
Supersymmetric Chern-Simons theory in the presence of a boundary

Mir Faizal and Douglas J. Smith

Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, United Kingdom
(Received 28 December 2011; published 9 May 2012)

In this paper we analyze super-Chern-Simons theory in N ¼ 1 superspace formalism, in the presence

of a boundary. We modify the Lagrangian for the Chern-Simons theory in such a way that it is

supersymmetric even in the presence of a boundary. Also, even though the Chern-Simons theory is not

gauge invariant in the presence of a boundary, if it is suitably coupled to a gauged Wess-Zumino-Witten

model, then the resultant theory can be made gauge invariant. Thus, by suitably adding extra boundary

degrees of freedom, the gauge and supersymmetry variations of the boundary theory exactly cancel the

boundary terms generated by the variations of the bulk Chern-Simons theory. We also discuss how this can

be applied to the Aharony-Bergman-Jafferis-Maldacena model in N ¼ 1 superspace, and we then

describe the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries of the resultant gauge

invariant supersymmetric theory.
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I. INTRODUCTION

The Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory is thought to describe the world volume of multiple
M2-branes in M theory at low energies [1,2]. It is a three-
dimensional Chern-Simons-matter theory with gauge
group UðNÞk �UðNÞ�k at levels k and �k on the world
volume of N M2-branes placed at the fixed point of R8=Zk.
Although this construction explicitly realizes onlyN ¼ 6
supersymmetry (SUSY), the supersymmetry is expected to
be enhanced to full N ¼ 8 supersymmetry for k ¼ 1, 2
[3]. The ABJM theory coincides with the Bagger-Lambert-
Gustavsson (BLG) action [4–7], based on the Basu-Harvey
equation [8], for the only known example of the Lie
3-algebra.

The BLGmodel has been analyzed in theN ¼ 1 super-
field formalism [9]. First, an octonionic self-dual tensor is
used to construction a real superpotential with manifest
SOð7Þ invariance. Then for specially chosen couplings, the
component action coincides with the BLG action, and
hence the full SOð8Þ symmetry is restored. After reduction
using the novel Higgs mechanism [10], higher-derivative
corrections to super-Yang-Mills on D2-branes were ana-
lyzed in the N ¼ 1 superspace formalism [11]. Chern-
Simons theory with N ¼ 1 supersymmetry has also been
studied in relation to axion gauge symmetry which occurs
in supergravity theories arising from flux compactifications
of superstrings and Scherk-Schwarz generalized dimen-
sional reduction in M theory [12].

The ABJM and BLG actions are formulated for M2-
branes without a boundary. However, it is of interest to
allow the inclusion of a boundary. Such boundaries corre-
spond to M2-branes ending on other objects inM theory. In
[13] appropriate boundary conditions were derived for the
ABJM and BLG actions, describing M2-branes ending on
M5-branes, M9-branes, or gravitational waves. Boundary
conditions in the presence of background flux were derived

in [14]. The M5-brane is of particular interest, and cer-
tainly one motivation for studying open M2-branes is to
learn about the physics of the M5-brane. For example, by
considering a system of M2-branes ending on an M5-brane
with a constant C field turned on, the BLG model was used
to motivate a novel quantum geometry on the M5-brane
world volume [15]. Another interesting relation between
multiple M2-branes and the M5-brane is the identification
of the BLG action (with Nambu-Poisson 3-bracket) as the
M5-brane action with a large world volume C field, as
reviewed in [16]. While these results involve a model for
multiple M2-branes, we note that earlier work using the
action for single open M2-branes suggested a form of
noncommutative string theory on the M5-brane world
volume [17–19]. It would be interesting to understand
how these results arising from different approaches are
related.
One of our motivations is to make further progress

towards a superspace description of the ABJM action
with a boundary. Rather than specifying boundary condi-
tions as in [13,14], the idea here is to add additional
boundary terms and degrees of freedom to make the action
consistent. The prescription is motivated by the symme-
tries of the bulk action. In particular, we follow the general
prescription given in [20] to add boundary terms so that
half the bulk supersymmetry is preserved. This procedure
has been applied to supersymmetric Abelian Chern-
Simons theories in [20] and particularly to various models
including Chern-Simons matter theories and the ABJM
model in [21]. However, in addition to supersymmetry, it
is necessary to consider preservation of gauge symmetry.
This issue was considered, with the aim of describing the
physics of multiple self-dual strings in [22]. In doing so
bosonic Chern-Simons theory on a manifold with a bound-
ary was analyzed. It was found that even though the
Chern-Simons theory was not gauge invariant by itself
in the presence of a boundary, the sum of it with a
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Wess-Zumino-Witten (WZW) model living on the bound-
ary was gauge invariant. Thus, new degrees of freedom
were identified on the boundary and these degrees of free-
dom generated a Uð2NÞ �Uð2NÞ Kac-Moody current
algebra. While it is possible to introduce the fermionic
sector and derive a supersymmetric action in component
form, it seems somewhat natural to derive a manifestly
supersymmetric gauge invariant action, in some sense
combining the results of [21,22]. This will be the result
of Sec. IV, although for simplicity we limit ourselves to
N ¼ 1 superspace and do not address the issue of a
background C field as there has been limited progress in
extending the ABJM action to include coupling to a gen-
eral C field [23–25]. Because the issue of preservation of
gauge symmetry is specific to the Chern-Simons term, this
is considered separately in Sec. III.

While there is a well-known connection between
(2þ 1)-dimensional (topological) Chern-Simons theories
and (1þ 1)-dimensional conformal field theories (CFTs)
[26], the situation is less clear for Chern-Simons matter
theories. As shown in [27,28] for pure Chern-Simons
theory with suitable boundary conditions, a component of
the gauge field, say, A0, appears linearly in the action and
so can be integrated out, imposing the constraint F12 ¼ 0.
This constraint can be solved explicitly (e.g., for a mani-
fold of the form of a disk for each constant time slice) and
the result is a (1þ 1)-dimensional WZW model where the
bulk gauge potential has been replaced by the boundary
gauge degrees of freedom. Now Chern-Simons matter
theories are not topological so we should not expect such
a connection to (1þ 1)-dimensional CFTs. Of course, in
cases such as ABJM theory where the Chern-Simons mat-
ter theory is conformal, the boundary theory may still be
conformal. However, an important difference to the pure
Chern-Simons case is that, due to the gauged scalar kinetic
terms, A0 will no longer appear as a Lagrange multiplier—
even the classical equation of motion will couple F12 to the
scalars rather than simply requiring F12 ¼ 0. We therefore
cannot expect the Chern-Simons action to be replaced by a
WZW model in general. However, it is possible to use the
principle of gauge invariance in the presence of a boundary
to couple the Chern-Simons theory to a boundary theory.
The general result is a gauge invariant action coupling the
Chern-Simons gauge potential to a boundaryWZWmodel,
which reproduces the pureWZWaction when starting from
a pure Chern-Simons action [22].

