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We propose an open quantum systems approach to the physics of heavy quarkonia in a thermal medium,

based on stochastic quantum evolution. This description emphasizes the importance of collisions with the

environment and focuses on the concept of spatial decoherence of the heavy quarkonium wave function. It

is shown how to determine the parameters of the dynamical evolution, i.e. the real potential and the noise

strength, from a comparison with quantities to be obtained from lattice QCD. Furthermore, the imaginary

part of the lattice QCD heavy quark potential is found to be naturally related to the strength of the noise

correlations. We discuss the time evolution of Q �Q analytically in a limiting scenario for the spatial

decoherence and provide a qualitative one-dimensional numerical simulation of the real-time dynamics.
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I. INTRODUCTION

The fate of heavy quarkonium states (Q �Q) at very high
temperature is a long-standing puzzle ever since suppres-
sion of J=� (the c �c ground state with JP ¼ 1�) has been
proposed as a prime signal for the formation of the decon-
fined state of QCD matter, the quark-gluon plasma
(QGP) [1,2]. The production of J=� and � (b �b states
with JP ¼ 1�) in heavy-ion collisions has been measured
in detail at the Relativistic Heavy Ion Collider [3] and more
recently at the Large Hadron Collider [4,5]. Partial sup-
pression of J=� [3] and the relative suppression of excited
states such as �ð2S; 3SÞ in comparison to �ð1SÞ [5] have
indeed been observed.

In order to attack the question of Q �Q survival, several
approaches have been deployed. Maximum entropy analy-
ses [6] of J=� and � spectral functions in lattice QCD
have revealed a possible survival of these c �c and b �b bound
states up to around T � 2Tc with Tc being the critical
temperature for the hadron-quark transition [7]. The ob-
served spectral structures are interpreted as a sign of J=�
survival by some authors [7], while for others they repre-
sent mere threshold enhancement [8]. The unclear defini-
tion of what constitutes a heavy quark bound state is
clearly a drawback of this otherwise solid approach.

On the other hand, purely real potential models, based
on quantities, such as the difference in the free or internal
energies [9] of a medium with and without a Q �Q inserted,
are struggling with the absence of a Schrödinger equation
derived from QCD. This leads to ambiguities in their
definition of a heavy quark potential. Progress has been
made in deriving a Schrödinger equation from QCD by
evaluating the late-time evolution of the real-time thermal
Wilson loop [10–12]. An initial perturbative study at very
high temperatures, based on the hard-thermal-loop ap-
proximation, yielded a complex potential, whose imagi-
nary part is induced by collisions with the light plasma
particles. Recently, [13] showed how to relate the potential

to the spectral decomposition of the thermal Wilson loop
and based on lattice QCD simulations confirmed the ex-
istence of an imaginary part above Tc.
In this paper, we instead propose an open quantum

systems approach (see [14,15] for earlier attempts), using
a stochastic, i.e. a fully dynamical description ofQ �Q in the
QGP. The noise inherent in our stochastic treatment is a
result of interactions between the Q �Q open system and the
medium, which is traced out from the description. It not
only naturally gives a physical meaning to the imaginary
part found in the heavy Q �Q potential from lattice studies
but also provides an indispensable ingredient in discussing
the time evolution of Q �Q, i.e. spatial decoherence of the
wave function due to the collisions with plasma particles.
Without spatial decoherence, such as in real potential

models, the effects of collisions with the environment are
underestimated, whereas having an explicit imaginary part
in the potential will lead to an unabated suppression of all
available states. Both of these situation are expected to be
unphysical and we will show how our proposed model fills
this gap in the following sections.
Our investigation makes close contact with recent lattice

QCD studies [13] by relating the strength of the noise to the
spectral function of the thermal Wilson loop, thus making
possible the determination of the required parameters at all
temperatures nonperturbatively.
This paper is organized as follows. In Sec. II, we for-

mulate the stochastic equation of motion for the heavy
quarkonium wave function and give a physical interpreta-
tion of the correlation present in the noise term. The
limitations of our proposed formulation are listed and
discussed. In order to connect the stochastic model to
actual physics, we show in Sec. III how to determine
some of the basic parameters of the stochastic dynamics
from first principles lattice QCD simulations. In Sec. IV,
we derive a master equation for the density matrix of heavy
quarkonium states from the underlying stochastic time
evolution. We then trace out the global motion from the
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density matrix, which enables us to reduce the two-body
problem to a one-body problem. In Sec. V, we first list
several criteria for bound-state survival and determine their
values in one-dimensional numerical simulations of the
stochastic dynamics based on different parameter sets
adapted from the literature. Finally, in Sec. VI, we sum-
marize our work and give an outlook toward how to arrive
at a more complete understanding of the heavy quark-
onium states in the QGP.

II. STOCHASTIC EVOLUTION OFAN OPEN
QUANTUM SYSTEM

Suppose we insert a heavy quark bound state into the
thermal medium and let it evolve in time. In a situation
where a classical description is adequate, the relevant
dynamics of the heavy particle is governed by
Langevin’s theory of Brownian motion. On the other
hand, in a situation where quantum effects play a crucial
role, the dynamics should be described by the theory of
open quantum systems [16]. In the latter case, interac-
tions with the light particles of the heat bath lead to
fluctuations in the time evolution of the heavy particle
wave function, or in other words, to fluctuations of the
Hamiltonian, i.e. the potential. In the phenomenologi-
cally relevant region of the strongly coupled quark-gluon
plasma just above the deconfinement phase transition,
surely the latter approach is required.

