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(Received 3 January 2012; published 10 May 2012)

In this paper, the SIMð2Þ superspace formulation of the supersymmetric Yang-Mills gauge theory

minimally coupled to chiral superfields is discussed. The super-Poincare invariant supersymmetric Yang-

Mills theory is rewritten to SIMð2Þ superspace formalism and the effects of SIMð2Þ invariant but Lorentz
breaking terms are discussed. Two approaches are investigated. The first is based on the gauge chiral

representation of the supersymmetric gauge theory and the second is based on the covariant representation

of the supersymmetric gauge theory.
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I. INTRODUCTION

Cohen and Glashow noticed [1,2] that many physical
phenomena, like, for example, the length contraction and
time dilatation, are left unchanged if we do not assume the
invariance of the physics with respect to the full Lorentz
group but only with its SIMð2Þ subgroup. This opens new
possibilities in the particle phenomenology, in particular,
concerning neutrino masses.

The implications of such a theory for neutrino masses
were discussed in [3]. The modifications of the electro-
magnetic theory were discussed in [4].

The supersymmetric theory based on the SIMð2Þ sub-
group was considered in [5] and its superspace formulation
was developed in [6]. Feynman rules in SIMð2Þ superspace
formalism were presented in [7]. Wess-Zumino model with
Lorentz breaking mass term was used as an example on
which the one-loop calculation and renormalization was
demonstrated.

If we wish to consider neutrinos with mass added by a
SIMð2Þ invariant but Lorentz breaking term, then the
whole standard model, including the gauge sector, has to
be treated as a SIMð2Þ symmetric theory. Thus it is im-
portant to investigate the implications of SIMð2Þ symmetry
for gauge theories. In the nonsupersymmetric case this was
done, for example, in [3,4].

In the supersymmetric case there are several articles, for
example [5–7], where the detailed treatment of a theory
with chiral multiplet is provided. Although the aspects of
the gauge theory are discussed on several occasions in
these articles and the SIMð2Þ modifications of it are pro-
vided, the detailed treatment of gauge theory, especially in
a superspace formulation, is still missing. This article tries
to fill this gap.

The paper is organized as follows. In Secs. II and III, the
notion of SIMð2Þ (super)field is introduced and it is shown
how Lorentz (super)field can be decomposed into SIMð2Þ
(super)fields. In order to gain familiarity with SIMð2Þ
(super)field formalism, the equations of motion for

massless spin 1
2 and spin 2 fields are rewritten using

SIMð2Þ fields and discussed in detail. Sections IV, V, and
VI are devoted to the gauge chiral representation of super-
symmetric gauge theory. In Sec. IV, the simple case of
Abelian gauge theory is discussed, we show that gauge
freedom can be completely fixed in SIMð2Þ invariant way.
The results are then generalized to the non-Abelian case in
Sec. V and in Sec. VI we show that some of the SIMð2Þ
superfields are auxiliary and can be eliminated from the
action. Section VII is devoted to the covariant representa-
tion of supersymmetric gauge theory. At the end of this
section, we show how the covariant representation is re-
lated to the gauge chiral representation presented in pre-
vious sections. In Sec. VIII, we discuss how the results
presented in previous sections are affected if we add a
SIMð2Þ invariant but Lorentz breaking mass term.

II. SIMð2Þ GROUP AND PROPERTIES
OF SIMð2Þ FIELDS

The spinor notation for vectors will be used throughout
the paper. The left-handed Weyl representation ð12 ; 0Þ will
be indexed by undotted lowercase Greek letters �;�; . . . ¼
þ;�, the right-handed Weyl representation ð0; 12Þ will be
indexed by dotted lowercase Greek letters _�; _�; . . . ¼
_þ; _�. On a few occasions we will also use four-
dimensional indices, for which we will use lowercase
Latin letters.
SIMð2Þ is a subgroup of the Lorentz group which pre-

serves a chosen null vector n up to rescalings. We will
assume that this null vector is chosen such that its coor-

dinates are nþ _þ ¼ 1, nþ _� ¼ n� _þ ¼ n� _� ¼ 0.
The SIMð2Þ group is four-dimensional and solvable. As

a basis of its Lie algebra we can choose four generators of
symmetry Jþþ, Jþ�, �J _þ _þ, �J _þ _�. Because it is solvable, we
know from the theory of group representations, that all
irreducible representations are one dimensional, but not all
of its representations are fully reducible.
Our main purpose will be to modify a Lorentz invariant

theory by adding small SIMð2Þ invariant but not Lorentz
invariant perturbations. For this reason, we are not*vohanka@physics.muni.cz
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interested in the general theory of representations of the
SIMð2Þ group. It will be enough for us to look at how the
representations of the Lorentz group behave when we
reduce the symmetry to only the SIMð2Þ subgroup.

We start by looking at the behavior of left- and right-
handed Weyl spinors (i.e. representations ð12 ; 0Þ and ð0; 12Þ).
We can decompose the spinor space by the method de-
scribed in [6]. We introduce another null vector ~n satisfy-
ing n � ~n ¼ 1, whose components we choose to be
~nþ _þ ¼ 1, ~nþ _� ¼ ~n� _þ ¼ ~n� _� ¼ 0. Then the spinor space

can be decomposed by the projectors n
~
n
2 and n~n

2 . The

projector ~nn
2 projects the left(right) Weyl spinors on

the one-dimensional SIMð2Þ invariant subspace, while

the projector n~n
2 projects on its one-dimensional comple-

ment, which is not uniquely determined, because there is a
freedom in choosing ~n.1 The action of infinitesimal SIMð2Þ
rotations on the Weyl spinors is

�cþ
�c�

 !
¼ i�þ� 0

i��� �i�þ�

 !
cþ
c�

 !
;

� �c _þ
� �c _�

 !
¼ i �� _þ _� 0

i �� _� _� �i �� _þ _�

 !
�c _þ
�c _�

 !
; (2)

where �þ�, ���, �� _þ _�, �� _� _� are some infinitesimal
parameters.

If we want to know how other finite dimensional repre-
sentations of the Lorentz group behave when we reduce the
symmetry to the SIMð2Þ subgroup, we use the fact that any
such representation can be expressed in terms of tensor
products of left- and right-handed Weyl representations,
whose behavior have already been discussed.

Now we look at how the fields, i.e. functions over
configuration space carrying representation of the
Lorentz group, behave when we reduce the symmetry
from the Lorentz group to the SIMð2Þ subgroup. The
simplest case is a scalar field, which transforms as�0ðx0Þ ¼
�ðxÞ. In the infinitesimal form, this reads as

��ðxÞ ¼ ��x� _�@� _��ðxÞ; (3)

where the infinitesimal transformations of space-time
coordinates are

�x� _� ¼ ����x
� _� � �� _�

_�
x�

_�: (4)

When the symmetry is reduced to the SIMð2Þ subgroup,
the rule (3) remains valid but the infinitesimal transforma-
tions of space-time coordinates �x� _� are less general
because ��þ and �� _�

_þ are set to zero in (4).