Supersymmetric Chern-Simons theories have also
been studied as interesting examples of the AdS4=CFT3

correspondence [29–33]. Three-dimensional N ¼ 1
superconformal field theories have the property of being
supersymmetric without having any holomorphic property.
This is a peculiarity of the AdS4=CFT3 correspondence
with respect to the usual AdS5=CFT4. Thus, the results of
this paper may be useful in analyzing certain aspects of the
AdS4=CFT3 correspondence.

We need to fix a gauge before we can quantize any
theory which has a gauge symmetry associated with it.
This is done by the addition of a gauge-fixing term and a
ghost term to the original action. The action thus obtained
is invariant under two new symmetries called the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry [34,35] and the
anti-BRST symmetry [36]. These symmetries are impor-
tant to show the unitarity of the S matrix and thus the
consistency of the theory at quantum level [37]. The BRST
symmetry of the bosonic Chern-Simons theory has been
thoroughly investigated [38,39] and the BRST symmetry
of the N ¼ 1 Chern-Simons theory has been analyzed in
the superspace formalism [40,41]. The BRST and the anti-
BRST symmetries of the ABJM theory have also been
studied [42]. In this paper we will analyze the BRST and
the anti-BRST symmetries of the ABJM theory in the
presence of a boundary.

II. PROPERTIES OF SUPERCOVARIANT
DERIVATIVES

In this section we shall first review the properties of the
supercovariant derivatives for non-Abelian N ¼ 1 gauge
fields in three dimensions [43]. Then we shall analyze the
effect of having a boundary by generalizing the results of
[20] to a non-Abelian case. In order to analyze the prop-
erties of the supercovariant derivatives, we first introduce
�a as two component anticommuting parameters with odd
Grassmann parity and let

�2 ¼ 1
2�aC

ab�b ¼ 1
2�

a�a: (1)

The antisymmetric tensorsCab andCab can be used to raise
and lower spinor indices, and they satisfy CabC

bc ¼ �c
a.

Now if TA are Hermitian generators of a Lie algebra
½TA; TB� ¼ ifCABTC, in the adjoint representation, then mat-

ter fields can be represented by matrix valued complex
scalar superfields X and Xy suitably contracted with the
generators of this Lie algebra, X ¼ XATA, and Xy ¼
XyATA. Let these superfields transform under infinitesimal
gauge transformations as

�X ¼ i�X; �Xy ¼ �iXy�; (2)

where� ¼ �ATA and the product of these fields is actually
a commutator. Now the superderivative, given by

Da ¼ @a þ ð��@�Þba�b; (3)

of these superfields does not transform like the original
superfields. But we can define a supercovariant derivative
for these superfields by requiring it to transform like the
original superfields. Thus, we obtain the following expres-
sion for the supercovariant derivative of these superfields

raX ¼ DaX � i�aX; raX
y ¼ DaX

y þ iXy�a; (4)

where �a is a matrix valued spinor superfield suitably
contracted with generators of a Lie algebra, �a ¼ �A

aTA.
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If this matrix valued spinor superfield is made to transform
under gauge transformations as

��a ¼ ra�; (5)

then the supercovariant derivative of the scalar superfields
X and Xy indeed transforms under gauge transformations
like the original fields,

�raX ¼ i�raX; �raX
y ¼ �iraX

y�: (6)

Now we can derive certain properties of these super-
covariant derivatives. The Abelian version of these prop-
erties is given in [20]. Now define the components of this
superfield �a to be

�a ¼ ½�a�j; A ¼ �1
2½ra�a�j;

A� ¼ �1
2½rað��Þba�b�j; Ea ¼ 1

2½rbra�b�j; (7)

where ‘‘j’’ means that the quantity is evaluated at �a ¼ 0,
and let D� be the conventional covariant derivative given

by

D � ¼ @� � iA�: (8)

Then it can be shown by direct computation that the super-
covariant derivative satisfies

fra;rbg ¼ �2rab; (9)

where

rab ¼ @ab � i�ab; �ab ¼ � i

2
½Dða�bÞ � if�a;�bg�;

(10)

and @ab ¼ ð��@�Þab. Now as we are studying N ¼ 1

superfields in three dimensions the indices ‘‘a’’ are two-
dimensional and so ½ra;rb� must be proportional to the
antisymmetric tensor Cab. Thus, we find

rarb ¼ 1
2fra;rbg þ 1

2½ra;rb� ¼ ��
abD� � Cabr2:

(11)

The complete antisymmetrization of three two-
dimensional indices vanishes and so we have

rarbrc ¼ 1
2rafrb;rcg � 1

2rbfra;rcg þ 1
2rcfra;rbg:

(12)

Thus, we get

rarbra ¼ 0; (13)

r2ra ¼ ð��rÞaD�: (14)

If we put a boundary at fixed x3, then � splits into � ¼
ðm; 3Þ. The induced value of the superderivativeDa and the
supercovariant derivativera on the boundary is denoted by
D0

a andr0
a, respectively. This boundary superderivativeD

0
a

is obtained by neglecting �3@3 contributions in Da,

D0
a ¼ @a þ ð�m@mÞba�b: (15)

The boundary supercovariant derivative r0
a can thus be

written as

r0
aX

0 ¼ D0
aX

0 � i�0
aX

0; r0
aX

y0 ¼ D0
aX

y0 þ iXy0
�0
a;

(16)

where X0, Xy0
, and �0

a are the induced values of the bulk
fields X, Xy, and �a on the boundary. Any boundary field
along with the induced value of any quantity, e.g.,�, on the
boundary will be denoted by �0. This convention will be
followed even for component fields of superfields. The
matrix valued spinor superfield �0

a transforms under gauge
transformations as follows:

��0
a ¼ r0

a�
0; (17)

where �0 is the induced value of � on the boundary.
Now we define projection operators P� as

ðP�Þba ¼ 1
2ð�b

a � ð�3ÞbaÞ: (18)

These projection operators can be used to project the
supercovariant derivative ra as

r�b ¼ ðP�Þabra; (19)

and r0
�b as

r0
�b ¼ ðP�Þabr0

a; (20)

where r0�a is the induced value of r�a on the boundary.
These projected values of the supercovariant derivative can
now be shown to satisfy

rþarþb ¼ �ðPþ�mÞabDm; (21)

r�ar�b ¼ �ðP��mÞabDm; (22)

r�arþb ¼ �ðP�ÞabðD3 þr2Þ; (23)

rþar�b ¼ ðPþÞabðD3 �r2Þ: (24)

