
Microscopic twisted-mass Dirac spectrum

K. Splittorff

Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark

J. J.M. Verbaarschot

Department of Physics and Astronomy, SUNY, Stony Brook, New York 11794, USA
(Received 25 January 2012; published 10 May 2012)

The microscopic spectral density for lattice QCD with two flavors and maximally twisted mass is

computed. The results are given for a fixed index of the Dirac operator and include the leading-order a2

corrections to the chiral Lagrangian due to the discretization errors. The computation is carried out within

the framework of Wilson chiral perturbation theory.

DOI: 10.1103/PhysRevD.85.105008 PACS numbers: 11.30.Rd, 12.38.Gc, 12.39.Fe

I. INTRODUCTION

Large-scale numerical simulations of twisted-mass lat-
tice QCD [1] are currently investigated in order to access
the deep chiral regime of QCD [2]. In the twisted-mass
formulation, the standard Hermitian Wilson term is re-
placed by an anti-Hermitian isospin-violating Wilson
term; for a review, see Ref. [3]. Under an axial transforma-
tion, this modifiedWilson term can be transformed into the
standard Wilson term while the mass is transformed into a
twisted-mass term. One advantage of this approach is that
the fermion determinant of the two-flavor Dirac operator is
bounded from below due to the twisted quark mass. This
offers automatic control of the problems which the smallest
eigenvalues of the Wilson Dirac operator may cause for the
numerical stability of standard simulations with Wilson
fermions.

The smallest eigenvalues of the Wilson Dirac operator
also play a crucial role for the spontaneous breakdown of
chiral symmetry [4,5]. Here, we compute analytically the
density of these smallest eigenvalues for twisted-mass
lattice QCD. This microscopic eigenvalue density is
uniquely determined by the symmetries of the lattice
theory and hence can be obtained from the low-energy
effective theory known as Wilson chiral perturbation the-
ory [6–8]. This effective theory describes the finite volume
corrections as well as corrections due to discretization
errors caused by the nonzero lattice spacing a. To order
a2, the effects of the lattice spacing are parametrized in
terms of three additional low-energy constants. While the
values of these constants are specific to the exact imple-
mentation on the lattice, it is essential to know their values
in order to extract physical observables such as the chiral
condensate, �, and pion decay constant F�. The analytical
results for the eigenvalue density of the Dirac operator at
nonzero twisted mass presented here offer a direct way to
test Wilson chiral perturbation theory against lattice data.
Moreover, if the test is successful, it provides a direct way
to measure the additional low-energy constants as well as
the physical ones. Such a test was carried out for the

quenched case with a standard (untwisted) mass in
Refs. [9,10]. Finally, we discuss constraints on the low-
energy constants from QCD inequalities.
This paper is organized as follows: To settle the notation,

the next section gives a brief introduction to twisted-mass
QCD. In Sec. III, we then turn to the low-energy effective
theory known as Wilson chiral perturbation theory. The
new results for the microscopic Dirac eigenvalue density
at maximally twisted mass are presented in Sec. IV. We
discuss the constraints on the additional low-energy con-
stants from the perspective of QCD inequalities the in
Sec. V. Finally, we draw conclusions in Sec. VI.

II. BASICS OF TWISTED MASS QCD

Here, we briefly recall the basics of twisted-mass two-
flavor QCD in the continuum limit as well as on the lattice;
see Ref. [1] for more details. This also introduces the
notation used throughout this paper.

A. Twisted mass in the continuum

In the continuum formulation, the twisted-mass fermi-
onic action is given by

S ¼
Z

d4x �c ðD��� þmþ izt�5�3Þc : (1)

Under the axial transformation

c 0 ¼ expði!�5�3=2Þc ; �c 0 ¼ �c expði!�5�3=2Þ; (2)

the mass terms get rotated,

m0 ¼ m cosð!Þ � zt sinð!Þ; z0t ¼ m sinð!Þ þ zt cosð!Þ;
(3)

as follows from

expði!�5�3Þ ¼ cosð!Þ þ i�5�3 sinð!Þ: (4)

The continuum covariant derivative term is of course in-
variant under the axial transformation since f�5; ��g ¼ 0.

In the continuum, we therefore have
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detðD���þmþ izt�5�3Þ¼detðD���þm0 þ iz0t�5�3Þ:
(5)

Note that the twisted source, z0t, vanishes completely if we
make the rotation with tanð!Þ ¼ �zt=m.

