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In this paper, the SIM(2) superspace formulation of the supersymmetric Yang-Mills gauge theory
minimally coupled to chiral superfields is discussed. The super-Poincare invariant supersymmetric Yang-
Mills theory is rewritten to SIM(2) superspace formalism and the effects of SIM(2) invariant but Lorentz
breaking terms are discussed. Two approaches are investigated. The first is based on the gauge chiral
representation of the supersymmetric gauge theory and the second is based on the covariant representation

of the supersymmetric gauge theory.
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L. INTRODUCTION

Cohen and Glashow noticed [1,2] that many physical
phenomena, like, for example, the length contraction and
time dilatation, are left unchanged if we do not assume the
invariance of the physics with respect to the full Lorentz
group but only with its SIM(2) subgroup. This opens new
possibilities in the particle phenomenology, in particular,
concerning neutrino masses.

The implications of such a theory for neutrino masses
were discussed in [3]. The modifications of the electro-
magnetic theory were discussed in [4].

The supersymmetric theory based on the SIM(2) sub-
group was considered in [5] and its superspace formulation
was developed in [6]. Feynman rules in STM(2) superspace
formalism were presented in [7]. Wess-Zumino model with
Lorentz breaking mass term was used as an example on
which the one-loop calculation and renormalization was
demonstrated.

If we wish to consider neutrinos with mass added by a
SIM(2) invariant but Lorentz breaking term, then the
whole standard model, including the gauge sector, has to
be treated as a SIM(2) symmetric theory. Thus it is im-
portant to investigate the implications of STM(2) symmetry
for gauge theories. In the nonsupersymmetric case this was
done, for example, in [3,4].

In the supersymmetric case there are several articles, for
example [5-7], where the detailed treatment of a theory
with chiral multiplet is provided. Although the aspects of
the gauge theory are discussed on several occasions in
these articles and the SIM(2) modifications of it are pro-
vided, the detailed treatment of gauge theory, especially in
a superspace formulation, is still missing. This article tries
to fill this gap.

The paper is organized as follows. In Secs. II and I1I, the
notion of SIM(2) (super)field is introduced and it is shown
how Lorentz (super)field can be decomposed into SIM(2)
(super)fields. In order to gain familiarity with SIM(2)
(super)field formalism, the equations of motion for
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massless spin % and spin 2 fields are rewritten using
SIM(2) fields and discussed in detail. Sections IV, V, and
VI are devoted to the gauge chiral representation of super-
symmetric gauge theory. In Sec. IV, the simple case of
Abelian gauge theory is discussed, we show that gauge
freedom can be completely fixed in SIM(2) invariant way.
The results are then generalized to the non-Abelian case in
Sec. V and in Sec. VI we show that some of the SIM(2)
superfields are auxiliary and can be eliminated from the
action. Section VII is devoted to the covariant representa-
tion of supersymmetric gauge theory. At the end of this
section, we show how the covariant representation is re-
lated to the gauge chiral representation presented in pre-
vious sections. In Sec. VIII, we discuss how the results
presented in previous sections are affected if we add a
SIM(2) invariant but Lorentz breaking mass term.

II. SIM(2) GROUP AND PROPERTIES
OF SIM(2) FIELDS

The spinor notation for vectors will be used throughout
the paper. The left-handed Weyl representation (3, 0) will
be indexed by undotted lowercase Greek letters «, 3, ... =
+, —, the right-handed Weyl representation (0, 1) will be
indexed by dotted lowercase Greek letters a, 3,... =
+,=. On a few occasions we will also use four-
dimensional indices, for which we will use lowercase
Latin letters.

SIM(2) is a subgroup of the Lorentz group which pre-
serves a chosen null vector n up to rescalings. We will
assume that this null vector is chosen such that its coor-
dinates are n** = 1,n* " =n"t =n""=0.

The SIM(2) group is four-dimensional and solvable. As
a basis of its Lie algebra we can choose four generators of
symmetry J, ., J,_,J; i, i -.Because it is solvable, we
know from the theory of group representations, that all
irreducible representations are one dimensional, but not all
of its representations are fully reducible.

Our main purpose will be to modify a Lorentz invariant
theory by adding small SIM(2) invariant but not Lorentz
invariant perturbations. For this reason, we are not
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interested in the general theory of representations of the
SIM(2) group. It will be enough for us to look at how the
representations of the Lorentz group behave when we
reduce the symmetry to only the SIM(2) subgroup.

We start by looking at the behavior of left- and right-
handed Weyl spinors (i.e. representations (% 0) and (0, %)).
We can decompose the spinor space by the method de-
scribed in [6]. We introduce another null vector 7 satisfy-
ing n-7a =1, whose components we choose to be
i,y =1,y- =7_; =7i_- = 0. Then the spinor space

can be decomposed by the projectors # and ﬁz—ﬁl The

2
projector ’g—% projects the left(right) Weyl spinors on

the one-dimensional SIM(2) invariant subspace, while

the projector %’z{ projects on its one-dimensional comple-
ment, which is not uniquely determined, because there is a
freedom in choosing 7i.' The action of infinitesimal STM(2)

rotations on the Weyl spinors is
oY . €4 0 by
sy_) \ie. —ie._ \y_)
Sy €} - 0 )+
( v )=<’f ._ ><¢ ) @)
1/ i€-. —i€p. J\¢-

where €, , € _, €. ., €-- are some infinitesimal
parameters.

If we want to know how other finite dimensional repre-
sentations of the Lorentz group behave when we reduce the
symmetry to the SIM(2) subgroup, we use the fact that any
such representation can be expressed in terms of tensor
products of left- and right-handed Weyl representations,
whose behavior have already been discussed.