From these relations we can obtain the following algebra
for these projected operators:

frþa;rþbg ¼ �2ðPþ�mÞabDm; (25)

fr�a;r�bg ¼ �2ðP��mÞabDm; (26)

fr�a;rþbg ¼ �2ðP�ÞabD3: (27)

It will be useful to write Eq. (24) as

�rþr� ¼ �Cabrþar�b ¼ �CabðPþÞabðD3 �r2Þ
¼ �ðPþÞaaðD3 �r2Þ ¼ ðD3 �r2Þ: (28)

Note that it is also easy to see that the boundary super-
derivatives satisfy similar relations, and that the supersym-
metry splits into left- and right-moving sectors on the
boundary since, e.g.,

SUPERSYMMETRIC CHERN-SIMONS THEORY IN THE . . . PHYSICAL REVIEW D 85, 105007 (2012)

105007-3



ðP��mÞabDm ¼ ð��ÞabD�; (29)

where �� ¼ �0 � �1 and D� ¼ 1
2 ðD0 �D1Þ.

We have now reviewed properties of supercovariant
derivatives and extended results in [20] to non-Abelian
theories. In the next section we will use these results to
analyze non-Abelian Chern-Simons theory in the presence
of a boundary.

III. N ¼ 1 CHERN-SIMONS THEORY

Before we consider a boundary we will review N ¼ 1
non-Abelian Chern-Simons theory on a manifold without a
boundary. Now the Lagrangian for N ¼ 1 non-Abelian
Chern-Simons theory in superspace formalism can be writ-
ten (with implicit trace) as [43]

L CS;kð�Þ ¼ � k

4�
r2½�a�a�j; (30)

where [43]

�a ¼ !a � 1
6½�b;�ab�; (31)

!a ¼ 1

2
DbDa�b � i

2
½�b; Db�a� � 1

6
½�b; f�b;�ag�; (32)

�ab ¼ � i

2
½Dða�bÞ � if�a;�bg�: (33)

In Eq. (30) a trace over the generators of the Lie algebra is
implied. The covariant divergence of !a vanishes [11]:

ra!a ¼ 0: (34)

The components of the superfield !a can now be calcu-
lated from Eqs. (7) and (32),

½rað��Þba!b�j ¼ ���	F�	; ½ra!a�j ¼ 0;

�½rbra!b�j ¼ 2ð��D�ÞbaEb; ½!a�j ¼ Ea; (35)

where ���	 is an antisymmetric tensor. So the component

form for the Lagrangian for N ¼ 1 non-Abelian Chern-
Simons theory can be written as

LCS;k ¼ k

4�

�
���	

�
A�@�A	 þ 2i

3
A�A�A	

�

þ EaEa þD�ð�að��ÞbaEbÞ
�
: (36)

Now if the full finite gauge transformation of the superfield
�a is written as

�a ! iurau
�1; (37)

where

u ¼ expði�ATAÞ; (38)

then the gauge transformation of the superfield !a will be
given by

!a ! u!au
�1: (39)

Under infinitesimal gauge transformations the Lagrangian
for the N ¼ 1 non-Abelian Chern-Simons theory trans-
forms as

�LCS;kð�Þ ¼ � k

4�
r2½ðra�Þ!a�j: (40)

Now using Eq. (34), we get

�LCS;kð�Þ ¼ � k

4�
r2ra½�!a�j

¼ � k

4�
ð��D�rÞa½�!a�j: (41)

As this is a total derivative, on a manifold without a
boundary we have

�LCS;k ¼ 0: (42)

Thus, the N ¼ 1 non-Abelian Chern-Simons theory is
invariant under these gauge transformations on a manifold
without a boundary.
After reviewing the gauge invariance of the N ¼ 1

non-Abelian Chern-Simons theory on a manifold without
a boundary, we can now discuss the effect of a boundary on
it. The effect of a boundary in three dimensions on the
SUSY of N ¼ 1 theories, and, in particular, how SUSY
can be preserved by adding additional boundary terms, has
been recently studied in [20]. The supersymmetric varia-
tion of the Lagrangian for N ¼ 1 non-Abelian Chern-
Simons theory transforms into a total derivative, so in the
absence of a boundary this variation vanishes and the
theory is supersymmetric. However, in the presence of a
boundary it reduces to a boundary term. This theory can
still be made supersymmetric by adding a boundary term
whose supersymmetric variation cancels the supersymmet-
ric variation of the original action. The analysis performed
for Abelian Chern-Simons theories in [20,21] can be easily
generalized to the non-Abelian case for N ¼ 1 SUSY,
with the result that the boundary term whose addition will
make N ¼ 1 non-Abelian Chern-Simons theory super-
symmetric can be written as

L bCS;kð�Þ ¼ k

4�
D3½�a�a�j: (43)

In component form this term can be written as

L bCS;k ¼ k

4�
D3

�
�aEa þ i

6
�a½ð��A�Þba; �b�

�
: (44)

The supersymmetric variation of this boundary term
exactly cancels the supersymmetric variation of the bulk
Lagrangian, so the sum of the bulk Lagrangian and this
boundary term is supersymmetric,

L sCS;kð�Þ ¼ LCS;k þLbCS;k ¼ k

4�
ð�r2 þD3Þ½�a�a�j:

(45)
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It may be noted that only half of the SUSY of the original
theory is preserved on the boundary. In this paper we will
keep the SUSY corresponding to r� and break the SUSY
corresponding to rþ on the boundary.

This supersymmetric Lagrangian with a boundary term
is not gauge invariant because following what we did for
the N ¼ 1 non-Abelian Chern-Simons theory on a mani-
fold without boundary, the infinitesimal gauge transforma-
tion of this Lagrangian is given by

�LsCS;kð�Þ ¼ k

4�
ðD3 �r2Þra½�!a�j: (46)

Now using Eq. (14), this can be written as

�LsCS;kð�Þ ¼ k

4�
ðD3ra � ð��D�rÞaÞ½�!a�j: (47)

As there is a boundary in the x3 direction, we get

�LsCS;kð�Þ ¼ k

4�
ðD3ra � ð��D�rÞaÞ½�!a�j

� k

4�
ðD3ra � ð�3D3rÞaÞ½�!a�j; (48)

where � indicates that we have neglected the total deriva-
tive contribution along directions other than x3, as they will
not contribute. Thus, the gauge transformation of this
supersymmetric Lagrangian gives a boundary term,

�L0
sCS;kð�0Þ ¼ k

4�
ð�a

b � ð�3ÞabÞr0b½�0!0
a�j

¼ k

2�
ðP�r0Þa½�0!0

a�j: (49)

This boundary term can be written in component form as

�L0
sCS;k ¼

k

2�
ð���
0F0

�� þ ð
a0ð�3ÞbaE0
bÞ þ ð
a0E0

aÞÞ;
(50)

where 
 ¼ ½��j, 
a ¼ ½ra��j, and the ‘‘prime’’ notations


0, 
0
a, A

0
�, etc., denote the induced values of these fields on

the boundary. Because of the presence of this boundary
term, theN ¼ 1 non-Abelian Chern-Simons theory is not
gauge invariant in the presence of a boundary.

