U3 þ a31U

2
1U

2
2U3

þ a21�23U
2
1U2U

2
3 þ a11�12�13U1U

2
2U

2
3 þU2

1U
2
2U

2
3;

N 1 ¼ 1þ c11U1 þ c21�12U2 þ c31�13�23U3 þ T1U
2
1 þ T2�

2
12U

2
2 þ T3�

2
13�

2
23U

2
3 þ c1211U1U2 þ c1311�23U1U3

þ c2311�12�13U2U3 þ c21T1U
2
1U2 þ c31T1�23U

2
1U3 þ c11T2�12U1U

2
2 þ c11T3�13�

2
23U1U

2
3 þ c21T3�12�

2
13�23U2U

2
3

þ c31T2�
2
12�13U

2
2U3 þ c123111U1U2U3 þ T1T2U

2
1U

2
2 þ T1T3�

2
23U

2
1U

2
3 þ T2T3�

2
12�

2
13U

2
2U

2
3 þ c2311T1U

2
1U2U3

þ c1211T3�13�23U1U2U
2
3 þ c1311T2�12U1U

2
2U3 þ c31T1T2U

2
1U

2
2U3 þ c21T1T3�23U

2
1U2U

2
3 þ c11T2T3�12�13U1U

2
2U

2
3

þ T1T2T3U
2
1U

2
2U

2
3;

N 2 ¼ 1þ d11U1 þ d21�12U2 þ d31�13�23U3 þ T1U
2
1 þ T2�

2
12U

2
2 þ T3�

2
13�

2
23U

2
3 þ d1211U1U2 þ d1311�23U1U3

þ d2311�12�13U2U3 þ d21T1U
2
1U2 þ d31T1�23U

2
1U3 þ d11T2�12U1U

2
2 þ d11T3�13�

2
23U1U

2
3 þ d21T3�12�

2
13�23U2U

2
3

þ d31T2�
2
12�13U

2
2U3 þ d123111U1U2U3 þ T1T2U

2
1U

2
2 þ T1T3�

2
23U

2
1U

2
3 þ T2T3�

2
12�

2
13U

2
2U

2
3 þ d2311T1U

2
1U2U3

þ d1211T3�13�23U1U2U
2
3 þ d1311T2�12U1U

2
2U3 þ d31T1T2U

2
1U

2
2U3 þ d21T1T3�23U

2
1U2U

2
3 þ d11T2T3�12�13U1U

2
2U

2
3

þ T1T2T3U
2
1U

2
2U

2
3: (43)

Inspection of these examples shows the following ad-
vantages of presenting results in the form of an algorithm.
First, the recursion relations relateN-baryon coefficients to
(N � 1)-baryon coefficients; cf. Eqs. (28) and (32). The
algorithm gives directly the iterated result where every-
thing is expressed in terms of irreducible coefficients for
1; 2; . . . ; N baryons. Second, the number of terms in the
explicit expressions increases like 3N , so that writing down
the explicit expressions like in (42) and (43) becomes
quickly prohibitive. The algorithm on the other hand has
been stated concisely for arbitrary N. It can also easily be
implemented in MAPLE, so that it is never necessary to deal
manually with lengthy expressions.

As a result of this section, we have reduced S and c � to

those coefficients a, b, c, d whose subscripts contain only
1’s and which refer to 1; 2; . . . ; N baryons with all permu-
tations of labels. These irreducible coefficients have to be
determined algebraically from the Dirac Eq. (22) and are
the subject of the following section.

V. IRREDUCIBLE COEFFICIENTS

We denote those N-baryon coefficients of the polyno-
mials N , D, which cannot be determined recursively
from the N � 1 baryon problem as irreducible. As ex-
plained above, there are only 4 such coefficients for given
N, namely, the coefficients of the monomials U1U2 . . .UN

in each of the 4 polynomials, a12...N11...1 , b
12...N
11...1 , c

12...N
11...1 , d

12...N
11...1 .

