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We consider a Uð4Þ Yang-Mills theory on M� S2F � S2F where M is an arbitrary Riemannian

manifold and S2F � S2F is the product of two fuzzy spheres spontaneously generated from a SUðN Þ
Yang-Mills theory on M which is suitably coupled to six scalars in the adjoint of UðN Þ. We determine

the SUð2Þ � SUð2Þ-equivariant Uð4Þ gauge fields and perform the dimensional reduction of the theory

over S2F � S2F. The emergent model is a Uð1Þ4 gauge theory coupled to four complex and eight real scalar

fields. We study this theory on R2 and find that, in certain limits, it admits vortex type solutions withUð1Þ3
gauge symmetry and discuss some of their properties.
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I. INTRODUCTION

Recently, there have been significant advances in under-
standing the structure of gauge theories possessing fuzzy
extra dimensions [1,2] (for a review on fuzzy spaces see
[3]). It is known that in certain SUðN Þ Yang-Mills theo-
ries on a manifold M, which are suitably coupled to a set
of scalar fields, fuzzy spheres may be generated as extra
dimensions by spontaneous symmetry breaking. The vac-
uum expectation values of the scalar fields form the fuzzy
sphere(s), while the fluctuations around the vacuum are
interpreted as gauge fields over S2F or S2F � S2F [2,4]. The
resulting theories can therefore be viewed as gauge theo-
ries over M� S2F and M� S2F � S2F with smaller gauge
groups, which is further corroborated by the expansion of a
tower of Kaluza-Klein modes of the gauge fields. Inclusion
of fermions into this theory was considered in [4,5]. For
instance, in [5] an appropriate set of fermions in 6D
allowed for an effective description of Dirac fermions on
M4 � S2F, which was further confirmed by a Kaluza-Klein
modes’ expansion over S2F. It was also found that a chi-
rality constraint on the fermions leads to a description in
terms of ‘‘mirror fermions’’ in which each chiral fermion
comes with a partner with opposite chirality and quantum
numbers.

It appears well motivated to investigate equivariant pa-
rametrization of gauge fields and perform dimensional
reduction over the fuzzy extra dimensions to shed some
further light into the structure of these theories. Essentially,
it is possible to use the well-known coset space dimen-
sional reduction (CSDR) techniques to achieve this task.
To briefly recall this consider a Yang-Mills theory with a
gauge group S over the product space M�G=H. G has a
natural action on its coset, and requiring the Yang-Mills
gauge fields to be invariant under the G action up to S
gauge transformations leads to a G-equivariant parametri-
zation of the gauge fields and subsequently to the dimen-
sional reduction of the theory after integrating over the

coset space G=H [6,7]. CSDR techniques have been
widely used as a method in attempts to obtain the standard
model on the Minkowski space M4 starting from a Yang-
Mills-Dirac theory on the higher dimensional space M4 �
G=H (for a review on this topic the reader can consult [7]).
The widely known, prototype example of CSDR is the
SUð2Þ-equivariant reduction of the Yang-Mills theory
overR4 to an Abelian Higgs model on the two-dimensional
hyperbolic space H2, which was formulated by Witten [8]
prior to the development of the formal approach of [6], and
it led to the construction of instanton solutions with charge
greater than 1.
Another approach, parallel to the CSDR scheme, using

the language of vector bundles and quivers is also known in
the literature [9]. In recent times, this approach has been
employed in a wide variety of problems, including the
formulation of quiver gauge theory of non-Abelian vortices
over R2d

� corresponding to instantons on R2d
� � S2, R2d

� �
S2 � S2 [10,11], to the construction of vortex solutions
over Riemann surfaces which become integrable for an
appropriate choice of the parameters [12] and to the con-
struction of non-Abelian monopoles overR1;1 � S2 in [13].
In [14], reduction of the Yang-Mills-Dirac theory on M�
S2 is considered with a particular emphasis on the effects of
the nontrivial monopole background on the physical parti-
cle spectrum of the reduced theory. Dimensional reduction
over the quantum sphere has been recently studied and has
led to the formulation of q-deformed quiver gauge theories
and non-Abelian q vortices [15].
Both of these techniques have also been applied to Yang-

Mills theories over R2d
� � S2 [16], where R2d

� is the 2d
dimensional Groenewold-Moyal space, a prime example
of a noncommutative space. In this framework, Donaldson-
Uhlenbeck-Yau equations of a Uð2kÞ Yang-Mills theory
have been reduced to a set of equations on R2d

� whose

solutions are given by Bogomol’nyi-Prasad-Sommerfeld
(BPS) vortices on R2d

� and the properties of the latter

have been elaborated.
Starting with the article [17], we have initiated inves-
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over fuzzy extra dimensions. In [17] the most general
SUð2Þ-equivariant Uð2Þ gauge field over M� S2F has

been found, and it was utilized to perform the dimensional
reduction over S2F. It was shown that for M ¼ R2 the

emergent theory is an Abelian Higgs type model which
has non-BPS vortex solutions corresponding to the instan-
tons in the original theory. There it was also found that
these non-BPS vortices attract or repel depending on the
parameters in the model. This article was followed up by
investigating the situation in which M is also a noncom-
mutative space [18]. Performing the SUð2Þ-equivariant
dimensional reduction of this theory led to a noncommu-
tativeUð1Þ theory which couples adjointly to a set of scalar
fields. On the Groenewold-Moyal plane M ¼ R2

� the

emergent models admit a noncommutative vortex as well
as fluxon solutions, which are non-BPS and devoid of a
smooth commutative limit as � ! 0.

As we have noted earlier, gauge theory on M4 � S2F �
S2F has been recently investigated in [4]. For this purpose

authors of [4] have considered a SUðN Þ gauge theory on
M4, which is suitably coupled to six scalar fields in the
adjoint of UðN Þ. The model has the same field content
as that of the bosonic part of the N ¼ 4 super Yang-Mills
theory, but comes together with a potential breaking the
N ¼ 4 supersymmetry and the R symmetry which is a
global SUð4Þ. The deformed potential makes possible
(after spontaneous symmetry breaking) the identification
of the vacuum expectation values of the scalars with S2F �
S2F and the fluctuations around this vacuum as gauge fields
on S2F � S2F. The structure of fermions in this theory is

elaborated in [4]. In a related article, it was shown that
twisted fuzzy spheres can be dynamically generated as
extra dimensions starting from a certain orbifold projection
of a N ¼ 4 super Yang-Mills theory whose consequences
have been discussed in [19]. For a review on these results
[20] can be consulted.

In the present article, we investigate the SUð2Þ �
SUð2Þ-equivariant formulation of a Uð4Þ gauge theory
over S2F � S2F. Starting from the SUðN Þ gauge theory

model described above, but now put on some
Riemannian manifoldM, we focus on aUð4Þ gauge theory
on M� S2F � S2F after spontaneous symmetry breaking.
We determine the SUð2Þ � SUð2Þ-equivariant Uð4Þ gauge
fields and perform the dimensional reduction of the theory
over S2F � S2F. The emergent model is aUð1Þ4 gauge theory
coupled to four complex and eight real scalar fields. We
study this theory on R2 and find that, in certain limits, it
admits vortex type solutions with Uð1Þ3 gauge symmetry
and we discuss some of their properties.

Our work in the rest of the paper is organized as follows.
In Sec. II, we give the basics of the SUðN Þ gauge theory
over M and indicate how the gauge theory over M
dynamically develops S2F � S2F as extra dimensions. This

is followed by a systematic construction of the SUð2Þ �
SUð2Þ-equivariant Uð4Þ gauge field using essentially

the SOð4Þ � SUð2Þ � SUð2Þ representation theory. In
Sec. III’, we present the results of the equivariant reduction
overM� S2F � S2F and give the reduced action in full, and
find that the emergent model is a Uð1Þ4 gauge theory
coupled to four complex and eight real scalar fields. This
is ensued by a discussion of the structure of the reduced
action. In Sec. IV, we present nontrivial solutions of the
reduced action on R2 for two different limiting cases of the
parameters aL and aR in the theory and demonstrate that
these particular models have vortex solutions with Uð1Þ3
gauge symmetry which tend to attract or repel at the
critical point of the parameter space g~g ¼ 1. For complete-
ness, brief definitions of S2F and S2F � S2F are given in
Appendix A and basics of the UðN Þ gauge theory over
M� S2F and the Uð2Þ-equivariant gauge field parametri-
zation are discussed in Appendix B. In Appendix C, we
collect the explicit expressions after dimensional reduction
which is presented in Sec. III’.