The full quantum system is described by a density
matrix and its time evolution is governed by the full
Hamiltonian (in the Schrödinger picture):

H ¼ Hsys � Imed þ Isys �Hmed þHint; (1)

d

dt
�ðtÞ ¼ 1

iℏ
½H;�ðtÞ�; (2)

with some initial condition �ð0Þ ¼ �sys � �med. In the

following, we are only interested in the physics of the
subsystem, which is described by a reduced density matrix
�sysðtÞ � Trmedf�ðtÞg. The dynamics of �sysðtÞ is often

unraveled into a stochastic evolution in Hilbert space. It
can be described e.g. by a master equation of Lindblad-
form [17], corresponding to stochastic quantum evolution
that incorporates quantum state diffusion [18] or quantum
jump processes [19].

In our approach, we first wish to formulate a wave-
function-based description of the stochastic time evolution
of a nonrelativistic heavy quarkonium state, whose pair
annihilation is neglected. We use the shorthand notation
X � ðx1; x2Þ to denote the position of the constituent
quarks, written as single vector in a six-dimensional
space. The corresponding distance in this vector space

reads �X � jX�X0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ2 þ ðx2 � x02Þ2

q
. The

stochastic time evolution operator UðXÞ
� ðtj0Þ has to be uni-

tary and we assume that the dynamics it describes is both
Markovian and linear in the heavy quarkonium wave func-
tion �Q �QðX; tÞ. Time evolution is thus described by

�Q �QðX; tÞ ¼ UðXÞ
� ðtj0Þ�Q �QðX; 0Þ;

UðXÞ
� ðtj0Þ ¼ T exp

�
� i

ℏ

Z t

0
dt0fHðXÞ þ�ðX; t0Þg

�
;

HðXÞ � 2M� ℏ2r2
X

2M
þ VðXÞ;

(3)

where T denotes the time-ordered product and the stochas-
tic term in the Hamiltonian �ðX; tÞ corresponds to
Gaussian white noise with the characteristics

h�ðX; tÞi ¼ 0; h�ðX; tÞ�ðX0; t0Þi ¼ ℏ�ðX;X0Þ�tt0=�t:

(4)

Here, we choose as a time scale �t, during which the
plasma particles experience many collisions but the heavy
quarkonium state does not change considerably. Such in-
termediate time scale �t is expected to exist due to the
hierarchy in the mass scale M � T. The fluctuation of the
Hamiltonian derives from the variations in the transferred
energy during �t originating from collisions with the
medium particles. The squared strength of the fluctuations
at X, which is given by ℏ�ðX;XÞ=�t, represents how
frequently and effectively the energy transfer takes place
between the heavy quarkonium and the surrounding me-
dium. In a uniform and isotropic system, which we con-
sider, �ðX;XÞ depends only on jx1 � x2j. Since the
relativistic medium particles are of size lth � 2�ℏc=kBT,
the fluctuations, or equivalently the transferred energy, are
expected to be correlated at X and X0 if �X < lth.
Therefore, we expect that �ðX;X0Þ � 0 if �X is larger
than �lth.
We take as cutoff length scale for this description the

Compton wavelength of the heavy quarks lcut ¼ ℏ=Mc �
lth, so that the nonrelativistic treatment is valid. Since the
typical momentum of heavy quarks near thermal equilib-
rium is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBMT

p � 2�ℏ=lQ;th, there is a hierarchy lcut �
lQ;th � lth. It is this hierarchy that requires the effective

stochastic dynamics of heavy quarks to be unitary, because
collision processes have almost no chance to excite
heavy quarks to a very high momentum state beyond the
cutoff momentum scale 2�ℏ=lcut. Note that this argument
implies that a mechanism for thermalization must also be
incorporated into a complete effective dynamics of heavy
quarks.
Given the manifestly unitary evolution in Eq. (3), the

stochastic differential equation for the wave function can

be written down by expanding UðXÞ
� ðtþ�tjtÞ in �t, yield-

ing up to Oð�t3=2Þ,
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UðXÞ
� ðtþ�tjtÞ�1�i�t

ℏ
fHðXÞþ�ðX;tÞg�ð�tÞ2

2ℏ2
�ðX;tÞ2

¼1�i�t

ℏ

�
HðXÞ� i

2
�ðX;XÞ

�

�i�t

ℏ
�ðX;tÞ;

�ðX;tÞ��ðX;tÞ�i�t

2ℏ
f�ðX;tÞ2�h�ðX;tÞ2ig: (5)

Here, we define a new complex noise �ðX; tÞ in terms of
�ðX; tÞ so that h�ðX; tÞi ¼ 0. The stochastic differential
equation for the wave function in Ito discretization thus
reads

iℏ
@

@t
�Q �QðX; tÞ ¼

�
HðXÞ � i

2
�ðX;XÞ

þ�ðX; tÞ
�
�Q �QðX; tÞ: (6)

Note that the expansion of the unitary time evolution
operator has induced what appears to be a nonunitarity in
the Schrödinger equation. Since the origin of this contri-
bution however are the noise terms of Eq. (5), it is only
after taking the ensemble average that damping of the wave
function is observed.