If we simply want to evaluate the partition function at
some nonzero mass (and zero twisted mass), we could start
with both m and zt in the determinant as long as we
remember that this corresponds to the value

m0ð! ¼ arctanð�zt=mÞÞ ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
zt
m

�
2

s
(6)

of the quark mass and zero value of the twisted mass.
Maximal twist is obtained at m ¼ 0 with ! ¼ �=2. For

maximal twist,

m0 ¼ zt; z0t ¼ 0; (7)

so that

Zðm ¼ 0; zt; a ¼ 0Þ ¼ Zðm0 ¼ zt; z
0
t ¼ 0; a ¼ 0Þ: (8)

B. Twisted mass Wilson fermions on the lattice

With Wilson fermions on the lattice, the discretized
covariant derivative

DW ¼ 1

2
��ðr� þr�

�Þ � ar

2
r�r�

� (9)

is not anti-Hermitian and does not anticommute with �5.
However, DW is �5-Hermitian

�5DW�5 ¼ Dy
W; (10)

and the product with �5, D5ðmÞ � �5ðDW þmÞ is there-
fore Hermitian. These properties are unaltered if one adds a
clover term to DW .

The main motivation to introduce the twisted mass
becomes obvious when we write the determinant in terms
of the eigenvalues, �5

j ðmÞ, of D5ðmÞ:
detðDWþmþ izt�5�3Þ¼detðD5ðmÞþ izt�3Þ

¼Y
j

ð�5
j ðmÞþ iztÞð�5

j ðmÞ� iztÞ

¼Y
j

ð�5
j ðmÞ2þz2t Þ: (11)

The square of the twisted mass sets a lower limit on the
terms in the product even when the eigenvalues of D5ðmÞ
are smaller in magnitude thanm as happens for a � 0. The
numerical problem with small eigenvalues of D5 is there-
fore regulated by the twisted-mass source.

Since the Wilson term breaks the axial-symmetry, the
identification (6) for the partition function is no longer
valid on the lattice. However, as the Wilson term is a cutoff
artifact, one is free to choose the m0 as the physical quark
mass provided that z0 ¼ 0. Therefore, if we start with
m ¼ 0, it is natural to consider the twisted mass zt as the
phyiscal quark mass, cf. Eq. (7).

From Eq. (11), it is then clear that the Dirac spectrum
relevant for chiral symmetry breaking at maximal twist is
that of D5ðm ¼ 0Þ,
d

dzt
logZðm ¼ 0; izt;�izt;aÞ

¼
Z

d�5 2zt
�5ðm ¼ 0Þ2 þ z2t

�5ð�5ðm ¼ 0Þ; zt; aÞ: (12)

Note that, in the twisted-chiral limit, we recover the Banks-
Casher [4] relation [11]:

� ¼ lim
zt!0

��5ð�5ðm ¼ 0Þ ¼ 0; zt; aÞ
V

: (13)

It is therefore of particular interest to know the analytical
form of �5ð�5ðm ¼ 0Þ; zt; aÞ in the microscopic limit. The
microscopic eigenvalue density derived below gives ex-
actly this form.

III. WILSON CHIRAL PERTURBATION THEORY
WITH TWISTED MASS

With the twisted source included, the static chiral
Lagrangian reads [6–8]

VL ¼ Trðm̂yUþ m̂UyÞ þ Trðẑyt �3U� ẑt�3U
yÞ

� TrðâyUâyUþ âUyâUyÞ; (14)

with the sources

m̂ ¼ m�V; ẑt ¼ zt�V and â ¼ aW8V: (15)

Here, we have set W6 ¼ W7 ¼ 0 [12].
In the microscopic limit (also known as the � regime) for

twisted mass Wilson fermions [15], the zero-momentum
modes of the pion fields factorize from the partition func-
tion resulting in the zt dependence,

Z�
2ðm; zt; aÞ ¼

Z
Uð2Þ

det�ðUÞeVL: (16)

Here, we have written the expression for a sector with fixed
index, �, of the Dirac operator. The index is defined
through

� � X
k

signhkj�5jki; (17)

where jki are the eigenstates ofDW . Note that only the real
modes of DW contribute to the index [16]. The index may
also be obtained from the flow withm of the eigenvalues of
D5ðmÞ [17].