The case of spinor fields, which transform under the
infinitesimal Lorentz rotations as

�c �ðxÞ ¼ ��x�
_�@� _�c �ðxÞ þ ��

�c �ðxÞ;
� �c _�ðxÞ ¼ ��x�

_�@� _�
�c _�ðxÞ þ �� _�

_� �c _�ðxÞ;
(5)

is far more interesting. When the symmetry is reduced to

the SIMð2Þ subgroup, then we use the projectors ~nn
2 and n~n

2

to split the fields in the same way as we did in the case of
the left and right Weyl spinors. The infinitesimal SIMð2Þ
transformations now read as

�cþðxÞ¼��x� _�@� _�cþðxÞþ i�þ�cþðxÞ;
�c�ðxÞ¼��x� _�@� _�c�ðxÞ� i�þ�c�ðxÞþ i���cþðxÞ;
� �c _þðxÞ¼��x� _�@� _�

�c _þðxÞþ i �� _þ _� �c _þðxÞ;
� �c _�ðxÞ¼��x� _�@� _�

�c _�ðxÞ� i �� _þ _� �c _�ðxÞþ i �� _� _� �c _þðxÞ:
(6)

While the transformation of the projection cþðxÞ is ex-
pressed in terms of itself and does not depend on the
projection c�ðxÞ, the transformation of the projection
c�ðxÞ depends on both cþðxÞ and c�ðxÞ. We cannot
separate the projections cþðxÞ and c�ðxÞ from each other
because they are mixed by SIMð2Þ transformations. This
means that in a SIMð2Þ symmetric theory, the field cþðxÞ
may appear without c�ðxÞ being present, but c�ðxÞ has to
appear in multiplet with cþðxÞ. The same is true also for
�c _þðxÞ and �c _�ðxÞ. However, we can remedy this by defin-

ing modified projections ~cþðxÞ, ~c�ðxÞ and ~�c _þðxÞ, ~�c _�ðxÞ,
which have the property that SIMð2Þ transformations do
not mix them among each other. They are defined as

~cþðxÞ¼ cþðxÞ; ~c�ðxÞ¼ c�ðxÞ�@� _þ
@þ _þ

cþðxÞ;

~�c _þðxÞ¼ �c _þðxÞ; ~�c _�ðxÞ¼ �c _�ðxÞ�@þ _�
@þ _þ

�c _þðxÞ; (7)

and their infinitesimal transformations are

� ~cþðxÞ ¼ ��x� _�@� _�
~cþðxÞ þ i�þ� ~cþðxÞ;

� ~c�ðxÞ ¼ ��x� _�@� _�
~c�ðxÞ � i�þ� ~c�ðxÞ;

� ~�c _þðxÞ ¼ ��x� _�@� _�
~�c _þðxÞ þ i �� _þ _� ~�c _þðxÞ;

� ~�c _�ðxÞ ¼ ��x� _�@� _�
~�c _�ðxÞ � i �� _þ _� ~�c _�ðxÞ:

(8)

Because the SIMð2Þ transformations do not mix them
among each other we can regard each of them as a separate
SIMð2Þ field, each of them may appear separately in a
SIMð2Þ symmetric theory. Unlike the case with unmodified

projections, ~c�ðxÞ does not have to appear in the multiplet

1In our particular choice of n and ~n, the left and right Weyl
spinors are decomposed as

c ¼ cþ
c�

 !
¼ 0

c�

 !
þ cþ

0

 !
;

�c ¼
�c _þ
�c _�

 !
¼ 0

�c _�

 !
þ

�c _þ
0

 !
; (1)

where the first term on the right-hand side belongs to the
invariant subspace, while the second belongs to its complement.
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with ~cþðxÞ. Note that apart from the change of the x

variable, the transformations of ~cþðxÞ and ~c�ðxÞ are
governed only by one (complex) parameter �þ�. This
parameter scales and changes the phase of these SIMð2Þ
fields in such a way that the scale and the phase of ~c�ðxÞ is
changed in the opposite way as for ~cþðxÞ. This gives us a
nice interpretation of the subscripts þ and �.2

The price we have to pay for the nice properties of these
SIMð2Þ fields is the introduction of the nonlocal operator
1

@þ _þ
. This operator has to be linear, has to satisfy the

condition @þ _þ 1
@þ _þ

¼ 1, which defines it as a Green func-

tion of @þ _þ and we will also require that it commutes with
all space-time derivatives ½@� _�;

1
@þ _þ

� ¼ 0. Let fðxÞ be some

function, then the condition that the derivation @þ _þ has to
commute with 1

@þ _þ
gives�

1

@þ _þ
; @þ _þ

�
fðxÞ ¼

�
1

@þ _þ
@þ _þ � @þ _þ

1

@þ _þ

�
fðxÞ

¼ 1

@þ _þ
@þ _þfðxÞ � fðxÞ ¼ 0: (9)

But this is evidently not true for nonzero functions satisfy-
ing @þ _þfðxÞ ¼ 0. This indicates that we have to work with
the space of functions which is somewhat reduced, namely,
to those satisfying (9). Oneway to define the operator 1

@þ _þ
is

1

@þ _þ
fðxÞ ¼

Z xþ _þ

�1
dtþ _þfðtþ _þÞ: (10)

In this case, the space of functions we are working with has
to be reduced to those satisfying limxþ _þ!�1fðxÞ ¼ 0. One
of the most important consequences of the fact that we
have to work with the reduced space of functions is that the
equation @þ _þfðxÞ ¼ 0 has only one solution fðxÞ ¼ 0.

In order to understand the behavior of these SIMð2Þ
fields and their relation to the Lorentz fields from which
we constructed them we will look at two well known
models. First we will look at a massless fermion and then
at an Abelian gauge field.

A massless fermion is described by a spinor field c �ðxÞ
satisfying the equation of motion

@� _�c
�ðxÞ ¼ 0: (11)

If we rewrite it in terms of SIMð2Þ fields ~cþðxÞ and ~c�ðxÞ,
we get a set of equations

i@þ _þ ~c�ðxÞ¼0; i@þ _� ~c�ðxÞ� h

i@þ _þ
~cþðxÞ¼0: (12)

As was mentioned before, the equation @þ _þ ~c�ðxÞ ¼ 0

implies ~c�ðxÞ ¼ 0 because we are forced to work with
the restricted space of functions. Thus, the above equations
are equivalent to

~c �ðxÞ ¼ 0; h ~cþðxÞ ¼ 0: (13)

We see that all dynamics is carried by the field ~cþðxÞ,
while the field ~c�ðxÞ is auxiliary.
An Abelian gauge field AaðxÞ (or equivalently A� _�ðxÞ in

the spinor notation) is a vector field, which is subject to the
gauge transformation

A0
aðxÞ ¼ AaðxÞ þ @agðxÞ; (14)

where gðxÞ is an arbitrary scalar function. The equation of
motion is

@að@aAbðxÞ � @bAaðxÞÞ ¼ 0: (15)

We will work in the light-cone gauge n � AðxÞ ¼ 0, which
breaks Lorentz invariance, but does not break SIMð2Þ
invariance. This condition does not fix the gauge com-
pletely, we can still perform the gauge transformations
with n � @gðxÞ ¼ 0. If we work on-shell, we can use this
gauge freedom to set @ � AðxÞ ¼ 0. In order to do that we
have to perform a gauge transformation with function gðxÞ
satisfying the set of equations hgðxÞ ¼ �@ � AðxÞ,
n � @gðxÞ ¼ 0. This set of equations has solution only if
hðn � @ÞgðxÞ ¼ ðn � @ÞhgðxÞ ¼ �n � @ð@ � AðxÞÞ ¼ 0, but
the validity of this integrability condition is ensured by
equation of motion as can be easily verified by multiplying
(15) by nb. Thus we can search for solutions satisfying

n � AðxÞ ¼ 0; @ � AðxÞ ¼ 0; hAðxÞ ¼ 0: (16)

Now we see what the light-cone gauge and equations of
motion look like if we work with SIMð2Þ fields
~Aþ _þðxÞ ¼ Aþ _þðxÞ;
~A� _þðxÞ ¼ A� _þðxÞ � @� _þ

