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We consider cones overmanifolds admitting real Killing spinors and instanton equations on connections on

vector bundles over these manifolds. Such cones are manifolds with special (reduced) holonomy. We

generalize the scalar ansatz for a connection proposed by Harland and Nölle [D. Harland and C. Nölle,

J. High Energy Phys. 03 (2012) 082.] in such a way that instantons are parametrized by constrained matrix-

valued functions.Our ansatz reduces instantonequations tomatrixmodel equationswhichcanbe further reduced

toNewtonianmechanicswith particle trajectories obeyingfirst-order gradient flowequations.Generalizations to

Kähler-Einstein manifolds and resolved Calabi-Yau cones are briefly discussed. Our construction allows one to

associate quiver gauge theories with special holonomy manifolds via dimensional reduction.
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I. INTRODUCTION

Instantons in four dimensions [1] are nonperturbative
Bogomolny-Prasad-Sommerfeld (BPS) configurations
solving first-order anti-self-duality equations for gauge
fields which imply the full Yang-Mills equations. They
are important objects in modern field theory [2,3].
Generalization of Yang-Mills instantons to higher dimen-
sions, proposed in [4] and studied in [5–11] (for more
literature see references therein), is important both in
mathematics [9,10] and string theory [12,13]. Some of
their solutions on spaces Rn with n > 5 were obtained in
[5,14,15]. Constructions of solutions to the instanton equa-
tions on more general curved homogeneous manifolds as
well as on cylinders and cones over them were considered
in [16,17]. The construction on coset spaces, many of
which admit Killing spinors [18], was generalized to cones
over manifolds with real Killing spinors [19], not neces-
sarily homogeneous (see also [20] about instantons on
Calabi-Yau cones and their resolutions). All these solutions
were lifted to solutions of heterotic supergravity equations
supplemented by the Bianchi identity [19–23].

Riemannian manifolds ðM;gMÞ with real Killing spin-
ors1 often occur in string theory compactifications (see
e.g. [19,21–23] and references therein). These manifolds
were classified in [18]. Besides the round spheres they are

(i) nearly Kähler 6-manifolds M, SU(3) structure,
(ii) nearly parallel 7-manifolds M, G2 structure,
(iii) Sasaki-Einstein (2mþ 1)-manifolds M,

SUðmÞ structure, and
(iv) 3-Sasakian (4mþ 3)-manifoldsM, SpðmÞ structure.

All these manifolds have a connection with a nonvanishing
torsion and admit a nonintegrable H structure mentioned
above, i.e. a reduction of the structure group SOðnÞ of the
tangent bundle TM to H � SOðnÞ. The above manifolds
are equipped with canonical 3-form P and 4-form Q de-
fined via the Killing spinors.
Recall that instanton equations on an (nþ 1)-

dimensional Riemannian manifold X can be introduced
as follows. Suppose there exists a 4-form Q on X. Then
there exists an (n� 3)-form �Q, where � is the Hodge
operator on X. Let A be a connection on a bundle over X
with the curvature F . Then the generalized anti-self-
duality equation on the gauge field F is [9,10]

�F þ �Q ^F ¼ 0: (1.1)

For nþ 1> 4 these equations can be defined on manifolds
X with special holonomy, i.e. such that the holonomy group
G of the Levi-Civita connection on the tangent bundle TX
is a subgroup in the group SOðnþ 1Þ. On such manifolds
any solution of Eq. (1.1) satisfies the Yang-Mills equation.
The instanton equation (1.1) is also well defined on mani-
folds X with nonintegrable G structures but then (1.1)
implies the Yang-Mills equation with torsion. This torsion
term vanishes on manifolds with real Killing spinors [19].
In this paper, we mostly consider X ¼ CðMÞ, whereM is

a manifold with real Killing spinors and CðMÞ is a cone
over M with the metric

gX ¼ dr2 þ r2gM ¼ e2�ðd�2 þ gMÞ; for r :¼ e�:

(1.2)

From (1.2) it follows that the cone CðMÞ is conformally
equivalent to the cylinder

Z ¼ R�M (1.3)

with the metric

gZ ¼ d�2 þ gM: (1.4)
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1A Killing spinor on a Riemannian manifold N is a spinor field

� which satisfies rL� ¼ i�L � � for all tangent vectors L, where
r is the spinor covariant derivative, � is Clifford multiplication,
and � is a constant. If � ¼ 0 then the spinor is called parallel,
and N is a manifold with special (reduced) holonomy.
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Furthermore, one can show [19] that Eq. (1.1) on the cone
X ¼ CðMÞ is related to the instanton equation on the cyl-
inder Z ¼ R�M as follows:

�XF þ �XQX ^F ¼ eðn�3Þ�ð�ZF þ �ZQZ ^F Þ ¼ 0;

(1.5)

where nþ 1 ¼ dimCðMÞ ¼ dimZ. In other words,
Eq. (1.1) on CðMÞ is equivalent to the equation on
R�M after rescaling (1.2) of the metric. That is why in
the following we will consider the instanton equation

�F þ �QZ ^F ¼ 0 (1.6)

on the cylinder Z overM. Here we omit the index Z in the
star operator. Note that components of F on the cone can
be obtained from those on the cylinder simply via rescaling
(1.2).