Now we look at how the fields, i.e. functions over
configuration space carrying representation of the
Lorentz group, behave when we reduce the symmetry
from the Lorentz group to the SIM(2) subgroup. The
simplest case is a scalar field, which transforms as ¢'(x') =
¢ (x). In the infinitesimal form, this reads as

Sp(x) = —0x%40 44 P(x), 3

where the infinitesimal transformations of space-time
coordinates are

Sxad = —e“ﬁxﬂd - é‘j‘Bx“B. 4)

"In our particular choice of n and i, the left and right Weyl
spinors are decomposed as

() ()
()

where the first term on the right-hand side belongs to the
invariant subspace, while the second belongs to its complement.
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When the symmetry is reduced to the SIM(2) subgroup,
the rule (3) remains valid but the infinitesimal transforma-
tions of space-time coordinates §x%% are less general
because €, and €~ 1+ are set to zero in (4).

The case of spinor fields, which transform under the
infinitesimal Lorentz rotations as

81 o(x) = —8xPPA 41, (x) + €,P i (),
5&@(35) = —BxBB(?BBl_pd(x) + éaBl_ﬂg(x),
is far more interesting. When the symmetry is reduced to

the SIM(2) subgroup, then we use the projectors % and ﬁz—ii
to split the fields in the same way as we did in the case of
the left and right Weyl spinors. The infinitesimal SIM(2)
transformations now read as

Sy (x)=—8x" 01 (x) +ie, o (x),

S _(x)= —8x D qqth (x) — i€y - (x) +ie _ify(x),

S i (x)=—08x"0 4 1 (x) T i€ - b4 (),

Sih-(x) = —8x g h - (x) = i€1 - - (x) +iE- - h 4 (%),
(6)

While the transformation of the projection ¢ . (x) is ex-
pressed in terms of itself and does not depend on the
projection # _(x), the transformation of the projection
s _(x) depends on both ¢ (x) and ¢ _(x). We cannot
separate the projections ¢ . (x) and ¢ _(x) from each other
because they are mixed by SIM(2) transformations. This
means that in a SIM(2) symmetric theory, the field ¢, (x)
may appear without ¢ _(x) being present, but ¢ _(x) has to
appear in multiplet with ¢, (x). The same is true also for
¢ +(x) and ¢ - (x). However, we can remedy this by defin-
ing modified projections ¢ . (x), ¢ _(x) and ¢ ; (x), i - (x),
which have the property that SIM(2) transformations do
not mix them among each other. They are defined as

0_

(&)

- [/ (x),

044

A A

i) =), P-()=y¢-(x)—

and their infinitesimal transformations are
S+ (x) = —0x D0t 1 (x) + i€ P (x),
8- (x) = —8x*¥9 g ih - (x) — €4 ih (%),
81 (x) = — x4 b 1 (x) + i€ - b1 (%),
B (x) = = 8xd 4= (x) = i€ - - (x).

Because the SIM(2) transformations do not mix them
among each other we can regard each of them as a separate
SIM(2) field, each of them may appear separately in a
SIM(2) symmetric theory. Unlike the case with unmodified
projections, i _(x) does not have to appear in the multiplet

®)
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with ¢ (x). Note that apart from the change of the x
variable, the transformations of ¢ (x) and ¢ _(x) are
governed only by one (complex) parameter €, _. This
parameter scales and changes the phase of these SIM(2)
fields in such a way that the scale and the phase of # _(x) is
changed in the opposite way as for ¢, (x). This gives us a
nice interpretation of the subscripts + and —.

The price we have to pay for the nice properties of these
SIM(2) fields is the introduction of the nonlocal operator

ﬁ. This operator has to be linear, has to satisfy the

condition 9, ; % = 1, which defines it as a Green func-
++

tion of 9, ; and we will also require that it commutes with
all space-time derivatives [ .4, ﬁ] = 0. Let f(x) be some

function, then the condition that the derivation 9, ; has to
commute with 5-— glves

1 1
[ A’a++i|f(x)=< ) 11 — 04t
(N 044

041 f(x) — flx) = 0. &)

v

a++

But this is evidently not true for nonzero functions satisfy-
ing 9, . f(x) = 0. This indicates that we have to work with
the space of functions which is somewhat reduced, namely,
to those satisfying (9). One way to define the operator t is

a++f(x) [_m

In this case, the space of functions we are working with has
to be reduced to those satisfying lim +:_,_ f(x) = 0. One
of the most important consequences of the fact that we
have to work with the reduced space of functions is that the
equation 9, ; f(x) = 0 has only one solution f(x) = 0.

In order to understand the behavior of these SIM(2)
fields and their relation to the Lorentz fields from which
we constructed them we will look at two well known
models. First we will look at a massless fermion and then
at an Abelian gauge field.

A massless fermion is described by a spinor field ¢ ,(x)
satisfying the equation of motion

8 0 (x) = 0. (an

If we rewrite it in terms of SIM(2) fields ¢, (x) and ¢ _ (x),
we get a set of equations

drt F(et ). (10)

This fact is useful when we are constructing SIM(2) invar-
iants. For example, it is easy to understand why the expression
Jd*x i _(x)d; - (x) is SIM(2) invariant. The derivative 9, ;
transforms as @', | = (1 + i€, + i€; -)d, so it is scaled by
both parameters e, _ and € -, while each of the STM(2) fields
¥ _(x)and - (x) is scaled by one of them in the opposite way as
4. The result is that the expression ¢ _(x)d, ;¢ -(x) is not
scaled at all. The integral ensures that the expression is invariant
with respect to the transformations of the x variable so the whole
expression is SIM(2) invariant.
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0 ()=0, 0P () F (=0 (12)
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As was mentioned before, the equation 9, i _(x) =0
implies ¥ _(x) = 0 because we are forced to work with
the restricted space of functions. Thus, the above equations
are equivalent to

g_(x)=0,  O¢ (x)=0. (13)

We see that all dynamics is carried by the field ¢ (x),
while the field ¢ _(x) is auxiliary.