We would like to remark that the formulation of the
stochastic dynamics based on Eq. (3) is most likely not able
to describe the quantum analog to the drag force in classi-
cal Langevin theory. Classically, this corresponds to an
absence of a friction term for momentum diffusion, i.e.
the momentum distribution of the heavy quarks diffuses
without resistance. The effects related to these absent terms
become important to the dynamics once the typical energy
of the heavy quarks reaches and exceeds the temperature.
Hence, roughly only for time scales smaller than the heavy
quark relaxation time our description should be valid. Note
that heavy quark relaxation time can be much longer than
that of the medium �t by a factor �M=T, so that the
applicability of our description is not as severely limited
as it might appear at first sight.

The above derivation of Eq. (6) is based on the expan-

sion ofUðXÞ
� ðtþ �tjtÞ in�t. However, since the time step is

related to physical scales as �t� ℏ=g4skBT, it may not be
an expansion in small dimensionless number. This subtlety
is overcome by introducing N independent Gaussian noise
variables �iðX; tÞ (i ¼ 1; 	 	 	 ; N) which satisfies Eq. (4)
with �t replaced by �t=N. If we define �ðX; tÞ � 1

N 
PN
i¼1 �iðX; tÞ, �ðX; tÞ satisfies the original definition

Eq. (4). The new noise�iðX; tÞ has a natural interpretation
as fluctuation of the Hamiltonian in Eq. (3) with artificial
discretization time scale �t=N. We then assume that
Eq. (3) can still be expanded as time-ordered product of
white noise, now with respect to the �iðX; tÞ’s. Taking the
noise to be independent even on time scales smaller than
�t is a prerequisite to obtaining a Markovian master

equation of the form present in Sec. IV. As we observe
heavy quarkonium on time scales longer than �t, we
discretize Eq. (3), expand Eq. (5), and simulate Eq. (6)
on a smaller time scale �t=N instead of �t. In the remain-
ing part of this paper, we distinguish dt � �t=N from �t.

III. SPECTRAL ANALYSIS

Now that we have formulated the stochastic evolution,
one has to ask how the unknown functions VðXÞ and
�ðX;X0Þ in Eq. (6) can be determined. Since we are inter-
ested in describing physics in the strongly coupled region
of the quark-gluon plasma, we are urged to find nonper-
turbative means to do so.
In analogy to the concept of the Nambu-Bethe-Salpeter

wave function at zero temperature, the averaged wave
function�Q �QðX; tÞ of heavy quarkonium at finite tempera-

ture is identified by a suitable matching prescription with
the following gauge invariant mesonic correlator (t > 0):

D>ðX; tÞ ¼ hMðX; tÞMyðX0; 0ÞiT � h�Q �QðX; tÞi�; (7)

where MðyÞðX; tÞ is the point-split heavy quarkonium an-
nihilation (creation) operator and h	iT denotes the field
theoretical average over the medium degrees of freedom
at finite temperature [10,13]. In the case of infinitely heavy
quark masses, where mQ � T and mQ � �QCD, the left-

hand side of Eq. (7) can be calculated in terms of the
thermal Wilson loop

D>
mQ!1ðX; tÞ ¼ hWðX; tÞiT

¼
�
exp

�
� i

ℏ

I
dy�A�ðyÞ

��
T
; (8)

where A�ðxÞ denotes the gauge field of the medium gluons,
which is integrated along the rectangular contour connect-
ing X0 at t ¼ 0 and X at t. The right-hand side of Eq. (7)
becomes

h�Q �QðX; tÞi� / exp

�
� it

ℏ

�
VðXÞ � i

2
�ðX;XÞ

��
: (9)

In order to continue, we have to remember that all equa-
tions appearing so far are expressed in real time t. As we
wish to use Monte-Carlo simulations of lattice QCD, for-
mulated in Euclidean time to evaluate the Wilson loop
nonperturbatively [20], their results need to be analytically
continued. One possible strategy is to use spectral func-
tions, defined from the forward and backward propagator

�ðX; !Þ ¼ D>ðX; !Þ �D<ðX; !Þ: (10)

Since the backward correlator for infinitely heavy quarks
vanishes D<

mQ!1ðX; tÞ ¼ 0, one finds that the spectral

function �ðX; !Þ is nothing but the Fourier transform of
the forward correlator D>ðX; tÞ and thus of the real-time
Wilson Loop. Analytic continuation yields
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WðX; �Þ ¼
Z 1

�1
d!e�!��ðX; !Þ; (11)

which tells us that the relevant spectral information can be
extracted from imaginary time data accessible on the lat-
tice. In practice, the numerical determination of the above
spectral function from the Euclidean Wilson loop is based
on a form of Bayesian inference called maximum entropy
method [6].

In the case that the spectrum of the Wilson loop exhibits
well-defined structures, e.g. peaks of Breit-Wigner form
[21], the real potential VðXÞ and the local noise correla-
tions �ðX;XÞ of Eq. (9) are readily obtained from the
position and width of the lowest lying peak [13]:

�ðX; !Þ / �ðX;XÞ=2
ðℏ!� VðXÞÞ2 þ ð�ðX;XÞ=2Þ2 : (12)

In the context of our model, the width of the spectral
function is interpreted as uncertainty in the actual value of
the real potential in the open system. Consequently, time
evolution is always unitary for each realization of the
stochastic ensemble. In this sense, it characterizes the
decoherence between the initial and current wave function.
This is in contrast to the deterministic notion of the width
as an imaginary part, i.e. an explicit contribution to the
Hamiltonian, which violates hermiticity and leaves open
questions about conservation of the probability density.