They encode the dynamical information about the situ-
ation where all N baryons overlap and have to be deter-
mined by means of the Dirac equation. For reasons to be
discussed later in more detail, this is a difficult task for
computer algebra programs like MAPLE, once the baryon
number gets too large. We have therefore determined
the irreducible coefficients for low baryon numbers ana-
lytically, analyzed their structure, and extrapolated the
formulas to arbitrary N. In this section we present our
conjectured results for the 4 irreducible coefficients and
general N. In the next section, we will describe in detail
the extent to which these conjectured results have ac-
tually been checked so far.
Given the complexity of the coefficients, it is once

again easier for us to communicate our results in the
form of an algorithm, rather than a closed expression.
The algorithm is actually a very simple one. Let us
define a combinatorial expression CN through the follow-
ing two steps:
(1) Write down the product

C N ¼ YN
i<j

ð1þ BijÞ; (44)

where Bij is a N � N matrix, and expand it.

(2) For each of the 2NðN�1Þ=2 terms in the sum and each
index i ¼ 1; . . . ; N, denote by ni the number of
indices i appearing in this term (ni � N � 1).
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Then, if ki ¼ N � 1� ni is odd, multiply the term
by

Ri: (45)

By way of example, we write down the explicit result for
N ¼ 2 (2 terms),

C 2 ¼ R1R2 þ B12; (46)

and N ¼ 3 (8 terms),

C3 ¼ 1þ R1R2B12 þ R1R3B13 þ R2R3B23

þ R1R2B13B23 þ R1R3B12B23 þ R2R3B12B13

þ B12B13B23: (47)

After this preparation, the irreducible coefficients can be
expressed in compact form as follows,

a12...N11...1 ¼
Q

N
i¼1 a

i
1

dN
CNðRi ¼ i; BjkÞ;

b12...N11...1 ¼
QN

i¼1 b
i
1

dN
CNðRi ¼ 0; BjkÞ;

c12...N11...1 ¼
Q

N
i¼1 c

i
1

dN
CNðRi ¼ �i; BjkÞ;

d12...N11...1 ¼
Q

N
i¼1 d

i
1

dN
CNðRi ¼ �i; BjkÞ;

(48)

with

dN ¼Y
i<j

dij: (49)

All what remains to be done is to define exactly the various
symbols appearing in (48) and (49). We divide them into
two categories. The first category comprises those symbols
which can be deduced from the single DHN baryon prob-
lem [3],

ai1 ¼ � 2ðZ4
i þ 1Þ

ZiðZ2
i þ 1Þ ;

bi1 ¼ � 4Zi

Z2
i þ 1

;

ci1 ¼
2½Z4

i þ 1� 2�2i Z
2
i �

ðZ2
i þ 1Þð�i � ZiÞð�iZi þ 1Þ ;

di1 ¼
2½2Z2

i � �2i ðZ4
i þ 1Þ�

ðZ2
i þ 1Þð�i � ZiÞð�iZi þ 1Þ :

(50)

They enter in the prefactor of the combinatorial expression
CN in Eq. (48) and are the same as in Eqs. (4) and (5), up to
trivial normalization factors in ci1 and d

i
1. The 2nd category

consists of symbols which can be deduced from the 2-
baryon problem if one applies these formulas toN ¼ 2 and
compares them with the results of Ref. [7],

dij¼�2
ð�iZi��jZjÞð�jZi��iZjÞð�iZiZjþ�jÞð�jZiZjþ�iÞ

�2i �
2
j ðZ4

i �1ÞðZ4
j�1Þ ;

Bij¼
2ð�4i þ�4j ÞZ2

i Z
2
j��2i �

2
j ðZ4

i þ1ÞðZ4
jþ1Þ

�2i �
2
j ðZ4

i �1ÞðZ4
j�1Þ ;

i¼Z4
i �1

Z4
i þ1

;