In this paper, we generalize the results [19] of Harland
and Nölle on investigating instantons on cones over mani-
folds with Killing spinors. First, in Sec. II, we collect
various facts concerning nearly Kähler, nearly parallel
G2, Sasaki-Einstein and 3-Sasakian manifolds M mainly
following the description in [19]. We describe metrics
on M, canonical connections and various q-forms (q ¼
1; 2; . . . ) as well as their extension to the cylinder Z ¼
R�M. Then, in Sec. III, we introduce an ansatz for a
gauge potential A which reduces the instanton equation
(1.6) on R�M to a matrix equation on R. Resolution of
natural algebraic constraints on the matrices yields further
reduction to a set of first-order equations on functions
depending on � 2 R. These equations are gradient flow
equations describing BPS-type trajectories in Newtonian
mechanics of particles moving in RN , where N is the
number of functions parametrizing matrices in the ansatz
for a gauge potential A. Solutions to these equations give
instanton solutions of the Yang-Mills equations on R�M
and their extension to the cone CðMÞ. Finally, in Sec. IV, we
discuss some generalizations of our construction allowing
one to associate quiver gauge theories with such special
holonomy manifolds as Kähler-Einstein manifolds and
resolved Calabi-Yau cones.

II. MANIFOLDS WITH KILLING SPINORS

A. Nearly Kähler 6-manifolds

Consider the cylinder (1.3) with the metric (1.4), where
M is a nearly Kähler 6-manifold. It is defined as a manifold
with a 2-form ! and a 3-form P such that

d! ¼ 3 �M P; and dP ¼ 2! ^! ¼: 4Q: (2.1)

For a local orthonormal coframe feag onM one can choose

! ¼ e12 þ e34 þ e56; and

P ¼ e135 þ e164 � e236 � e245;
(2.2)

where a ¼ 1; . . . ; 6, ea1���al :¼ e1 ^ � � � ^ el, and get

�MP ¼ e145 þ e235 þ e136 � e246;

Q ¼ e1234 þ e1256 þ e3456:
(2.3)

Here �M denotes the Hodge operator on M. On Z one can
introduce the 4-form

QZ ¼ d� ^ PþQ; (2.4)

which is used in the instanton equation (1.6).

The canonical connection ~� on M, which is a metric-
compatible connection with totally antisymmetric (intrin-
sic) torsion, has a SU(3) structure group. This connection
has components

~� c
ab ¼ �c

ab þ 1
2Pcab; (2.5)

where �c
ab are components of the Levi-Civita connection

and

Pabc ¼ Ta
bc (2.6)

are components of the torsion Ta ¼ 1
2T

a
bce

b ^ ec defined

from the Cartan structure equations

dea þ ~�a
b ^ eb ¼ Ta (2.7)

for basis 1-forms ea.
Note that the structure group of M is SU(3) (or its

subgroup) and P induces a G2 structure on Z since
SUð3Þ � G2. Recall that g2 ¼ suð3Þ �m, dimm ¼ 6,
and one can define the generators of G2 as 7� 7 matrices
from soð7Þ with the commutation relations

½Ii; Ij� ¼ fkijIk; ½Ii; Ia� ¼ fbiaIb; and

½Ia; Ib� ¼ fiabIi þ fcabIc; (2.8)

where Ii 2 suð3Þ, Ia 2 m, and f’s are structure constants
of g2. One can choose [19]

Ibia ¼ fbia; I0ia ¼ �Iai0 ¼ 0;

Icab ¼ 1
2f

c
ab; Iba0 ¼ �I0ab ¼ �b

a;
(2.9)

and obtain

Pabc ¼ �fcab: (2.10)

Introducing � ¼ ð0; aÞ, we can denote matrices in (2.9) as

I�i� and I
�
a�. The extension of the canonical connection ~� to

Z has the same components (2.5) and can be written as

~� ¼ ~�iIi (2.11)

with Ii given in (2.9).

B. Nearly parallel G2-manifolds

Let us consider the cylinder (1.3) over a nearly parallel
G2-manifoldM. It is defined as a manifold with a 3-form P
(a G2 structure) preserved by the group G2 � SOð7Þ such
that

dP ¼ � �M P (2.12)
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for some constant � 2 R. For a local orthonormal coframe
ea, a ¼ 1; . . . ; 7, on M one can choose

P ¼ e123 þ e145 � e167 þ e246 þ e257 þ e347 � e356

(2.13)

and therefore

�MP¼:Q

¼ e4567þ e2367� e2345þ e1357þ e1346þ e1256� e1247:

(2.14)

It is easy to see that for the choice (2.13) one obtains
dP ¼ 4Q, i.e. � ¼ 4. The 4-form QZ on Z can be chosen
similar to (2.4) as

QZ ¼ d� ^ PþQ: (2.15)

This form defines a Spin(7) structure on Z.
One can define generators of the group Spin(7) via the

structure constants fkij, f
b
ia, and f

c
ab of the group Spin(7) by

using the decomposition spinð7Þ ¼ g2 �m, as 8� 8
matrices Ii ¼ ðI�i�Þ 2 g2 and Ia ¼ ðI�a�Þ 2 m, dimm ¼ 7,
� ¼ ð0; aÞ. The generators Ii, Ia have the same form as in
(2.9) but with structure constants f’s of Spin(7).