Even though we have already obtained two main ingre-
dients of our model, the real potential and the local noise,
we are still missing another piece of the puzzle, i.e. infor-
mation on the off-diagonal noise terms. A quantity that
might allow extracting this set of parameters is introduced
in the next section. As a first ansatz, to allow simulations
based on Eq. (6), one might assume that such spatial
correlations within the fluctuations, i.e. the�X dependence
of �ðX;X0Þ, will decay with the thermal wavelength as
expð�ð�XÞ2=l2thÞ.

IV. THE MASTER EQUATION

In principle, one can simulate the stochastic time
evolution in Eq. (6) directly, but in order to precisely define
the time evolution of the heavy quark bound state in a
thermal medium, we are urged to go one step further in
our analysis. To this end, we derive a master equation for
the reduced density matrix of states �Q �QðX;X0; tÞ �
h�Q �QðX; tÞ��

Q �Q
ðX0; tÞi�. Noting that an infinitesimal

time step in the time evolution of �Q �QðX;X0; tÞ is given by

�Q �QðX;X0; tþ dtÞ ¼ hUðXÞ
� ðtþ dtjtÞUðX0Þ�

� ðtþ dtjtÞi�

 �Q �QðX;X0; tÞ; (13)

and calculating hUðXÞ
� ðtþ dtjtÞUðX0Þ�

� ðtþ dtjtÞi� using

Eqs. (4) and (5), it is straightforward to derive the follow-
ing relation:

@�Q �QðX;X0; tÞ
@t

¼ HðXÞ �HðX0Þ
iℏ

�Q �QðX;X0; tÞ

þ FðX;X0Þ
ℏ

�Q �QðX;X0; tÞ;

FðX;X0Þ � �ðX;X0Þ � �ðX;XÞ þ �ðX0;X0Þ
2

: (14)

The conservation of the trace TrXf�Q �QðX;X0; tÞg �R
d6X�Q �QðX;X; tÞ ¼ 1 can be proved easily. Since the

time evolution of this averaged quantity now depends
also explicitly on the off-diagonal spatial correlations in
the noise, it appears as a promising candidate to extract the
yet undetermined values of �ðX0;X0Þ. Future work thus
needs to focus on expressing the density matrix of states for
the heavy quark system as field theoretical operator ame-
nable to lattice QCD simulations.
An equivalent master equation is known from the studies

of scattering models and applications of influence-
functional techniques to random potentials [22]. Its appli-
cability to the physics of heavy quarks, however, has so far
not been exploited. Note that in comparison, the recently
proposed quantum optical master equation [15] is appli-
cable where the rotating wave approximation is valid, i.e.
in discussing transitions between deeply bound states [16].
Our approach on the other hand is geared toward the
description of loosely bound states and melting phe-
nomena, since it explicitly describes both constituting
particles individually.
As we are interested in the relative motion of the

heavy quarks, we trace out the global motion. Defining
the further reduced density matrix �̂Q �Qðr; r0; tÞ �
TrRf�Q �QðXR;r;XR0;r0 ; tÞg ¼

R
d3R�Q �QðXR;r;XR;r0 ; tÞ,

where XR;r � ðRþ r=2;R� r=2Þ, we obtain from

Eq. (14) the master equation for �̂Q �Qðr; r0; tÞ:
@�̂Q �Qðr; r0; tÞ

@t
¼ hðrÞ � hðr0Þ

iℏ
�̂Q �Qðr; r0; tÞ

þ fðr; r0Þ
ℏ

�̂Q �Qðr; r0; tÞ; (15)

where hðrÞ � 2M� ℏ2r2
r

M þ vðrÞ and fðr; r0Þ � �ðr; r0Þ �
f�ðr; rÞ þ �ðr0; r0Þg=2. Here, we define vðrÞ � VðX0;rÞ and
�ðr; r0Þ � �ðX0;r;X0;r0 Þ using translational and rotational

invariance. Correspondingly, the stochastic dynamics of
the relative coordinates of the heavy quark pair is given
in Ito discretization by

iℏ
@

@t
c Q �Qðr; tÞ ¼

�
hðrÞ � i

2
�ðr; rÞ þ �ðr; tÞ

�
c Q �Qðr; tÞ;

�ðr; tÞ � 	ðr; tÞ � idt

2ℏ
f	ðr; tÞ2 � h	ðr; tÞ2ig; (16)

with h	ðr; tÞi ¼ 0 and h	ðr; tÞ	ðr0; t0Þi ¼ ℏ�ðr; r0Þ�tt0=dt.
In order to discuss the time evolution of heavy quark-

onium in the next section, we can take two equivalent, while
differently nuanced, standpoints. From the theoretical side,
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one wishes to describe the time evolution of the system
by as simple equations as possible, which is best done in
the basis of eigenstates of the Hamiltonian governing the
dynamics hðrÞ. On the other hand, to build a bridge to
experiment and its notion of Q �Q suppression, one asks
how much of an initial bound state has survived after a
certain time t. This question is best answered when the
evolution of the system is observed in the basis of the
eigenstates of the initial vacuum Hamiltonian hvacðrÞ that
governs the bound state.