IV. THE MICROSCOPIC SPECTRUM WITH TWO
MAXIMALLY TWISTED FLAVORS

Here, we compute the microscopic spectral density of
D5ðm ¼ 0Þ relevant for two flavors at maximal twisted
mass. The computation is carried out for fixed index, �,
of the Wilson Dirac operator.
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In order to derive this density, we employ the graded
generating functional with index �. This is given by
[13,14,18]

Z�
3j1ðZ;aÞ¼

Z
dUSdetðiUÞ�eþði=2ÞTrgðZ½UþU�1�Þþa2 TrgðU2þU�2Þ;

(18)

where Z � diagðizt;�izt; z; ~zÞ, and the integration is over
Glð3j1Þ=Uð1Þ. The difference from Ref. [19] is that we now
have the twisted mass instead of the standard mass. For a
discussion of the group manifold, we refer to Ref. [20].

The spectral resolvent is obtained from the graded gen-
erating functional by differentiation with respect to the z
source and a subsequent quench of the additional flavors by
the limit z ! ~z,

G�
3j1ðz; zt; aÞ ¼ lim

~z!z

d

dz
Z�

3j1ðizt;�izt; z; ~z; aÞ: (19)

Finally, the density of eigenvalues, ��
5ð�5; zt; aÞ, of D5

follows from

��
5ð�5; zt;aÞ ¼

�X
k

	ð�5
k � �5Þ

�
Nf¼2

¼ 1

�
Im½G�

3j1ðz ¼ ��5; zt;aÞ��!0: (20)

Our main task is therefore to evaluate the graded
generating function. In Ref. [19], it was shown that the
generating functional (18) can be rewritten as

Z�
3j1ðZ; aÞ ¼ e�4a2

ð16�a2Þ2
Z 1

�1
dsdt

B3j1ðSÞ
B3j1ðZÞ e

ð1=16a2Þ TrgðS2þZ2Þ

� e�t~z=8a2 dete�iskZl=8a
2

k;l¼1;2;3

�
Z

dUS detðiUÞ�eþði=2Þ TrgðSUþSU�1Þ; (21)

where the Berezinian is given by

B3j1ðSÞ ¼ ðis3 � is2Þðis3 � is1Þðis2 � is1Þ
ðt� is1Þðt� is2Þðt� is3Þ (22)

and

S � is 0
0 t

� �
; (23)

with s ¼ diagðs1; s2; s3Þ.
The integral over U results in the a ¼ 0 generating

functional which takes the form [21,22]

Z�
3j1ðx1;x2;x3;x4;a¼0Þ¼2

x�4
x�1x

�
2x

�
3

1

ðx23�x22Þðx23�x21Þðx22�x21Þ

�det

I�ðx1Þ x1I�þ1ðx1Þ x21I�þ2ðx1Þ x31I�þ3ðx1Þ
I�ðx2Þ x2I�þ1ðx2Þ x22I�þ2ðx2Þ x32I�þ3ðx2Þ
I�ðx3Þ x3I�þ1ðx3Þ x23I�þ2ðx3Þ x33I�þ3ðx3Þ

ð�1Þ�K�ðx4Þ x4ð�1Þ�þ1K�þ1ðx4Þ x24ð�1Þ�þ2K�þ2ðx4Þ x34ð�1Þ�þ3K�þ3ðx4Þ

0
BBBBB@

1
CCCCCA: (24)

We can thus write

Z�
3j1ðZ;aÞ¼ e�4a2

ð16�a2Þ2
Z
dsdt

B3j1ðSÞ
B3j1ðZÞe

ð1=16a2ÞTrgðS2þZ2Þ

�e�t~z=8a2 detðe�iskZl=8a
2Þk;l¼1;2;3

�Q
kð�iskÞ
�t

�
�
Z�
3j1ðfðs2kÞ1=2g;ð�t2Þ1=2;a¼0Þ: (25)

The next step is to simplify the determinant

detðe�iskZj=8â
2Þk;j¼1;2;3 ¼

����������������
e�is1Z1=8â

2
e�is1Z2=8â

2
e�is1Z3=8â

2

e�is2Z1=8â
2

e�is2Z2=8â
2

e�is2Z3=8â
2

e�is3Z1=8â
2

e�is3Z2=8â
2

e�is3Z3=8â
2

����������������
: (26)