@þ _þ
Aþ _þðxÞ;

~Aþ _�ðxÞ ¼ Aþ _�ðxÞ � @þ _�
@þ _þ

Aþ _þðxÞ;

~A� _�ðxÞ ¼ A� _�ðxÞ � @� _þ
@þ _þ

Aþ _�ðxÞ � @þ _�
@þ _þ

A� _þðxÞ

þ @� _þ
@þ _þ

@þ _�
@þ _þ

Aþ _þðxÞ; (17)

which are defined in such a way that each of them is closed
under the action of SIMð2Þ group. In the light-cone gauge
~Aþ _þðxÞ ¼ 0 and we are allowed to make gauge transfor-
mations with @þ _þgðxÞ ¼ 0. However, we are forced to
work with reduced space of functions where the equation
@þ _þgðxÞ ¼ 0 allows only one solution gðxÞ ¼ 0. This

2This fact is useful when we are constructing SIMð2Þ invar-
iants. For example, it is easy to understand why the expressionR
d4x ~c�ðxÞ@þ _þ ~�c _�ðxÞ is SIMð2Þ invariant. The derivative @þ _þ

transforms as @0þ _þ ¼ ð1þ i�þ� þ i �� _þ _�Þ@þ _þ so it is scaled by
both parameters �þ� and �� _þ _�, while each of the SIMð2Þ fields
~c�ðxÞ and ~�c _�ðxÞ is scaled by one of them in the opposite way as
@þ _þ. The result is that the expression ~c�ðxÞ@þ _þ ~�c _�ðxÞ is not
scaled at all. The integral ensures that the expression is invariant
with respect to the transformations of the x variable so the whole
expression is SIMð2Þ invariant.
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means that in this formalism the light-cone gauge com-
pletely fixes the gauge freedom. The equations of motion
are now

@þ _þ@þ _þ ~A� _�ðxÞ ¼ 0;

h ~A� _þðxÞ þ @� _þ@þ _þ ~A� _�ðxÞ ¼ 0;

h ~Aþ _�ðxÞ þ @þ _�@þ _þ ~A� _�ðxÞ ¼ 0;

@� _þ
@þ _þ

h ~Aþ _�ðxÞ þ @þ _�
@þ _þ

h ~A� _þðxÞ þ @� _þ@þ _� ~A� _�ðxÞ ¼ 0:

(18)

Because the equation @þ _þ@þ _þ ~A� _�ðxÞ ¼ 0 has only one

solution ~A� _�ðxÞ ¼ 0, we have to search for solutions
satisfying

~Aþ _þðxÞ ¼ 0; ~A� _�ðxÞ ¼ 0;

h ~A� _þðxÞ ¼ 0 ¼ h ~Aþ _�ðxÞ: (19)

We see that all dynamics is carried by the complex field
~A� _þðxÞ, while the field ~A� _�ðxÞ is auxiliary. Although the
calculations were affected by the fact that the space of
functions is reduced, we still get the correct number of
physical modes for the Maxwell equations of motion.

III. SIMð2Þ SUPERGROUP AND
PROPERTIES OF SIMð2Þ SUPERFIELDS

The Lie superalgebra of SIMð2Þ supersymmetry [5], is
obtained by reducing the super-Poincare superalgebra. The
Lorentz part is reduced to SIMð2Þ rotations and the super-
translations "Qþ �" �Q are restricted to those satisfying
n" ¼ 0 ¼ n �".

The SIMð2Þ superspace and its algebra of covariant
derivatives [6] can be obtained from their super-Poincare
counterparts. The SIMð2Þ superspace has all of the space-
time coordinates but the set of Grassmann odd coordinates

is reduced to the projection ~nn
2 � and its Hermitian conju-

gate. The covariant spinor derivativeD can be split into the

piece d ¼ n~n
2 D which we keep in the algebra and the

remaining piece q ¼ ~nn
2 D.

If we use our choice of vectors n, ~n, the generators of the
SIMð2Þ superalgebra consist of rotations Jþþ, Jþ�, �J _þ _þ,
�J _þ _�, space-time translations P� _� and supertranslations
Qþ, �Q _þ. The superspace is parametrized by space-time
coordinates x� _� and two Grassmann odd coordinates �þ,
�� _þ. The algebra of covariant derivatives consists of deriva-
tives dþ ¼ Dþ, �d _þ ¼ �D _þ (the minus components of d ¼
n~n
2 D and �d ¼ n~n

2
�D are equal to zero) which are subject to

the relation

fdþ; �d _þg ¼ i@þ _þ: (20)

The only nonzero components of q and �q are q� ¼ D� and
�q _� ¼ �D _�.

In order to rewrite actions and other expressions con-
taining super-Poincare invariant superfields into SIMð2Þ
formalism we need to replace each super-Poincare super-
field by a set of SIMð2Þ superfields having the same
component content. This is done by the method of cova-
riant projections. First define a projection symbol

k � jð~n6n=2Þ�¼0;ð~n6n=2Þ ��¼0
¼ j��¼0; �� _�¼0; (21)

which projects the Grassmann odd coordinates which are
not part of the SIMð2Þ superspace to zero.
We replace a scalar complex super-Poincare superfield

F with four complex SIMð2Þ projections f, f�, f _�, f� _�
related to the superfield F as

f ¼ Fk; f� ¼ q�Fk; f _� ¼ �q _�Fk;
f� _� ¼ 1

2
½q�; �q _��Fk: (22)

The super-Poincare superfields will be denoted by upper-
case letters, while their SIMð2Þ projections will be denoted
by the same lowercase letters. When the projections f, f�,
f _�, f� _� are SIMð2Þ rotated, they are mixed with each
other. This is a consequence of the fact that spinor cova-
riant derivatives are transformed according to (6) under
SIMð2Þ rotations. The minus components of the covariant
derivatives, which are used to define the projections, are
mixed with the plus components which results in the mix-
ing of projections.
In the case of a chiral superfield�, only two projections

�, �� are independent, in the case of antichiral superfield
�� only the projections ��, �� _� are independent,3 moreover
they satisfy the conditions

�d _þ� ¼ 0; �d _þ�� ¼ i@� _þ�;

dþ �� ¼ 0; dþ �� _� ¼ i@þ _� ��: (24)

It is possible to change the definition of the projections
in such a way, that SIMð2Þ rotations do not mix them
among each other, moreover we will see, that in the case
of a chiral superfield the conditions (24) will be simplified.
The idea is that we replace the covariant derivatives used in
the definition of SIMð2Þ projections with operators defined
according to (7), i.e. with the operators

~q� ¼ D� � @� _þ
@þ _þ

Dþ; ~�q _� ¼ �D _� � @þ _�
@þ _þ

�D _þ: (25)

The new projections are defined as

3The other projections are

� _� ¼ 0; �� _� ¼ � i

2
@� _��;

��� ¼ 0; ��� _� ¼ i

2
@� _� ��: (23)
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~f ¼ Fk; ~f� ¼ ~q�Fk; ~f _� ¼ ~�q _�Fk;
~f� _� ¼ 1

2
½~q�; ~�q _��Fk: (26)

They transform by rescaling under SIMð2Þ group. The
infinitesimal SIMð2Þ rotations are

�~f ¼ �ð�x� _�@� _� þ ��þ@þ þ � �� _þ �@ _þÞ~f;
�~f� ¼ �ð�x� _�@� _� þ ��þ@þ þ � �� _þ �@ _þÞ~f� � i�þ� ~f�;

�~f _� ¼ �ð�x� _�@� _� þ ��þ@þ þ � �� _þ �@ _þÞ~f _� � i �� _þ _� ~f _�;

�~f� _� ¼ �ð�x� _�@� _� þ ��þ@þ þ � �� _þ �@ _þÞ~f� _�
� ið�þ� þ �� _þ _�Þ~f� _�: (27)

The first term on the right side accounts for the shift in the
coordinates; the second term results in the scaling.