An Abelian gauge field A,(x) (or equivalently A, (x) in
the spinor notation) is a vector field, which is subject to the
gauge transformation

Ay (x) = A, (x) + 9,8(), (14)

where g(x) is an arbitrary scalar function. The equation of
motion is

9(9,45(x) = 95A,(x)) = 0. (15)

We will work in the light-cone gauge n - A(x) = 0, which
breaks Lorentz invariance, but does not break SIM(2)
invariance. This condition does not fix the gauge com-
pletely, we can still perform the gauge transformations
with n - dg(x) = 0. If we work on-shell, we can use this
gauge freedom to set 9 - A(x) = 0. In order to do that we
have to perform a gauge transformation with function g(x)
satisfying the set of equations [Cg(x) = —d - A(x),
n - dg(x) = 0. This set of equations has solution only if
O(n-d)glx) = (n-9)0gx) = —n-93(0 - Alx)) = 0, but
the validity of this integrability condition is ensured by
equation of motion as can be easily verified by multiplying
(15) by n?. Thus we can search for solutions satisfying

n-A(x) =0, d-Alx) =0, OA(x) = 0. (16)

Now we see what the light-cone gauge and equations of
motion look like if we work with STM(2) fields

Api() = AL (),
Ast) =450 = 5400
Ao = A = 524050,
A=A = 5 A (0~ T A
+ g; Z:A++(x) (17)

which are defined in such a way that each of them is closed
under the action of SIM(2) group. In the light-cone gauge
A, :(x) =0 and we are allowed to make gauge transfor-
mations with 9, ;g(x) = 0. However, we are forced to
work with reduced space of functions where the equation
d,1g(x) =0 allows only one solution g(x) = 0. This
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means that in this formalism the light-cone gauge com-
pletely fixes the gauge freedom. The equations of motion
are now
8++8++A,;(x) =0,
DA,;L()C) + 8,+8++A_;(x) =0,
OA,-(x)+0,-0,1A_-(x) =0,
O _ ~ Oy~ ~
~OA, - (x) + a+» OA_ (x)+9_19,-A_-(x) =0.

++ ++

(18)

Because the equation 9,0, :A_-(x) =0 has only one
solution A__-(x) =0, we have to search for solutions
satisfying

Aii(x) =0, A_-(x) =0,
OA_;(x) =0=D0A, - (x). (19)

We see that all dynamics is carried by the complex field
A_(x), while the field A_ - (x) is auxiliary. Although the
calculations were affected by the fact that the space of
functions is reduced, we still get the correct number of
physical modes for the Maxwell equations of motion.

III. SIM(2) SUPERGROUP AND
PROPERTIES OF SIM(2) SUPERFIELDS

The Lie superalgebra of SIM(2) supersymmetry [5], is
obtained by reducing the super-Poincare superalgebra. The
Lorentz part is reduced to SIM(2) rotations and the super-
translations £Q + & Q are restricted to those satisfying
ne = 0= ne.

The SIM(2) superspace and its algebra of covariant
derivatives [6] can be obtained from their super-Poincare
counterparts. The STM(2) superspace has all of the space-
time coordinates but the set of Grassmann odd coordinates

is reduced to the projection ’{—2’4 6 and its Hermitian conju-
gate. The covariant spinor derivative D can be split into the

piece d = %”/D which we keep in the algebra and the

remaining piece ¢ = ’{—zﬁD.

If we use our choice of vectors n, 71, the generators of the
SIM(2) superalgebra consist of rotations J, ,, J,_, J; i,
Ji -, space-time translations P,; and supertranslations
Q., Q.. The superspace is parametrized by space-time
coordinates x*® and two Grassmann odd coordinates 6,
6% . The al gebra of covariant derivatives consists of deriva-

tivesd, = D, d; = D, (the minus components of d =

%—{iD and d = %—{iD_ are equal to zero) which are subject to
the relation

{dy,di}=id, 4. (20)

The only nonzero components of g and g are g = D_ and
q . =D_- .
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In order to rewrite actions and other expressions con-
taining super-Poincare invariant superfields into SIM(2)
formalism we need to replace each super-Poincare super-
field by a set of SIM(2) superfields having the same
component content. This is done by the method of cova-
riant projections. First define a projection symbol

1= 1u/200.6/23-0 = lo-=04=0- 1)
which projects the Grassmann odd coordinates which are
not part of the SIM(2) superspace to zero.

We replace a scalar complex super-Poincare superfield
F with four complex SIM(2) projections f, f_, f-, f_-
related to the superfield F as

f=rl f-=4q-Fl f-=3q-Fl,

foo=5lanq el @2)
The super-Poincare superfields will be denoted by upper-
case letters, while their SIM(2) projections will be denoted
by the same lowercase letters. When the projections f, f_,
f-, f_- are SIM(2) rotated, they are mixed with each
other. This is a consequence of the fact that spinor cova-
riant derivatives are transformed according to (6) under
SIM(2) rotations. The minus components of the covariant
derivatives, which are used to define the projections, are
mixed with the plus components which results in the mix-
ing of projections.

In the case of a chiral superfield ®, only two projections
¢, ¢ _ are independent, in the case of antichiral superfield
® only the projections ¢, ¢ - are independent,® moreover
they satisfy the conditions

i0_1¢,

dig_ =
digp. =id,-¢. (24)

dig =0,

d+¢ = 0’

It is possible to change the definition of the projections
in such a way, that SIM(2) rotations do not mix them
among each other, moreover we will see, that in the case
of a chiral superfield the conditions (24) will be simplified.
The idea is that we replace the covariant derivatives used in
the definition of SIM(2) projections with operators defined
according to (7), i.e. with the operators

8,‘ ~ — 8 o =
g_.=D_——D,, g-=D.——"D;. (25
944 d14

The new projections are defined as
3The other projections are
i
$-=0  $.=-20 -9
- - i -
$-=0  b.=70 -4 (23)
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F=Fll  f-=4qg_Fl