Since the other terms in the integrand also combine into an antisymmetric function of the sk, all terms in the expansions of
the determinant as a sum over permutations give the same contributions. In the integrand, we can thus make the
replacement

detðe�iskZj=8â
2Þk;j¼1;2;3 ! 6e�is1Z1=8â

2�is2Z2=8â
2�is3Z3=8â

2
: (27)

The factor e�iðs1Z1þs2Z2þs3Z3Þ=8â2 is absorbed into the mixed term in the exponent of e�ðð1Þ=ð16a2ÞÞ TrgðS�ZÞ2 . The inverse
Berezinian of Z becomes
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1

B3j1ðZÞ ¼ ð~z� z1Þð~z� z2Þð~z� zÞ
ðz� z1Þðz� z2Þðz2 � z1Þ ¼

ð~z� iztÞð~zþ iztÞð~z� zÞ
ðz� iztÞðzþ iztÞð�2iztÞ : (28)

This contributes a total factor of i=2zt to the resolventG (i.e. after differentiation with respect to z, and the limit ~z ! z has
been taken, so that we necessarily have to differentiate the factor [~z� z]).

Combining the above expressions, the resolvent for D5ðm ¼ 0Þ takes the form

G�
3j1ðz;m ¼ 0; zt;aÞ ¼ i

�2ð16a2Þ2ztZ�
Nf¼2ðizt;�izt; aÞ

Z
ds1ds2ds3dt

ðis2 � is1Þðis3 � is1Þðis3 � is2Þ
ðt� is1Þðt� is2Þðt� is3Þ

� e�ðð1Þ=ð16a2ÞÞ½ðs1�ztÞ2þðs2þztÞ2þðs3þizÞ2þðt�zÞ2� ðis1Þ�ðis2Þ�ðis3Þ�
ðtÞ�

� Z�
3j1ððs21Þ1=2; ðs22Þ1=2; ðs23Þ1=2; ð�t2Þ1=2;a ¼ 0Þ; (29)

where the partition function for a ¼ 0 is given by Eq. (24),
and the integration of s3 þ iz is over the real axis. The
microscopic eigenvalue density of D5 in the theory with
two flavors at maximally twisted mass follows from
Eq. (20). We only need to evaluate the two-flavor
maximally-twisted-mass partition function which appears
in the normalization of G3j1.

The microscopic two flavor maximally-twisted-mass
partition function

In order to complete the computation of the microscopic
eigenvalue density, we need to evaluate the normalization
which is given by the two-flavor maximally-twisted-mass
partition function

Z�
2ðizt;�izt;aÞ
¼

Z
Uð2Þ

dU detðiUÞ�eþði=2Þ TrðZ½UþU�1�Þþa2 TrðU2þU�2Þ;

(30)

where Z � diagðizt;�iztÞ. Extending the results of
Ref. [19] to the twisted-mass case, we find

Z�
2ðizt;�izt;aÞ ¼ ie4a

2

zt�ð16a2Þ
Z 1

�1

Z 1

�1
ds1ds2ðis1 � is2Þ

� e�ð1=ð4a2ÞÞ½ðs1�ztÞ2þðs2þztÞ2�

� ðis1Þ�ðis2Þ�Z�
2ðs1; s2; a ¼ 0Þ; (31)

where

Z�
2ðx1; x2;a ¼ 0Þ ¼ 2

x�1x
�
2ðx22 � x21Þ

� det

�������� I�ðx1Þ x1I�þ1ðx1Þ
I�ðx2Þ x2I�þ1ðx2Þ

��������: (32)

The final step in the calculation is to factorize the
four-dimensional integrals in Eq. (29) into the product of
two-dimensional integrals. Not only may this factorized
form have a deep connection to an underlying integrable

hierarchy [23], but it is also highly advantageous for nu-
merical evaluation of the eigenvalue density.
In Appendix A, we show that the spectral resolvent (29)

for the microscopic eigenvalue density of D5 with two
flavors at maximally twisted mass can be written as

G�
3j1ðz; zt;aÞ ¼ G�

1j1ðz; z; aÞ þ
Z2ðizt; z;aÞ

Z�
2ðizt;�izt; aÞ

� z� izt
2izt

G�
1j1ð�izt; z; aÞ

� Z�
2ð�izt; z; aÞ

Z�
2ðizt;�izt; aÞ

zþ izt
2izt

G�
1j1ðizt; z; aÞ:

(33)