In the case of a chiral superfield � only the projections
~�, ~�� are nonzero, for an antichiral superfield �� only ~��,
~�� _� are nonzero, moreover they satisfy the conditions

�d _þ ~�¼0; �d _þ ~��¼0; dþ ~��¼0; dþ ~�� _�¼0: (28)

We will call SIMð2Þ superfields satisfying such conditions
SIMð2Þ chiral and SIMð2Þ antichiral. The following holds
for the Hermitian conjugation

ð ~�Þ ¼ ~��; ð ~��Þ ¼ �~�� _�;

ð~��Þ ¼ ~�; ð~�� _�Þ ¼ � ~��: (29)

In the case of real superfield V ¼ �V the Hermitian
conjugation acts as

ð~vÞ ¼ ~v; ð~v�Þ ¼ �~v _�;

ð~v _�Þ ¼ �~v�; ð~v� _�Þ ¼ ~v� _�:
(30)

One of the remarkable properties of SIMð2Þ superfields
is that any complex SIMð2Þ superfield f can be decom-
posed as a sum of a chiral SIMð2Þ superfield c and an
antichiral SIMð2Þ superfield �a

f ¼ �aþ c: (31)

The chiral and antichiral SIMð2Þ superfields appearing in
the decomposition can be calculated as

c ¼
�d _þdþ
i@þ _þ

f; �a ¼ dþ �d _þ
i@þ _þ

f; (32)

the identity (20) then leads to (31).

IV. ABELIAN CASE

The aim of this section is to show what the super-
Poincare symmetric Abelian gauge theory looks like if
we rewrite it in the SIMð2Þ formalism. We have decided
to treat the Abelian case separately from the non-Abelian
case because its simplicity allows us to perform

calculations which would be difficult to do in the non-
Abelian case and to compare results in SIMð2Þ formalism
with the results in the usual Poincare-invariant formalism.
The super-Poincare Abelian gauge theory contains a real

scalar superfield V and is invariant under the gauge trans-
formation

V0 ¼ V þ i ��� i�; (33)

where � is a chiral superfield. In order to rewrite it in the
SIMð2Þ superspace formalism we define the SIMð2Þ
projections ~v, ~v�, ~v _�, ~v� _�, ~�, ~��, ~��, ~�� _� of V, �, �� in
the same way as we did in (26). As a consequence of the
reality of the superfield V we have (30), the chirality and

antichirality of � and �� results in conditions (28) and (29)

with ~� in place of ~�.
The gauge transformation (33) rewritten for the SIMð2Þ

superfields is

~v0 ¼ ~vþ i~��� i~�; ~v0� ¼ ~v�� i~��;

~v0� _�¼ ~v� _�þ i

2

h

i@þ _þ
ð~��þ ~�Þ; ~v0

_�¼ ~v _�þ i~�� _�: (34)

The action for the gauge field is

S ¼
Z

d4xd2�W2 (35)

where

W� ¼ i �D2D�V: (36)

In the SIMð2Þ superspace formalism, it looks like

S¼
Z
d4xdþ �d _þ

�
�dþ

�
~v� _�þ1

2

h

i@þ _þ
~v

�

� �d _þ
�
~v� _��1

2

h

i@þ _þ
~v

�
þdþ~v _�

h

i@þ _þ
�d _þ~v�

�
: (37)

It is possible to fix the gauge freedom in a way that
respects SIMð2Þ supersymmetry. A convenient choice of
gauge fixing conditions, which completely fix the gauge
freedom, is

~v ¼ 0; dþ~v� ¼ 0 ¼ �d _þ~v _�: (38)

If ~v, ~v�, ~v _�, ~v� _� are arbitrary, then we can go to the above
gauge by performing the gauge transformation (34) with

~� ¼ �i
�d _þdþ
i@þ _þ

~v; ~�� ¼ �i
�d _þdþ
i@þ _þ

~v�: (39)

The only gauge transformations preserving our gauge fix-

ing conditions are those with ~� ¼ 0 ¼ ~��, so there is no
remaining gauge freedom.
In this gauge, the action (37) reduces to

S ¼
Z

d4xdþ �d _þð�dþ~v� _� �d _þ~v� _� þ ~v _�h~v�Þ: (40)

In the gauge fixed form, the whole dynamics of super-
Poincare Abelian gauge theory is described by one real
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Grassmann even SIMð2Þ superfield ~v� _� and one
chiral Grassmann odd SIMð2Þ superfield ~v _� (and its con-
jugate ~v�).

The classical equations of motion are

�S

�~v� _�
¼ dþ �d _þ~v� _� � �d _þdþ~v� _� ¼ 0;

�S

�~v�
¼ hdþ~v _� ¼ 0: (41)

They are equivalent to

h~v _� ¼ 0; ~v� _� ¼ 0: (42)

We see that ~v� _� is auxiliary superfield and all dynamics is
carried by the superfield ~v _� (which contains two bosonic
and two fermionic degrees of freedom).

We will examine what the above gauge and equations
of motion look like if we rewrite them in terms of compo-
nents of V

C¼Vj; �� ¼ iD�Vj; �� _� ¼�i �D _�Vj; M¼D2Vj;
�M¼ �D2Vj; A� _� ¼ 1

2
½ �D _�;D��Vj; �� ¼ i �D2D�Vj;

�� _� ¼�iD2 �D _�Vj; D0 ¼ 1

2
D� �D2D�Vj: (43)

where j ¼ j��¼0; �� _�¼0 denotes projection, which leaves only

�-independent part.
The gauge fixing conditions (38) imply

C¼0; �þ¼0¼ �� _þ; Aþ _þ¼0;

M¼0¼ �M; �þ¼@þ _þ �� _�; �� _þ¼@þ _þ��: (44)

The last two conditions can also be written as �� ¼
1

@þ _þ
�� _þ, �� _� ¼ 1

@þ _þ
�þ. We can write these conditions also

in the form which does not depend on the choice of the
vector n as

C¼0; M¼0¼ �M; n �A¼0; �¼ i
6n

2n �@�: (45)

The only fields which are not completely constrained by
these conditions are the scalar D0, the spinor �, and the
vector A which is constrained by n � A ¼ 0. The compo-
nents of the SIMð2Þ superfields appearing in the action can
be in the given gauge expressed as

~v�j ¼ 1

i@þ _þ
�� _þ ¼ 1

i@þ _þ
~�� _þ; ~v _�j ¼ � 1

i@þ _þ
�þ ¼ � 1

i@þ _þ
~�þ; �d _þ~v�j ¼ A� _þ ¼ ~A� _þ;

dþ~v _�j ¼ �Aþ _� ¼ � ~Aþ _�; dþ~v� _�j ¼ � �� _� þ @þ _�
@þ _þ

�� _þ ¼ �~�� _�; �d _þ~v� _�j ¼ ��� þ @� _þ
@þ _þ

�þ ¼ �~��;

1

2
½dþ; �d _þ�~v� _�j ¼ D0; ~v� _�j ¼ �A� _� þ @� _þ

@þ _þ
Aþ _� þ @þ _�

@þ _þ
A� _þ ¼ � ~A� _�: (46)

The equations of motion (42) written for the components
are

h~�þ ¼ 0 ¼ h~�� _þ; h ~Aþ _� ¼ 0 ¼ h ~A� _þ;

~�� ¼ 0 ¼ ~�� _�; ~A� _� ¼ 0; D0 ¼ 0: (47)

Here, we can identify the equation of motion of the mass-
less fermion (13) and the equation of motion of the Abelian
gauge field (19).