�i¼ Z4
i �1

Z4
i þ1�2�2i Z

2
i

;

�i¼ ðZ4
i �1Þ�2i

2Z2
i ��2i ðZ4

i þ1Þ:

(51)

We have used everywhere the spectral parameter �i
boosted into the rest frame of baryon i, introduced in
Eq. (21). Note however that �i could be replaced by 
i in
dij and Bij, so that the �-dependence of these quantities is

spurious. By using the variable Zi rather than yi and �i
rather than vi and k, we have achieved that all the basic
expressions are rational functions of the 2N arguments
ðZi; �iÞ. The same holds true for �ij, Eq. (24), and Tk,

Eq. (30).
A noteworthy property of this construction is the fact

that the algorithm leading to CN is based on a factorization
in terms of quantities Bij referring to 2 baryons i, j only;

see Eq. (44). This implies that the solution of the 2-baryon
scattering problem is sufficient to determine completely N
baryon scattering. This observation is behind the phrase
‘‘evidence for factorized scattering’’ in the title of this
paper. It goes beyond the usual factorization of the fermion
scattering matrix, which holds trivially in our case (see
Sec. IX). It teaches us that even when all N baryons over-
lap, there is nothing new going on as compared to having
two overlapping baryons only. In this sense, factorization
does not only hold for the on-shell scattering matrix, but
also off-shell.

VI. STATUS OF CHECKING
THE ABOVE FORMULAS

In the preceding sections, we have provided rules for
explicitly constructing the scalar potential S and the con-
tinuum spinors c � for the N-baryon TDHF problem in the

GN model. Let us summarize where we stand. The main
ingredients in S and c � are 4 polynomials in N exponen-

tials Ui, consisting of 3N terms each. The coefficients in
these polynomials can all be expressed through a set of
irreducible coefficients multiplying U1U2 . . .Un in the n
baryon problem, time delay factors �ij and fermion trans-

mission amplitudes Ti, using the algorithm of Sec. IV. The
irreducible coefficients in turn can be constructed starting
from 1- and 2-baryon input only, using the algorithm of
Sec. V.
Since the Dirac equation reduces to a set of algebraic

equations and all ingredients are known rational functions,
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one would not expect any particular difficulties in checking
that the spinor satisfies the Dirac equation, using computer
algebra programs like MAPLE. However, the complexity of
the resulting expressions increases rapidly with increasing
baryon number, quickly exceeding the capabilities of
MAPLE due to storage and computation time problems.

Thus, for N ¼ 2 and N ¼ 3, we could still check all
2� 5N algebraic equations analytically with MAPLE in a
straightforward way. For N ¼ 4 or larger, the maximum
size of expressions which MAPLE can handle is exceeded
and we have only been able to check our results numeri-
cally, for random values of the input parameters Zi, �i. This
test has been carried out successfully for N ¼ 4; . . . ; 8. By
increasing the number of digits, one can find out whether
the floating point result is exact or approximate. Since the
number of operations increases faster than exponentially
withN, it is actually necessary to run MAPLE with very high
accuracy for large N values. Thus, for example, during a
full N ¼ 8 calculation, 40 digits get lost, so that one has to
start out with 50 digits precision to be sure that the Dirac
equation is solved exactly.

Clearly, there must be a way of proving our results in full
generality. The complexity of the solution and the intricate
way in which N baryon scattering is related to the scatter-
ing problem of fewer baryons have prevented us so far
from finding such a proof. Therefore, strictly speaking, our
result still has the status of a conjecture. In the meantime,
we shall restrict all applications shown below to problems
with low values of N for which we have established the
validity beyond any doubt. We are confident that the results
hold for arbitrary N, but this has to await a complete
mathematical proof.