Here,

G�
1j1ðz1; z2;aÞ ¼ � 1

16a2�

Z 1

�1
dsdt

1

tþ z2 � is� z1

� e�ðs2þt2Þ=ð16a2Þ
�
isþ z1
tþ z2

�
�

� Z�
1j1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðisþ z1Þ2

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðtþ z2Þ2

q
; a ¼ 0Þ;

(34)

with

Z�
1j1ðm1; m2; a ¼ 0Þ ¼

�
m2

m1

�
�ðI�ðm1Þm2K�þ1ðm2Þ

þm1I�þ1ðm1ÞK�ðm2ÞÞ; (35)

and

Z�
2ðz1; z2;aÞ
¼ 1

�16a2

Z 1

�1
ds1ds2

1

ðz2 � z1Þ
� ðis1 þ z1 � is2 � z2Þe�ðs2

1
þs2

2
Þ=ð16a2Þ

�
is1 þ z1
is2 þ z2

�
�

� Z�
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðis1 þ z1Þ2

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðis2 þ z2Þ2

q
;a ¼ 0

�
; (36)
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with Z�
2ðx1; x2; a ¼ 0Þ given in Eq. (32). Note that the first

term on the right-hand side of Eq. (33) gives rise to the
quenched density ofD5 at zero untwistedmass,m. A similar
factorization of the unquenched density has been observed
in the microscopic limit of QCD at nonzero chemical po-
tential [24]. In that case, this structure has been understood
in terms of an underlying integrable hierarchy.

With Eq. (33), the spectral density has been expressed in
terms of products of double integrals. This form is far
easier to evaluate numerically than the four-fold integral
given in Eq. (29).

This completes the computation of the microscopic
eigenvalue density of D5ðm ¼ 0Þ for two flavors at maxi-
mal twisted mass in sectors with a fixed index of the
Wilson Dirac operator. See Fig. 1 for plots of the density.
Note, in particular, the behavior of the near zero modes.

V. QCD INEQUALITIES WITH TWISTED
QUARK MASS

In this section, we discuss two QCD inequalities. First, a
QCD inequality for the microscopic partition function in a
sector with fixed � and, second, a QCD inequality for the
pion masses. We will see that both put constraints on the
low-energy constants of Wilson chiral perturbation theory.

The twisted-mass Nf ¼ 2 QCD partition function is

positive definite for all �. This imposes a positivity require-
ment of the partition function corresponding the chiral
Lagrangian of the Wilson QCD partition function.
Because of the identity

Z�
2ðzt ¼ 0;W6; W7; W8; aÞ
¼ ð�1Þ�Z�

2ðzt ¼ 0;�W6;�W7;�W8; aÞ; (37)

and because for large zt, the sign of the partition function is
independent of the Wk, we necessarily obtain constraints

on the Wk. In case W6 ¼ W7 ¼ 0, we find that W8 > 0.
From the small a-expansion of the partition function, we
obtain the condition

W8 �W6 �W7 > 0; (38)

in agreement with the convergence requirements of the
graded partition function [14]. Additional constraints can
be obtained from mass inequalities for the pion masses
which will be discussed in the remainder of this section.
The Dirac operator including the twisted mass,

DW þmþ iz�3�5; (39)

has the Hermiticity property

�1�5ðDW þmþ iz�3�5Þ�5�1 ¼ ðDW þmþ iz�3�5Þy:
(40)

Therefore, the inverse Dirac operator

Sðx; yÞ ¼ hxj 1

DW þmþ iz�3�5

jyi (41)

satisfies

Sðx; yÞy ¼ �5�1Sðy; xÞ�1�5: (42)

Instead of �1, we could of course also have used

cosð
Þ�1 þ sinð
Þ�2 (43)

in the Hermiticity relation (40) which leads to the same
consequences. All we need is a combination that anticom-
mutes with �3 and is unitary. This relation allows us to
derive Weingarten-type inequalities [25–27] for the pion
masses.
The correlation function of two meson sources �c�c ðxÞ

and �c�c ðyÞ evaluated for a fixed background gauge field
satisfies (� is unitary)

100-10

λ5

0

0.1

0.2

0.3

0.4

0.5

ρ 5ν=
0 (λ

5 ,m
=

0,
iz

t=
i4

;a
=

0.
25

)
Quenched ν=0
zt=4 ν=0
zt=0 ν=0

-12 -8 -4 0 4 8 12

λ5

0

0.1

0.2

0.3

0.4

0.5

0.6

ρ 5ν (λ
5 , m

=
0,

iz
t=

i4
;a

=
0.