V. GAUGE CHIRAL REPRESENTATION

This section is devoted to the non-Abelian theory in the
gauge chiral representation. Wewill show that it is possible
to use the same SIMð2Þ invariant gauge fixing conditions
as in the case of the Abelian theory to completely remove
the gauge freedom. Then we will show what the action
looks like in this gauge. We will not present the results for
the case where the gauge is not fixed.

In the supersymmetric non-Abelian gauge theory, we
have a chiral superfield� with values in the representation

space, and we require that it is invariant with respect to a
local gauge transformation

�0 ¼ ei��; (48)

where � is a Lie algebra valued chiral superfield, i.e. � ¼
�ATA, where �A are chiral superfields and TA are
Hermitian generators of Lie algebra. In order to construct

a gauge invariant equivalent of the term ���, we introduce
a Lie algebra valued real scalar superfield V, which
transforms as

eV
0 ¼ ei

��eVe�i�; (49)

so the term ��eV� is gauge invariant.
The decomposition of the superfields V and� to SIMð2Þ

superfields can be done in the same way as in the case of
Abelian gauge theory, i.e. according to (26). The SIMð2Þ
superfields ~v, ~v�, ~v _�, ~v� _� satisfy the conditions (30),

the SIMð2Þ superfields ~�, ~��, ~��, ~�� _� satisfy the conditions
(28) and (29).
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Although it is not possible to rewrite the gauge trans-
formation (49) for SIMð2Þ superfields in a compact form
(at least we do not know how to do it), it is possible to fix
the gauge in the same way as in the case of Abelian theory,
i.e. by requiring

~v ¼ 0; dþ~v� ¼ 0 ¼ �d _þ~v _�: (50)

Before we show that this choice of gauge is possible, we
prove that an exponential of any complex SIMð2Þ super-
field f can be written as

ef ¼ e �aec; (51)

where c is a chiral SIMð2Þ superfield and �a is an antichiral
SIMð2Þ superfield. This is very similar to the decomposi-
tion (31) which allows us to write any SIMð2Þ superfield as
a sum of a chiral and an antichiral SIMð2Þ superfields. In
the Abelian case the decomposition (51) can be inferred
directly from (31).

First, we will assume that the decomposition (51) is
possible and find out what c and �a should be. Then we
will show that this assumption is correct. A simple calcu-
lation shows, that the SIMð2Þ superfields c and �a have to
satisfy the equations

�d _þðe�fdþefÞ ¼ e�ci@þ _þec;

dþð�d _þefe�fÞ ¼ i@þ _þe �ae� �a: (52)

The solutions of these equations can be formally written
with the help of the path-ordering operators R and L,
which order the arguments according to increasing and

decreasing value of xþ _þ. The argument having the largest

value of xþ _þ is the rightmost in the case of operatorR and
the leftmost in the case of the operatorL. The solutions are

ec ¼ R exp

�
�i

Z xþ _þ

�1
�d _þðe�fdþefÞdtþ _þ

�
;

e �a ¼ L exp

�
�i

Z xþ _þ

�1
dþð�d _þefe�fÞdtþ _þ

�
: (53)

Now we define a new SIMð2Þ superfield f0 as

ef
0 ¼ e� �aefe�c; (54)

In order to prove that the decomposition (51) is really
possible, we have to prove that f0 ¼ 0. With the help
of (52), it can be shown that

�d _þðe�f0dþef
0 Þ ¼ 0; dþð�d _þef

0
e�f0 Þ ¼ 0: (55)

These equations are equivalent to

�d _þdþef
0 ¼ �d _þef

0
e�f0dþef

0
;

dþ �d _þef
0 ¼ ��d _þef

0
e�f0dþef

0
: (56)

Their sum gives us the equation 0 ¼ ð�d _þdþ þ dþ �d _þÞef0 ¼
i@þ _þef

0
, which is equivalent to @þ _þf0 ¼ 0. The only

solution of the last equation is f0 ¼ 0 and this completes
our proof.

Now we are going to prove that the gauge (50) is
admissible. We will show that by performing two subse-
quent gauge transformations we can go from arbitrary
SIMð2Þ superfields ~v, ~v�, ~v _�, ~v� _� to superfields satisfy-
ing our gauge fixing conditions.
Let make a projection on SIMð2Þ superspace on both

sides of (49)

ðeV0 Þk ¼ ðei ��eVe�i�Þk ) e~v
0 ¼ ei

~��e~ve�i ~�: (57)

We want to set ~v0 ¼ 0, which will be achieved if e~v ¼
e�i~��ei

~�. The decomposition (51) tells us that this happens
when we choose

~� ¼ �i ln

�
R exp

�
�i

Z xþ _þ

�1
�d _þðe�~vdþe~vÞdtþ _þ

��
: (58)

Now we may assume that ~v ¼ 0 and perform another
gauge transformation to set dþ~v� ¼ 0. In order to preserve
the condition ~v ¼ 0 we have to choose a gauge trans-

formation with ~� ¼ 0. By acting with D� on both sides
of (49) and then making projection on the SIMð2Þ super-
space we obtain

D�ðeV0 Þk ¼ D�ðei ��eVe�i�Þk ) ~v0� ¼ ~v� � i~��: (59)

If we choose

~�� ¼ �i
�d _þdþ
i@þ _þ

~v�; (60)

we set dþ~v0� ¼ 0 (and also �d _þ~v0
_� ¼ 0).

This completes the proof of the admissibility of the
gauge fixing conditions (50). Because the only gauge trans-
formation which preserves our gauge fixing conditions is

the one with ~� ¼ 0, ~�� ¼ 0, the gauge freedom is fixed
completely.
The action for the non-Abelian gauge field in the

Poincare-invariant formalism is

S ¼
Z

d4xd2�trðW2Þ (61)

where

W� ¼ i �D2ðe�VD�e
VÞ: (62)

If we rewrite it in the SIMð2Þ superspace formalism with
the gauge being fixed according to (50), then we get

S ¼
Z

d4xdþ �d _þtr
�
~v _�h~v� þ �d _þ

�
~v� _� þ 1

2
f~v�; ~v _�g

�

� dþ
�
~v� _� þ 1

2
f~v�; ~v _�g

�
þ
�
~v� _� þ 1

2
f~v�; ~v _�g

�

� ½dþ~v _�; �d _þ~v�� � dþ~v _�
�
�d _þ~v�;

@þ _�
@þ _þ

�d _þ~v�
�

� �d _þ~v�
�
dþ~v _�;

@� _þ
@þ _þ

dþ~v _�
��

: (63)
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Note that each term in the sum is separately SIMð2Þ
invariant.