F=

f; ZEI—F“,

[G-. q-]FIl (26)

| =

They transform by rescaling under SIM(2) group. The
infinitesimal STM(2) rotations are

SF = —(6x%%0 0 + 60% 0, + 807 3,)F,

8f_ = —(6x*%9 4 + 807, + 60Fd ) f_ —ie _f_,
S5f- = —(8x%%9,, + 609, + 6079 )f- —iel-f-,

8F_ - = —(6x*%d,, + 8010, +6075,)f_-
— (e, +&r-)f_-. 27)

The first term on the right side accounts for the shift in the
coordinates; the second term results in the scaling.
In the case of a chiral superfield ® only the projections

&, ¢ _ are nonzero, for an antichiral superfield ® only ¢,
¢ - are nonzero, moreover they satisfy the conditions
d:$=0, dyd =0, d$p=0, dib.=0. (28

We will call SIM(2) superfields satisfying such conditions
SIM(2) chiral and SIM(2) antichiral. The following holds
for the Hermitian conjugation

)=¢ (b )=—0-,
D) =0  (p-)=—_. (29)

In the case of real superfield V =V the Hermitian
conjugation acts as

=
I
Sl

v)
(v-)

One of the remarkable properties of SIM(2) superfields
is that any complex SIM(2) superfield f can be decom-
posed as a sum of a chiral SIM(2) superfield ¢ and an
antichiral SIM(2) superfield a

f=a+ec 31)

ﬁ, (ﬁf) = _ﬁ;, (30)

., () =_-.

The chiral and antichiral SIM(2) superfields appearing in
the decomposition can be calculated as

0 044

the identity (20) then leads to (31).

c

’ a=

e (32)

IV. ABELIAN CASE

The aim of this section is to show what the super-
Poincare symmetric Abelian gauge theory looks like if
we rewrite it in the SIM(2) formalism. We have decided
to treat the Abelian case separately from the non-Abelian
case because its simplicity allows us to perform
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calculations which would be difficult to do in the non-
Abelian case and to compare results in SIM(2) formalism
with the results in the usual Poincare-invariant formalism.

The super-Poincare Abelian gauge theory contains a real
scalar superfield V and is invariant under the gauge trans-
formation

V=V +il—iA, (33)
where A is a chiral superfield. In order to rewrite it in the
SIM(2) superspace formalism we define the SIM(2)
projections ¥, ¥_, U-, D_-, A, A_, A, A= of V, A, A in
the same way as we did in (26). As a consequence of the
reality of the superfield V we have (30), the chirality and
antichirality of A and A results in conditions (28) and (29)
with A in place of ¢.

The gauge transformation (33) rewritten for the SIM(2)
superfields is

S(A+X), L=0- ik (34)

The action for the gauge field is
S = [d“deHW2 (35)

where
W, = iD’D,V. (36)
In the SIM(2) superspace formalism, it looks like

S=[d4xd+a+[—d+<ﬁ_; +l _ = 17)
2[(9++

- 1 O [

1044

It is possible to fix the gauge freedom in a way that
respects SIM(2) supersymmetry. A convenient choice of
gauge fixing conditions, which completely fix the gauge

freedom, is
7 =0, d,o_.=0=d;v-. (38)

Ifo,0_, 0., v_- are arbitrary, then we can go to the above
gauge by performing the gauge transformation (34) with

o, A=—i—"T9. (39

The only gauge transformations preserving our gauge fix-
ing conditions are those with A=0= X_, so there is no
remaining gauge freedom.

In this gauge, the action (37) reduces to

S = jd4xd+a+(—d+ﬁ,;&+ﬁ,; +9.00_). (40)

In the gauge fixed form, the whole dynamics of super-
Poincare Abelian gauge theory is described by one real

105009-5
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Grassmann even SIM(2) superfield ©_. and one
chiral Grassmann odd SIM(2) superfield ©- (and its con-

jugate U _).
The classical equations of motion are
68 - _
= = d+d+ﬁ_; - d.}.d.{.ﬁ_; = O,
SU_-
oS
= - Dd+ﬁ; - O. (41)
SU_

They are equivalent to

Ov.=0, &_.=0. 42)

We see that ©_ - is auxiliary superfield and all dynamics is
carried by the superfield v - (which contains two bosonic
and two fermionic degrees of freedom).

We will examine what the above gauge and equations
of motion look like if we rewrite them in terms of compo-
nents of V

C=V|, xo=iD, V|, xoa=—iDsVl, M=D?V|

_ _ 1__ _
M = D?V|, AMZE[DQ,DQ]VI, A, =iD?*D V|,

PHYSICAL REVIEW D 85, 105009 (2012)

where | = |4a_( ga—o denotes projection, which leaves only
#-independent part.
The gauge fixing conditions (38) imply

A++ :0,

Ap=0131x-. (44)

C:O) X+:0:A_/+’
M=O=M, )\+ =a+4'rj/;,

The last two conditions can also be written as y_ =
1
[
in the form which does not depend on the choice of the
vector n as

A, e = ﬁ A. We can write these conditions also

#
2n-9

C=0, M=0=M, n-A=0, y=i A (45)

The only fields which are not completely constrained by
these conditions are the scalar D', the spinor A, and the
vector A which is constrained by n -+ A = 0. The compo-

X, =—iD*D,V|, D'= 1 DeD?D. V| (43) nents of the STM(2) superfields appearing in the action can
“ “nv 2 “nr be in the given gauge expressed as
|
1 - 1 = 1 1 - - -
5| = = AL, == = A, div |=A_  =A__,
o_| i, + i, + .| i, . 0., + 10| + +
04 x - Jd_
div.|=—A,- = —A, -, div_-|=—A. + af A= —A, div_-|=—A_+ ; S = A,
++ ++
1 . . } 9 N -
§[d+,d+]v_;| =D s U_;l =—-A__. + 3 A+; + a_A,Jr = —A__. (46)
++

The equations of motion (42) written for the components
are

DA+; =0= DA_+,

A_- =0, D' =0. 47)

Here, we can identify the equation of motion of the mass-
less fermion (13) and the equation of motion of the Abelian
gauge field (19).