25
)

zt=4 ν=2
zt=4 ν=1
zt=4 ν=0

FIG. 1 (color online). The spectrum of D5ðm ¼ 0Þ for two flavors with maximally twisted mass. Left: the sector with zero index of
the Dirac operator. As the twisted mass increases, the quenched result (dashed curve) is approached. Right: the dependence on the
index � for fixed zt ¼ 4 and a ¼ 0:25. As W8 is decreased, the near zero modes become exact 	 functions at �5 ¼ 0. For small lattice
spacing, the width of the peak is proportional to

ffiffiffiffiffiffiffi
W8

p
. The thin horizontal line in both plots indicates the value 1=� which is the

asymptotic limit of the density for large values of j�5j.
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h �c ðxÞ�c ðxÞ �c ðyÞ�c ðyÞi
¼�Tr½Sðy;xÞ�Sðx;yÞ��þTr½Sðx;xÞ��Tr½Sðy;yÞ��
¼Tr½Sðy;xÞ�i�1�5Sðy;xÞyi�1�5��

þTr½Sðx;xÞ��Tr½Sðy;yÞ��
�Tr½Sðy;xÞSðy;xÞy�þTr½Sðx;xÞ��Tr½Sðy;yÞ��: (44)

The bound in the inequality is saturated for � ¼ i�5�1 (or
with �1 ! �2 but not with �1 ! �3). This inequality has
been evaluated for a fixed gauge field background.
However, since the fermion determinant is positive for all
gauge field configurations, the inequality continues to hold
after averaging. If the disconnected diagrams average to
zero, we obtain��

�c ðxÞ�c ðxÞ �c ðyÞ�c ðyÞ
��

� hTrSð0; xÞSð0; xÞyi: (45)

For mesonic channels with mass gap m�, we have��
�c ðxÞ�c ðxÞ �c ð0Þ�c ð0Þ

��
/ expð�m�jxjÞ as x ! 1:

(46)

The inequality for the correlators thus translates into an
inequality for the meson masses. From Eq. (45), we then
conclude that [28]

mi�5�1;2 � m�: (47)

In particular, we have

m�� � m�0 : (48)

From leading-order Wilson chiral perturbation theory, one
obtains [29,30]

ðm0
�Þ2 � ðm�

� Þ2 ¼ 16a2ðW8 þ 2W6Þ
F2
�

: (49)

If the contribution from disconnected diagrams is not
important, we conclude that

W8 þ 2W6 > 0: (50)

The contribution of the disconnected diagrams can be
isolated by the introduction of valence quarks. This results
in the inequality [31]

W8 > 0; (51)

independent of the value ofW6 andW7. Lattice simulations
for twisted-mass fermions in Ref. [32] show that

m0
� < m�

� : (52)

This implies that the contribution of the disconnected
diagrams is important for the simulations in Ref. [32].
The possible importance of disconnected diagrams has

been studied explicitly in lattice simulations of the
respective correlators in Ref. [33]. Using Eq. (49), we
thus conclude that for the simulations in Ref. [32],

W8 þ 2W6 < 0: (53)

Combined with the inequality (51) derived in Ref. [31], we
obtain the constraint

W6 < 0: (54)

In the quenched case, lattice simulations show that
the charged pions are the lightest pseudoscalar Goldstone
bosons [34]. This is an agreement with the lore that
disconnected diagrams are suppressed in the quenched
theory [27].

VI. CONCLUSIONS

We have computed the microscopic spectral density of
the massless Hermitian Wilson Dirac operator in the pres-
ence of two dynamical flavors at nonzero maximally
twisted mass. The characteristic shape of the eigenvalue
density in sectors with a fixed index of the Wilson Dirac
operator derived in this paper offers a direct way to test
Wilson chiral perturbation theory for twisted mass against
lattice QCD. If the spectral density obtained on the lattice
follows the analytical prediction, the strong dependence of
the analytical result on the low-energy constantW8 offers a
direct way to measure the value of W8. We have reduced
the analytical form of the twisted-mass microscopic spec-
tral density to a factorized form which is easily evaluated
with standard numerical methods. A similar factorized
form of the density for two standard dynamical flavors
was recently presented in Ref. [35].
The microscopic results for the spectral density of D5 at