II. Uð4Þ GAUGE THEORY OVER M � S2
F � S2

F

A. Gauge theory on M � S2
F � S2

F

We start with an SUðN Þ gauge theory coupled adjointly
to six scalar fields�i, ði ¼ 1; � � � ; 6Þ. The relevant action is
given in the form [4]

S ¼
Z
M

TrN

�
1

4g2
Fy
��F�� þ ðD��iÞyðD��iÞ

�
þ Vð�Þ:

(2.1)

In this expression, A� are suðN Þ valued anti-Hermitian

gauge fields, �iði ¼ 1; � � � ; 6Þ are six anti-Hermitian
scalars transforming in the adjoint of SUðN Þ and
D��i ¼ @��i þ ½A�;�i� are the covariant derivatives.
It is assumed further that �i, ði ¼ 1; � � � ; 6Þ transform

in the vector representation of a global SUð4Þ ffi SOð6Þ
group.
When considered on the four-dimensional Minkowski

spacetimeM4, depending on the form of the potential term
Vð�Þ, the action (2.1) corresponds to the bosonic part of
the N ¼ 4 super Yang-Mills theory with the global SUð4Þ
being its R symmetry, or a modification of it thereof. The
potential may have the form

Vð�Þ ¼ VN¼4ð�Þ þ Vbreakð�Þ; (2.2)

where the first term corresponds to the potential of the
N ¼ 4 super Yang-Mills theory

VN¼4ð�Þ ¼ 1

4
g24

X6
i;j

½�i;�j�2; (2.3)

while the second term breaks both the N ¼ 4 supersym-
metry and the R symmetry. It is also worth mentioning that
the above action (2.1) descends from a ten-dimensional
N ¼ 1 super Yang-Mills theory by dimensional reduction.
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We will not review this here as it is not necessary for our
purposes; however, a quick discussion can be found in [4].

We would like to see now how the product of two fuzzy
spheres emerges as extra dimensions from this theory as a
consequence of spontaneous breaking of the original gauge
symmetry. Following the discussion in [4], we consider a
potential of the form

Vð�Þ ¼ 1

g2L
V1ð�LÞ þ 1

g2R
V1ð�RÞ þ 1

g2LR
V1ð�L;RÞ

þ a2LV
L
2 ð�LÞ þ a2RV

R
2 ð�RÞ; (2.4)

where

�L
a ¼ �a; �R

a ¼ �aþ3; ða ¼ 1; 2; 3Þ; (2.5)

and

V1ð�LÞ ¼ TrN FLy
ab F

L
ab; FL

ab ¼ ½�L
a ;�

L
b � � "abc�

L
c ;

V1ð�RÞ ¼ TrN FRy
ab F

R
ab; FR

ab ¼ ½�R
a ;�

R
b � � "abc�

R
c ;

V2ð�LÞ ¼ TrN ð�L
a�

L
a þ ~bLÞ2;

V2ð�RÞ ¼ TrN ð�R
a�

R
a þ ~bRÞ2;

V1ð�L;RÞ ¼ TrN FðL;RÞy
ab FðL;RÞ

ab ; FðL;RÞ
ab ¼ ½�L

a ;�
R
b �:
(2.6)

We observe that the potential Vð�Þ is positive definite,

and it is possible to pick ~bL and ~bR as the quadratic
Casimirs of, respectively, SUð2ÞL and SUð2ÞR with irre-
ducible representations (IRRs) labeled by ‘L and ‘R:

~bL ¼ ‘Lð‘L þ 1Þ; ~bR ¼ ‘Rð‘R þ 1Þ; 2‘L; 2‘R 2 Z:

(2.7)

If it is further assumed that N ¼ ð2‘L þ 1Þð2‘R þ 1Þn
(n 2 Z), then the configuration

�L
a ¼ Xð2‘Lþ1Þ

a � 1ð2‘Rþ1Þ � 1n;

�R
a ¼ 1ð2‘Lþ1Þ � Xð2‘Rþ1Þ

a � 1n;

½�L
a ;�

R
b � ¼ 0; (2.8)

is a global minimum of the potential Vð�Þ where Xð2‘Lþ1Þ
a

and Xð2‘Rþ1Þ
a are the anti-Hermitian generators of SUð2ÞL

and SUð2ÞR, respectively, in the IRRs ‘L and ‘R, with the
commutation relations

½Xð2‘Lþ1Þ
a ; Xð2‘Lþ1Þ

b � ¼ "abcX
ð2‘Lþ1Þ
c ;

½Xð2‘Rþ1Þ
a ; Xð2‘Rþ1Þ

b � ¼ "abcX
ð2‘Rþ1Þ
c : (2.9)

This vacuum configuration spontaneously breaks the
SUðN Þ down to UðnÞ which is the commutant of �L

a ,
�R

a in (2.8).

Defining

x̂La ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘Lð‘L þ 1Þp Xð2‘Lþ1Þ

a � 1ð2‘Rþ1Þ;

x̂Ra ¼ 1ð2‘Lþ1Þ � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘Rð‘R þ 1Þp Xð2‘Rþ1Þ

a ;

x̂La x̂
L
a ¼ 1; x̂Ra x̂

R
a ¼ 1; (2.10)

the vacuum is a product of two fuzzy spheres S2F � S2F
generated by x̂La and x̂Ra . (See Appendix A for a description
of S2F � S2F.)
Fluctuations about this vacuum give aUðnÞ gauge theory

over S2F � S2F. We can write

�L
a ¼ XL

a þ AL
a ; �R

a ¼ XR
a þ AR

a ; (2.11)

where AL
a , A

R
a 2 uð2‘L þ 1Þ � uð2‘R þ 1Þ � uðnÞ with the

shorthand notation Xð2‘Lþ1Þ
a � 1ð2‘Rþ1Þ � 1n ¼: XL

a and

1ð2‘Lþ1Þ � Xð2‘Rþ1Þ
a � 1n ¼: XR

a .

Thus, �L
a , �

R
a are the ‘‘covariant coordinates’’ on S2F �

S2F, and the associated curvatures FL
ab, F

R
ab, F

L;R
ab take their

familiar form after expanding according to (2.11)

FL
ab ¼ ½XL

a ; A
L
b � � ½XL

b ; A
L
a � þ ½AL

a ; A
L
b � � "abcA

L
c ;

FR
ab ¼ ½XR

a ; A
R
b � � ½XR

b ; A
R
a � þ ½AR

a ; A
R
b � � "abcA

R
c ;

FL;R
ab ¼ ½XL

a ; A
R
b � � ½XR

b ; A
L
a � þ ½AL

a ; A
R
b �: (2.12)

Therefore, we can interpret the spontaneously broken
theory as a UðnÞ gauge theory on M� S2F � S2F with
AM :¼ ðA�; A

L
a ; A

R
a Þ as the gauge fields and FMN as the

corresponding field strength. The VL
2 and the VR

2 serve as
constraint terms to suppress the normal components of the
gauge fields on each of the fuzzy spheres, in a similar
manner as discussed for the case of a single fuzzy sphere
in [2,17].
It is important to point out that this gauge theory can be

called the ‘‘standard’’ Yang-Mills theory onM� S2F � S2F
if we take gL ¼ gR ¼ ffiffiffi

2
p

gL;R :¼ ~g, scale the scalar fields

as ~� ¼ ffiffiffi
2

p
~g�i and take ~gg ¼ 1, since only then it takes

the form of the L2 norm of FMN .
We also note for future use that, with the developments

above,

TrN ¼ 1

nð2‘L þ 1Þð2‘R þ 1Þ TrMatð2‘Lþ1Þ

� TrMatð2‘Rþ1Þ � TrMatðnÞ; (2.13)

where MatðkÞ denotes the algebra of k� k matrices.
Finally, it is also useful to remark that there are other

possibilities for the vacuum configuration as discussed in
[4] which for instance lead to S2F � S2F carrying magnetic
fluxes under the Uð1Þ component of the unbroken gauge
group SUðnÞ � SUðmÞ �Uð1Þ after spontaneous symme-
try breaking.
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B. The SUð2Þ � SUð2Þ-equivariant gauge field
We will now formulate the SUð2ÞL � SUð2ÞR ffi

SOð4Þ-equivariant, Uð4Þ gauge theory on M� S2F � S2F.
The gauge fields carry the fundamental representation of
Uð4Þ. We introduce SOð4Þ symmetry generators under
which A� is a scalar up to a Uð4Þ gauge transformation;

that is, carrying the SOð4Þ IRR (0, 0) and AL
a and AR

a are
SOð4Þ tensors carrying the IRRs (1, 0) and (0, 1), respec-
tively. In other words, AL

a is a vector under the SUð2ÞL and
a scalar under the SUð2ÞR, whereas AR

a is an SUð2ÞR vector
and an SUð2ÞL scalar.