The canonical connection ~� onM is not changed after its
extension to Z and has the components

~� ¼ ~�iIi ) ~�i
aI

c
ib ¼ ~�c

ab ¼ �c
ab þ 1

3Pabc (2.16)

with torsion components

Ta
bc ¼ 2

3Pabc: (2.17)

C. Sasaki-Einstein manifolds

Consider now the cylinder (1.3) with the metric (1.4),
where M is a Sasaki-Einstein manifold. It is a (2mþ 1)-
dimensional manifold such that the cone CðMÞ with the
metric (1.2) is a Calabi-Yau (mþ 1)-fold [24]. Such mani-
folds M have the structure group SUðmÞ � SOð2mþ 1Þ
and the holonomy group of CðMÞ is SUðmþ 1Þ. Sasaki-
Einstein manifolds are endowed with 1-, 2-, 3-, and
4-forms �, !, P, and Q, which can be defined in an
orthonormal basis e1; ea; a ¼ 2; . . . ; 2mþ 1, as

� ¼ e1; ! ¼ e23 þ e45 þ � � � þ e2m2mþ1;

P ¼ � ^!; and Q ¼ 1
2! ^!:

(2.18)

One can check that � 5 ! ¼ 0 and

d� ¼ 2!; d �M ! ¼ 2m �M �;

dP ¼ 4Q; and d �M Q ¼ ð2m� 2Þ �M P:
(2.19)

The metric on Z has the form (1.4) with

gM ¼ ðe1Þ2 þ expð2hÞ�abe
aeb: (2.20)

Note that for the value of h such that

expð2hÞ ¼ 2m

mþ 1
; (2.21)

the torsion of the canonical connection on M (and on Z)
becomes antisymmetric [19], but we keep the one-
parameter family (2.20) of the Sasakian metric including
the case h ¼ 0when the metric is Einstein. Components of

the canonical connection ~� are

~� b
�a ¼ �b

�a þ 1

m
P�ab; �~�1

�a ¼ ~�a
�1 ¼ �a

�1 þ P�1a;

(2.22)

where � ¼ ð1; aÞ and the torsion of ~� is

T1 ¼ P1��e
� ^ e�; and Ta ¼ mþ 1

2m
Pa��e

� ^ e�:

(2.23)

As 4-form QZ on Z one can take [19]

QZ ¼ expð2hÞd� ^ Pþ expð4hÞQ; (2.24)

where P and Q are given in (2.18).
Let �̂ ¼ ð0; �Þ ¼ ð0; 1; aÞ. Then one can define gener-

ators of the group suðmþ 1Þ ¼ suðmÞ �m as ð2mþ 2Þ �
ð2mþ 2Þ antisymmetric matrices Ii ¼ ðI�̂i�̂Þ 2 suðmÞ and
I� ¼ ðI�̂��̂Þ 2 m such that nonvanishing components are

Ibia ¼ fbia; Ib1a ¼ � 1

m
P1ab ¼ ðmþ 1Þfb1a;

�I0ab ¼ Iba0 ¼ �b
a; I1ab ¼ �Iba1 ¼ �P1ab ¼ 1

2
f1ab;

(2.25)

where fbia, f
1
ab, and f

b
1a are parts of the structure constants of

suðmþ 1Þ. In terms of these matrices the canonical con-

nection ~� on M pulled back to Z can be written as

~� ¼ ~�iIi ¼ e�~�i
�Ii: (2.26)

D. 3-Sasakian manifolds

Let us now consider the cylinder (1.3) over a 3-Sasakian
manifoldM. It is defined as a (4mþ 3)-dimensional mani-
fold such that the cone CðMÞ over it is a hyper-Kähler
(4mþ 4)-manifold [24], i.e. the holonomy group of CðMÞ
is Spðmþ 1Þ. The structure group of M is SpðmÞ and any
3-Sasakian manifold can be endowed with three 1-forms
�	, three 2-forms !	, a 3-form P, and a 4-form Q,
	 ¼ 1, 2, and 3 [24]. In a local orthonormal coframe e	,
ea, a ¼ 4; . . . ; 4mþ 3, these forms can be written as

�1 ¼ e1; !1 ¼ e45þ e67þ���þ e4m4mþ1þ e4mþ24mþ3;

�2 ¼ e2; !2 ¼ e46� e57þ���þ e4m4mþ2� e4mþ14mþ3;

�3 ¼ e3; !3 ¼ e47þ e56þ���þ e4m4mþ3þ e4mþ14mþ2;

P¼ 1
3�

123þ 1
3�

	^!	; and Q¼ 1
6!

	^!	: (2.27)
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The forms �	 and !	 satisfy the equations

d�	 ¼ "	
��

 ^ �� þ 2!	;

d!	 ¼ 2"	
��

 ^!�:

(2.28)

We introduce indices � ¼ ð	; aÞ and �̂ ¼ ð0; �Þ ¼
ð0; 	; aÞ. Using the splitting

spðmþ 1Þ ¼ spðmÞ �m; dimm ¼ 4mþ 3;

(2.29)

one can introduce generators Ii ¼ ðI�̂i�̂Þ 2 spðmÞ and

Ia ¼ ðI�̂a�̂Þ 2 m of the group Spðmþ 1Þ as matrices from

soð4mþ 4Þ. One can take them so that nonvanishing
components are [19]

Ibia ¼ fbia; I�	
 ¼ �"	
� ¼ �3P	
� ¼ 1
2f

�
	
;

I
	0 ¼ �

	; I	ab ¼ �!


ab ¼ �3P	ab ¼ 1
2f

	
ab;

Iba0 ¼ �b
a;

(2.30)

where f’s are the structure constants of the group
Spðmþ 1Þ.