V. GAUGE CHIRAL REPRESENTATION

This section is devoted to the non-Abelian theory in the
gauge chiral representation. We will show that it is possible
to use the same SIM(2) invariant gauge fixing conditions
as in the case of the Abelian theory to completely remove
the gauge freedom. Then we will show what the action
looks like in this gauge. We will not present the results for
the case where the gauge is not fixed.

In the supersymmetric non-Abelian gauge theory, we
have a chiral superfield ® with values in the representation

space, and we require that it is invariant with respect to a
local gauge transformation

D = ir, (48)

where A is a Lie algebra valued chiral superfield, i.e. A =
AAT,, where A4 are chiral superfields and T, are
Hermitian generators of Lie algebra. In order to construct
a gauge invariant equivalent of the term ®®, we introduce
a Lie algebra valued real scalar superfield V, which
transforms as

eV’ — eiAevefiA, (49)
so the term ®e"® is gauge invariant.

The decomposition of the superfields V and A to SIM(2)
superfields can be done in the same way as in the case of
Abelian gauge theory, i.e. according to (26). The SIM(2)
superfields 0, v_, U-, U_- sNati§fy the conditions (30),
the SIM(2) superfields A, A_, A, A- satisfy the conditions
(28) and (29).
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Although it is not possible to rewrite the gauge trans-
formation (49) for SIM(2) superfields in a compact form
(at least we do not know how to do it), it is possible to fix
the gauge in the same way as in the case of Abelian theory,
i.e. by requiring

=0, d,o_=0=d;v-. (50)

Before we show that this choice of gauge is possible, we
prove that an exponential of any complex SIM(2) super-
field f can be written as

el = efel, (51)

where c is a chiral SIM(2) superfield and a is an antichiral
SIM(2) superfield. This is very similar to the decomposi-
tion (31) which allows us to write any SIM(2) superfield as
a sum of a chiral and an antichiral STM(2) superfields. In
the Abelian case the decomposition (51) can be inferred
directly from (31).

First, we will assume that the decomposition (51) is
possible and find out what ¢ and & should be. Then we
will show that this assumption is correct. A simple calcu-
lation shows, that the SIM(2) superfields ¢ and a have to
satisfy the equations

di(efdief) = e Cid, e,

d,(diefe ™) =i0, e%e " (52)
The solutions of these equations can be formally written
with the help of the path-ordering operators R and L,
which order the arguments according to increasing and
decreasing value of x**. The argument having the largest

value of x*7 is the rightmost in the case of operator R and
the leftmost in the case of the operator L. The solutions are

ef = Rexp(—i[x c_1+(e_fd+ef)dt++),

o0

ed = £exp<—i[x d+(<_1+efe_f)dt++). (53)

Now we define a new SIM(2) superfield f' as
el' = e7%efee, (54)

In order to prove that the decomposition (51) is really
possible, we have to prove that f/ = 0. With the help
of (52), it can be shown that

di(e /'d,ef) =0, d,(diefe)y=0. (55
These equations are equivalent to

did,el =dielefd. e,

dydiel’ = —diel'e d, el (56)
Their sum gives us the equation 0 = (d;d, + d,d;)e/ =
i0, e, which is equivalent to d,;f = 0. The only

solution of the last equation is f/ = 0 and this completes
our proof.
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Now we are going to prove that the gauge (50) is
admissible. We will show that by performing two subse-
quent gauge transformations we can go from arbitrary
SIM(2) superfields 0, ©_, U-, U_ - to superfields satisfy-
ing our gauge fixing conditions.

Let make a projection on SIM(2) superspace on both
sides of (49)

()l = (eiheVe )| = 7 = eiheteiA, (57)

We want to set ¥/ = 0, which will be achieved if e’ =

¢~X¢i* The decomposition (51) tells us that this happens
when we choose

A= —iln(’R exp(—ifx (_1+(e*’7d+ef’)dt+*)). (58)

Now we may assume that o = 0 and perform another
gauge transformation to set d, ¥ = 0. In order to preserve
the condition ¥ = 0 we have to choose a gauge trans-
formation with A = 0. By acting with D_ on both sides
of (49) and then making projection on the SIM(2) super-
space we obtain

D _ (") =D_(ereVe ™M)= v =5_ —id_. (59)

If we choose

. did
A=—-i—Lp_, (60)
1044
we set d. 9" = 0 (and also d. 9" = 0).

This completes the proof of the admissibility of the
gauge fixing conditions (50). Because the only gauge trans-
formation which preserves our gauge fixing conditions is
the one with A = 0, A_ = 0, the gauge freedom is fixed
completely.

The action for the non-Abelian gauge field in the
Poincare-invariant formalism is

S = [ d*xd?0tr(W?) (61)
where
W, = iD*(e"VD,e"). (62)

If we rewrite it in the STM(2) superspace formalism with
the gauge being fixed according to (50), then we get

- - 1
S = '/’d4xd+d+tr(ﬁ;|:|ﬁ_ + d+<ﬁ__ + E{ﬁ_, ﬁ_})

X d+(ﬁ,; + %{ﬁ,, ﬁ;}> + (ﬁ,; + %{57, ﬁ;})

_ . d- -
X[d+ﬁ;,d+ﬁ_]—d+ﬁ;[d+ﬁ_, a d+ﬁ_]
d14

- a+ﬁ_|:d+z7;,z_—+ d+ﬂ;]). (63)

+5
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Note that each term in the sum is separately SIM(2)
invariant.