On S2F � S2F the SUð2Þ � SUð2Þ ffi SOð4Þ rotational
symmetry is implemented by the adjoint actions adXL

a

and adXR
a (see Appendix A):

adXL
a � ¼ ½XL

a ; ��; adXR
a � ¼ ½XR

a ; ��;
½adXL

a ; adX
R
a � ¼ 0: (2.14)

Let us introduce the anti-Hermitian symmetry generators

!L
a ¼ Xð2‘Lþ1Þ

a � 1ð2‘Rþ1Þ � 14 � 1ð2‘Lþ1Þ � 1ð2‘Rþ1Þ � i
LL
a

2
;

!R
a ¼ 1ð2‘Lþ1Þ � Xð2‘Rþ1Þ

a � 14 � 1ð2‘Lþ1Þ � 1ð2‘Rþ1Þ � i
LR
a

2
:

(2.15)

Here LL
a and LR

a are 4� 4matrices whose structure will be
given shortly. They are chosen so that!L

a and!R
a fulfill the

consistency conditions

½!L
a;!

L
b � ¼ i"abc!

L
c ; ½!R

a ;!
R
b � ¼ i"abc!

R
c ;

½!L
a;!

R
b � ¼ 0: (2.16)

In order to write down the matrices LL
a and LR

a consider
first the 4� 4 matrices denoted as emnðm; n ¼ 1; 2; 3; 4Þ,
whose entries are all zero except the entry on the mth row
and the nth column which is 1. We let

Ja ¼ �i"abcebc; Ka ¼ �iðea4 � e4aÞ; (2.17)

and define

LL
a ¼ Ja þ Ka; LR

a ¼ Ja � Ka: (2.18)

These matrices fulfill

½LL
a ; L

L
b � ¼ 2i"abcL

L
c ; ½LR

a ; L
R
b � ¼ 2i"abcL

R
c ;

½LL
a ; L

R
b � ¼ 0: (2.19)

Therefore we have altogether six antisymmetric SUð4Þ
matrices generating the two subgroups SUð2ÞL and
SUð2ÞR. The remaining nine symmetric generators of
SUð4Þ may be taken as LL

aL
R
b . Together with the 4� 4

identity 14, L
L
a , L

R
a and LL

aL
R
b spanUð4Þ and furnish a basis

for the fundamental representation of Uð4Þ.
LL
a and LR

a form a 4� 4 basis of the Lie algebra soð4Þ ¼
suð2Þ � suð2Þ. In addition, these matrices satisfy the
relations

LL
aL

L
b ¼ i"abcL

L
c þ �ab14;

LR
aL

R
b ¼ i"abcL

R
c þ �ab14; (2.20)

which permits us to view them as two sets of 4� 4 ‘‘Pauli
matrices.’’
From the point of view of the SOð4Þ representation

theory LL
a , LR

a carry the reducible representations of
SUð2ÞL and SUð2ÞR. LL

a carries two copies of the IRR
ð12 ; 0Þ, whereas LR

a carries two copies of the IRR ð0; 12Þ,
which can be clearly observed from their Casimir operators
with the eigenvalues 3.
As the gauge fields AL

a and AR
a on S2F � S2F are uð4Þ

valued, they are elements of uð2‘L þ 1Þ � uð2‘R þ 1Þ �
uð4Þ. Therefore, it is now clear that LL

a and LR
a in (2.15) are

responsible for generating the Uð4Þ gauge symmetry in
SOð4Þ.
The SUð2Þ � SUð2Þ ffi SOð4Þ-equivariance conditions

stated at the beginning of this section can now be explicitly
described as the fulfillment of the following conditions
under the adjoint actions of !L and !R.

½!L
a; A�� ¼ 0 ¼ ½!R

a ; A��; ½!L
a; A

L
b � ¼ "abcA

L
c ;

½!R
a ; A

R
b � ¼ "abcA

R
c ; ½!L

a; A
R
b � ¼ 0 ¼ ½!R

a ; A
L
b �:
(2.21)

It is necessary to find explicit parametrizations of A�, A
L
a

and AR
a fulfilling these conditions. The adjoint actions of

!L and !R expand in the Clebsch-Gordan series as

2� ½ð‘L; 0Þ � ð12; 0Þ� � ½ð‘L; 0Þ � ð12; 0Þ�
¼ 4ð0; 0Þ � 8ð1; 0Þ � � � � ; (2.22)

2� ½ð0; ‘RÞ � ð0; 12Þ� � ½ð0; ‘RÞ � ð0; 12Þ�
¼ 4ð0; 0Þ � 8ð0; 1Þ � � � � ; (2.23)

where the factor of 2 in each line above is due to the two
copies of the IRRs ð12 ; 0Þ and ð0; 12Þ in LL

a and LR
a , respec-

tively. Therefore the relevant part of the Clebsch-Gordan
expansion takes the form

4ð0; 0Þ � 8ð1; 0Þ � 8ð0; 1Þ: (2.24)

The solution space for A� is then four-dimensional,

whereas each of the solution spaces of AL
a and AR

a is
eight-dimensional.
It is not very hard to see that there are four invariants

under the action of !L
a and !R

a . These are the three ‘‘idem-
potents’’

QL ¼ X‘L
a � 1ð2‘Rþ1Þ � LL

a � i
2 1

‘L þ 1=2
; Qy

L ¼ �QL;

Q2
L ¼ �14ð2‘Lþ1Þð2‘Rþ1Þ; (2.25)

QR ¼ 1ð2‘Lþ1Þ � X‘R
a � LR

a � i
2 1

‘R þ 1=2
; Qy

R ¼ �QR;

Q2
R ¼ �14ð2‘Lþ1Þð2‘Rþ1Þ; (2.26)
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iQLQR ¼ i
ðX‘L

a � 1ð2‘Rþ1Þ � LL
a � i

2 1Þð1ð2‘Lþ1Þ � X‘R
a � LR

a � i
2 1Þ

ð‘L þ 1=2Þð‘R þ 1=2Þ ;

ðiQLQRÞy ¼ �iQLQR; ðiQLQRÞ2 ¼ �14ð2‘Lþ1Þð2‘Rþ1Þ; (2.27)

which are all ½4ð2‘L þ 1Þð2‘R þ 1Þ�2 matrices and the
identity matrix �14ð2‘Lþ1Þð2‘Rþ1Þ.

These lead to the parametrization

A� ¼ 1

2
aL�Q

L þ 1

2
aR�Q

R þ i

2
b�1þ 1

2
ic�Q

LQR; (2.28)

where a�, b�, c� and d� are all Hermitian Uð1Þ gauge
fields, and to the parametrizations

AL
a ¼ 1

2ð�1 þ �0
1Þ½XL

a ;Q
L� þ 1

2ð�2 þ �0
2 � 1ÞQL½XL

a ;Q
L�

þ i12�3
1
2fX̂L

a ;Q
Lg þ 1

2�4!̂
L
a þ 1

2ð�1 � �0
1Þ

� iQR½XL
a ;Q

L� þ 1
2ð�2 � �0

2ÞiQRQL½XL
a ;Q

L�
þ i12�

0
3
1
2iQ

RfX̂L
a ; Q

Lg þ 1
2�

0
4iQ

R!̂L
a ; (2.29)

AR
a ¼ 1

2ð�1 þ �0
1Þ½XR

a ;Q
R� þ 1

2ð�2 þ �0
2 � 1ÞQR½XR

a ;Q
R�

þ i12�3
1
2fX̂R

a ; Q
Rg þ 1

2�4!̂
R
a þ 1

2ð�1 � �0
1Þ

� iQL½XR
a ;Q

R� þ 1
2ð�2 � �0

2ÞiQLQR½XR
a ;Q

R�
þ i12�

0
3
1
2iQ

LfX̂R
a ; Q

Rg þ 1
2�

0
4iQ

L!̂R
a : (2.30)

Here �i, �
0
i, �i and �0

i i ¼ ð1; 2; 3; 4Þ are Hermitian scalar
fields over M, the curly brackets denote anticommutators
throughout, and we have used

X̂L
a :¼ 1

‘L þ 1=2
XL
a ; !̂L

a :¼ 1

‘L þ 1=2
!L

a;

X̂R
a :¼ 1

‘R þ 1=2
XR
a ; !̂R

a :¼ 1

‘R þ 1=2
!R

a : (2.31)

Let us also introduce the notation

AL
a :¼ ~AL

a þ iQR ~A0L
a ; AR

a :¼ ~AR
a þ iQL ~A0R

a (2.32)

for future convenience.