Up to this point, we have only dealt with the Dirac
equation for continuum spinors. This still leaves open other
aspects of the full TDHF problem like bound states, self-
consistency, and fermion density. In some sense, all we
have achieved so far is to find time-dependent, transparent
potentials for the Dirac equation, which look asymptoti-
cally like boosted static potentials. This solves in part
another open problem which has been raised in the litera-
ture [12], namely, to classify all time-dependent, transpar-
ent potentials of the 1þ 1 dimensional Dirac equation.
How general is our result in this respect? All static trans-
parent potentials are well-known (see the discussion in
Sec. II). We can now construct all time-dependent trans-
parent potentials which asymptotically consist of an arbi-
trary number of such static solutions, boosted to arbitrary
velocities. This cannot be the complete set of all transpar-
ent potentials though, as evidenced by the example of the
breather which does not fit into this scheme. Evidently,
there must be another set of solutions where boosted
breathers appear as asymptotic states, in addition to
boosted static bound states. We do not know yet whether
our ansatz will be capable of describing this more general
class of solutions. All we have checked is that the single

breather can indeed be reproduced with our ansatz, pro-
vided we allow for complex valued Ui’s. Scattering prob-
lems involving breathers are interesting in their own right,
but will be left for future studies.

VII. BOUND STATES

In the N baryon problem, one expects N positive and N
negative energy bound states. As discussed in Ref. [7], the
bound state spinors can be obtained from the continuum
spinors by analytic continuation in the spectral parameter
� . To this end we first reintroduce the � dependence of the
coefficients (48)–(51) by using �i ¼ 
i� . Only the coef-
ficients ci1, d

i
1, Ti, �i, �i are �-dependent. For positive

energy bound states, for example, ci1, d
i
1, Ti develop a

single pole at � ¼ Zi=
i. The bound state spinor associ-
ated with baryon i can then be obtained from the residue of
c � at the pole,

c ðiÞ ¼ NðiÞ lim
�!Zi=
i

ð�
i � ZiÞc � : (52)

The result is a normalizable solution of the Dirac equation.

The normalization factorNðiÞ can readily be determined for
times t when the i-th baryon is isolated, with the result

NðiÞ ¼ 1

2Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ2

i þ 1ÞðZ2
i þ 
2

i Þ

iðZ2

i � 1Þ

s Y
jð<iÞ

��1=2
ji : (53)

For this value of NðiÞ, the bound state spinor (52) is
normalized according toZ

dxc ðiÞyc ðiÞ ¼ 1: (54)

This method has been checked analytically for N ¼ 2 in
Ref. [7] and numerically for N ¼ 3 by us.

VIII. SELF-CONSISTENCYAND
FERMION DENSITY

The situation in the N-baryon problem is the same as in
the 2-baryon problem [7]. The scalar density for a contin-
uum state can be decomposed as

�c �c � ¼ ð �c �c � Þ1 þ ð �c �c � Þ2; (55)

where

ð �c �c � Þ1 ¼ � 2�

�2 þ 1
S (56)

is the perturbative piece which gives self-consistency by
itself. The 2nd part is cancelled against the discrete state
contribution,

Z 1

0

d�

2�

�2 þ 1

2�2
ð �c �c � Þ2 ¼ � i

2�

XN
i¼1

ð �c c ÞðiÞ lnZ4
i ; (57)

if one makes use of the self-consistency conditions in the
asymptotic in- and out-states. We can deduce ð �c �c � Þ2 by
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subtracting the expression (56) from the full scalar density
and can then check Eq. (57) numerically, since we know
the discrete state spinors and the integral is convergent.
This test has been performed analytically for N ¼ 2 in
Ref. [7] and numerically for N ¼ 3 in the present work.

Likewise, the fermion density can be dealt with in the
same manner as for 1 or 2 baryons. The basic identity is

Z 1

0

d�

2�

�2 þ 1

2�2
ðc y

� c � � 1Þ ¼ �XN
i¼1

ðc yc ÞðiÞ; (58)

relating the continuum and bound state densities [7]. The
integral is convergent owing to the vacuum subtraction. We
have checked this identity here numerically for N ¼ 3.
From this and the self-consistency relation, one can again
express the total, subtracted fermion density through the
bound state densities as

 ¼ XN
i¼1

ð�i;þ � �i;� � 1ÞðiÞ; (59)

generalizing the N ¼ 2 results [7].