We thus transform Eq. (15) by expanding

�̂ Q �Qðr; r0; tÞ ¼
X
nm

cmnmðtÞc nðrÞc �
mðr0Þ (17)

¼ X
nm

cvnmðtÞ
nðrÞ
�
mðr0Þ (18)

in a complete set of eigenfunctions c nðrÞ (with eigenvalue
�n) of hðrÞ or 
nðrÞ (with eigenvalue en) of h

vacðrÞ. The
expansion coefficients are thus given by

cmnm ¼
Z

d3rd3r0c �
nðrÞhc Q �Qðr; tÞc �

Q �Q
ðr0; tÞi�c mðr0Þ;

cvnm ¼
Z

d3rd3r0
�
nðrÞhc Q �Qðr; tÞc �

Q �Q
ðr0; tÞi�
mðr0Þ:

(19)

In terms of the in-medium state admixtures cmnm, the time
evolution of the system according to Eq. (14) takes on the
following form:

_c m
nmðtÞ ¼ �n � �m

iℏ
cmnmðtÞ þ 1

ℏ

X
kl

�nk;lmc
m
klðtÞ

� 1

2ℏ

X
k

f�nkc
m
kmðtÞ þ cmnkðtÞ�kmg; (20)

where �nk;lm � R
d3rd3r0c �

nðrÞc �
l ðr0Þ�ðr; r0Þc kðrÞc mðr0Þ

and �nm � R
d3rc �

nðrÞ�ðr; rÞc mðrÞ. Here, cmnmðtÞ and
�nm are Hermitian matrices and �nk;lm ¼ �lm;nk ¼ ��

kn;ml.

V. STOCHASTIC EVOLUTION OF HEAVY
QUARKONIUM IN THE QGP

To model the physics of heavy quarkonia related to
relativistic heavy-ion collisions at the Relativistic Heavy
Ion Collider and the LHC, we use the following setup.
The initial heavy quarkonium is taken as the ground state
of the vacuum Hamiltonian hvacðrÞ, characterized by a
Coulombic and linearly rising potential at small and large
separation distances, respectively. Once such a bound state
enters the region in which a quark-gluon plasma is present,
the interactions with this hot medium are taken into ac-
count through time evolution as given by Eq. (16) with
appropriate model parameters vðrÞ and �ðr; r0Þ correspond-
ing to temperatures T > Tc � 170 MeV. Depending on
whether we wish to focus on the time evolution of the in-
medium states or the initial bound states in the QGP, we

may use either the medium or vacuum bound state survival
probabilities

PmðtÞ � X
1�n�Nm

b

cmnnðtÞ; (21)

PvðtÞ � X
1�n�Nv

b

cvnnðtÞ; (22)

where Nm
b (Nv

b) is the number of bound states of hðxÞ
(hvacðxÞ).

A. Analytic considerations

Among three different representations of the stochastic
dynamics in Eqs. (15), (16), and (20), the qualitative
feature of PmðtÞ can be discussed most clearly by using
Eq. (20). The following arguments hold also for PvðtÞ as
long as hðrÞ ¼ hvacðrÞ.
In the simplest case where �ðr; r0Þ ¼ �, we can show

that �nk;lm ¼ ��nk�lm, �nk ¼ ��nk, and thus _cmnmðtÞ ¼
�n��m

iℏ cmnmðtÞ, _PmðtÞ ¼ 0. Therefore, with spatially uniform

fluctuations, quarkonium survival is completely deter-
mined by hðxÞ, which is the case for the purely real
potential models.
On the other hand, in a case where the spatial correla-

tions factor according to �ðr; r0Þ ¼ � expð�ð�rÞ2=2l2corrÞ
with �r � jr� r0j and lcorr � lcut, we can show that
�nk ¼ ��nk and �nk;lm ! 0 as lcorr=lcut ! 0. The latter

relation is obtained by using the fact that the eigenfunction
c nðxÞ varies over length larger than lcut:

�nk;lm � �
Z

d3rd3r0c �
nðrÞc �

l ðrÞe
�jr�r0 j2

2l2corr c kðrÞc mðrÞ

<�ð ffiffiffiffiffiffiffi
2�

p
lcorr=lcutÞ3 ! 0ðlcorr=lcut ! 0Þ: (23)

Then, we obtain _cmnmðtÞ ¼ �n��m
iℏ cmnmðtÞ � �

ℏ c
m
nmðtÞ, _PmðtÞ ¼

� �
ℏP

mðtÞ. Therefore, with very localized fluctuation, the

damping is determined solely by � ¼ �ðr; rÞ. Since the
correlation length lcorr of the fluctuation is below the cutoff
scale lcut, such fluctuations excite wave modes which are
beyond the model description, i.e. all the diagonal elements

of cmnmðtÞ decay as �e��t=ℏ and Trrf�̂ðr; r0; tÞg is not con-
served. In the physical case lcorr ¼ lth, the above arguments
suggest that the states with typical scale larger than lth
decay while those smaller than lth remain undisturbed,
supporting the argument that the fate of bound states in
essence is a hadronic thermometer.