However, it is possible to couple this theory to another
boundary theory, such that the total Lagrangian, which is
given by the sum of the Lagrangians of both these theories,
is gauge invariant. To do so we consider a boundary theory
with the following potential term:

L pb;kðv0;�0Þ ¼ LsCS;kð�vÞ �LsCS;kð�Þ; (51)

where v0 is a boundary scalar superfield, v is an extension
of v0 into the bulk, and �v denotes the gauge transforma-
tion of � by v. For v close to the identity, this is a genuine
boundary term, while in general we can still consider this
to only depend on the boundary in the sense that in the
absence of a boundary this term will have no effect since
the normalization of the Chern-Simons action is chosen so

that the path integral is also invariant under large gauge
transformations. See [22] for a more detailed discussion of
the bosonic theory. Now the total Lagrangian LsCS;kð�Þ þ
Lpb;kðv0;�0Þ will clearly be gauge invariant if �v is. This is

possible if we require v to transform under gauge trans-
formations as

v ! vu�1: (52)

To better understand this boundary Lagrangian, we can
consider the case where �a ¼ 0 so that there is no coupling
to the bulk fields. In this case the boundary term
LsCS;kð�a ¼ �iðravÞv�1Þ gives the potential term of the

N ¼ ð1; 0Þ WZW model [44,45]

Lpb;kðv0;�0Þ ¼ � k

2�
ðP�r0Þa½½ðv�1DþvÞ; ðv�1D3vÞ�

� ðv�1r�avÞ�j: (53)

We can now add the following supersymmetric gauge
invariant kinetic term for the boundary scalar superfield
v̂ ¼ v0ð�þ ¼ 0Þ,

L kb;kðv0;�0Þ ¼ � jkj
2�

ðP�r0Þa½ðv̂�1r0�av̂Þðv̂�1Dþv̂Þ�j;
(54)

which is a gauging of the kinetic term of the N ¼ ð1; 0Þ
Wess-Zumino-Witten model [44,45]. The other compo-
nents of v0 do not appear in the final action, so there is
no need to include their kinetic terms. Note also that we
have defined the kinetic term to have the correct sign
whether k is positive or negative. The Lagrangian for the
boundary theory will now be given by a type of gauged
N ¼ ð1; 0Þ WZW model

L b;kðv0;�0Þ ¼ Lkb;kðv0;�0Þ þLpb;kðv0;�0Þ; (55)

and so the complete gauge and supersymmetry invariant
action is given by

L sgCS;kðv0;�Þ ¼ LsCS;kð�Þ þLb;kðv0;�0Þ: (56)

The component form of LsCS;k þLpb;k is obtained by

substituting

A� ! i�ðD��
�1Þ; �a ! ��a�

�1 � ic a;

Ea ! �Ea�
�1;

(57)

where we have defined the components of v to be

� ¼ vj; c a ¼ ðDavÞj��1; (58)

in the original supersymmetric boundary action,

LsCS;k ¼ k

4�

�
���	

�
A�@�A	 þ 2i

3
A�A�A	

�
þ EaEa

þD�ð�að��ÞbaEbÞ þD3ð�aEbÞ
þ i

6
D3ð�a½ð��A�Þba; �b�Þ

�
: (59)
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So we can write

LsCS;k þLpb;k ¼ k

4�

�
����	ð��1D��Þ@�ð��1D	�Þ þ 2

3
���	ð��1D��Þð��1D��Þð��1D	�Þ

� iD�ðc að��Þba�Eb�
�1Þ � iD3ðc a�Eb�

�1Þ þD3ð�aEbÞ þ i

6
D3ðð��a��1 � ic aÞ

� ½ð���D��
�1Þba; ð��b�

�1 � ic bÞ�Þ þ EaEa þD�ð�að��ÞbaEbÞ
�
: (60)

The component form of Lkb;k is the kinetic term for the
N ¼ ð1; 0Þ gauged WZW model,

Lkb;k ¼ � jkj
2�

½��0�1c�Dþðc��0Þ þ ð�0�1D��0Þ
� ð�0�1Dþ�0Þ�; (61)

where c� ¼ ðD�v̂Þj�0�1 is the single fermionic compo-
nent of v̂.

Thus,N ¼ 1 Chern-Simons theory in the presence of a
boundary can be made both gauge and supersymmetry
invariant by the addition of a suitable theory on the bound-
ary such that its gauge and supersymmetry variations ex-
actly cancel those of the Chern-Simons theory. Our result
generalizes that of [20] which gave the boundary terms to
restore supersymmetry but not gauge invariance for Chern-
Simons theory, in the case of an Abelian gauge group. It
may be remarked that it was already known that the
bosonic Chern-Simons theory suitably coupled to a gauged
Wess-Zumino-Witten theory on the boundary is gauge
invariant [22], and we have now provided a superspace
extension of that result, or equivalently a fully gauge
invariant extension of the manifestly supersymmetric
Chern-Simons with boundary theories considered in [21].