IX. PHASE SHIFTS, TIME DELAYS, AND MODULI

The fermion transmission amplitude for the N-baryon
problem factorizes, since it can be evaluated when all
baryons are far apart,

T ¼ T1T2 . . .TN; (60)

with Tk from Eq. (30). This fact has actually already been
used in the normalization conditions (31). The more inter-
esting question is how to characterize the outcome of the
scattering process in terms of the baryon or multibaryon
bound states. Comparing the asymptotics for t ! �1, we
find that the exponential Ui acquires the following factor
during an arbitrary N-baryon collision,

Ui ! U0
i ¼

0
@ Y

jðvj<viÞ

1

�ij

1
AUi

0
@ Y

kðvk>viÞ
�ki

1
A: (61)

The �ij have been given in Eq. (24). If vj ¼ vi for one or

several j’s, there is no shift factor because baryons i and j
belong to the same compound state (nucleus) and do not
scatter from each other.

How does this translate into observables? The scattering
process at the level of the TDHF potential is classical, so
that the situation is analogous to classical soliton scatter-
ing. If a single baryon is involved in the scattering process,
the situation is very simple. The incoming and outgoing
baryons can be associated with straightline space-time
trajectories defined by

lnUi ¼ 0; lnU0
i ¼ 0: (62)

They have the same slope in the ðx; tÞ diagram, since the
velocity does not change. The factor U0

i=Ui given in
Eq. (61) then leads to a parallel shift of the outgoing

space-time trajectory, which is usually interpreted as time
delay (or advance).
If an n-baryon bound state (nucleus) is scattered, the

initial state contains n baryon constituents Ui1 ; . . . ; Uin

moving with the same velocity v on parallel straightline
trajectories. Such a bound state depends on the scale
factors �i of Ui (moduli), cf. Eq. (13), determining the
relative positions and the shape of the bound state without
affecting its energy. In the final state, the n trajectories will
be displaced laterally relative to the incoming trajectories.
Since all y parameters within one composite state must be
chosen differently, according to (61), the displacement will
be different for each trajectory. Therefore the net result
cannot be interpreted anymore as a mere time delay, but is
always accompanied by a change in moduli space, result-
ing in different relative baryon positions and a correspond-
ing deformation of the scalar potential. In this sense, the
scattering process is not really elastic and the composite
bound states undergo a change in their internal structure. A
time delay of the full composite object could be defined,
but this is neither unambiguous, nor necessary. The full
asymptotic information about the scattering process is
contained in Eq. (61).

X. ILLUSTRATIVE EXAMPLES

Since we have verified the above formulas analytically
or numerically with high precision for up to 8 baryons, we
now present some illustrative results for smaller values of
N. Depending on the choice of velocity parameters, the
same formalism can describe a variety of physical
problems.
For N ¼ 2, there are two distinct possibilities. If the

velocities are chosen to be equal, we obtain a boosted 2-
baryon bound state, provided that the y parameters are
different. If the velocities are different, there is no restric-
tion on the y parameters and we describe scattering of
baryon ðy1; v1Þ on baryon ðy2; v2Þ. In both cases, this yields
nothing new as compared to Refs. [3,7], but has been used
to test our formulas.
ForN ¼ 3, we have to distinguish 3 cases. If v1 ¼ v2 ¼

v3 and all yi’s are different, we are dealing with a boosted
3-baryon bound state. If two velocities are equal and the
corresponding y-parameters are different, the formalism
describes scattering of a baryon on a 2-baryon bound state,
analogous to pd-scattering in nature. An example of this
process is shown in Fig. 7, where the time evolution of the
scalar TDHF potential during the collision is displayed. As
announced above, the internal structure of the bound state
necessarily changes during such a collision. To emphasize
this point, we compare in Fig. 8 the first and last time slice
of Fig. 7, i.e., the incoming and outgoing states. If all 3
velocities are different, the formalism describes a 3-baryon
scattering process with 3 baryons in the initial and final
state. Since scattering processes with more than 2 incident
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particles are somewhat academic from the particle physics
point of view, we do not show any example.