Note that the metric on Z ¼ R�M has the form (1.4)
with a one-parameter family

gM ¼ �	
e
	e
 þ expð2hÞ�abe

aeb (2.31)

of metrics on M. The 4-form QZ can be chosen as

QZ ¼ 1
6ðexpð4hÞ!	 ^!	 þ expð2hÞ"	
�!	 ^ �
 ^ ��

þ 2 expð2hÞd� ^ �	 ^!	 þ 6d� ^ �123Þ: (2.32)

In terms of the matrices (2.30) the canonical connection ~�
on the cylinder Z over a 3-Sasakian manifold M can be
written as

~� ¼ ~�iIi ¼ e�~�i
�Ii: (2.33)

It is related with the Levi-Civita connection � by formulas

� ~��
�	 ¼ ~�	

�� ¼ �	
�� þ 3P	��; ~�b

�a ¼ �b
�a; (2.34)

and has the torsion

T	 ¼ 3P	��e
��; and Ta ¼ 3

2Pa��e
��; (2.35)

which is antisymmetric for the choice expð2hÞ ¼ 2 in the
metric.

III. INSTANTONS IN HIGHER DIMENSIONS

A. Reduction to matrix equations

Recall that for all cases of manifolds M considered in
Sec. II the instanton equation on the cone CðMÞ is equiva-
lent to the equation

�F þ �QZ ^F ¼ 0 (3.1)

on the cylinder Z ¼ R�M with the metric gZ ¼
d�2 þ gM. The explicit form of the 4-form QZ on Z was

written down for all cases in Sec. II. Let us denote byG the
holonomy group2 of the Levi-Civita connection on CðMÞ
and by H the structure group3 of the canonical connection
~� onM (and also on Z). For the Lie algebras g ¼ LieG and
h ¼ LieH we have

g ¼ h �m; (3.2)

where m is an orthogonal complement of h in g. Let
e0 ¼ d� and e� be an orthonormal basis of T�Z. Then
e� form a basis of T�M � T�Z and their linear span can be
identified with the vector space m.
Consider the generators

½Îi; Îj� ¼ fkijÎk; ½Îi; Î�� ¼ f�i�Î�; and

½Î�; Î�� ¼ fi��Îi þ f���Î� (3.3)

acting on the space V of an irreducible representation ofG.
These generators satisfy the same commutation relations as
the generators Ii, Ia. In Sec. II we wrote down the realiza-
tion of these generators via the embedding g � soðnþ 1Þ
with nþ 1 ¼ dimZ as acting (via infinitesimal rotations)
on tangent spaces of Z. For this special representation we

omit hats and note that ~� ¼ ~�iIi is the canonical connec-
tion whose curvature

~R ¼ d~�þ ~� ^ ~� ¼ ðd~�i þ 1
2f

i
jk
~�j ^ ~�kÞIi (3.4)

satisfies the instanton equation (3.1) (see [19]).
Note that instead of tangent bundle TZ one can consider

an arbitrary vector bundleV ! Zwith the structure group
G such that fibers are representations V (real, complex, or
quaternionic) of the group G. For simplicity, we consider
irreducible representations V of the group G. The bundle
V ! Z is associated with the principal bundle PðZ;GÞ.
Since H is a closed subgroup of G, it also acts on fibers of
V , but in general after restriction to H � G the represen-
tation V decomposes into a sum of irreducible representa-
tions Vqr of H such that V ¼ �rVqr . We denoted the

generators of the group G in the representation V as Îi,

Î�, where Îi 2 h and Î� 2 m for the splitting (3.2).

Consider a connection

�̂ :¼ ~�iÎi (3.5)

on the bundle V . In general, it is a reducible connection.

Here ~�i are components of the canonical connection on the

tangent bundle TZ. It is obvious that the curvature R̂ ¼
d�̂þ �̂ ^ �̂ of �̂ also satisfies the instanton equation (3.1).
Let us consider matrix-valued functions X�ð�Þ 2

EndðVÞ and introduce a connection

2This holonomy group G is the group G2, Spin(7), SUðmþ 1Þ,
and Spðmþ 1Þ for cones over nearly Kähler, nearly parallel G2,
Sasaki-Einstein, and 3-Sasakian manifolds M, respectively.

3This structure group is the group SU(3), G2, SUðmÞ, and
SpðmÞ for nearly Kähler, nearly parallel G2, Sasaki-Einstein, and
3-Sasakian manifolds, respectively.
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A :¼ �̂þ X�e
� (3.6)

on the vector bundle V ! Z. Note that for matrices X�

depending on all coordinates of Z, (3.6) is a general form of
a connection on the bundle V ! Z. For X� depending

only on �, the instanton equation (3.1) will be reduced to
ordinary differential equations on matrices X�.

Recall that

de� ¼ �~��
� ^ e� þ T� ¼ �~�i ^ e�f

�
i� þ 1

2T
�
��e� ^ e�;

(3.7)

where f
�
i� are structure constants from (3.3). From (3.6) and

(3.7) it follows that

F ¼ dAþA ^A

¼ d�̂þ �̂ ^ �̂þ 1
2ð½X�; X�� þ T�

��X�Þe� ^ e�

þ _X�e
0 ^ e� þ ~�i ^ e�ð½Îi; X�� � f�i�X�Þ; (3.8)

where _X� ¼ dX�=d�. Note that R̂ ¼ d�̂þ �̂ ^ �̂ satisfies
Eq. (3.1) and F solves the instanton equation (3.1) on Z if
the following matrix equations are satisfied:

½Îi; X�� ¼ f�i�X�; (3.9)

½X�; X�� þ T�
��X� ¼ N�

��
_X� þ fi��Nið�Þ: (3.10)

HereN�
�� are some constants which we shall specify below

for each case, Ni are some vðhÞ-valued functions defined
by Eq. (3.10) after resolving the algebraic constraint equa-
tion (3.9) and substituting their solutions X� into (3.10).