Now we will look at what happens when the theory
contains another field coupled to the gauge field. We
have decided to use the model with a chiral field @
minimally coupled to the gauge field V, i.e. the action in
the super-Poincare formalism is

S = f d*xd?0d%0 O ¢V . (64)

The SIM(2) superfields corresponding to the super-
Poincare chiral field ® and its Hermitian conjugate ® are
defined according to (26) and satisfies the conditions (28)
and (29). When the action is rewritten in the SIM(2)
formalism, it looks like

N O e R R A R R
+ (Z(ﬁ__ +%(ﬁ_17_ - ﬁ;ﬁ_)>¢3 + (Z: )dio.)d
“iGde Jp-dan5)
+$(§;id+ﬁ;)q§). (65)

Each of the first five terms is separately SIM(2) invariant.
This is not true for the last four terms; we have to group
them in pairs to get invariant expressions.

The formalism presented in this section have manifest
SIM(2) invariance but there is no gauge invariance because
we are working in a gauge which completely removes it.
This will be useful when we want to quantize it because
there will not be any ghosts. But for other purposes, it
would be more beneficial if we had a formalism where the
gauge freedom is not removed and where both SIM(2)
invariance and gauge invariance are manifest.

Alternative decomposition of V into SIM(2) superfields

We may also use the projections defined as

o=V, d_=lle"D_e")ll, d-=D=e")e "l
D =%(D_(D;evefv)ev —e"D-(e7VD_e"))l,
A=Al A-=iD e ™e, X=All
Ao =—ie D). (66)

They satisfy the reality conditions (30), but the chirality

conditions for A, A_, A, A- and infinitesimal SIM(2)
rotations are more complicated and contain derivatives
acting on e'. The gauge transformations are
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5! "L 1 —'A A A —

eV = eireleTiA v = eMo_ —iA_)e 4,

. =MD + id)e T,
o X _ih | oo o—ih L oiis —iA
v_. =e'v_-e +§6_;e ele —Ee evo_-e .

(67)

If we used the covariant derivatives §_, §- (25) instead of
D_, D in the definition of projections (66), then the gauge
transformations would be more complicated, but SIM(2)
projections would have nicer properties. The projections of
V would still satisfy the reality conditions (30), the pro-
jections of A, A would satisfy chirality conditions (28) and
reality conditions (29). The infinitesimal SIM(2) rotations
would look like (27).

VI. ELIMINATION OF THE
AUXILIARY SUPERFIELDS

How many real components, i.e. real fields with values
in the representation space, are contained in the superfields
V and ®? How many of them are physical, i.e. how many
of them carry dynamics? There are 16 real components in
V and 8 real components in ®. Each V and ® have four
physical components (two bosonic and two fermionic).

The super-Poincare superfields were replaced by
SIM(2) superfields. The superfield ® was replaced by
two SIM(2) chiral superfields ¢, ¢_, each having four
real components. In the case of the superfield V, we have
completely fixed the gauge by (50) and only one real
SIM(2) superfield o_ - and one SIM(2) chiral superfield
¥_ (and its conjugate ¥-) remains in the rewritten action.
Each of o_ ., ¥_ has four real components so we got rid of
eight components of V.

In this section, we will show that the SIM(2) superfields
¢_ and ©__ are auxiliary and can be eliminated from the
action. After that, we will obtain an action containing only
superfields whose components are physical.

We start by eliminating the auxiliary SIM(2) superfield

¢_. By varying the action (65) with respect to ¢, we
obtain the equation of motion d, ¢ _ + d, (¥_¢) = 0. Its
solution ¢p_ = — ﬁd+d+ (7_¢) (and its conjugate) can
be used to eliminate q’;_ and <;7>; from the action. The
resulting action is

S, = [d xd+61+(—<?>lamH b + 55(”__ + %{ﬁ_, v;})é
B (@od) + (5 BN
B T R )
tan))
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We generalize our model before we eliminate the auxiliary
SIM(2) superfield ©_ - from it. Instead of a model with one
chiral superfield ®, we will consider a model with multiple
chiral superfields ®® coupled to the gauge superfield. The
action will be

S=5,+35, (69)
3

where S, is the action (63) for the gauge superfield and § (Ck)

are the actions (68) with the SIM(2) superfield ¢ replaced

by ¢*. When the auxiliary SIM(2) superfield ¥_- is

eliminated from this action we obtain the action

S=8,+>8Y+3sH
k

k1

(70)

where the part of the action containing only the gauge
superfield is

- - a - =
Sg=[d4xd+d+tr<ﬁ;|jﬁ,—d+ﬁ;|:d+z7,,a+ dw,]

++
- J_; d -
_d+ﬁ_[d+i}_,7+d+f}_]_< * [d+l~)_,d+l~)_])
(R 1044
di oo s
X( [d+v_,d+v_])), (71)
1044

the part containing chiral superfield coupled to the gauge
superfield is

- = [
s = [axd,an(-Y =g

1014

- 3,5 (@9 )3%)
9= 20\ q. 5 \a0 — 30025 = \gw0
+(5=Y)@od0 - 39 (=)o
- 3o (FE ) + 9 0, Yo
++ ++
) d+a+ - a+d+ T 7 (k)
(o d0d0). 2

and there is also a part where the chiral superfields are
mixed among each other

st= [ d4xd+a+tr(—(l.a%w?(”&3“5)(&—*(&“%2(”))).

041
(73)

There are terms whose structure is different from the
structure of the terms which were present in the original
actions (63) and (65). In the original actions the nonlocal
operator ﬁ always acted on terms composed of only one
SIM(2) superfield. This means that it is possible to have
Feynman rules where each nonlocal operator is associated
with only one leg of the vertex. This is not true for the
actions with eliminated auxiliary superfields. For example,

in the third term in (68) the operator i acts on (d19_)d.

PHYSICAL REVIEW D 85, 105009 (2012)

In a Feynman diagram with a vertex corresponding to such
term, the nonlocal operator will not be associated with a
single leg but with a pair of legs.