With increasing N, the number of scattering channels
increases. The next number of baryons is N ¼ 4, describ-
ing one boosted 4-baryon bound state, scattering of a
baryon on a 3-baryon bound state, scattering of two 2-
baryon bound states, scattering of 3 particles (2 baryons
and a 2-baryon bound state) or of 4 particles (4 individual
baryons). The most interesting and new process out of
these is the scattering of 2 bound states, the analogue of
dd-scattering (the simplest case of nucleus-nucleus scat-
tering). This is illustrated in Fig. 9. The change in structure
of the bound state is exhibited more clearly in Fig. 10.

Finally, we give an example with 5 baryons. Out of the
many possibilities, we have chosen scattering of a single
baryon on a 4-baryon bound state, the analogue of

p�-scattering in the real world; see Fig. 11. We refrain
from showing any results with larger number of baryons,
since we have not yet checked our formulas thoroughly
beyond N ¼ 5. However, we have no doubt that we could
describe correctly scattering processes with any number of
baryons.
All of these examples involve topologically trivial

bound states only. There is no difficulty in applying the
same formulas to topologically nontrivial scatterers as
well. As already demonstrated in Ref. [7], all one has to
do is let one or several y’s go to 1. Then, the corresponding
baryon becomes a kink-antikink pair at infinite separation.
This diverging separation has to be compensated by a
change of the scale parameter �i in the Ui factor, so that
half of the baryon disappears at infinity. In this way one can
describe scattering of any number of topologically trivial
or nontrivial bound states, without need to derive separate
formulas for this purpose.

FIG. 7. Example of baryon scattering from a 2-baryon bound
state. The time evolution of the scalar TDHF potential is shown.
Parameters: v1 ¼ 0:1, y1 ¼ 0:99, �1 ¼ 1 for the baryon, v2 ¼
v3 ¼ �0:1, y2 ¼ 0:9999, y3 ¼ 0:9, �2 ¼ 22:6, �3 ¼ 0:06 for
the bound state.

FIG. 8. First and last frame of Fig. 7, showing the deformation of the 2-baryon bound state during the collision.

FIG. 9. Example of scattering of two identical 2-baryon bound
states, illustrated through the time evolution of the scalar TDHF
potential S (parameters: velocities�0:1; bound state parameters:
y1 ¼ 0:9999, y2 ¼ 0:9, �1 ¼ 21:1, �2 ¼ 0:064).
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XI. SUMMARYAND CONCLUSIONS

This paper has dealt with the large N limit of the GN
model, the quantum field theory of massless, self-
interacting, flavored fermions in 1þ 1 dimensions. The
fascinating aspect of Lagrangian (1) is the fact that a single
contact interaction term is able to generate a host of non-
trivial phenomena. Even more surprisingly, it seems that all
of these can be worked out in closed analytical form, a
rather exceptional situation in quantum field theory. The
story begins with asymptotic freedom, the generation of a
dynamical fermion mass, accompanied by spontaneous
breakdown of the Z2 chiral symmetry, and a scalar
fermion-antifermion bound state, in the original work [1].
Soon afterwards baryons were discovered [5], subse-
quently complemented by a whole zoo of multibaryon

bound states [3]. As time evolved and computer algebra
software became more powerful, ambitions were raised,
leading to results like soliton crystals in the ground state
and phase diagram of dense matter [4] or time-dependent
scattering processes of kinks and antikinks [16]. The most
recent result is the TDHF solution of time-dependent
baryon-baryon scattering [7].
In the present work, we have tried to add another chapter