IV. ABJM THEORY

In the previous section we analyzed N ¼ 1 Chern-
Simons theory in the presence of a boundary. In this section
we shall use the results of the previous section to analyze
the ABJM theory in the presence of a boundary. The ABJM
theory in the presence of a boundary, in N ¼ 1 super-
space formalism, can be formulated as a supersymmetric
gauge theory with the gauge group UðNÞk �UðNÞ�k and
the superfield Lagrangian

L ABJM;k ¼ LCS;kð�Þ þLCS;�kð~�Þ þLM;k; (62)

where LCS;k and LCS;�k are Chern-Simons theories as

discussed in the previous section, and the matter part of
the Lagrangian LM;k is given by

LM;k ¼ LkM þLpM;k; (63)

where LpM;k is the potential term given by

L pM;k ¼ � 2�

k
r2½�IJ�KLXIYKX

JYL

þ �IJ�KLX
y
I Y

KyXJyYy
L�j; (64)

and LkM is the kinetic term given by

L kM ¼ �1
4r2½raXIraX

y
I þraYIraY

y
I �j: (65)

Here the supercovariant derivatives for the matter fields are
given by

raX
I ¼ DaX

I þ i�aX
I � iXI~�a;

raY
Iy ¼ DaY

Iy þ i�aY
Iy � iYIy~�a;

raX
Iy ¼ DaX

Iy � iXIy�a þ i~�aX
Iy;

raY
I ¼ DaY

I � iYI�a þ i~�aY
I: (66)

The full finite gauge transformation under which the
ABJM theory, without a boundary, is invariant is given by

�a ! iurau
�1; ~�a ! i~ura~u

�1; XI ! uXI~u�1;

XIy ! ~uXIyu�1; YI ! ~uYIu�1; YI ! uYIy~u�1;

(67)

where

u ¼ expði�ATAÞ; ~u ¼ expði~�ATAÞ: (68)

The infinitesimal gauge transformations of these fields are
given by

��a ¼ ra�; �~�a ¼ ~ra
~�;

�XI ¼ ið�XI � XI ~�Þ; �XIy ¼ ið~�XIy � XIy�Þ;
�YI ¼ ið~�YI � YI�Þ; �YIy ¼ ið�YIy � YIy ~�Þ:

(69)

We can now discuss the ABJM theory in the presence of
a boundary. We can use the analysis in the previous section
and a generalization of the work done in [20–22] to analyze
the ABJM theory in the presence of a boundary. The
supersymmetric variation of the ABJM Lagrangian on a
manifold with a boundary is a boundary term. Thus, to
retain the SUSYof the theory a suitable boundary piece has
to be added in such a way that it cancels the boundary term
generated by the supersymmetric variation of the original
theory. The sum of this boundary term and the original
ABJM Lagrangian can now be written as

L sABJM;k ¼ LsCS;kð�Þ þLsCS;�kð~�Þ þLsM;k; (70)

where LsCS;k and LsCS;�k are the Chern-Simons theories

on a manifold with a boundary defined in the previous
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section. The matter part of the Lagrangian LsM;k is given

by

L sM;k ¼ LskM þLspM;k; (71)

where LspM;k is the potential term given by

L spM;k ¼ 2�

k
ð�r2 þD3Þ½�IJ�KLXIYKX

JYL

þ �IJ�KLX
y
I Y

KyXJyYy
L�j; (72)

and the kinetic term LskM is now given by

L skM ¼ 1
4ð�r2 þD3Þ½raXIraX

y
I þraYIraY

y
I �j:
(73)

The matter part of the ABJM theory is still invariant under
the gauge transformations given by Eq. (69). However, the
Chern-Simons part is not invariant under these gauge trans-
formations. Thus, the total Lagrangian for the ABJM the-
ory is not invariant under the gauge transformations given
by Eq. (69). However, this is exactly the issue we tackled in
the previous section, so we know that we can add a bound-
ary action to modify the ABJM action. The result is the
supersymmetric and gauge invariant action:

L sgABJM;k ¼ LsgCS;kðv0;�Þ þLsgCS;�kð~v0; ~�Þ þLsM;k:

(74)

Furthermore, v0 and ~v0 can be extended in to the bulk to
produce fields v and ~v whose finite gauge transformations
are given by

v ! vu�1; ~v ! ~v~u�1: (75)

Thus, by introducing new degrees of freedom on the
boundary, we have found a superspace description of the
boundary ABJM theory which is also gauge invariant. It
would be interesting to generalize this to extended super-
space1 so that more supersymmetry was manifest, and to
investigate in detail how much supersymmetry is preserved
by this theory or similar supersymmetric Chern-Simons
theories with matter in the presence of a boundary. Other
than some technical complications, it should be possible to
extend this analysis to N ¼ 2 superspace, and indeed
when the N ¼ 2 Chern-Simons action was derived, its
similarity to the N ¼ 2 WZW action was noted [46].
However, an interesting question is whether the full super-
symmetry will give further constraints on the boundary
action, as we seemingly have the freedom to add any
additional supersymmetric gauge invariant boundary
terms. One obvious question is whether the boundary
theory relates the two SUðNÞ factors such as through a
coupling which preserves the diagonal subgroup. Some
such feature may be expected as the N ¼ 6 bulk ABJM
action required the specific SUðNÞ � SUðNÞ form of the
gauge group, but this is not required by less supersymmetric

theories. Going beyondmanifestN ¼ 2 supersymmetry is
even more difficult, but the ABJM action has been formu-
lated in N ¼ 3 harmonic superspace [2]. Alternatively it
may be possible to proceed without an off-shell superspace
action using the ectoplasm formalism [47,48], as recently
explored for systems with a boundary [49].

V. BRST AND ANTI-BRST SYMMETRIES

In this section we will study the BRST and anti-BRST
symmetries of the theory discussed in the previous section.
As the sum of the boundary theory and ABJM theory is
invariant under gauge transformations, it contains unphys-
ical degrees of freedom. These unphysical degrees of free-
dom will give rise to constraints in canonical quantization
and divergences in the partition function in the path integral
quantization. So before we can quantize this theory we will
need to eliminate these unphysical degrees of freedom by the
addition of a suitable gauge-fixing term and a suitable ghost
term to it. The new effective Lagrangian that is obtained by
taking the sum of the original classical Lagrangian, the
gauge-fixing term, and the ghost termwill be invariant under
two new sets of transformations called the BRST transfor-
mation and the anti-BRST transformation.
In order to write a suitable gauge-fixing term and a

suitable ghost for the ABJM theory, we denote the auxil-

iary superfields by B, ~B. We also denote the ghosts by C, ~C

and the antighosts by �C, ~�C. It may be noted that whereas
the auxiliary fields are regular matrix valued scalar super-
fields, the ghosts and the antighosts are matrix valued
anticommuting superfields. All these superfields are suit-
ably contracted with generators of the Lie algebra in the
adjoint representation

B ¼ BATA; ~B ¼ ~BATA; ~C ¼ ~CATA;

C ¼ CATA; �C ¼ �CATA:
~�C ¼ ~�C

A
TA:

(76)

Now we can write the gauge-fixing termLgf and the ghost

termLgh for the ABJM theory corresponding to the gauge-

fixing function [42],

Da�a ¼ 0; Da~�a ¼ 0; (77)

as follows:

Lgf ¼ �rþr�½BDa�a�j þ �~rþ ~r�½ ~BDa~�a�j; (78)