III. REDUCTION OF THE YANG-MILLS
ACTION OVER S2

F

Using the SUð2Þ � SUð2Þ-equivariant gauge field in the
action functional of the Uð4Þ Yang-Mills theory on M �
S2F � S2F, we can explicitly trace it over the fuzzy spheres
to reduce it to a theory on M. It is quite useful to note the
following identities:

fQ; ½Xa;Q�g ¼ 0; fXa; ½Xa;Q�g ¼ 0

ðsum over repeated a is impliedÞ; (3.1)

½Q; fXa;Qg� ¼ 0; ½Xa; fXa;Qg� ¼ 0

ðsum over repeateda is impliedÞ: (3.2)

which are valid for both the left and the right quantities and
they significantly simplify the calculations, since they
greatly reduce the number of traces to be computed.
The reduced action has the form

S ¼
Z
M

LF þLG þ 1

g2L
VL
1 þ 1

g2R
VR
1 þ 1

g2LR
VL;R
1

þ a2LV
L
2 þ a2RV

R
2 : (3.3)

Each term in this expression is defined and evaluated
below, while some details are relegated to Appendix C.

A. The field strength term

The field strength can be expressed as

F�� ¼ 1

2
fL��Q

L þ 1

2
fR��Q

R þ i

2
g��14 þ i

2
h��Q

LQR;

(3.4)

where

fL�� ¼ @�a
L
� � @�a

L
�; fR�� ¼ @�a

R
� � @�a

R
�;

g�� ¼ @�b� � @�b�; h�� ¼ @�c� � @�c�:
(3.5)

The corresponding contribution to the Lagrangian is

LF :¼ 1

4g2
TrN ðFy

��F��Þ

¼ 1

16g2

�
jfL��j2 þ jfR��j2 þ jg��j2 þ jh��j2

þ 2

ð2‘L þ 1Þð2‘R þ 1Þf
L
��f

R
�� � 1

ð2‘R þ 1Þ ðf
R
��g��

� fL��h��Þ � 1

ð2‘L þ 1Þ ðf
L
��g�� � fR��h��Þ

� 2

ð2‘L þ 1Þð2‘R þ 1Þg��h��

�
: (3.6)

B. The gradient term

The covariant derivatives are naturally expressed in two
pieces:
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D��
L
a ¼ 1

2
ðD�ð�1 þ �0

1Þ þQLD�ð�2 þ �0
2ÞÞ½XL

a ;Q
L� þ i

4
@��3fX̂L

a ; Q
Lg þ 1

2
@��4!̂

L
a

þ iQR

�
1

2
ðD�ð�1 � �0

1Þ þQLD�ð�2 � �0
2ÞÞ½XL

a ;Q
L� þ i

4
@��

0
3fX̂L

a ; Q
Lg þ 1

2
@��

0
4!̂

L
a

�
; (3.7)

D��
R
a ¼ 1

2
ðD�ð�1 þ �0

1Þ þQRD�ð�2 þ �0
2ÞÞ½XR

a ;Q
R� þ i

4
@��3fX̂R

a ; Q
Rg þ 1

2
@��4!̂

R
a

þ iQL

�
1

2
ðD�ð�1 � �0

1Þ þQRD�ð�2 � �0
2ÞÞ½XR

a ;Q
R� þ i

4
@��

0
3fX̂R

a ; Q
Rg þ 1

2
@��

0
4!̂

R
a

�
; (3.8)

where we have (i ¼ 1, 2)

D��i ¼ @��i þ "jia��j þ "jic��j; D��
0
i ¼ @��

0
i þ "jia��

0
j � "jic��

0
j; (3.9)

with (i ¼ 1, 2).
The gradient term takes the form

L G :¼ LL
G þLR

G ¼ TrN ððD��
L
a ÞyðD��

L
a Þ þ ðD��

R
a ÞyðD��

R
a ÞÞ; (3.10)

where

LL
G ¼ ‘Lð‘L þ 1Þ

ð‘L þ 1=2Þ2
��

1þ 1

2ð‘R þ 1Þ
�
ððD��1Þ2 þ ðD��2Þ2Þ þ

�
1� 1

2ð‘R þ 1Þ
�
ððD��

0
1Þ2 þ ðD��

0
2Þ2Þ

�

þ 1

4

‘Lð‘L þ 1Þð‘2L þ ‘L � 1=4Þ
ð‘L þ 1=2Þ4

�
ð@��3Þ2 þ ð@��0

3Þ2 þ
1

ð‘R þ 1
2Þ
@��3@��

0
3

�

þ 1

2

‘Lð‘L þ 1Þ
ð‘L þ 1=2Þ3

�
@��3@��4 þ @��

0
3@��

0
4 þ

1

2ð‘R þ 1Þ ð@��3@��
0
4 þ @��

0
3@��4Þ

�

þ 1

4

‘2L þ ‘L þ 3=4

ð‘L þ 1=2Þ2
�
ð@��4Þ2 þ ð@��0

4Þ2 þ
1

ð‘R þ 1
2Þ
@��4@��

0
4

�
; (3.11)

LR
G ¼ ‘Rð‘R þ 1Þ

ð‘R þ 1=2Þ2
��

1þ 1

2ð‘L þ 1Þ
�
ððD��1Þ2 þ ðD��2Þ2Þ þ

�
1� 1

2ð‘L þ 1Þ
�
ððD��

0
1Þ2 þ ðD��

0
2Þ2Þ

�

þ 1

4

‘Rð‘R þ 1Þð‘2R þ ‘R � 1=4Þ
ð‘R þ 1=2Þ4

�
ð@��3Þ2 þ ð@��0

3Þ2 þ
1

ð‘L þ 1Þ @��3@��
0
3

�

þ 1

2

‘Rð‘R þ 1Þ
ð‘R þ 1=2Þ3

�
@��3@��4 þ @��

0
3@��

0
4 þ

1

2ð‘L þ 1Þ ð@��3@��
0
4 þ @��

0
3@��4Þ

�

þ 1

4

‘2R þ ‘R þ 3=4

ð‘R þ 1=2Þ2
�
ð@��4Þ2 þ ð@��0

4Þ2 þ
1

2ð‘L þ 1Þ@��4@��
0
4

�
: (3.12)

It is useful to form the complex fields

� ¼ �1 þ i�2; �� ¼ �1 � i�2;

� ¼ �1 þ i�2; �� ¼ �1 � i�2; (3.13)

then the covariant derivatives are expressed as

D�� ¼ @��þ iðaL� þ c�Þ�;
D��

0 ¼ @��
0 þ iðaL� � c�Þ�0;

D�� ¼ @��þ iðaR� þ c�Þ�;
D��

0 ¼ @��
0 þ iðaR� � c�Þ�0: (3.14)

We note that primed fields carry charge �1 under c�.

C. The potential term

Working with the duals, we have for FL
ab

1
2"abcF

L
ab ¼ 1

2�abc½�L
a ;�

L
b � ��L

c :¼ FL
c þ iQR ~FL

c ;

(3.15)

FL
c ¼ 1

2
ðPLþ

1 ð�1 þ �2Q
LÞ þ PL�

1 ð�0
1 þ �0

2Q
LÞÞ½XL

c ;Q
L�

þ i

4
ð2j�j2 þ 2j�0j2 � PL

2 Þ
fXL

c ;Q
Lg

ð‘L þ 1=2Þ
þ 1

4
PL
3

!L
c

ð‘L þ 1=2Þ2 ; (3.16)
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~FL
c ¼ 1

2
ðPLþ

1 ð�1 þ �2Q
LÞ � PL�

1 ð�0
1 þ �0

2Q
LÞÞ½XL

c ;Q
L�

þ i

4
ð2j�j2 � 2j�0j2 � ~PL

2 Þ
fXL

c ;Q
Lg

ð‘L þ 1=2Þ
þ 1

4
~PL
3

!L
c

ð‘L þ 1=2Þ2 ; (3.17)

and PL	
1 , PL

2 and PL
3 ,

~PL
2 ,

~PL
3 are given in Appendix C.