Now we will look at what happens when the theory
contains another field coupled to the gauge field. We
have decided to use the model with a chiral field �
minimally coupled to the gauge field V, i.e. the action in
the super-Poincare formalism is

S ¼
Z

d4xd2�d2 �� �� eV�: (64)

The SIMð2Þ superfields corresponding to the super-

Poincare chiral field � and its Hermitian conjugate �� are
defined according to (26) and satisfies the conditions (28)
and (29). When the action is rewritten in the SIMð2Þ
formalism, it looks like

S¼
Z
d4xdþ �d _þ

�
�~��

h

i@þ _þ
~�� ~�� _� ~��� ~�� _�~v� ~�� ~�� ~v _� ~��

þ ~��

�
~v� _�þ1

2
ð~v�~v _�� ~v _�~v�Þ

�
~�þ

�
@þ _�
@þ _þ

~��

�
ð�d _þ~v�Þ ~�

� ~��

�
@þ _�
@þ _þ

�d _þ~v�
�
~�� ~��ðdþ~v _�Þ

�
@� _þ
@þ _þ

~�

�

þ ~��

�
@� _þ
@þ _þ

dþ~v _�
�
~�

�
: (65)

Each of the first five terms is separately SIMð2Þ invariant.
This is not true for the last four terms; we have to group
them in pairs to get invariant expressions.

The formalism presented in this section have manifest
SIMð2Þ invariance but there is no gauge invariance because
we are working in a gauge which completely removes it.
This will be useful when we want to quantize it because
there will not be any ghosts. But for other purposes, it
would be more beneficial if we had a formalism where the
gauge freedom is not removed and where both SIMð2Þ
invariance and gauge invariance are manifest.

Alternative decomposition of V into SIMð2Þ superfields
We may also use the projections defined as

v̂¼Vk; v̂�¼ke�VðD�eVÞk; v̂ _�¼ð �D _�eVÞe�Vk;
v̂� _�¼1

2
ðD�ð �D _�eVe�VÞeV�eV �D _�ðe�VD�eVÞÞk;

�̂¼�k; �̂�¼ iðD�e�i�Þei�k; �̂�¼ ��k;
�̂� _�¼�ie�i ��ð �D _�ei

��Þk: (66)

They satisfy the reality conditions (30), but the chirality

conditions for �̂, �̂�, �̂�, �̂� _� and infinitesimal SIMð2Þ
rotations are more complicated and contain derivatives
acting on eV . The gauge transformations are

ev̂
0 ¼ ei

�̂�ev̂e�i�̂; v̂0� ¼ ei�̂ðv̂� � i�̂�Þe�i�̂;

v̂0
_� ¼ ei

�̂�ðv̂ _� þ i �̂� _�Þe�i �̂�;

v̂0� _� ¼ ei
�̂�v̂� _�e�i�̂ þ i

2
@� _�ei

�̂�ev̂e�i�̂ � i

2
ei

�̂�ev̂@� _�e�i�̂:

(67)

If we used the covariant derivatives ~q�, ~�q _� (25) instead of
D�, �D _� in the definition of projections (66), then the gauge
transformations would be more complicated, but SIMð2Þ
projections would have nicer properties. The projections of
V would still satisfy the reality conditions (30), the pro-

jections of�, �� would satisfy chirality conditions (28) and
reality conditions (29). The infinitesimal SIMð2Þ rotations
would look like (27).

VI. ELIMINATION OF THE
AUXILIARY SUPERFIELDS

How many real components, i.e. real fields with values
in the representation space, are contained in the superfields
V and �? How many of them are physical, i.e. how many
of them carry dynamics? There are 16 real components in
V and 8 real components in �. Each V and � have four
physical components (two bosonic and two fermionic).
The super-Poincare superfields were replaced by

SIMð2Þ superfields. The superfield � was replaced by

two SIMð2Þ chiral superfields ~�, ~��, each having four
real components. In the case of the superfield V, we have
completely fixed the gauge by (50) and only one real
SIMð2Þ superfield ~v� _� and one SIMð2Þ chiral superfield
~v� (and its conjugate ~v _�) remains in the rewritten action.
Each of ~v� _�, ~v� has four real components so we got rid of
eight components of V.
In this section, we will show that the SIMð2Þ superfields

~�� and ~v� _� are auxiliary and can be eliminated from the
action. After that, we will obtain an action containing only
superfields whose components are physical.
We start by eliminating the auxiliary SIMð2Þ superfield

~��. By varying the action (65) with respect to ~�� _�, we
obtain the equation of motion dþ ~�� þ dþð~v� ~�Þ ¼ 0. Its

solution ~�� ¼ � 1
i@þ _þ

�d _þdþð~v� ~�Þ (and its conjugate) can

be used to eliminate ~�� and ~�� _� from the action. The
resulting action is

Sc ¼
Z

d4xdþ �d _þ
�
�~��

h

i@þ _þ
~�þ ~��

�
~v� _� þ 1

2
f~v�; ~v _�g

�
~�

� ~��ðdþ~v _�Þ 1

i@þ _þ
ðð�d _þ~v�Þ ~�Þ þ

�
@þ _�
@þ _þ

~��

�
ð�d _þ~v�Þ ~�

� ~��

�
@þ _�
@þ _þ

�d _þ~v�
�
~�� ~��ðdþ~v _�Þ

�
@� _þ
@þ _þ

~�

�

þ ~��

�
@� _þ
@þ _þ

dþ~v _�
�
~�

�
: (68)

JIŘÍ VOHÁNKA PHYSICAL REVIEW D 85, 105009 (2012)

105009-8



We generalize our model before we eliminate the auxiliary
SIMð2Þ superfield ~v� _� from it. Instead of a model with one
chiral superfield�, we will consider a model with multiple

chiral superfields�ðkÞ coupled to the gauge superfield. The
action will be

S ¼ Sg þ
X
k

SðkÞc ; (69)

where Sg is the action (63) for the gauge superfield and S
ðkÞ
c

are the actions (68) with the SIMð2Þ superfield ~� replaced

by ~�ðkÞ. When the auxiliary SIMð2Þ superfield ~v� _� is
eliminated from this action we obtain the action

S ¼ Sg þ
X
k

SðkÞ
c þX

k;l

Sðk;lÞ
e ; (70)

where the part of the action containing only the gauge
superfield is

Sg¼
Z
d4xdþ �d _þtr

�
~v _�h~v��dþ~v _�

�
�d _þ~v�;

@þ _�
@þ _þ

�d _þ~v�
�

� �d _þ~v�
�
dþ~v _�;

@� _þ
@þ _þ

dþ~v _�
�
�
�
dþ
i@þ _þ

½dþ~v _�; �d _þ~v��
�

�
� �d _þ
i@þ _þ

½dþ~v _�; �d _þ~v��
��
; (71)

the part containing chiral superfield coupled to the gauge
superfield is

SðkÞ
c ¼

Z
d4xdþ �d _þ

�
�~��

ðkÞ h

i@þ _þ
~�ðkÞ

� ~��
ðkÞðdþ~v _�Þ 1

i@þ _þ
ðð�d _þ~v�Þ ~�ðkÞÞ

þ
�
@þ _�
@þ _þ

~��
ðkÞ
�
ð�d _þ~v�Þ ~�ðkÞ � ~��

ðkÞ
�
@þ _�
@þ _þ

�d _þ~v�
�
~�ðkÞ

� ~��
ðkÞðdþ~v _�Þ

�
@� _þ
@þ _þ

~�ðkÞ
�
þ ~��

ðkÞ
�
@� _þ
@þ _þ

dþ~v _�
�
~�ðkÞ

� ~��
ðkÞ
�
dþ �d _þ � �d _þdþ

ði@þ _þÞ2
½dþ~v _�; �d _þ~v��Þ ~�ðkÞ

�
; (72)

and there is also a part where the chiral superfields are
mixed among each other

Sðk;lÞ
e ¼

Z
d4xdþ �d _þtr

�
�
�
dþ
i@þ _þ

ð ~�ðkÞ ~��ðkÞÞ
�� �d _þ
i@þ _þ

ð ~�ðlÞ ~��ðlÞÞ
��
:

(73)

There are terms whose structure is different from the
structure of the terms which were present in the original
actions (63) and (65). In the original actions the nonlocal
operator 1

@þ _þ
always acted on terms composed of only one

SIMð2Þ superfield. This means that it is possible to have
Feynman rules where each nonlocal operator is associated
with only one leg of the vertex. This is not true for the
actions with eliminated auxiliary superfields. For example,

in the third term in (68) the operator 1
@þ _þ

acts on ð�d _þ~v�Þ ~�.