VII. COVARIANT REPRESENTATION

In this section, we will develop another formulation of
SIM(2) gauge theory. It will be based on the covariant
representation of the supersymmetric gauge theory. We
will see that it is possible to develop a formalism in which
both the SIM(2) invariance and the gauge invariance are
manifest. At the end of the section, we will show how this
formalism is related to the formalism developed in the
previous section.

We begin with a brief presentation of the covariant rep-
resentation of the super-Poincare gauge theory. In the co-
variant representation we use a covariantly chiral superfield
@, which satisfies the condition V,® =0 (V,® = 0),
instead of the chiral superfield ® used in the previous
section. We will distinguish superfields used in the cova-
riant representation from the superfields used in the pre-
vious section by typesetting them in bold letters.

The covariant derivatives V,, V4, V,, are subject to the
commutation relations

{va, VB} = 0 == {vd, vlg}, {va, ?a} == ivad,
[va: VBIB] = CaBWBr [vd’ vﬁﬁ] = Cd BWB;
[vozo'z’ V,B,B] = _i(Cd,BFa,B + CaﬁFdB)’ (74)

the field strengths W,, W, F.p. I:’dﬂ, D’ satisfy the
relations

VWgs =0, V.Ws =0,
VaWB = Faﬂ - iCaﬁD’,

VoW =F,,+iC, D (75)

The superfield @ and the covariant derivatives transform
under the gauge transformation as

I — LiK I — LKy ,—iK
O = P, Vi, = eV e %,

V., = KV e K V!, = e&V e K (76)
where K is a real Lie algebra valued superfield.

The SIM(2) projections of the superfields ®, @ are
defined in a similar way as in the case of the superfields
®, ®, the main difference is that we use the covariant
derivatives instead of the ordinary ones. The covariant
SIM(2) projections

- - 1
b=l $ = (vf -V rm)‘b”y
N St
bdl b= (7 -V V)l

++

satisfy the covariant STM(2) chirality conditions
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Vib=0=V.d, Vid_-=0=V,b.. (78
Note that the ordering of the covariant derivatives in (77) is
important because not all of them commute among them-
selves. If the covariant derivatives V_;, V.. were not

placed in front of the other derivatives then the SIM(2)
projections (T)_, & would not satisfy the covariant
SIM(2) chirality conditions. The projections ¢, ¢_, ¢,

&, to which we will refer also as to SIM(2) superfields,
transforms with respect to the infinitesimal SIM(2) trans-
formations exactly as the field f in (27). The gauge trans-

formations acts on them as
' =e*p, P =cP

where the real SIM(2) superfield k = K]|| is the projection
of the superfield K.*

The actions for the scalar chiral field and for the gauge
field

(79)

Secalar = f d*xd?0d%6 & P,

Sguuge = f d*xd2 0t (W?), (81)
rewritten in the STM(2) superspace formalism, become °
- = - =V, v, -
Sscalar = /d4xv+v+<_¢*¢— —¢ - (Dcov + d/)—+¢
A Vi
= _ 1 ~ = 1 ~
thoro b b))
Vi Vit

Sgauge = [d4xV+tr(—w_(f+_ +d)two o). (84)

— lygaa : ’ :
where [, =5V*V,, is d’Alembertian composed of
covariant derivatives and

“When we operate in the SIM(2) superspace, we should use
the SIM(2) projections V|, Vill, Vol of the covariant
derivatives which do not contain unwanted Grassmann variables
0~, 6. We will not distinguish the SIM(2) projections of
covariant derivatives from their unprojected super-Poincare
counterparts. It should be clear from the context which deriva-
tives should be used, moreover this difference is not important in
most cases. The SIM(2) projected covariant derivatives trans-
form under the gauge transformation as

V. = e*V e, Vg = ehV ek
V!, = e*V ek (80)

>The SIM(2) superfields ¢_ and 5); are auxiliary and can be
eliminated from the action. If we do that we obtain the action

_r=V; 1 V., -
= 4VV~[ _— (D +d — 7‘A)—+ ]
S fdx Vi (bv cov Td —wy iV++w+ V++¢

+4

(82)
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we=Wil,  wi=Wil =D,

fio=F. N f_=F_|

are the SIM(2) projections of the corresponding super-
Poincare field strengths. It is easy to see that each term in
(83) and (84) is gauge invariant. The STM(2) invariance of
(83) follows directly from the transformation rules for the
superfields and the derivatives appearing in it. In order to
prove the SIM(2) invariance of (84) we have to transform
each subscript in the superfields w, , w_, f._, f__ ac-
cording to (2) and then use the identities V. w_ = f._ —
d,Viw, =fi,.

Now we will describe how the covariant representation
can be transformed to the gauge chiral representation
described in the previous section. If we are working in
the super-Poincare formalism and want to go from the
covariant representation to the gauge chiral representation,
then we have to do the following replacements for the
covariant derivatives and superfields:

(85)

d-D, P>,

V,—e VD,e,

vad_) _i{e_vDaeV’D_d}r (86)
In the SIM(2) formalism, we have to replace the cova-
riantly chiral STM(2) superfields (77) and covariant deriva-
tives with expressions containing the chiral SIM(2)
superfields ¢, ¢ _, ordinary derivatives and the gauge fixed
superfields 0_, U, U_-.

Vi —d,, Vi —ds, Vii—a4g,
v7+ i 87+ - la+ﬁ_, v+; - 8+; + id+i);,
a - —
Vo= - +iv_> —i——dyo_ +i—d,d-
(R (N
—l—%ﬁ_,ﬁ_},
S - Y P
b—d  b—d ¢ @)
1044
=~ ~ = ~ = d+ -
d—d b= devdon ()
044

(87)

The field strengths appearing in (83) and (84) can be
calculated with the help of the commutation relations
(74) and the identities (75) as

Wi = l[v+: V+;], W—}— = i[v+) v—-i—])
foo =30V L 9LV )
f** = [vfé! V,+], w_ = i[v+: vfé]»
W =iV, V_.]