Similarly for FR
ab we have

1
2 "abcF

R
ab ¼ 1

2�abc½�R
a ;�

R
b � ��R

c :¼ FR
c þ iQL ~FR

c ;

(3.18)

FR
c ¼ 1

2
ðPRþ

1 ð�1 þ �2Q
RÞ þ PR�

1 ð�0
1 þ �0

2Q
RÞÞ½XR

c ;Q
R�

þ i

4
ð2j�j2 þ 2j�0j2 � PR

2 Þ
fXR

c ;Q
Rg

ð‘R þ 1=2Þ
þ 1

4
PR
3

!L
c

ð‘R þ 1=2Þ2 ; (3.19)

~FR
c ¼ 1

2
ðPRþ

1 ð�1 þ �2Q
RÞ � PR�

1 ð�0
1 þ �0

2Q
RÞÞ½XR

c ;Q
R�

þ i

4
ð2j�j2 � 2j�0j2 � ~PR

2 Þ
fXR

c ;Q
Rg

ð‘R þ 1=2Þ
þ 1

4
~PR
3

!L
c

ð‘R þ 1=2Þ2 ; (3.20)

and PR	
1 , PR

2 and PR
3 ,

~PR
2 ,

~PR
3 are given in Appendix C.

In addition, we have for FL;R
ab

FL;R
ab ¼ iðð�2 þ �0

2Þ � ð�1 þ �0
1ÞQLÞ½XL

a ;Q
L� ~A0R

b

þ i ~A0L
a ðð�2 þ �0

2Þ � ð�1 þ �0
1ÞQRÞ½XR

b ;Q
R�;
(3.21)

where the notation introduced earlier in (2.32) is used.

With these we find for VL
1 , V

R
1 and VL;R

1

VL
1 ¼ TrNFLy

ab F
L
ab

¼ �2TrN ððFL
c Þ2 þ ð ~FL

c Þ2 þ 2iQRF
L
c
~FL
c Þ

¼ TL
1 ðj�j4 þ j�0j4Þ þ TL

2 j�j2 þ ~TL
2 j�0j2 þ TL

3 ;

(3.22)

VR
1 ¼ TrN FRy

ab F
R
ab

¼ �2TrN ððFR
c Þ2 þ ð ~FR

c Þ2 þ 2iQLF
R
c
~FR
c Þ

¼ TR
1 ðj�j4 þ j�0j4Þ þ TR

2 j�j2 þ ~TR
2 j�0j2 þ TR

3 ;

(3.23)

VL;R
1 ¼ 2S1ðj��0 � �0�j2 þ j ���� �0 ��0j2Þ þ j�þ �0j2

� ðSL2�02
3 þ ~SL2�

02
4 þ SL3�

0
3�

0
4Þ þ j�þ �0j2

� ðSR2�02
3 þ ~SR2�

02
4 þ SR3�

0
3�

0
4Þ; (3.24)

where TL;R
1 , TL;R

2 , ~TL;R
2 , TL;R

3 , S1, S
L
2 ,

~SL2 , S
L
3 , S

R
2 ,

~SR2 and SR3
are given in Appendix C.

D. The constraint term

Taking ~bL ¼ ‘Lð‘L þ 1Þ and ~bR ¼ ‘Rð‘R þ 1Þ as dis-
cussed earlier in Sec. II we find

�L
a�

L
a þ ‘Lð‘Lþ 1Þ ¼RL

1 þ iQLRL
2 þ iQRð ~RL

1 þ iQL ~RL
2 Þ;

(3.25)

�R
a�

R
a þ ‘Rð‘Rþ 1Þ ¼RR

1 þ iQRRR
2 þ iQLð ~RR

1 þ iQL ~RR
2 Þ;

(3.26)

where RL
1 , R

L
2 and ~RL

1 ,
~RL
2 and RR

1 , R
R
2 and ~RR

1 ,
~RR
2 are given

in Appendix C.
The constraint terms in the action take the form

VL
2 ¼ ðRL

1 Þ2 þ ðRL
2 Þ2 þ ð ~RL

1 Þ2 þ ð ~RL
2 Þ2 þ

1

ð‘L þ 1
2Þ
ðRL

1R
L
2

þ ~RL
1
~RL
2 Þ þ

1

ð‘R þ 1
2Þ
ðRL

1
~RL
1 þ RL

2
~RL
2 Þ

þ 1

2ð‘L þ 1
2Þð‘R þ 1

2Þ
ðRL

1
~RL
2 þ ~RL

1R
L
2 Þ; (3.27)

VR
2 ¼ ðRR

1 Þ2 þ ðRR
2 Þ2 þ ð ~RR

1 Þ2 þ ð ~RR
2 Þ2 þ

1

ð‘R þ 1
2Þ

� ðRR
1R

R
2 þ ~RR

1
~RR
2 Þ þ

1

ð‘L þ 1
2Þ
ðRR

1
~RR
1 þ RR

2
~RR
2 Þ

þ 1

2ð‘L þ 1
2Þð‘R þ 1

2Þ
ðRR

1
~RR
2 þ ~RR

1R
R
2 Þ: (3.28)

E. Structure of the reduced theory

In order to understand the structure of the reduced theory
it is useful to analyze its vacuum structure. The potential
has the form

V¼ 1

g2L
VL
1 þ

1

g2R
VR
1 þ

1

g2LR
VL;R
1 þa2LV

L
2 þa2RV

R
2 : (3.29)

Apart from the case aL ¼ aR ¼ 0, V is zero if and only if

VL
1 , V

R
1 , V

L;R
1 , VL

2 , V
R
2 all vanish. Noting that zeros of VL

1 ,

VR
1 , V

L;R
1 coincide with zeros of the curvature terms, it is

left to find the solutions of

FL
ab ¼ 0; FR

ab ¼ 0; FL;R
ab ¼ 0; (3.30)

using the results obtained in the previous section.
It turns out that the only solution to these equations,

which is also a zero of both VL
2 , V

R
2 , is given as
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j�j ¼ j�0j ¼ j�j ¼ j�0j ¼ 1
2;

��0 ¼ �0�; ��� ¼ �0 ��0;

�3 ¼ �0
3 ¼ �4 ¼ �0

4 ¼ 0; �3 ¼ �0
3 ¼ �4 ¼ �0

4 ¼ 0:

(3.31)

In fact, the first condition on the second line together
with the first line implies the second condition on the
second line. It should be clear that vacuum is not simply
connected. The first two lines of (3.31) imply that one of
the complex fields can be written in terms of the other

three. For instance, �0 ¼ �0�
� ¼ 4�0� ��. The vacuum mani-

fold has therefore the structure of T3 ¼ S1 � S1 � S1,
which has in particular �1ðT3Þ ¼ Z � Z � Z.