m ¼ 0 have been derived for W8 > 0. As was argued in
Refs. [13,14], only the theory with W8 > 0 correctly de-
scribes lattice QCD with Wilson fermions. In support of
this, we have checked that the microscopic partition func-
tion for two flavors at maximally twisted mass is a positive
definite function in all sectors with fixed index � of the
Wilson Dirac operator.
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APPENDIX A: FACTORIZATION OF G3j1
In this appendix, we show that the microscopic eigenvalue density for two flavors of maximally twisted mass can be

factorized into two-dimensional integrals.
We start from the resolvent which is given by Eq. (29),

G3j1ðz;m¼0;zt;aÞ¼ 1

�2ð16a2Þ2Z�
Nf¼2ðizt;�izt;aÞ

Z
ds1ds2ds3dt

i

zt

ðis2� is1Þðis3� is1Þðis3� is2Þ
ðt� is1Þðt� is2Þðt� is3Þ

�e�½ðs1�ztÞ2þðs2þztÞ2þðs3þizÞ2þðt�zÞ2�=16a2 ðis1is2is3Þ�
t�

Z�
3j1ððs21Þ1=2;ðs22Þ1=2;ðs21Þ1=2;ð�t2Þ1=2;a¼0Þ;

(A1)

and use the notation

xk ¼ ðs2kÞ1=2; k ¼ 1; 2; 3; x4 ¼ it: (A2)

Our aim is to rewrite this in a factorized form. To this end, we explicitly insert the a ¼ 0 partition function given in Eq. (24)
and consider the combination

ðis2 � is1Þðis3 � is1Þðis3 � is2Þ
ðt� is1Þðt� is2Þðt� is3Þ

1

ðx23 � x22Þðx23 � x21Þðx22 � x21Þ

� det

I�ðx1Þ x1I�þ1ðx1Þ x21I�þ2ðx1Þ x31I�þ3ðx1Þ
I�ðx2Þ x2I�þ1ðx2Þ x22I�þ2ðx2Þ x32I�þ3ðx2Þ
I�ðx3Þ x3I�þ1ðx3Þ x23I�þ2ðx3Þ x33I�þ3ðx3Þ

ð�1Þ�K�ðx4Þ x4ð�1Þ�þ1K�þ1ðx4Þ x24ð�1Þ�þ2K�þ2ðx4Þ x34ð�1Þ�þ3K�þ3ðx4Þ

0
BBBBB@

1
CCCCCA: (A3)

Combining the prefactors and using recursion relations for Bessel functions, this can be rewritten as

1

ðx1 þ x2Þðx1 þ x3Þðx1 þ x4Þðx2 þ x3Þðx2 þ x4Þðx3 þ x4Þ

� det

I�ðx1Þ x1I�þ1ðx1Þ x21I�ðx1Þ x31I�þ1ðx1Þ
I�ðx2Þ x2I�þ1ðx2Þ x22I�ðx2Þ x32I�þ1ðx2Þ
I�ðx3Þ x3I�þ1ðx3Þ x23I�ðx3Þ x33I�þ1ðx3Þ

ð�1Þ�K�ðx4Þ x4ð�1Þ�þ1K�þ1ðx4Þ x24ð�1Þ�K�ðx4Þ x34ð�1Þ�þ3K�þ1ðx4Þ

0
BBBBB@

1
CCCCCA: (A4)

The factorized form is due to the appearance of I�=K� in the odd columns and I�þ1=K�þ1 in the even columns. Expanding
the determinant results in

1

ðx1þx2Þðx1þx3Þðx1þx4Þðx2þx3Þðx2þx4Þðx3þx4Þ½�ð�1Þ�þ1I�þ1ðx3ÞK�þ1ðx4ÞI�ðx1ÞI�ðx2Þx3x4ðx23�x24Þðx21�x22Þ
þð�1Þ�K�þ1ðx4ÞI�þ1ðx1ÞI�ðx3ÞI�ðx2Þx1x4ðx21�x24Þðx22�x23Þ�ð�1Þ�K�þ1ðx4ÞI�þ1ðx2ÞI�ðx3ÞI�ðx1Þx2x4ðx22�x24Þðx21�x23Þ
þð�1Þ�þ1I�þ1ðx3ÞI�þ1ðx2ÞK�ðx4ÞI�ðx1Þx2x3ðx22�x23Þðx21�x24Þ�ð�1Þ�þ1I�þ1ðx3ÞI�þ1ðx1ÞK�ðx4ÞI�ðx2Þx1x3ðx21�x23Þðx22�x24Þ
�ð�1Þ�I�þ1ðx1ÞI�þ1ðx2ÞK�ðx4ÞI�ðx3Þx1x2ðx21�x22Þðx23�x24Þ�: (A5)