In a Feynman diagram with a vertex corresponding to such
term, the nonlocal operator will not be associated with a
single leg but with a pair of legs.

VII. COVARIANT REPRESENTATION

In this section, we will develop another formulation of
SIMð2Þ gauge theory. It will be based on the covariant
representation of the supersymmetric gauge theory. We
will see that it is possible to develop a formalism in which
both the SIMð2Þ invariance and the gauge invariance are
manifest. At the end of the section, we will show how this
formalism is related to the formalism developed in the
previous section.
We begin with a brief presentation of the covariant rep-

resentation of the super-Poincare gauge theory. In the co-
variant representation we use a covariantly chiral superfield

�, which satisfies the condition �r _�� ¼ 0 (r�
�� ¼ 0),

instead of the chiral superfield � used in the previous
section. We will distinguish superfields used in the cova-
riant representation from the superfields used in the pre-
vious section by typesetting them in bold letters.

The covariant derivativesr�,
�r _�,r� _� are subject to the

commutation relations

fr�;r�g ¼ 0 ¼ f �r _�;
�r _�g; fr�;

�r _�g ¼ ir� _�;

½r�;r� _�� ¼ C��
�W _�; ½ �r _�;r� _�� ¼ C _� _�W�;

½r� _�;r� _�� ¼ �iðC _� _�F�� þ C��
�F _� _�Þ; (74)

the field strengths W�, �W _�, F��, �F _� _�, D
0 satisfy the

relations

�r _�W� ¼ 0; r�
�W _� ¼ 0;

r�W� ¼ F�� � iC��D
0;

�r _�
�W _� ¼ �F _� _� þ iC _� _�D

0: (75)

The superfield� and the covariant derivatives transform
under the gauge transformation as

�0 ¼ eiK�; r0
� ¼ eiKr�e

�iK;

�r0
_� ¼ eiK �r _�e

�iK; r0
� _� ¼ eiKr� _�e

�iK; (76)

where K is a real Lie algebra valued superfield.

The SIMð2Þ projections of the superfields �, �� are
defined in a similar way as in the case of the superfields

�, ��, the main difference is that we use the covariant
derivatives instead of the ordinary ones. The covariant
SIMð2Þ projections
~� ¼ �k; ~�� ¼

�
r� �r� _þ

1

rþ _þ
rþ

�
�k;

~�� ¼ ��k; ~�� _� ¼
�
�r _� �rþ _�

1

rþ _þ
�r _þ
�
��k;

(77)

satisfy the covariant SIMð2Þ chirality conditions
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�r _þ ~� ¼ 0 ¼ rþ
~��; �r _þ ~�� ¼ 0 ¼ rþ

~�� _�: (78)

Note that the ordering of the covariant derivatives in (77) is
important because not all of them commute among them-
selves. If the covariant derivatives r� _þ, rþ _� were not
placed in front of the other derivatives then the SIMð2Þ
projections ~��,

~�� _� would not satisfy the covariant

SIMð2Þ chirality conditions. The projections ~�, ~��,
~��,

~�� _�, to which we will refer also as to SIMð2Þ superfields,
transforms with respect to the infinitesimal SIMð2Þ trans-
formations exactly as the field f in (27). The gauge trans-
formations acts on them as

~�0 ¼ eik ~�; ~�0� ¼ eik ~��; (79)

where the real SIMð2Þ superfield k ¼ Kk is the projection
of the superfield K.4

The actions for the scalar chiral field and for the gauge
field

Sscalar ¼
Z

d4xd2�d2 �� ���;

Sgauge ¼
Z

d4xd2�trðW2Þ; (81)

rewritten in the SIMð2Þ superspace formalism, become 5

Sscalar¼
Z
d4xrþ �r _þ

�
�~�� _� ~��� ~��

�r _þ
rþ _þ

ðhcovþd0Þ rþ
rþ _þ

~�

þ ~�� _� �w _þ
1

irþ _þ
~�þ ~��

1

irþ _þ
ðwþ ~��Þ

�
; (83)

Sgauge ¼
Z

d4xrþtrð�w�ðfþ� þ d0Þ þ wþf��Þ: (84)

where hcov ¼ 1
2r� _�r� _� is d’Alembertian composed of

covariant derivatives and

wþ ¼ Wþk; �w _þ ¼ �W _þk; d0 ¼ D0k;
fþ� ¼ Fþ�k; f�� ¼ F��k; (85)

are the SIMð2Þ projections of the corresponding super-
Poincare field strengths. It is easy to see that each term in
(83) and (84) is gauge invariant. The SIMð2Þ invariance of
(83) follows directly from the transformation rules for the
superfields and the derivatives appearing in it. In order to
prove the SIMð2Þ invariance of (84) we have to transform
each subscript in the superfields wþ, w�, fþ�, f�� ac-
cording to (2) and then use the identities rþw� ¼ fþ� �
d0, rþwþ ¼ fþþ.
Now we will describe how the covariant representation

can be transformed to the gauge chiral representation
described in the previous section. If we are working in
the super-Poincare formalism and want to go from the
covariant representation to the gauge chiral representation,
then we have to do the following replacements for the
covariant derivatives and superfields:

r�!e�VD�e
V; �r _�! �D _�;

r� _�!�ife�VD�e
V; �D _�g; �!�; ��! ��eV: (86)

In the SIMð2Þ formalism, we have to replace the cova-
riantly chiral SIMð2Þ superfields (77) and covariant deriva-
tives with expressions containing the chiral SIMð2Þ
superfields�,��, ordinary derivatives and the gauge fixed
superfields ~v�, ~v _�, ~v� _�.

rþ ! dþ; �r _þ ! �d _þ; rþ _þ ! @þ _þ;

r� _þ ! @� _þ � i�d _þ~v�; rþ _� ! @þ _� þ idþ~v _�;

r� _� ! @� _� þ i~v� _� � i
@þ _�
@þ _þ

�d _þ~v� þ i
@� _þ
@þ _þ

dþ~v _�

þ i

2
f~v�; ~v _�g;

~� ! ~�; ~�� ! ~�� þ ~v� ~�� ð�d _þ~v�Þ dþ
i@þ _þ

~�;

~�� ! ~��; ~�� _� ! ~�� _� þ ~��~v _� �
� �d _þ
i@þ _þ

~��

�
ðdþ~v _�Þ:

(87)

The field strengths appearing in (83) and (84) can be
calculated with the help of the commutation relations
(74) and the identities (75) as

wþ ¼ i½ �r _þ;rþ _��; �w _þ ¼ i½rþ;r� _þ�;
fþ� ¼ 1

2
ð½r� _�;rþ _þ� þ ½rþ _�;r� _þ�Þ;

f�� ¼ ½r� _�;r� _þ�; w� ¼ i½ �r _þ;r� _��;
�w _� ¼ i½rþ;r� _��;
d0 ¼ 1

2
ð �r _þ �w _� � rþw� þ ½rþ _�;r� _þ�Þ: (88)