Let us record the form of the action in the limit ‘L; ‘R !
1, which is going to be of essential interest in the next
section:

L F¼ 1

16g2
ðjfL��j2þjfR��j2þjg��j2þjh��j2Þ; (3.32)

L G ¼ jD��j2 þ jD��
0j2 þ jD��j2 þ jD��

0j2
þ 1

4ðð@��3Þ2 þ ð@��0
3Þ2 þ ð@��4Þ2 þ ð@��0

4Þ2
þ ð@��3Þ2 þ ð@��0

3Þ2 þ ð@��4Þ2 þ ð@��0
4Þ2Þ;
(3.33)

VL
1 ¼ 1

g2L

�
4

�
j�j2 þ 1

4
ð�3 þ �0

3Þ �
1

4

�
2

þ 4

�
j�0j2 þ 1

4
ð�3 � �0

3Þ �
1

4

�
2 þ 2ð�3 þ �0

3Þ2j�j2

þ 2ð�3 � �0
3Þ2j�0j2 þ 1

2
ð�2

4 þ �02
4 Þ
�
; (3.34)

VR
1 ¼ 1

g2R

�
4

�
j�j2 þ 1

4
ð�3 þ �0

3Þ �
1

4

�
2

þ 4

�
j�0j2 þ 1

4
ð�3 � �0

3Þ �
1

4

�
2 þ 2ð�3 þ �0

3Þ2j�j2

þ 2ð�3 � �0
3Þ2j�0j2 þ 1

2
ð�2

4 þ �02
4 Þ
�
; (3.35)

VL;R
1 ¼

‘L;‘R!1
1

g2L;R

�
2ðj��0 � �0�j2 þ j �����0 ��0j2Þ

� 1

2
ðj�þ �0j2ð�02

3 þ �02
4 Þ þ j�þ �0j2ð�02

3 þ �02
4 Þ
�
:

(3.36)

IV. VORTICES

We will now discuss the vortex solutions of the reduced
theory in the ‘L; ‘R ! 1 limit. For simplicity, we restrict

our attention to the case M ¼ R2. There is no canonical
choice for the coefficients a2L, a

2
R of the fuzzy constraint

term; here we consider only the extreme cases of a2L ¼
a2R ¼ 0 and a2L, a

2
R ! 1, which correspond, respectively,

to imposing no constraint at all, and to imposing the
constraints ‘‘by hand.’’

A. Case 1: No constraint

As the constraint terms are absent, it is observed
from Eqs. (3.33), (3.34), (3.35), and (3.36) that b�, �4

and �4 decouple. In this case we have a Uð1Þ3 gauge
theory. The vacuum has the nontrivial structure given
in (3.31). On R2 this leads to vortices since the map-
ping of the circle at spatial infinity to the vacuum
manifold

S1ð1Þ ! T3 (4.1)

is characterized by �1ðT3Þ ¼ Z � Z � Z.
To obtain a detailed description of these vortices

we can select the radial gauge in which aLr ¼ aRr ¼
cr ¼ 0 and make the rotationally symmetric ansatz by
setting

� ¼ �ðrÞein1� !
r!1

1
2e

in1�; �0 ¼ �0ðrÞein2� !
r!1

1
2e

in2�;

� ¼ �ðrÞeim1� !
r!1

1
2e

im1�; �0 ¼ �0ðrÞeim2� !
r!1

1
2e

im2�:

(4.2)

From (3.31) and (4.2) we see that the integers n1, n2,
m1, m2 are not all independent but related to each
other as

ðn1 � n2Þ � ðm1 �m2Þ ¼ 0; (4.3)

which is consistent with the fact that �1ðT3Þ ¼ Z �
Z � Z. In what follows we eliminate m2 using (4.3)
and take the winding numbers of the complex fields as
the set ðn1; n2; m1Þ.
The real scalars are

�3 ¼ �3ðrÞ; �0
3 ¼ �0

3ðrÞ; �3 ¼ �3ðrÞ;
�0
3 ¼ �0

3ðrÞ; �0
4 ¼ �0

4ðrÞ; �0
4 ¼ �0

4ðrÞ:
(4.4)

and they all tend to zero at spatial infinity (r ! 1).
As for the gauge fields we have

aL� ¼aL� ðrÞ !r!1�
n1þn2

2
;

aR� ¼aR� ðrÞ !r!1�
m1þm2

2
¼�2m1�ðn1�n2Þ

2
;

c�¼c�ðrÞ !
r!1�

n1�n2
2

: (4.5)

Asymptotic profiles of the fields listed above are all
dictated by the finiteness of the action (4.6).
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The action takes the form

S¼ 2�
Z 1

0
rdr

�
1

8g2

�
1

r2
ð@raL� Þ2þ

1

r2
ð@raR� Þ2þ

1

r2
ð@rc�Þ2

�
þð@r�Þ2þ 1

r2
ðn1þaL� þc�Þ2�2þð@r�0Þ2

þ 1

r2
ðn2þaL� �c�Þ2�02þð@r�Þ2þ 1

r2
ðm1þaR� þc�Þ2�2þð@r�0Þ2þ 1

r2
ðm1�ðn1�n2ÞþaR� �c�Þ2�02

þ1

4
ðð@r�3Þ2þð@r�0

3Þ2þð@r�0
4Þ2þð@r�3Þ2þð@r�0

3Þ2þð@r�0
4Þ2Þþ

1

g2L

�
4

�
�2þ1

4
ð�3þ�0

3Þ�
1

4

�
2

þ4

�
�02þ1

4
ð�3��0

3Þ�
1

4

�
2þ2ð�3þ�0

3Þ2�2þ2ð�3��0
3Þ2�02þ1

2
�02
4

�
þ 1

g2R

�
4

�
�2þ1

4
ð�3þ�0

3Þ�
1

4

�
2

þ4

�
�02þ1

4
ð�3��0

3Þ�
1

4

�
2þ2ð�3þ�0

3Þ2�2þ2ð�3��0
3Þ2�02þ1

2
�02
4

�
þ 1

g2L;R
ð2ð��0 ��0�Þ2þ2ð �����0 ��0Þ2þFÞ

�
;

(4.6)

where

F ¼
�� 1

2 ðð�þ �0Þ2ð�02
3 þ �02

4 Þ þ ð�þ �0Þ2ð�02
3 þ �02

4 ÞÞ for n1 ¼ n2
� 1

2 ðð�2 þ �02Þð�02
3 þ �02

4 Þ þ ð�2 þ �02Þð�02
3 þ �02

4 ÞÞ for n1 � n2:
(4.7)

The equations of motion for the scalar and the gauge fields follow from (4.6) and (4.7) in a straightforward manner.
These are coupled nonlinear differential equations for which we have not found any exact analytical solutions. However, it
is possible to obtain the asymptotic profiles of the fields as r ! 1. In this case we can write down the fluctuations around
the vacuum values as

� ¼ 1

2
� ��; �0 ¼ 1

2
� ��0; � ¼ 1

2
� ��; �0 ¼ 1

2
� ��0; aL� ¼ � n1 þ n2

2
þ �aL;

aR� ¼ � 2m1 � ðn1 � n2Þ
2

þ �aR; c� ¼ �n1 � n2
2

þ �c�; (4.8)

while we can keep the same notation for the real scalars as they all fluctuate about the zero vacuum values. Assuming
further that ð�aLr Þ2, ð�aRr Þ2, ð�Cr Þ2 are subleading1 to the fluctuations in the complex and the real scalar fields, we obtain the
following coupled set of linear second order differential equations:

@2r�a
L � 1

r
�aL � 4g2�aL ¼ 0; @2r�a

R � 1

r
�aR � 4g2�aR ¼ 0; @2r�c� 1

r
�c� 8g2�c ¼ 0;

@2r��þ 1

r
��þ 4

g2L

�
���þ 1

4
ð�3 þ �0

3Þ
�
� 1

g2L;R
ð��� ��0Þ ¼ 0;

@2r��
0 þ 1

r
��0 þ 4

g2L

�
���þ 1

4
ð�3 � �0

3Þ
�
þ 1

g2L;R
ð��� ��0Þ ¼ 0;

@2r��þ 1

r
��þ 4

g2R

�
���þ 1

4
ð�3 þ �0

3Þ
�
� 1

g2L;R
ð��� ��0Þ ¼ 0;

@2r��
0 þ 1

r
��0 þ 4

g2R

�
���þ 1

4
ð�3 � �0

3Þ
�
þ 1

g2L;R
ð��� ��0Þ ¼ 0;

@2r�3 þ 1

r
�3 þ 4

g2L

�
��þ ��0 � 3

2
�3

�
¼ 0; @2r�

0
3 þ

1

r
�0
3 þ

4

g2L

�
��� ��0 � 3

2
�0
3

�
þ 	

g2L;R
�0
3 ¼ 0;

@2r�3 þ 1

r
�3 þ 4

g2R

�
��þ ��0 � 3

2
�3

�
¼ 0; @2r�

0
3 þ

1

r
�0
3 þ

4

g2R

�
��� ��0 � 3

2
�0
3

�
þ 	

g2L;R
�0
3 ¼ 0;