Here v: g ! EndðVÞ is a representation of g. For X�

satisfying (3.9) and (3.10), we have

F ¼ d�̂þ �̂ ^ �̂þ 1
2Nif

i
��e

�� þ _X�ðe0� þ 1
2N

�
��e

��Þ;
(3.11)

where the term with fi�� also satisfies (3.1) due to proper-

ties of fi�� and the last term with _X� satisfies (3.1) for

choices of N�
�� specified below for each considered case.

Note that the constraint equation (3.9) for some examples
of groups G and H was discussed and resolved, e.g., in
[25,26] in the context of the equivariant dimensional re-
ductions on coset spaces G=H. For special cases of the
ansatz (3.6) instanton solutions were obtained, e.g., in
[16,17,19]. A peculiar property of such �-dependent solu-
tions is that they can be lifted to gauge 5-brane solutions of
heterotic supergravity equations as was shown, e.g., in
[19,20,23].

B. Reduction for nearly Kähler and nearly
parallel G2 manifolds

Consider a manifold M which is nearly Kähler
( dimM ¼ n ¼ 6) or nearly parallel G2 (dimM¼n¼7).
For both cases � ¼ a ¼ 1; . . . ; n with n ¼ 6 or n ¼ 7.
Note that the 2-forms

e0a � 1

2�
Pabce

bc (3.12)

solve the instanton equation (3.1) on Z ¼ R�M for QZ

and P given in Sec. II. Here � ¼ 2 for n ¼ 6 and � ¼ 3

for n ¼ 7. The generators Îa introduced in (3.3) are images
of the 2-forms (3.12) under the metric-induced isomor-
phism �2Z ffi soð7Þ 	 g2 	 m for n ¼ 6 and �2Z ffi
soð8Þ 	 spinð7Þ 	 m for n ¼ 7.
For both the nearly Kähler and nearly parallel G2 cases

we have

Ta
bc ¼ �fabc; and Na

bc ¼ 1
2f

a
bc; (3.13)

where Na
bc are defined by comparing the components of F

in (3.11) and the explicit form (3.12) of (parts of) anti-self-
dual forms on Z. Thus, we obtain the following matrix
equations:

½Îi; Xa� ¼ fbiaXb; (3.14)

½Xa; Xb� ¼ fcabðXc þ 1
2
_XcÞ þ fiabNið�Þ: (3.15)

Substituting the ansatz Xa ¼ Îa with a real function
ð�Þ, we see that (3.14) are satisfied and (3.15) are reduced
to the equation

_ ¼ 2ð� 1Þ (3.16)

obtained in [19] and for Ni we obtain Ni ¼ 2Îi. More
general equations can be obtained by choosing a more
general solution of the constraint equations (3.14). Such
solutions for different choices of groups G and H were
discussed, e.g., in [25,26]. Constructing solutions to
Eqs. (3.9) and (3.10) goes beyond the scope of this short
article. This task will be considered elsewhere.

C. Reduction for Sasaki-Einstein manifolds

Consider Z ¼ R�M with a Sasaki-Einstein manifold
M. In this case � ¼ ð1; aÞ with a ¼ 2; . . . ; 2mþ 1 and the
2-forms

e01 � 1

mþ 1
!abe

ab; and expðhÞðe0a þ!abe
1bÞ
(3.17)

solve the instanton equation (3.1) with QZ given in (2.24).
From (2.23), (3.8), and (3.17) we obtain

T1
ab ¼ �f1ab; Ta

1b ¼ �fa1b;

N1
ab ¼

1

mþ 1
f1ab; and Na

1b ¼ m

mþ 1
fa1b:

(3.18)

Substituting (3.18) into (3.9) and (3.10), we obtain

½Îi; X1� ¼ 0; ½Îi; Xa� ¼ fbiaXb; (3.19)

½X1; Xa� ¼ fb1a

�
Xb þ m

mþ 1
_Xb

�
; (3.20)
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½Xa; Xb� ¼ f1ab

�
X1 þ 1

mþ 1
_X1

�
þ fiabNið�Þ: (3.21)

If we choose X1 ¼ �Î1 and Xa ¼ c Îa then (3.19) is sat-

isfied, forNi we obtainNi ¼ c 2Îi and (3.20) and (3.21) are
reduced to the equations

_� ¼ ðmþ 1Þðc 2 � �Þ; and _c ¼ mþ 1

m
c ð�� 1Þ;

(3.22)

coinciding with those obtained in [19]. Note that (3.22) is a
gradient flow equation

_xi ¼ gij
@W

@xj
; for

W ¼ ðx1Þ2 � 2x1ðx2Þ2 þ 2ðx2Þ2 � 1; i; j ¼ 1; 2;

for the metric on R2 of the form

ds2 ¼ gijdx
idxj ¼ 2

mþ 1
ðdx1Þ2 þ 4m

mþ 1
ðdx2Þ2;

with x1 :¼ � and x2 :¼ c [19].