4When we operate in the SIMð2Þ superspace, we should use
the SIMð2Þ projections rþk, �r _þk, r� _�k of the covariant
derivatives which do not contain unwanted Grassmann variables
��, �� _�. We will not distinguish the SIMð2Þ projections of
covariant derivatives from their unprojected super-Poincare
counterparts. It should be clear from the context which deriva-
tives should be used, moreover this difference is not important in
most cases. The SIMð2Þ projected covariant derivatives trans-
form under the gauge transformation as

r0þ ¼ eikrþe�ik; �r0
_þ ¼ eik �r _þe�ik;

r0
� _� ¼ eikr� _�e

�ik: (80)

5The SIMð2Þ superfields ~�� and ~�� _� are auxiliary and can be
eliminated from the action. If we do that we obtain the action

S ¼
Z

d4xrþ �r _þ
�
~��

�r _þ
rþ _þ

�
hcov þ d0 � wþ

1

irþ _þ
�w _þ
� rþ
rþ _þ

~�

�
:

(82)
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All actions which have been presented so far respect
super-Poincare symmetry even if they are written in the
SIMð2Þ formalism, which has lower symmetry. In order to
break the Lorentz symmetry, we have to add some Lorentz
breaking terms. It seems that the covariant representation is
most suitable for constructing such terms because it allows
us to easily verify both the gauge and SIMð2Þ invariance.

VIII. LORENTZ BREAKING TERMS

In this section, we give a brief discussion of effects of
SIMð2Þ invariant Lorentz breaking mass terms on results
presented in previous sections.

The following SIMð2Þ invariant but Lorentz breaking
mass term can be added to the action for the gauge field:6

Smass-gauge ¼ m2
g

Z
d4xrþ �r _þtr

�
�w _þ

1

ðirþ _þÞ2
wþ

�
: (91)

It can be rewritten in the gauge chiral representation if the
substitution (87) and (88) is performed as

Smass-gauge ¼ �m2
g

Z
d4xdþ �d _þtrð~v _�~v�Þ: (92)

Instead of the term ~v _�h~v� in (63), and in (71) we now
have ~v _�ðh�m2

gÞ~v� so the SIMð2Þ chiral superfield ~v _� is

now massive with mass mg. Note that the mass term does

not break the gauge invariance and there are still two
bosonic physical degrees of freedom in gauge multiplet.
If we had added Lorentz invariant mass term for the gauge
field, the gauge invariance would have been broken and
there would have been three bosonic physical degrees of
freedom.

The following SIMð2Þ invariant but Lorentz breaking
mass term can be added to the action for the chiral field

Smass-chiral ¼ m2
c

Z
d4xrþ �r _þ

�
~��

1

irþ _þ
~�

�
: (93)

It can be rewritten in gauge chiral representation if the
substitution (87) is performed as

Smass-chiral ¼ m2
c

Z
d4xdþ �d _þ

�
~��

1

i@þ _þ
~�

�
: (94)

The effect on (65), (68), and (72) is that instead of the term
~�� h

i@þ _þ
~� we now have ~��h�m2

c

i@þ _þ
~� thus the SIMð2Þ chiral

superfield ~� has now mass mc.
In order to better understand the physics behind these

Lorentz breaking terms, it may be useful to look at the
equations of motion with the Lorentz breaking mass terms
for the free fields written in terms of the ordinary
(�-independent) space-time fields. We define the fields as

’ ¼ �j; c � ¼ D��j; �� ¼ i �D2D�Vj;
A� _� ¼ 1

2
½ �D _�;D��Vj: (95)

The equations of motion for the fields ’, c are then

ðh�m2
cÞ’ ¼ 0;

�
@þm2

c

6n
2n � @

�
c ¼ 0: (96)

This equation for the spinor field was used in [1,3] to add
the mass to the neutrino. The same equation of motion is
satisfied by the gaugino field ��

@þm2
g

6n
2n � @

�
� ¼ 0: (97)

The solution of the equations of motion of the free gauge
field A in the light-cone gauge can be found by solving the
set of equations

n � A ¼ 0; @ � A ¼ 0; ðh�m2
gÞA ¼ 0: (98)

This result is consistent with the result presented in [4] for
the Abelian gauge field.
An interesting question is whether the SIMð2Þ invariant

Lorentz breaking mass term for a gauge (super)field gives
rise to mass for (super)fields coupled to it via quantum
corrections.
The opposite case has already been investigated in the

nonsupersymmetric setting in [3]. In that paper, a theory
with a SIMð2Þ invariant Lorentz breaking mass term for a
spinor field (neutrino) coupled to a massless gauge field
(photon) was considered. It was shown that the one-loop
corrections does not give mass to the gauge field.
The answer to this question would require quantization

of the theory and the evaluation of Feynman diagrams,
which is beyond the scope of this paper. We hope to return
to this question in the future.
Both the mass term for gauge field and mass term for the

chiral field were also proposed in [6].

IX. CONCLUSIONS

The model investigated in this paper consists of a gauge
superfield minimally coupled to chiral superfields. Two

6The mass term is not unique. For example, the term (91) can
also be written as

Smass-gauge ¼ m2
g

Z
d4xrþ �r _þtr

�
�f _þ _þ

1

ðirþ _þÞ3
fþþ

�
: (89)

Although the SIMð2Þ invariant Lorentz breaking mass term is
not unique, the effect on the equation of motion of the free gauge
field has to be the same. When the auxiliary field ~v� _� is
eliminated, then the equation of motion has to have the form

ðh�m2
gÞ~v _� ¼ 0: (90)

A change in the number of propagating modes is not possible
without breaking the gauge invariance and the form of the
equation is uniquely determined by the requirement of the
SIMð2Þ invariance.
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formulations of the supersymmetric gauge theory in
SIMð2Þ superspace were presented. The first was based
on the gauge chiral representation of the supersymmetric
gauge theory, the second was based on the covariant rep-
resentation of supersymmetric gauge theory.

A key observation which allowed us to reformulate the
gauge chiral representation in SIMð2Þ formalism is that it
is possible to completely fix the gauge in a way that does
not break SIMð2Þ supersymmetry. While in the Abelian
case treated in Sec. IV we were able to obtain results
without gauge fixing, in the non-Abelian case treated in
Sec. V we were able to obtain results in a compact form
only if the gauge was fixed. While the gauge fixed theory
does not have any gauge invariance it posses manifest
SIMð2Þ invariance and if we used it as a starting point
for quantization we would obtain a theory without ghosts.

The number of SIMð2Þ superfields appearing in the
theory has been reduced when we removed gauge freedom.
Moreover, in Sec. VI it was shown that some of the
remaining SIMð2Þ superfields are auxiliary and can be
eliminated from the theory. This further reduces the num-
ber of SIMð2Þ superfields appearing in the theory but the

resulting action contains terms which would lead to more
complicated Feynman rules.
While the gauge fixed gauge chiral representation gives

us a theory suitable for quantization, the covariant repre-
sentation presented in Sec. VII can be rewritten in SIMð2Þ
formalism in such a way that both SIMð2Þ invariance and
gauge invariance are manifest. Thus it is more suitable for
theoretical considerations. It was described how to rewrite
the expressions from the covariant representation to the
gauge fixed gauge chiral representation in the SIMð2Þ
formalism.
The Lorentz breaking but SIMð2Þ invariant mass terms

can be added to the gauge superfield or to the chiral super-
field. Their effects on results of previous sections was
discussed in Sec. VIII.
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