@2r�
0
4 þ

1

r
�0
4 �

2

g2L
�0
4 þ

	

g2L;R
�0
4 ¼ 0; @2r�

0
4 þ

1

r
�0
4 �

2

g2R
�0
4 þ

	

g2L;R
�0
4 ¼ 0; (4.9)

where

1The region of validity of this approximation in terms of the parameters of the model will be given a little later on.
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	 ¼
�
1 for n1 � n2
2 for n1 ¼ n2:

(4.10)

The gauge fields have the asymptotic profiles

�aL ¼ FLrK1ð2grÞ; �aR ¼ FRrK1ð2grÞ; �c ¼ FrK1ð2
ffiffiffi
2

p
grÞ: (4.11)

Some algebra yields the asymptotic profiles of the scalar fields as

�� ¼ C1K0

� ffiffiffi
2

p
r

gL

�
þ C2K0

�
2

ffiffiffi
2

p
r

gL

�
þ C3K0ð

ffiffiffiffiffiffiffi

Lþ

q
rÞ þ C4K0ð

ffiffiffiffiffiffiffi

L�

q
rÞ;

��0 ¼ C1K0

� ffiffiffi
2

p
r

gL

�
þ C2K0

�
2

ffiffiffi
2

p
r

gL

�
� C3K0ð

ffiffiffiffiffiffiffi

Lþ

q
rÞ � C4K0ð

ffiffiffiffiffiffiffi

L�

q
rÞ;

�3 ¼ C1K0

� ffiffiffi
2

p
r

gL

�
� 2C2K0

�
2

ffiffiffi
2

p
r

gL

�
;

�0
3 ¼ C0

3K0ð
ffiffiffiffiffiffiffi

Lþ

q
rÞ þ C0

4K0ð
ffiffiffiffiffiffiffi

L�

q
rÞ; �0

4 ¼ C5K0ð
ffiffiffiffiffiffiffi
�L

q
rÞ;

�� ¼ D1K0

� ffiffiffi
2

p
r

gR

�
þD2K0

�
2

ffiffiffi
2

p
r

gR

�
þD3K0ð

ffiffiffiffiffiffiffi

Rþ

q
rÞ þD4K0ð

ffiffiffiffiffiffiffi

R�

q
rÞ;

��0 ¼ D1K0

� ffiffiffi
2

p
r

gR

�
þD2K0

�
2

ffiffiffi
2

p
r

gR

�
�D3K0ð

ffiffiffiffiffiffiffi

Rþ

q
rÞ �D4K0ð

ffiffiffiffiffiffiffi

R�

q
rÞ;

�3 ¼ D1K0

� ffiffiffi
2

p
r

gR

�
� 2D2K0

�
2

ffiffiffi
2

p
r

gR

�
;

�0
3 ¼ D0

3K0ð
ffiffiffiffiffiffiffi

Rþ

q
rÞ þD0

4K0ð
ffiffiffiffiffiffiffi

R�

q
rÞ; �0

4 ¼ D5K0ð
ffiffiffiffiffiffiffi
�R

q
rÞ; (4.12)

where


L	 ¼ 5

g2L
þ 1

2g2L;R
	 1

2

�
36

g4L
� 12

g2Lg
2
L;R

þ 9

g4L;R

�
1=2

for 	¼ 1;


L	 ¼ 5

g2L
	
�
9

g4L
� 4

g2Lg
2
L;R

þ 4

g4L;R

�
1=2

for 	¼ 2; (4.13)


R	 ¼ 5

g2R
þ 1

2g2L;R
	 1

2

�
36

g4R
� 12

g2Rg
2
L;R

þ 9

g4L;R

�
1=2

for 	¼ 1;


R	 ¼ 5

g2R
	
�
36

g4R
� 4

g2Rg
2
L;R

þ 4

g4L;R

�
1=2

for 	¼ 2; (4.14)

�L ¼ � 2

g2L
þ 	

g2L;R
; �R ¼ � 2

g2R
þ 	

g2L;R
: (4.15)

We further have that the coefficients C0
3 and C

0
4 are fixed in

terms of C3 and C4 as

	 ¼ 1 !
8><
>:
C0
3 ¼

�
g2L
2 
Lþ � g2L

g2L;R
� 2

�
C3;

C0
4 ¼

�
g2L
2 
L� � g2L

g2L;R
� 2

�
C4;

(4.16)

	 ¼ 2 !
8<
:
C0
3 ¼ �2C3;

C0
4 ¼ C4;

(4.17)

and likewise for the D0
3 and D0

4,

	 ¼ 1 !
8><
>:
D0

3 ¼
�
g2R
2 
Rþ � g2R

g2L;R
� 2

�
D3;

D0
4 ¼

�
g2R
2 
R� � g2R

g2L;R
� 2

�
D4;

(4.18)

	 ¼ 2 !
8<
:
D0

3 ¼ �2D3;

D0
4 ¼ D4:

(4.19)

The coefficients Ca, Da, F
L, FR, F (a ¼ 1; � � � ; 5) can be

found by numerical methods. Such a numerical computa-
tion was given in [17], for the case of Uð1Þ vortices
emerging from the equivariant reduction of a Uð2Þ theory
over M� S2F. We will not go into numerical calculations
in this article. However, we can still note a few qualitative
features stemming from the asymptotic profiles of fields
listed above. Focusing on the special case, gL ¼ gR ¼ffiffiffi
2

p
gL;R :¼ ~g, the expressions above simplify to


L	 ¼ 6	 2
ffiffiffi
3

p
~g2

for 	 ¼ 1;


L	 ¼ 6	 ffiffiffiffiffiffi
17

p
2~g2

for 	 ¼ 2;

(4.20)

and � ¼ 2
~g2

for 	 ¼ 2. For 	 ¼ 1, it is easily observed
that there are no fluctuations in zero vacuum value of the
fields �0

4 and �0
4 at this approximation. It follows from the

asymptotic form of the Bessel functions that ð�aLr Þ2, ð�aRr Þ2,
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ð�Cr Þ2 are subleading to the fluctuations in the complex and
the real scalar fields, as long as 4g >

ffiffiffi
2

p
=~g. Furthermore,

the field strengths decay faster than the scalar fields if 2g >ffiffiffi
2

p
=~g. This result indicates that vortices tend to attract as

long as 2g >
ffiffiffi
2

p
=~g, since it is known that field strengths

are responsible for the repulsive and scalars are responsible
for the attractive forces between vortices [21]. In particular,
the reduced standard Yang-Mills theory with g~g ¼ 1 falls
into this region of the parameter space.

B. Case 2: The constraints fully imposed

The fuzzy constraints

�L
a�

L
a þ ‘Lð‘L þ 1Þ ¼ 0; �R

a�
R
a þ ‘Rð‘R þ 1Þ ¼ 0

(4.21)

are equivalent to the algebraic equations

RL
1 ¼ 0; RL

2 ¼ 0; ~RL
1 ¼ 0; ~RL

2 ¼ 0;

RR
1 ¼ 0; RR

2 ¼ 0; ~RR
1 ¼ 0; ~RR

2 ¼ 0;
(4.22)

where expressions for all R are given in Appendix C.
These equations can be solved order by order in powers
of the parameters 1

‘L
and 1

‘R
to obtain expressions for the

real scalar fields in terms of the modulus of the complex
scalars in the theory. Substituting the leading order
solutions of the real fields yields an action involving
the complex scalars only.
To leading order in 1

‘L
and 1

‘R
, (4.22) yields

�3 ¼ 1

‘2L

�
j�j2 þ j�0j2 � 1

2

�
; �4 ¼ � 1

‘L

�
j�j2 þ j�0j2 � 1

2

�
; �0

3 ¼
1

‘2L
ðj�j2 � j�0j2Þ;

�0
4 ¼ � 1

‘L
ðj�j2 � j�0j2Þ; �3 ¼ 1

‘2R

�
j�j2 þ j�0j2 � 1

2

�
; �4 ¼ � 1

‘R

�
j�j2 þ j�0j2 � 1

2

�
;

�0
3 ¼

1

‘2R
ðj�j2 � j�0j2Þ; �0

4 ¼ � 1

‘R
ðj�j2 � j�0j2Þ: (4.23)