B. One-dimensional numerical simulations

For a first qualitative exploration of the above ideas, we
carry out one-dimensional numerical simulations of the
stochastic dynamics at T ’ 2:33Tc, based on different
parameter sets adapted from a lattice QCD study [13]
[models (A) and (C)], the perturbative (PT) complex po-
tential calculated in [10] [model (B)], and the classic
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Debye screening scenario of [1] [model (D)]. (Throughout
this section, we adopt the natural unit ℏ ¼ c ¼ kB ¼ 1.)

To accommodate the full heavy quarkonium wave
function, Eq. (16) is discretized on a line of N ¼ 512
points, that covers the physical distance between x 2
½�2:56 fm; 2:56 fm�. The initial wave function is deter-
mined as eigenstate to the Cornell potential vvacðxÞ ¼
� �

jxj þ �jxj, with vacuum parameters � ¼ 0:1 and � ¼
ð0:4 GeVÞ2. To implement the effects of dynamical quarks,
i.e. to account for string breaking, we flatten the linear rise
smoothly to a constant value at rsb ¼ 1:5 fm. This choice
leads to a total number ofNv

b ¼ 4 bound states. All survival
probabilities PvðtÞ shown in this section are calculated
based on the admixture of these four vacuum states con-
tained in the system wave function.

The stochastic dynamics are implemented using a
Crank-Nicholson scheme with time step dt ¼ 0:0001 fm.
There, the mass of the constituent quarks is set to M ¼
1:18 GeV in order to be larger than the temperature, which
we choose to be T ¼ 2:33Tc � 0:4 GeV. In the first two
runs [models (A) and (B)], off-diagonal noise terms are set
to zero, leading to an artificial correlation length lcorr �
dx< lth ¼ 15 GeV�1. This yields a noise, which is
stronger than expected from the physical value of the
temperature.

In the third example [model (C)] we approximate the
effects of nonvanishing off-diagonal correlations �ðx; x0Þ /
expð�jx� x0j2=l2corrÞ by initializing noise in Fourier space

h	ðp; tÞi ¼ 0;

h	ðp; tÞ	ðp0; t0Þi ¼ ðpÞ�ðpþ p0Þ�tt0=dt;

ðpÞ ¼
Z

dxeipx expð�x2=l2corrÞ;
(24)

with a normalized Kernel ðpÞ at each time step [23]. The
strength of the diagonal correlations is then set by simple

multiplication with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx; xÞp

after transforming back to
coordinate space.

Before we start a comparison of the different results
according to the parameter sets (A)–(D), let us briefly
look at generic features of the simulation from the view
point of wave function norm

jc Q �QðtÞj2 ¼
Z

dxc �
Q �Q

ðx; tÞc Q �Qðx; tÞ (25)

and energy

EðtÞ ¼
Z

dxc �
Q �Q

ðx; tÞhðxÞc Q �Qðx; tÞ;

EvðtÞ ¼
Z

dxc �
Q �Q

ðx; tÞhvacðxÞc Q �Qðx; tÞ:
(26)

Both merits and the limitations of the stochastic model
of Eq. (3) are already visible in these quantities, which we
display in Fig. 1 based on the parameters of model (B).
One finds that indeed unitarity is preserved for each

individual run of the stochastic ensemble since the wave
function norm remains at unity. On the other hand, per-
forming the ensemble average according to Eq. (9) intro-
duces a dampening of jh�Q �Qij, which is readily observed

in the decreasing dashed line in Fig. 1.
Since our stochastic quantum evolution does not include

the quantum counterpart of the drag force, momentum of
the heavy quarks diffuses in momentum space without
resistance by a friction term. Consequently, one expects
that the overall energy of the system over timewill increase
artificially and indeed one observes a linear rise in the
upper two dashed lines in Fig. 1 at intermediate times.
The artificially strong noise pushes the values of the energy
to quickly exceed the nonrelativistic cutoff E�M�
1:18 GeV and saturates at late times at E� ð�=dxÞ2=M�
3000 GeV due to the momentum cutoff on the lattice
�=dx. To eliminate the unphysical linear rise in energy
and to allow the system to thermalize eventually will
require a modification of our approach that takes into
account the correct momentum dissipation, i.e. friction as
e.g. discussed in [24]. Although we do not know how the
effect of friction changes the time evolution of the individ-
ual heavy quarkonium wave function in detail, we expect
these neglected effects to become important once the en-
ergy reaches the temperature of the medium [i.e. EðtÞ �
T � 0:4 GeV]. Thus, the late time behavior observed from
the stochastic dynamics presented in this study is to be
understood within this limitation.

TABLE I. Potential vðxÞ, noise strength �ðx; xÞ, and noise
correlation length lcorr for each model.

Model vðxÞ �ðx; xÞ lcorr

(A) vvacðxÞ �jxj dx
(B) Re½vPTðxÞ� Im½vPTðxÞ� dx
(C) vvacðxÞ �jxj 4dx

(D) � �e�mD jxj
jxj 0 not applicable
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FIG. 1 (color online). Norm and energy for the parameter set
of model (B). We find unitary evolution, so that the wave
function norm jc Q �QðtÞj ¼ 1 and its energy remains purely

real. After averaging, decoherence induces a dampening in
jhc Q �Qi	ðtÞj as expected from Eq. (9). The difference in EðtÞ
and EvðtÞ is dominated by the noise contribution to the system
energy.
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Note that especially the simulations of models (A) and
(B) are performed with rather short correlation length
(2�=lcorr � 125 GeV). Therefore, although qualitatively
similar behavior should be observed in simulations with
longer correlation length (lcorr � 2�=T), the rapid evolu-
tion presented hereafter must not be understood as repre-
senting a realistic evolution time scale.