1 -
d' =S (Vi = Vow_ + [V, V_3]) (88)
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All actions which have been presented so far respect
super-Poincare symmetry even if they are written in the
SIM(2) formalism, which has lower symmetry. In order to
break the Lorentz symmetry, we have to add some Lorentz
breaking terms. It seems that the covariant representation is
most suitable for constructing such terms because it allows
us to easily verify both the gauge and SIM(2) invariance.

VIII. LORENTZ BREAKING TERMS

In this section, we give a brief discussion of effects of
SIM(2) invariant Lorentz breaking mass terms on results
presented in previous sections.

The following SIM(2) invariant but Lorentz breaking
mass term can be added to the action for the gauge field:®

Smass-gauge = mé/d4xv+v+tr<w4— w+)- oD

1
(iv++)2
It can be rewritten in the gauge chiral representation if the
substitution (87) and (88) is performed as

Smass-gauge = — M3 f d*xd,ditr(@-9_).  (92)
Instead of the term ©-[1o_ in (63), and in (71) we now
have ¢ (00 — m2)d_ so the SIM(2) chiral superfield 7 is
now massive with mass m,. Note that the mass term does
not break the gauge invariance and there are still two
bosonic physical degrees of freedom in gauge multiplet.
If we had added Lorentz invariant mass term for the gauge
field, the gauge invariance would have been broken and
there would have been three bosonic physical degrees of
freedom.

The following SIM(2) invariant but Lorentz breaking
mass term can be added to the action for the chiral field

Smass—chiral = mg [d4xv+v+(&; le . J)) 93)
++

It can be rewritten in gauge chiral representation if the
substitution (87) is performed as

5The mass term is not unique. For example, the term (91) can
also be written as

= - 1
Smass-gauge = mé [d4xV+V+tr(f+ + mf++) (89)

Although the SIM(2) invariant Lorentz breaking mass term is
not unique, the effect on the equation of motion of the free gauge
field has to be the same. When the auxiliary field o__ is
eliminated, then the equation of motion has to have the form

@ —m)i- =0, (90)

A change in the number of propagating modes is not possible
without breaking the gauge invariance and the form of the
equation is uniquely determined by the requirement of the
SIM(2) invariance.
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_ ~ 1 -
Smass—chiral = m% [d4Xd+d+<¢ 0. d)) (94)

++

The effect on (65), (68), and (72) is that instead of the term
D D-mi ¢ thus the SIM(2) chiral

superﬁeld ¢ has now mass mc.

In order to better understand the physics behind these
Lorentz breaking terms, it may be useful to look at the
equations of motion with the Lorentz breaking mass terms
for the free fields written in terms of the ordinary
(#-independent) space-time fields. We define the fields as

¢ =D, Yo
j
Aao‘z = E[Dd’ Da]Vl (95)

= D,P|, X« =iD?D,V]|,

The equations of motion for the fields ¢, ¢ are then

(0 —m2)e =0, (0 + m? L)d/ =0. (96)
2n-0
This equation for the spinor field was used in [1,3] to add
the mass to the neutrino. The same equation of motion is
satisfied by the gaugino field y

(6 + m; 2}{) =0. 97)

The solution of the equations of motion of the free gauge
field A in the light-cone gauge can be found by solving the
set of equations

n-A=0, 9-A=0, (O-m)HA=0. (98)
This result is consistent with the result presented in [4] for
the Abelian gauge field.

An interesting question is whether the STM(2) invariant
Lorentz breaking mass term for a gauge (super)field gives
rise to mass for (super)fields coupled to it via quantum
corrections.

The opposite case has already been investigated in the
nonsupersymmetric setting in [3]. In that paper, a theory
with a SIM(2) invariant Lorentz breaking mass term for a
spinor field (neutrino) coupled to a massless gauge field
(photon) was considered. It was shown that the one-loop
corrections does not give mass to the gauge field.

The answer to this question would require quantization
of the theory and the evaluation of Feynman diagrams,
which is beyond the scope of this paper. We hope to return
to this question in the future.

Both the mass term for gauge field and mass term for the
chiral field were also proposed in [6].

IX. CONCLUSIONS

The model investigated in this paper consists of a gauge
superfield minimally coupled to chiral superfields. Two
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formulations of the supersymmetric gauge theory in
SIM(2) superspace were presented. The first was based
on the gauge chiral representation of the supersymmetric
gauge theory, the second was based on the covariant rep-
resentation of supersymmetric gauge theory.

A key observation which allowed us to reformulate the
gauge chiral representation in SIM(2) formalism is that it
is possible to completely fix the gauge in a way that does
not break SIM(2) supersymmetry. While in the Abelian
case treated in Sec. IV we were able to obtain results
without gauge fixing, in the non-Abelian case treated in
Sec. V we were able to obtain results in a compact form
only if the gauge was fixed. While the gauge fixed theory
does not have any gauge invariance it posses manifest
SIM(2) invariance and if we used it as a starting point
for quantization we would obtain a theory without ghosts.

The number of SIM(2) superfields appearing in the
theory has been reduced when we removed gauge freedom.
Moreover, in Sec. VI it was shown that some of the
remaining SIM(2) superfields are auxiliary and can be
eliminated from the theory. This further reduces the num-
ber of SIM(2) superfields appearing in the theory but the
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resulting action contains terms which would lead to more
complicated Feynman rules.

While the gauge fixed gauge chiral representation gives
us a theory suitable for quantization, the covariant repre-
sentation presented in Sec. VII can be rewritten in STM(2)
formalism in such a way that both SIM(2) invariance and
gauge invariance are manifest. Thus it is more suitable for
theoretical considerations. It was described how to rewrite
the expressions from the covariant representation to the
gauge fixed gauge chiral representation in the SIM(2)
formalism.

The Lorentz breaking but SIM(2) invariant mass terms
can be added to the gauge superfield or to the chiral super-
field. Their effects on results of previous sections was
discussed in Sec. VIIL
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