We then decompose the fractions as

ðx21 � x24Þðx22 � x23Þ
ðx1 þ x2Þðx1 þ x3Þðx1 þ x4Þðx2 þ x3Þðx2 þ x4Þðx3 þ x4Þ

¼ 1

ðx1 þ x2Þðx3 þ x4Þ �
1

ðx1 þ x3Þðx2 þ x4Þ (A6)

and any cyclic permutations thereof. This results in
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1

ðx1þx3Þðx2þx4Þ½�ð�1Þ�þ1I�þ1ðx3ÞK�þ1ðx4ÞI�ðx1ÞI�ðx2Þx3x4�ð�1Þ�K�þ1ðx4ÞI�þ1ðx1ÞI�ðx3ÞI�ðx2Þx1x4
�ð�1Þ�þ1I�þ1ðx3ÞI�þ1ðx2ÞK�ðx4ÞI�ðx1Þx2x3�ð�1Þ�I�þ1ðx1ÞI�þ1ðx2ÞK�ðx4ÞI�ðx3Þx1x2�
þ 1

ðx2þx3Þðx1þx4Þ½ð�1Þ�þ1I�þ1ðx3ÞK�þ1ðx4ÞI�ðx1ÞI�ðx3Þx4x4þð�1Þ�K�þ1ðx4ÞI�þ1ðx2ÞI�ðx3ÞI�ðx1Þx2x4�
þð�1Þ�þ1I�þ1ðx3ÞI�þ1ðx1ÞK�ðx4ÞI�ðx2Þx1x3þð�1Þ�I�þ1ðx1ÞI�þ1ðx2ÞK�ðx4ÞI�ðx3Þx1x2�
þ 1

ðx1þx2Þðx3þx4Þ½ð�1Þ�K�þ1ðx4ÞI�þ1ðx1ÞI�ðx3ÞI�ðx2Þx1x4�ð�1Þ�K�þ1ðx4ÞI�þ1ðx2ÞI�ðx3ÞI�ðx1Þx2x4
�ð�1Þ�þ1I�þ1ðx3ÞI�þ1ðx2ÞK�ðx4ÞI�ðx1Þx2x3�ð�1Þ�þ1I�þ1ðx3ÞI�þ1ðx1ÞK�ðx4ÞI�ðx2Þx1x3�

¼ ð�1Þ�ðx4K�þ1ðx4ÞI�ðx2Þþx2K�ðx4ÞI�þ1ðx2Þ
x4þx2

x3I�þ1ðx3ÞI�ðx1Þ�x1I�þ1ðx1ÞþI�ðx3Þ
x1þx3

�ð�1Þ�ðx4K�þ1ðx4ÞI�ðx1Þþx1K�ðx4ÞI�þ1ðx1Þ
x4þx1

x2I�þ1ðx2ÞI�ðx3Þ�x3I�þ1ðx2ÞI�ðx2Þ
x2þx3

�ð�1Þ�ðx4K�þ1ðx4ÞI�ðx3Þþx3K�ðx4ÞI�þ1ðx3Þ
x3þx4

x1I�þ1ðx1ÞI�ðx2Þ�x2I�þ1ðx2ÞþI�ðx1Þ
x1þx2

: (A7)

Using this identity, we can express the resolvent in the factorized form

G�
3j1ðz;m¼0; izt;�izt;aÞ¼G�

1j1ðz;z;aÞþ
Z�
2ðizt;zÞðz� iztÞ

Z�
2ðizt;�iztÞ2izt G

�
1j1ð�izt;z;aÞ�Z2ð�izt;zÞðzþ iztÞ

Z2ðizt;�iztÞ2izt G�
1j1ðizt;z;aÞ; (A8)

where Z�
2ðz1; z2Þ and G�

1j1ðz1; z2; aÞ are given in Eqs. (36) and (34), respectively. This factorization can also be derived in
general terms [36,37].
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