D. Reduction for 3-Sasakian manifolds

For Z ¼ R�M with a 3-Sasakian manifoldM we have
� ¼ ð	; aÞ, 	 ¼ 1, 2, and 3 and a ¼ 4; . . . ; 4mþ 3. One

can check that the image of the generators Îa from (3.3)
under the map into �2Zffisoð4mþ4Þ	spðmþ1Þ	m
is given by the 2-forms

e0	 � 1
3"	
�e


�; and expðhÞðe0a þ!	
abe

	bÞ; (3.23)

which satisfy Eq. (3.1) withQZ given in (2.32). From (2.30),
(2.35), (3.8), and (3.23) it follows that

T	
ab ¼ �3

2f
	
ab; Tb

a
 ¼ fba
; T	

� ¼ �f	
�;

(3.24)

Nb
a
 ¼ fba
; and N	


� ¼ 1
2f

	

�; (3.25)

with other components vanishing. Substituting (3.24) and
(3.25) into (3.9) and (3.10), we obtain

½Îi; X	� ¼ 0; ½Îi; Xa� ¼ fbiaXb; (3.26)

½X	; X
� ¼ f�	
ðX� þ 1
2
_X�Þ;

½Xa; X
� ¼ fba
ðXb þ _XbÞ;
(3.27)

½Xa; Xb� ¼ f	abX	 þ fiabNið�Þ: (3.28)

If we choose the ansatz X	 ¼ �Î	 and Xa ¼ c Îa then
(3.26) will be satisfied identically, from (3.28) we obtain

Ni ¼ c 2Îi and (3.27) and (3.28) reduce to the equations

_� ¼ 2�ð�� 1Þ; _c ¼ c ð�� 1Þ; and � ¼ c 2;

(3.29)

where the last algebraic equation follows from (3.28).
These equations coincide with those obtained in [19].

Thus, our ansatz (3.6) which leads to matrix equations
(3.9) and (3.10) generalizes the ‘‘scalar’’ ansatz of the
paper [19] and allows one to obtain more general instanton
solutions. However, obtaining explicit instanton solutions
lies beyond the scope of our paper.

IV. GENERALIZATIONS: QUIVER BUNDLES

A. Smaller groups H

Recall that we considered nearly Kähler, nearly parallel
G2, Sasaki-Einstein, and 3-Sasakian manifolds M with the
structure groups SU(3), G2, SUðmÞ, and SpðmÞ, respec-
tively, following Harland and Nölle who considered in
their ansatz [19] exactly the above groups with generators
in the defining vector representation of the group
SOðnþ 1Þ 	 H, i.e. V ¼ Rnþ1 with n ¼ 6, 7, 2mþ 1,
and 4mþ 3; m ¼ 1; 2; . . . . However, the group H can be
smaller than the above-mentioned Lie groups, i.e. often H
lies inside the group SU(3), G2, SUðmÞ, and SpðmÞ, re-
spectively. In this case, the constraint equations (3.9) be-
come weaker and allow more degrees of freedom in
matrices Xa. For instance, for the nearly Kähler coset space

M ¼ SUð3Þ=Uð1Þ � Uð1Þ; (4.1)

the structure group is H ¼ Uð1Þ � Uð1Þ that increase
the number of functions parametrizing the ansatz (3.6)
even for vector representation V¼R7ffiR�C3 with
g2 	 suð3Þ ¼ uð1Þ � uð1Þ �m. Writing the ansatz (3.6)
in terms of suð3Þ-valued matrices Xa, one can resolve
(3.9) as

X1 ¼
0 0 �1

0 0 0

�1 0 0

0
BB@

1
CCA; X3 ¼

0 � �2 0

2 0 0

0 0 0

0
BB@

1
CCA;

X5 ¼
0 0 0

0 0 � �3

0 3 0

0
BB@

1
CCA; X2 ¼

0 0 i1

0 0 0

i �1 0 0

0
BB@

1
CCA;

X4 ¼ �
0 i �2 0

i2 0 0

0 0 0

0
BB@

1
CCA; X6 ¼ �

0 0 0

0 0 i �3

0 i3 0

0
BB@

1
CCA;

(4.2)

where 1, 2, and 3 are complex-valued functions of �
and the generators I7;8 of the subgroup Uð1Þ � Uð1Þ of SU
(3) are chosen in the form

I7 ¼ �i

0 0 0

0 1 0

0 0 �1

0
BB@

1
CCA; and

I8 ¼ iffiffiffi
3

p
2 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA: (4.3)
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Substituting (4.2) into (3.15), we obtain equations

_1 ¼ �21 þ 2 �2
�3;

_2 ¼ �22 þ 2 �1
�3;

_3 ¼ �23 þ 2 �1
�2;

(4.4)

and constraints

N7 ¼ �I7; N8 ¼ � ffiffiffi
3

p
�I8;

with � ¼ 1
�1 ¼ 2

�2 ¼ 3
�3; (4.5)

for a proper normalization of the structure constants. From
(4.5) we see that complex-valued functions 1, 2, and
3 can differ only in their phase parts. For 1 ¼ 2 ¼
3 ¼:  Eqs. (4.4) reduce to Eq. (3.16) on a real-valued
function .

B. Reducible representations of H and quiver bundles

A similar situation takes place for nearly parallel
G2-manifolds, where as an example one can consider the
Aloff-Wallach space SUð3Þ=Uð1Þ with the structure group
H ¼ Uð1Þ [see the second paper in [17] for discussion of
solving Eqs. (3.14)], and also for Sasaki-Einstein and
3-Sasakian manifolds the structure groupH can be a closed
subgroup of SUðmÞ and SpðmÞ, respectively. Even more
freedom appears if one considers an irreducible represen-
tation V of the holonomy group G of the cone CðMÞ which
decomposes into a sum of irreducible representations Vqr

of the group H,

V ¼ �‘
r¼1Vqr ; with

X‘
r¼1

qr ¼ q; (4.6)

so that

Îi ¼

Iq1i 0 . . . 0

0 . .
. ..