Lgh ¼ �rþr�½ �CDaraC�j þ ~rþ ~r�½~�CDa ~ra
~C�j: (79)

We now define an effective Lagrangian Leff;k as the sum

of the supersymmetric and gauge invariant ABJM
Lagrangian, the gauge-fixing term, and the ghost term,

L eff;k ¼ LsgABJM;k þLgf þLgh: (80)

The BRST transformations of the matter fields can be
written as

1The supersymmetric but not gauge invariant case for N ¼ 2
supersymmetry can be found in [21].
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sXI ¼ iðCXI � XI ~CÞ; sXIy ¼ ið ~CXIy � XIyCÞ;
sYI ¼ ið ~CYI � YICÞ; sYIy ¼ iðCYIy � YIy ~CÞ:

(81)

The BRST transformations of the auxiliary superfields,
ghosts, and antighosts can be written as

s�a ¼ raC; s~�a ¼ ~ra
~C; sC ¼ �1

2fC;Cg;
s ~C ¼ �1

2f ~C; ~Cg s �C ¼ B; s~�C ¼ ~B;

sB ¼ 0; s ~B ¼ 0: (82)

The BRST transformation of the v and ~v can be written as

sv ¼ �ivC; s~v ¼ �i~v ~C : (83)

These BRST transformations are nilpotent and thus satisfy
s2 ¼ 0. This fact can be used to show that the sum of the
gauge-fixing term Lgf and the ghost term Lgh is invariant

under BRST transformations. It is because the sum of the
ghost term and the gauge-fixing term can be written as

L gf þLgh ¼ �rþr�s½ �CDa�a�j þ ~rþ ~r�s½~�CDa~�a�j:
(84)

Now using the fact that BRST transformations are nilpo-
tent, we get

sLgf þ sLgh ¼ �rþr�s2½ �CDa�a�j
þ ~rþ ~r�s2½~�CDa~�a�j

¼ 0: (85)

The Lagrangian LsABJM;k is not invariant under these

BRST transformations as it generates a boundary term
which is given by

sLsABJM;k ¼ k

2�
ðP�r0Þa½C0!0

a�j � k

2�
ðP� ~r0Þa½ ~C0 ~!0

a�j:
(86)

Here C0 and ~C0 are the induced values of C and ~C on the
boundary. However, this boundary term is exactly canceled
by the BRST variation of boundary theory. Thus, the sum
of the bulk and the boundary theory is invariant under these
BRST transformations, and so we have sLsgABJM;k ¼ 0.

Thus, the effective Lagrangian Leff;k is invariant under

BRST transformations,

sLeff;k ¼ sLsgABJM;k þ sLgf þ sLgh ¼ 0: (87)

We can perform a similar analysis using the anti-BRST
transformations. The anti-BRST transformations of the
matter fields can be written as

�sXI ¼ ið �CXI � XI ~�CÞ; �sXIy ¼ ið~�CXIy � XIy �CÞ;
�sYI ¼ ið~�CYI � YI �CÞ; �sYIy ¼ ið �CYIy � YIy~�CÞ:

(88)

The anti-BRST transformations of the auxiliary super-
fields, ghosts, and antighosts can be written as

�s�a ¼ ra
�C; �s~�a ¼ ~ra

~�C; �sC ¼ �B� f �C;Cg;
�s ~C ¼ � ~B� f~�C; ~Cg; �s �C ¼ �1

2f �C; �Cg;
�s ~�C ¼ �1

2f~�C; ~�Cg; �sB ¼ 1
2½B; �C� �s ~B ¼ 1

2
~½B; ~�C�:

(89)

The BRST transformation of the v and ~v fields can be
written as

�sv ¼ �iv �C; �s ~v ¼ �i~v ~�C : (90)

The anti-BRST transformations also are nilpotent and thus
satisfy �s2 ¼ 0. Furthermore, the sum of the ghost and
gauge-fixing terms can also be written as

L gf þLgh ¼ �rþr� �s½ �CDa�a�j þ ~rþ ~r� �s½~�CDa~�a�j:
(91)

Thus, using the fact that anti-BRST transformations are
nilpotent, we get

�sLgf þ �sLgh ¼ �rþr� �s2½ �CDa�a�j
þ ~rþ ~r� �s2½~�CDa~�a�j

¼ 0: (92)

Here again the Lagrangian LsABJM;k is not invariant under

these anti-BRST transformations and it generates a bound-
ary term which is given by

�sLsABJM;k ¼ k

2�
ðP�r0Þa½ �C0!0

a�j � k

2�
ðP� ~r0Þa½~�C0

~!0
a�j:
(93)

Here �C0 and ~�C
0
are the induced values of �C and ~�C on the

boundary. This term is again canceled by the anti-BRST
variation of the boundary theory and so we have
�sLsgABJM;k ¼ 0. Thus, the effective Lagrangian Leff;k is

also invariant under these anti-BRST transformations,

�sLeff;k ¼ �sLsgABJM;k þ �sLgf þ �sLgh ¼ 0: (94)

So the effective Lagrangian for the supersymmetric and
gauge invariant ABJM is invariant under both the BRST
and the anti-BRST transformations.

VI. CONCLUSION

In this paper we analyzed the N ¼ 1 Chern-Simons
theory in the presence of a boundary. We used the results
thus obtained to study the ABJM theory in the presence of
a boundary. We first modified the Chern-Simons theory by
adding a boundary term to it such that supersymmetry
variations of the bulk Chern-Simons theory were canceled
by the supersymmetry variations of this boundary term.
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The resultant theory was then made gauge invariant by
adding new boundary degrees of freedom to it. This new
boundary theory was identified as a gauged Wess-Zumino-
Witten model. These results were used to obtain a super-
space description of the boundary ABJM theory which was
also gauge invariant. As the matter part of the ABJM
theory is gauge invariant even with a boundary, it was
only necessary to include a boundary term to restore
SUSY. The Chern-Simons part of the ABJM was modified
by both the addition of a term to make it supersymmetric
and new boundary degrees of freedom to make it gauge
invariant. Thus, we added a suitable theory on the bound-
ary such that its gauge and supersymmetry variations
exactly cancel those of the bulk ABJM theory. We also
analyzed the BRST and the anti-BRST symmetries of this
resultant theory.