Model (A): The first run shown on the left of Fig. 1 is
based on a parameter set that models thermal effects as
fully incorporated into the noise strength. The real poten-
tial vðxÞ ¼ vvacðxÞ in this case is not modified from its
T ¼ 0 form, while the strength of the fluctuations exhibits
a linear rise equal to that of the real part �ðx; xÞ ¼ �jxj.

One finds that the medium via the noise exponentially
decreases the probability to find the initial ground state at
early times t < 4 fm. It is the concurrent excitation of
higher-lying states and their feed-down that at later times
t > 7 fm leads to a stabilization of the ground state admix-
ture and thus halting its decline.
The artificially small correlation length of the noise also

appears to render insignificant the energy differences be-
tween the individual bound states. Hence, already at times
t > 2 fm the noise-induced admixtures of higher-lying
states become of equal magnitude.
Following the time evolution to late times t > 10 fm, a

constant survival probability Pvðt ! 1Þ � 10�2 emerges.
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FIG. 3 (color online). (left) Same vðxÞ and �ðx; xÞ as in model (A) but with Gaussian damped spatial correlations �ðx; x0Þ �
exp½�jx� x0j2=l2corr� induced in the noise terms using lcorr ¼ 4dx. (right) The classic Debye screening scenario based on a completely

real potential vðxÞ ¼ � �e�mD jxj
jxj with the Debye mass chosen as mD ¼ 5 GeV.
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FIG. 2 (color online). One-dimensional model: (top left) Vacuum admixtures cvnnðtÞ of heavy quarkonium bound states and their
survival probability PvðtÞ from the stochastic model, based on a lattice-QCD-inspired parameter set [13]. In the bottom left panel, we
show the corresponding values of the initial potential vvacðxÞ, the real potential vðxÞ governing the dynamics, and the diagonal noise
strength �ðx; xÞ. (Energy levels of the initial bound states eb as well as for resonances and continuum solutions er;c to v

vacðxÞ are given
as reference once.) Decoherence induces an almost exponential decay of the initial heavy quarkonium ground state at short times
before a stable plateau is reached. We find that all available eigenstates 
n of vvacðxÞ are excited and at late times their relative
abundances all coincide. (right) Same quantities with a parameter set adapted from a perturbative study [10] where at T ¼ 2:33Tc a
Debye-screened real potential vðxÞ ¼ Re½vPTðxÞ� is accompanied by a small but finite noise term �ðx; xÞ ¼ 2 Im½vPTðxÞ�.
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We however refrain from attaching physical meaning to
this feature, since the inclusion of the friction can change
the outcome at these times significantly.

Model (B): A qualitatively different setup is shown on
the right of Fig. 1. Its parameters are obtained from an
evaluation of the heavy quark potential vPTðxÞ in re-
summed perturbation theory [10]. Here, the effects of the
medium interaction are present both as modification of the
real potential toward a Debye-screened form

vðxÞ ¼ Re½vPTðxÞ� / �mD � e�mDjxj

jxj (27)

with Debye mass mD ¼ 0:92 GeV, as well as the presence
of a noise term

�ðx; xÞ ¼ 2 Im½vPTðxÞ� /
Z 1

0

dzz

ðz2 þ 1Þ2 ð1�
sin½zmDx�
zmDx

Þ:
(28)

In comparison to model (A), the strength of the noise
�ðx; xÞ as well as the real potential is much weaker. We find
that in total it takes longer for the ground state to become
suppressed. Note that in the absence of noise, the parity-
even initial ground state is able to mix only with other
parity even states under the time evolution of the P-even
Hamiltonian hðxÞ. The relatively strong population of the
state 
3 compared to the lighter 
2 and 
4 thus tells us
that it is such mixing processes that are dominant at times
t < 5 fm.

Only after this point in time do the decoherence-induced
parity-odd states contribute to similar strength as 
3.
At late times, the asymptotic value for the suppression
Pvðt ! 1Þ � 10�2 in model (B) is very similar to the
value observed in model (A), even though its real potential
as well as the diagonal noise is very different.

Model (C): Let us thus take a look at how spatial
correlations in the noise influence the suppression pattern.
Purely local noise corresponds to a very high medium
temperature if interpreted as a correlation length of the
size of the lattice spacing. Thus, a realistic description
around the deconfinement phase transition will need to
allow for larger values of lcorr � 2�

T . On the left of Fig. 3,

we show the results for a noise with the same local linear
rise as in Fig. 2 left, but with Gaussian damped spatial
correlations �ðx; x0Þ / exp½�jx� x0j2=l2corr� induced by a
convolution with an appropriately normalized Kernel in
Fourier space using lcorr ¼ 4dx.