.

..

. . .
.

0

0 . . . 0 Iq‘i

0
BBBBBBB@

1
CCCCCCCA
: (4.7)

Here Iqri are generators of qr � qr irreducible representa-
tions Vqr of H and V ffi Cq (or Rq or Hq ffi R4q). If we

assume that H contains a maximal Abelian subgroup of G

then the remaining generators Îa ofG in this representation
have the off-diagonal form4

Îa ¼

0 Iq12a . . . Iq1‘a

Iq21a 0 . .
. ..

.

..

. . .
. . .

.
Iq‘�1‘
a

Iq‘1a . . . Iq‘‘�1
a 0

0
BBBBBBB@

1
CCCCCCCA
; (4.8)

where I
qrs
a are qr � qs matrices (cf. [11]).

Thus, one can associate a bounded quiver5 satisfying a
set of relations R to the ansatz (3.6) for a connection on a
vector bundle V ! CðMÞ over nearly Kähler, nearly par-
allel G2, Sasaki-Einstein, and 3-Sasakian manifolds. In the
simplest case of generators (4.7) the matrices Xa solving
the constraint equations are obtained from (4.8) by sub-
stituting rsI

qrs
a instead of Iqrsa , where rs are complex

functions of �. An important fact is that the space CðMÞ
is not homogeneous and therefore quivers and quiver bun-
dles can appear in dimensional reduction without a
G-equivariance condition studied earlier, e.g., in [25,26].
Recall that another way in which quiver gauge theories
arise as low-energy effective field theories in string theory
is through considering cones and orbifolds with conical
singularities and placing D-branes at the orbifold singular-
ities [28]. Our constructions can be lifted as in [23] to
heterotic strings and provide a description of NS5-branes
and gauge NS5-branes. It would be of interest to further
study this brane interpretation and its possible relations
with constructions of [28].

C. Kähler-Einstein manifolds and quiver gauge theories

For another example related to quiver gauge theories we
consider the manifold

Y ¼ ��X; (4.9)

where � and X are 2-dimensional and 2k-dimensional
Kähler-Einstein manifolds with the Kähler form ! on �

and � on X. Let �̂ be the canonical uðkÞ-valued Levi-
Civita connection on X,

�̂ ¼ �iÎi; with Îi 2 uðkÞ: (4.10)

We consider UðkÞ as a closed subgroup of the Lie group
SUðkþ 1Þ. Let V ffi Cq be an irreducible representation of
the group SUðkþ 1Þ decomposed into a sum of irreducible
representations Vqr ffi Cqr of the group UðkÞ as in (4.7) and
V ! X is a holomorphic vector bundle overX associated
with the bundle PðX;UðkÞÞ of Hermitian frames on X.
This bundle has the connection (4.10) which is reducible
according to (4.7), V ¼ �rV qr .

Consider now ‘ complex vector bundles E1; . . . ; E‘ over
� with unitary connections A1; . . . ; A‘ and ranks
N1; . . . ; N‘. Introduce a complex vector bundle
E ¼ �rEr 
V qr over ��X of rank

N ¼ X‘
r¼1

Nrqr (4.11)

4If H does not contain a maximal Abelian subgroup of G or
there is a subgroup in G commuting with H then Îa in (4.8) will
contain diagonal terms Iqrra with r ¼ 1; . . . ; ‘.

5A quiver Q ¼ ðQ0; Q1Þ is an oriented graph, i.e. a set of
vertices Q0 with a set Q1 of arrows between the vertices (see,
e.g., [27]). A path in Q is a sequence of arrows in Q1 which
compose. A relation of the quiver is a formal finite sum of paths.
In our case vertices correspond to vector bundlesV qr with fibers
Vqr and arrows correspond to morphisms V qs ! V qr of vector
bundles.
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and assume c1ðEÞ ¼ 0without loss of generality, so that the
structure group of E is SUðNÞ. The matrices

~Ii :¼

1N1

 Iq1i 0 . . . 0

0 . .
. ..

.

..

. . .
.

0

0 . . . 0 1N‘

 Iq‘i

0
BBBBBBBB@

1
CCCCCCCCA

(4.12)

are generators of a reducible unitary representation of the
group UðkÞ on the complex vector space ~V ffi CN .
Introduce a gauge connection

A :¼

A1 
 1q1 0 . . . 0

0 . .
. ..

.

..

. . .
.

0

0 . . . 0 A‘ 
 1q‘

0
BBBBBBBB@

1
CCCCCCCCA

(4.13)

on the bundle E :¼ �rEr 
 Cqr over �. It is obvious from
(4.13) that ½A; ~Ii� ¼ 0.