Chern-Simons theories are also important in condensed
matter physics due to their relevance to the fractional
quantum Hall effect [50–53]. The fractional quantum
Hall effect is based on the concept of statistical transmu-
tation, i.e., the fact that, in two dimensions, fermions can
be described as charged bosons carrying an odd integer
number of flux quanta which is achieved by analyzing
Chern-Simons fields coupled to the bosons. In this theory
electrons in an external magnetic field are described as
bosons in a combined external and statistical magnetic
field. At special values of the filling fraction the statistical
field cancels the external field, in the mean field sense, and
the system is described as a gas of bosons feeling no net
magnetic field. These bosons condense into a homogene-
ous ground state. This model describes the quantization of
the Hall conductance and the existence of vortex and
antivortex excitations. Lately supersymmetric generaliza-
tion of the fractional quantum Hall effect has also been
investigated [54–57]. In particular physical properties of
the topological excitations in the supersymmetric quantum
Hall liquid have been discussed in a dual supersymmetric
Chern-Simons theory [58]. Boundary effects for Chern-
Simons theories are also important in condensed matter
physics. This is because in quantum Hall systems gapless
edge modes exist [59]. These have important consequences
for the transport properties of the system [60]. These
modes have been studied in the presence of an infinitely
steep external confining potential [61,62]. The description
of these modes has also been related to the chiral Luttinger
liquid description of the edge excitations [63]. Thus, the
results of this paper will be useful in analyzing the super-
symmetric generalization of gapless edge modes of frac-
tional quantum Hall systems. This can have important
consequences for the transport properties of the fractional
quantum hall system.
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APPENDIX: COMPONENT BRST
TRANSFORMATIONS

In this appendix we will first study the gauge trans-
formations of the ABJM theory and the boundary theory
in the component form.Wewill then analyze the BRSTand
anti-BRST transformations of these theories in the compo-
nent form. To do so we write ghosts, antighosts, and the
auxiliary fields in component form as

c ¼ ½C�j; �c ¼ ½ �C�j; b ¼ ½B�j; ca ¼ ½raC�j;
�ca ¼ ½ra

�C�j; ba ¼ ½raB�j; c ¼ ½r2C�j;
�c ¼ ½r2 �C�j; b ¼ ½r2B�j; ~c ¼ ½ ~C�j;
~�c ¼ ½~�C�j; ~b ¼ ½ ~B�j; ~ca ¼ ½~ra

~C�j;
~�ca ¼ ½~ra

~�C�j; ~ba ¼ ½~ra
~B�j; ~c ¼ ½~r2 ~C�j;

~�c ¼ ½~r2 ~�C�j; ~b ¼ ½~r2 ~B�j; (A1)

where the fields c, �c, c, �c, ba and ~c, ~�c, ~c, ~�c, ~ba are fermionic

fields and the fields ca, �ca, b, b and ~ca, ~�ca, b, ~b are bosonic
fields. The components of the matter fields are given by

xI ¼ ½XI�j; xIa ¼ ½raX
I�j; xI ¼ ½r2XI�j;

yI ¼ ½YI�j; yIa ¼ ½raY
I�j; yI ¼ ½r2YI�j;

xIy ¼ ½XIy�j; xIya ¼ ½raX
Iy�j; xIy ¼ ½r2XIy�j;

yIy ¼ ½YIy�j; yIya ¼ ½raY
Iy�j; yIy ¼ ½r2YIy�j:

(A2)

We also write the components of � and ~� as


 ¼ ½��j; 
a ¼ ½ra��j; �
 ¼ ½r2��j;
~�
 ¼ ½~r2 ~��j; ~
 ¼ ½~��j; ~
a ¼ ½~ra

~��j:
(A3)

The component forms of v and ~v are given by

� ¼ ½v�j; �a ¼ ½rav�j; � ¼ ½r2v�j;
~� ¼ ½~r2 ~v�j; ~� ¼ ½~v�j; ~�a ¼ ½~ra~v�j:

(A4)

The component forms of �a and ~�a are given by

�a ¼ ½�a�j; A ¼ �1
2½ra�a�j;

A� ¼ �1
2½rað��Þba�b�j; Ea ¼ �½rbra�b�j;

~�a ¼ ½~�a�j; ~A ¼ �1
2½~ra~�a�j;

~A� ¼ �1
2½~rað��Þba~�b�j; ~Ea ¼ �½~rb ~ra

~�b�j:

(A5)

Now after writing the components for all superfields we
can write the gauge transformations of these component
fields. Thus, the component forms of the gauge transfor-
mations of matter fields for the ABJM theory are given by
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�xI ¼ ið
xI � xI ~
Þ; �xIy ¼ �iðxIy
� ~
xIyÞ; �yI ¼ �iðyI
� ~
yIÞ; �yIy ¼ ið
yIy � yIy ~
Þ;
�xIa ¼ ið
ax

I � xI ~
aÞ � ið
xIa � xIa ~
Þ; �xIya ¼ �iðxIy
a � ~
ax
IyÞ þ iðxIya 
� ~
xIya Þ;

�yIa ¼ �iðyI
a � ~
ay
IÞ þ iðyIa
� ~
yIaÞ; �yIya ¼ ið
ay

Iy � yIy ~
aÞ � ið
yIya � yIya ~
Þ;
�xI ¼ ið �
xI � xI~�
Þ þ ið
xI � xI ~
Þ � 2ið
axIa � xaI ~
aÞ;
�xIy ¼ �iðxIy �
� ~�
xIyÞ � iðxIy
� ~
xIyÞ þ 2iðxaIy
a � ~
axIya Þ;
�yI ¼ �iðyI �
� ~�
yIÞ � iðyI
� ~
yIÞ þ 2iðyaI
a � ~
ayIaÞ;
�yIy ¼ ið �
yIy � yIy~�
Þ þ ið
yIy � yIy ~
Þ � 2ið
ayIya � yaIy ~
aÞ: (A6)

The component forms of the gauge transformation of the gauge fields for the ABJM theory are given by

��a ¼ �a
þ 
a; �A ¼ A
þ �
; �A� ¼ D�
; �Ea ¼ Ea
; �~�a ¼ ~�a
~
þ ~
a;

� ~A ¼ ~A ~
þ~�
; � ~A� ¼ ~D�
~
; � ~Ea ¼ ~Ea

~
: (A7)

The component forms of the gauge transformations for v and ~v are given by

�� ¼ �i�
; �� ¼ �i�
� 2i�a
a � i� �
; � ~� ¼ �i ~� ~
; �~� ¼ �i~� ~
�2i ~�a ~
a � i ~� ~�
;

��a ¼ �i�a
� i�
a; � ~�a ¼ �i ~�a
~
� i ~�~
a: (A8)