One finds that even though the integrated strength of the
noise is the same, i.e. 1

N

P
pðpÞ ¼ 1, its effects are not as

localized anymore and thus the suppression of the ground
state proceeds slower. The pattern appears to be different
also in a qualitative way. We observe e.g. that the excitation
of the state 
3 does not anymore show the overshoot
present in all the other scenarios above.

With a noise corresponding to a lower apparent tem-
perature, the difference in mass, i.e. eigenenergy, between
the individual bound states becomes more important.
Figure 3 (left) shows at small times t < 10 fm that the
amount of population of the states appears to be ordered
according to their masses. From the higher-lying states, the
lightest is consistently excited most strongly. It is the
relative abundances of the heavy quarkonia states that are
closely related to the off-diagonal components of the noise
correlations.
Model (D): Taking the route from model (A) via model

(B), we arrive at the Debye screening scenario [1], where
all medium effects are modeled as a modification, i.e. a
weakening, of the real potential. If real and imaginary part
were to each encode part of the thermal effects on the Q �Q
system, the medium effects that were described in model
(B) by noise should now be captured by an increased
amount of screening present. Hence, we choose mD ¼
5 GeV.
As shown on the right of Fig. 3, one finds that indeed

mixing of the eigenstates of hvacðxÞ occurs and the initial
bound state becomes suppressed. PvðtÞ however does not
decrease exponentially, not even monotonically.
Note that populating states other than the initial ground

state in this case can only be facilitated by mixing through
the Hamiltonian. This leads to the observed pattern of the
ckk’s, where only parity-even states are present. (Note that
we plot all P-even states up to 
8.)
So far, we can summarize our findings:

(i) The presence of noise leads to spatial decoherence
and contributes at short times to an exponential
suppression of the initially present heavy quark-
onium ground state.

(ii) Decoherence also populates the higher-lying
states. Its effect can differ significantly from the
mixing induced by the Hamiltonian hðxÞ if it is
not restricted by selection rules such as e.g.
parity.

(iii) Details of the time evolution, such as suppression
speed and the population ratios of heavy quarkonia
states, already at early times appear to be directly
related to the structure of the off-diagonal noise
correlations.

(iv) The overall suppression at late times in terms of
PvðtÞ is quite insensitive to the details of vðxÞ and
�ðx; x0Þ. This behavior is however an artifact due to
neglecting the effect of friction, which becomes
important at late times.

VI. SUMMARYAND OUTLOOK

In this study, we have proposed an open quantum sys-
tems approach for the description ofQ �Q states in a thermal
medium using stochastic evolution. The merits of the
stochastic evolution are the possibility
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(i) to give a dynamical description of the nonrelativistic
heavy Q �Q evolution in the quark-gluon plasma.

(ii) to give a physical meaning to the existence of an
imaginary part in previous studies of the heavy
quark potential.

(iii) to make accessible the concept of spatial decoher-
ence in a potential-based description of heavy
quarkonium suppression

while its applicability is limited to time scales shorter than
the heavy quark relaxation time due to

(i) the absence of the friction and the resulting inability
to thermalize, expressed in a linearly rising energy
limt!1 d

dt hHi � 0.

We have shown how to relate the basic model parame-
ters governing the dynamics, such as vðrÞ and �ðr; rÞ, to the
spectral decomposition of the thermal Wilson loop, which
in turn can be determined from lattice QCD nonperturba-
tively. It is found that the presence of noise leads to spatial
decoherence and the consequent dampening of the Q �Q
wave function, which plays a central role in describing
the time evolution of the heavy quark bound states. One-
dimensional model calculations based on Eq. (16) were
presented to confirm the viability of our approach. Their
straightforward extension to three dimensions thus prom-
ises to provide us with new insight on the fate of the heavy
quarkonia, such as J=� and � in the hot QCD plasma as a
function of real time.

In closing, we list several open points of interest as well
as possible further improvements:

(i) The color charge is completely ignored in our de-
scription. This is understood as a result of tracing out
the color degrees of freedom in the master equation,
as we have done in deriving Eq. (15) for the density
matrix �̂Q �Qðr; r0; tÞ in the relative coordinates.

However, it would be more appropriate to give a

description of a wave function with color degrees
of freedom and derive a more direct connection to
QCD.

(ii) In addition to quantum decoherence, which we
study in this paper and whose classical counterpart
is the noise term in the classical Langevin theory,
the quantum counterpart of friction is another im-
portant ingredient in the description of an open
quantum system. This aspect will become essential
in kinetic thermalization and the late time evolution
of heavy quark systems as well as resolve the ques-
tion regarding the monotonous energy increase ob-
served in our numerical simulation.

(iii) A first principles definition of �ðX;X0Þ is desirable.
Physical intuition has lead us to relate the thermal
wavelength lth and the correlation length of the
fluctuation. Since it gives the length scale of ran-
dom fluctuation, the entropy change induced by
inserting a heavy quarkonium might thus be related
to �ðX;X0Þ. It would also be interesting to discuss
thermodynamic quantities, such as free energy, in
terms of our description.

(iv) Application to relativistic heavy-ion collision is
interesting and possible in principle, but it would
require some phenomenological refinements, e.g.
how to combine nonrelativistic quantum mechanics
with the relativistic hydrodynamic expansion, how
to describe hadronization of heavy quarkonium or
heavy mesons by using the wave function at the
freeze-out, and so on.
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