On the bundle E ! Y we introduce a connection

A ¼ Aþ �i~Ii þ Xae
a; (4.14)

where Xa 2 suðNÞ are matrices which depend only on
coordinates of � and ea is the basis of 1-forms on X, a ¼
1; . . . ; 2k. Note that

dea ¼ ��a
b ^ eb ¼ �faib�

i ^ eb: (4.15)

Using (4.15), for the curvature F of the connection (4.14)
we obtain

F ¼ dAþA ^A

¼ Fþ ~Rþ ðdXa þ ½A; Xa�Þ ^ ea þ 1
2½Xa; Xb�ea ^ eb

þ ð½Ii; Xa� � fbiaXbÞ�i ^ ea; (4.16)

where

F ¼ dAþ A ^ A;

~R ¼ d~�þ ~� ^ ~�; and ~� :¼ �i~Ii:
(4.17)

Suppose that Xa satisfy the constraints

½~Ii; Xa� ¼ fbiaXb (4.18)

and impose on F the Hermitian-Yang-Mills equations [6]

F 0;2 ¼ 0 ) �@Xa þ ½A0;1; Xa� ¼ 0; ½Y �A; Y �B� ¼ 0;

(4.19)

ð!þ�Þ 5F ¼ 0)!	
F 	
 þ�~I0 þ�ab½Xa;Xb� ¼ 0:

(4.20)

Here �@þ A0;1 is the antiholomorphic part of the covariant
derivative on �,

Y�1 :¼ 1
2ðX1 þ iXkþ1Þ; . . . ; Y �k :¼ 1

2ðXk þ iX2kÞ;
where the constant � is proportional to the scalar curvature
of the Kähler-Einstein manifold X, !	
 and �ab

are components of the Kähler forms on �, and X, ~I0
is the uð1Þ generator in the decomposition uðkÞ ¼ uð1Þ �
suðkÞ � suðkþ 1Þ, 	, 
 ¼ 1, 2 and A; B; . . . ;¼ 1; . . . ; k.
We see that (4.19) and (4.20) are the usual quiver vortex
equations on � (cf. [11,26]).6 For k ¼ 1 and X ¼ CP1,
one can obtain [29] the standard vortex equations on a
Riemann surface �. One can generalize the above con-
struction by taking instead of� a Kähler-Einstein manifold
of dimension more than 2.

D. Instantons on smooth manifolds

It is of interest to extend the ansatz for a connection A
from cones to their smooth resolutions as proposed in [20]
as well as from direct product manifolds, such as Y in
Sec. IVC, to irreducible smooth manifolds with warped
product metrics. This is possible.
For illustration we consider noncompact Calabi-Yau

(kþ 1)-folds Z discussed in [20]. They have a metric

d~s2 ¼ dr2

f2ðrÞ þ r2f2ðrÞ�2 þ 2r2ds2KE; (4.21)

where

f2 ¼ 1�
�
a2

r2

�
kþ1

; (4.22)

ds2KE is the standard Kähler metric on a Kähler-Einstein
manifold X which is the base manifold for a projection

�: X0 ! X (4.23)

from Sasaki-Einstein (2kþ 1)-manifold X0 onto X and �
is the 1-form along fibers of the projection (4.23).
Note that

d~s2 ¼ r2ds2; (4.24)

with

ds2 ¼ dr2

r2f2
þ f2�2 þ 2ds2KE ¼ d�2

f2
þ f2�2 þ 2ds2KE;

(4.25)

i.e. d~s2 is conformally equivalent to ds2. Singularity of the
transformation at r ¼ 0 is not essential since we are inter-
ested in Yang-Mills instantons on the manifold with the
metric (4.21) extendable smoothly at r ¼ 0. Note also that
the instanton equation on Z is invariant with respect to
conformal transformation,

6Note that the last equations in (4.19) correspond to quiver
relations.
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~�Fþ ~�QZ ^ F ¼ ~�Fþ ð ~!þ ~�Þk�1 ^ F

¼ r2ðk�1Þð�Fþ ð!þ�Þk�1 ^ FÞ ¼ 0;

(4.26)

since

~!þ ~� ¼ r2ð!þ�Þ (4.27)

and ~� ¼ r2ðk�1Þ � . Here ! ¼ d� ^ � and � is the Kähler
form on X ,! Z.

The ansatz forA on the space Z0 with the metric (4.25)
is the same as in (4.14) and leads to the same reduction
(4.19) and (4.20) of the instanton equation. Solving these
vortex equations, one obtains instantons on Z. One can
simplify the task assuming thatA� and Xa depend only on

� ¼ lnr and choosingA� ¼ 0. Then (4.19) and (4.20) will
be reduced to equations similar to those which were con-
sidered in [20].

V. CONCLUSIONS

We have examined in some detail the construction of
instantons on cones CðMÞ over nearly Kähler and nearly
parallel G2-manifolds M initiated in [16,17] and extended
to cones over Sasaki-Einstein and 3-Sasakian manifolds in
[19,20]. Having at our disposal a reduced structure group
H of a manifold M admitting real Killing spinors and the
holonomy group G of the cone CðMÞ, we introduced a
quiver bundle V over CðMÞ, determined entirely by the
representation theory of the groupG andH, and introduced
a proper connection A on this bundle. The ansatz for A
reduces the instanton equations on CðMÞ to simpler matrix

equations which can be solved in many special cases. It is
of interest to construct new instanton solutions on CðMÞ by
using our generalized ansatz, and to lift them to solutions
of heterotic supergravity along the way considered in
[19,23].
We have also introduced a quiver bundle E over a

Kähler-Einstein manifold of the form��X and extended
the Levi-Civita connection on the 2k-dimensional Kähler-
Einstein manifoldX to a connection on E parametrized by
2k matrices Xa. We established an equivalence between
solutions of Hermitian-Yang-Mills equations on ��X
and solutions of some quiver vortex equations on �.
Recall that regular Sasaki-Einstein manifolds are

U(1) bundles over Kähler-Einstein manifolds and cones
over them are Calabi-Yau spaces. Using this correspon-
dence, we have introduced a connection on a quiver bundle
E over smooth resolutions of (2kþ 2)-dimensional Calabi-
Yau cones. It is of interest to consider instantons on other
special holonomy manifolds.7 We hope to report on this in
the future.
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