After discussing the component forms of the gauge transformations, we will analyze the component forms of the BRST
and the anti-BRST transformations. In component form the BRST transformations of the matter fields in the ABJM theory
are given by

sxI ¼ iðcxI � xI~cÞ; sxIy ¼ �iðxIyc� ~cxIyÞ; syI ¼ �iðyIc� ~cyIÞ; syIy ¼ iðcyIy � yIy~cÞ;
sxIa ¼ iðcaxI � xI~caÞ � iðcxIa � xIa~cÞ; sxIya ¼ �iðxIyca � ~cax

IyÞ þ iðxIya c� ~cxIya Þ;
syIa ¼ �iðyIca � ~cay

IÞ þ iðyIac� ~cyIaÞ; syIya ¼ iðcayIy � yIy~caÞ � iðcyIya � yIya ~cÞ;
sxI ¼ iðcxI � xI~cÞ þ iðcxI � xI~cÞ � 2iðcaxIa � xaI~caÞ;
sxIy ¼ �iðxIyc� ~cxIyÞ � iðxIyc� ~cxIyÞ þ 2iðxaIyca � ~caxIya Þ;
syI ¼ �iðyIc� ~cyIÞ � iðyIc� ~cyIÞ þ 2iðyaIca � ~cayIaÞ;
syIy ¼ iðcyIy � yIy~cÞ þ iðcyIy � yIy~cÞ � 2iðcayIya � yaIy~caÞ: (A9)

The anti-BRST transformations of the matter fields in the ABJM theory in component form are given by

�sxI ¼ ið �cxI � xI~�cÞ; �sxIy ¼ �iðxIy �c� ~�cxIyÞ; �syI ¼ �iðyI �c� ~�cyIÞ; �syIy ¼ ið �cyIy � yIy~�cÞ;
�sxIa ¼ ið �caxI � xI~�caÞ � ið �cxIa � xIa~�cÞ; �sxIya ¼ �iðxIy �ca � ~�cax

IyÞ þ iðxIya �c� ~�cxIya Þ;
�syIa ¼ �iðyI �ca � ~�cay

IÞ þ iðyIa �c� ~�cyIaÞ; �syIya ¼ ið �cayIy � yIy~�caÞ � ið �cyIya � yIya ~�cÞ;
�sxI ¼ ið�cxI � xI~�cÞ þ ið �cxI � xI~�cÞ � 2ið �caxIa � xaI~�caÞ;
�sxIy ¼ �iðxIy �c� ~�cxIyÞ � iðxIy �c� ~�cxIyÞ þ 2iðxaIy �ca � ~�caxIya Þ;
�syI ¼ �iðyI �c� ~�cyIÞ � iðyI �c� ~�cyIÞ þ 2iðyaI �ca � ~�cayIaÞ;
�syIy ¼ ið�cyIy � yIy~�cÞ þ ið �cyIy � yIy~�cÞ � 2ið �cayIya � yaIy~�caÞ: (A10)

In component form the BRST transformations of gauge fields, ghosts, antighosts, and auxiliary fields for the ABJM theory
are given by
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s�a ¼ �acþ ca; sA ¼ Acþ c; sA� ¼ D�c; sEa ¼ Eac; sc ¼ �1
2fc; cg; sca ¼ ½c; ca�;

s �c ¼ b; sc ¼ ½ca; ca� � fc; cg; s �ca ¼ ba; s�c ¼ b s~�a ¼ ~�a~cþ ~ca; s ~A ¼ ~A ~cþ~c;

s ~A� ¼ ~D�~c; s ~Ea ¼ ~Ea~c; s~c ¼ �1
2f~c; ~cg; s~ca ¼ ½~c; ~ca�; s~�c ¼ ~b; s~c ¼ ½~ca; ~ca� � f~c;~cg;

s~�ca ¼ ~ba; s~�c ¼ ~b sb ¼ 0; sba ¼ 0; s~b ¼ 0; s~ba ¼ 0; s~b ¼ 0 s~b ¼ 0: (A11)

The anti-BRST transformations of the gauge fields, ghosts, antighosts, and the auxiliary fields for the ABJM theory in
component form are given by

�sc ¼ �b� f �c; cg; �sca ¼ �ba � ½ �ca; c� þ ½ �c; ca�; �s �c ¼ �1
2f �c; �cg; �sc ¼ �b� f�c; cg � fc; �cg þ 2½ �ca; ca�;

�s �ca ¼ ½ �c; �ca�; �s �c ¼ ½ �ca; �ca� � f �c; �cg; �sba ¼ 1
2fba; �cg þ 1

2½b; �ca�; �sb ¼ 1
2½b; �c� þ 1

2½b; �c� þ ½ba; �ca�;
�sb ¼ 1

2½b; �c�; �s�a ¼ �a �cþ �ca; �sA ¼ A �cþ �c; �sA� ¼ D� �c; �s ~c ¼ �~b� f~�c; ~cg;
�s~ca ¼ �~ba � ½~�ca; ~c� þ ½~�c; ~ca�; �s ~�c ¼ �1

2f~�c; ~�cg; �s~c ¼ �~b� f~�c; ~cg � f~c;~�cg þ 2½~�ca; ~ca�; �s~�ca ¼ ½~�c; ~�ca�;
�s~�c ¼ ½~�ca; ~�ca� � f~�c;~�cg; �s~ba ¼ 1

2f~ba; ~�cg þ 1
2½~b;~�ca�; �s ~b ¼ 1

2½~b; ~�c� þ 1
2½~b;~�c� þ ½~ba; ~�ca�; �s ~b ¼ 1

2½~b; ~�c�;
�s~�a ¼ ~�a

~�cþ ~�ca; �s ~A ¼ ~A ~�cþ~�c; �s ~A� ¼ ~D�
~�c; �s ~Ea ¼ ~Ea

~�c; �sEa ¼ Ea �c: (A12)

Furthermore, the BRST transformations of v, ~v in component form are given by

s� ¼ �i�c; s� ¼ �i�c� 2i�aca � i�c; s ~� ¼ �i ~� ~c; s~� ¼ �i~� ~c�2i ~�a~ca � i ~�~c;

s�a ¼ �i�ac� i�ca; s ~�a ¼ �i ~�a~c� i ~�~ca; (A13)

and the anti-BRST transformations of v, ~v in component form are given by

�s� ¼ �i� �c; �s� ¼ �i� �c� 2i�a �ca � i��c; �s ~� ¼ �i ~� ~�c; �s ~� ¼ �i~� ~�c�2i ~�a~�ca � i ~�~�c;

�s�a ¼ �i�a �c� i� �ca; �s ~�a ¼ �i ~�a
~�c� i ~�~�ca: (A14)

These are the component forms of the BRST and the anti-BRST transformations of the ABJM theory and the boundary
theory it is coupled to.
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