to this progress report. By generalizing the joint ansatz for
the TDHF potential and the spinors recently proposed in
Ref. [7], we have most probably found the solution to a
whole class of scattering problems, namely, all those where
the incoming and outgoing scatterers are boosted, static
multifermion bound states of the GN model. The word
‘‘probably’’ has to be used here because we have not yet
been able to prove our results in full generality. The
solution which we have presented is based on the analytical
solution of the 2- and 3-baryon problems, followed by a
tentative extrapolation to arbitrary N. These results have
then been checked numerically for N ¼ 4; . . . ; 8, and all
heralds well for their general validity. This method could
only work because of a kind of factorization property
which we have observed: scattering of any number of
baryons can apparently be predicted on the basis of 1-
and 2-baryon input only. This holds not only for the
asymptotic scattering data, but also during the entire time
evolution, where more than 2 baryons can overlap at a
time. We interpret these findings as a large-N manifesta-
tion of the quantum integrability of the GN model.
The solution which we have presented is relevant for yet

another problem, namely, how to find transparent, time-
dependent scalar potentials for the Dirac equation in 1þ 1
dimensions. It is clear that unlike in the static case, we have
not yet arrived at the most general time-dependent solu-
tion. At least one time-dependent solution of the GNmodel
is already known which does not belong to our class of
solutions, the breather. It also yields a reflectionless

FIG. 10. First and last frame of Fig. 9, to exhibit deformation of 2-baryon bound states as a result of the collision.

FIG. 11. TDHF potential for scattering of a baryon (y ¼
0:9999, v ¼ 0:5) on a 4-baryon bound state (v ¼ �0:5). The
bound state parameters are y1 ¼ 0:9, y2 ¼ 0:8, y3 ¼ 0:7, y4 ¼
0:6 and all �i ¼ 1. Deformation of the bound state is less
pronounced than in Figs. 7 and 9, due to higher velocity.
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potential. This suggests that a whole class of solutions is
still missing, namely, the TDHF potentials of scattering
processes involving breathers in the initial and final states.
We know already that the single breather can be obtained
with our ansatz if one admits complex valued exponentials
Ui. It will be interesting to see whether breather-baryon or
breather-breather scattering can be solved along similar
lines.

One other question which we have not been able to
answer yet is whether our new solution is related to the
solution of some known, classical nonlinear equation or
system of equations. This question is a natural one, given
prior experience. Thus for instance, all static baryons can
be related to soliton solutions of the static NLS equation.
Higher bound states are related to the static multichannel
NLS equation. All dynamical kink solutions can be
mapped onto multisoliton solutions of the sinh-Gordon
equation. The nonrelativistic limit of baryon-baryon scat-
tering was shown to be equivalent to solutions of the time-
dependent, multicomponent NLS equation. The advantage
of such mappings is obvious. A lot of expertise and power-
ful techniques have been accumulated in the field of non-
linear systems over the years, which can be helpful for
finding new solutions of the GN model or proving certain
results in full generality. A natural candidate for the present

case would be the multicomponent nonlinear Dirac equa-
tion, i.e., the set of classical equations�

i@=� �
Xn
k¼1

�c kc k

�
c i ¼ 0: (63)

Inspection of the various condensates in Sec. VIII shows
that it is indeed possible to construct solutions of Eq. (63)
using our results. One needs N þ 1 components for N
baryons, since the solution is of type N þ 1. However, it
is not possible to restrict oneself to normalizable states as
in the nonrelativistic limit of the multicomponent NLS
equation. One would have to invoke N different bound
states and one continuum state. Hence, even if our results
are related to the classical system (63), it seems very
unlikely that the solution presented here has already been
given in the literature. Keeping a continuum state as one of
the components would be very hard to interpret classically.
This is obviously a remnant of the Dirac sea, without
analogue in the classical fermion system.
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