Substituting (4.23) into the reduced action obtained in Sec. III’ gives

S ¼
Z

d2y
1

16g2

��
1� 1

16‘2L

�
jfL��j2 þ

�
1� 1

16‘2R

�
jfR��j2 þ 3

8‘L‘R
fL��f

R
�� þ jh��j2 þ 1

2

�
1

‘R
� 1

‘2R

�
h��f

L
��

þ 1

2

�
1

‘L
� 1

‘2L

�
h��f

R
��

�
þ

�
1� 1

4‘2L
þ 1

2ð‘R þ 1Þ
�
jD��j2 þ

�
1� 1

4‘2L
� 1

2ð‘R þ 1Þ
�
jD��

0j2

þ
�
1� 1

4‘2R
þ 1

2ð‘L þ 1Þ
�
jD��j2 þ

�
1� 1

4‘2R
� 1

2ð‘L þ 1Þ
�
jD��

0j2 þ 1

2‘2L
ðð@�j�j2Þ2 þ ð@�j�0j2Þ2Þ

þ 1

2‘2R

�
ð@�j�j2Þ2 þ ð@�j�0j2Þ2

�
þ 4

g2L

�
1þ 5

4‘2L

���
j�j2 � 1

4

�
2 þ

�
j�0j2 � 1

4

�
2
�
þ 4

g2R

�
1þ 5

4‘2R

���
j�j2 � 1

4

�
2

þ
�
j�0j2 � 1

4

�
2
�
þ 1

g2L;R

�
2ðj��0 � �0�j2 þ j ���� �0 ��0j2Þ � 1

2‘2R
j�þ �0j2ðj�j2 � j�0j2Þ2

� 1

2‘2L
j�þ �0j2ðj�j2 � j�0j2Þ2

�
; (4.24)

where we have already solved the equations of motion for
b� and inserted

g�� ¼ 1

4

�
1

‘L
� 1

‘2L

�
fL�� þ 1

4

�
1

‘R
� 1

‘2R

�
fR�� þ 1

4‘L‘R
h��:

(4.25)

It is readily observed that the minimum of the potential
resides at

j�j ¼ j�0j ¼ j�j ¼ j�0j ¼ 1
2;

��0 ¼ �0�; ��� ¼ �0 ��0: (4.26)

We can again pick the radial gauge, and make the rotation-
ally symmetric ansatz to look for vortex solutions. The
action takes the form
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S ¼ 2�
Z 1

0
rdr

�
1

8g2

�
1

r2

�
1� 1

16‘2L

�
ð@raL� Þ2 þ

�
1� 1

16‘2R

�
1

r2
ð@raR� Þ2 þ

1

r2
ð@rc�Þ2

�
þ 1

r2
3

8‘L‘R
ð@raL� Þð@raR� Þ

þ 1

r2
1

2

�
1

‘R
� 1

‘2R

�
ð@raL� Þð@rc�Þ þ

1

r2
1

2

�
1

‘L
� 1

‘2L

�
ð@raR� Þð@rc�Þ

�
þ

�
1� 1

4‘2L
þ 1

2ð‘R þ 1Þ
��

ð@r�Þ2

þ 1

r2
ðn1 þ aL� þ c�Þ2�2

�
þ

�
1� 1

4‘2L
� 1

2ð‘R þ 1Þ
��
ð@r�0Þ2 þ 1

r2
ðn2 þ aL� � c�Þ2�02

�

þ
�
1� 1

4‘2R
þ 1

2ð‘L þ 1Þ
��

ð@r�Þ2 þ 1

r2
ðm1 þ aR� þ c�Þ2�2

�
þ

�
1� 1

4‘2R
� 1

2ð‘L þ 1Þ
��
ð@r�0Þ2

þ 1

r2
ðm1 � ðn1 � n2Þ þ aR� � c�Þ2�02

�
þ 2

‘2L
ð�2ð@r�Þ2 þ �02ð@r�0Þ2Þ þ 2

‘2R
ð�2ð@r�Þ2 þ �02ð@r�0Þ2Þ

þ 4

g2L

�
1þ 5

4‘2L

���
�2 � 1

4

�
2 þ

�
�02 � 1

4

�
2
�
þ 4

g2R

�
1þ 5

4‘2R

���
�2 � 1

4

�
2 þ

�
�02 � 1

4

�
2
�

þ 1

g2L;R
ð2ð��0 � �0�Þ2 þ 2ð��� ��0Þ2 þ FÞ

�
; (4.27)

where

F ¼
8<
:
� 1

2‘2R
ð�þ �0Þ2ð�2 � �02Þ2 � 1

2‘2L
ð�þ �0Þ2ð�2 � �02Þ2 for n1 ¼ n2

� 1
2‘2R

ð�2 þ �02Þð�2 � �02Þ2 � 1
2‘2L

ð�2 þ �02Þð�2 � �02Þ2 for n1 � n2:
(4.28)

To leading order asymptotic profiles of the gauge fields are

�aL ¼ 
1rK1ð2grÞ þ 
2rK1

�
2g

�
1þ 1

4

�
1

‘2L
þ 1

‘2R

��
r

�
;

�aR ¼ 
1rK1ð2grÞ þ 
2rK1

�
2g

�
1þ 1

4

�
1

‘2L
þ 1

‘2R

��
r

�
;

�c ¼ 
3rK1

�
2

ffiffiffi
2

p
g

�
1� 3

8

�
1

‘2L
þ 1

‘2R

��
r

�
:

(4.29)

The asymptotic profiles of the scalar fields read

�� ¼ C1K0ð ffiffiffiffiffiffi
�1

p
rÞ þ C2K0ð ffiffiffiffiffiffi

�2
p

rÞ;
��0 ¼ C0

1K0ð ffiffiffiffiffiffi
�1

p
rÞ þ C0

2K0ð ffiffiffiffiffiffi
�2

p
rÞ;

�� ¼ C3K0ð ffiffiffiffiffi
�1

p
rÞ þ C4K0ð ffiffiffiffiffi

�2

p
rÞ;

�� ¼ C0
3K0ð ffiffiffiffiffi

�1

p
rÞ þ C0

4K0ð ffiffiffiffiffi
�2

p
rÞ:

(4.30)

Focusing on the case gL ¼ gR ¼ ffiffiffi
2

p
gL;R :¼ ~g, we find

ffiffiffiffiffiffi
�1

p ¼ 2
ffiffiffi
2

p
~g

�
1þ 1

4‘2L

�
;

ffiffiffiffiffiffi
�2

p ¼ 2

~g

�
1þ 3

8‘2L
� 3

8‘2R

�
;

ffiffiffiffiffi
�1

p ¼ 2
ffiffiffi
2

p
~g

�
1þ 1

4‘2R

�
;

ffiffiffiffiffi
�2

p ¼ 2

~g

�
1þ 3

8‘2R
� 3

8‘2L

�
:

(4.31)

In this case, it follows from the asymptotic form of the

Bessel functions that ð�aLr Þ2, ð�aRr Þ2, ð�Cr Þ2 are subleading to

the fluctuations in the complex and the real scalar fields, as

long as 4g > 2
ffiffiffi
2

p
=~g. For finite values of ‘L, ‘R, at the

critical g~g ¼ 1 coupling the vortices tend to repel since the

scalars decay faster than the field strength. In particular, in
the strict limit ‘L, ‘R ! 1 the model collapses to the
critically coupled BPS vortices at g~g ¼ 1. The BPS bound
for this model can be written. Saturating the bound gives
the action

S ¼ �

2
ðn1 þ n2 þm1 þm2Þ ¼ �ðn2 þm1Þ; (4.32)

since m2 ¼ �ðn1 � n2Þ þm1 and the BPS equations are

D1�	 iD2� ¼ 0; D1�
0 	 iD2�

0 ¼ 0;

D1�	 iD2� ¼ 0; D1�
0 	 iD2�

0 ¼ 0;
(4.33)

BL þ 1ffiffiffi
2

p B
 4
ffiffiffi
2

p
g2
�
j�j2 � 1

4

�
¼ 0;

BL � 1ffiffiffi
2

p B
 4
ffiffiffi
2

p
g2
�
j�0j2 � 1

4

�
¼ 0;

BR þ 1ffiffiffi
2

p B
 4
ffiffiffi
2

p
g2
�
j�j2 � 1

4

�
¼ 0;

BR � 1ffiffiffi
2

p B
 4
ffiffiffi
2

p
g2
�
j�0j2 � 1

4

�
¼ 0;

(4.34)

together with the supplementary conditions

��0 ¼ �0�; ��� ¼ �0 ��0; (4.35)

and where BL ¼ fLr�, B
R ¼ fRr�, B ¼ hLr�. A similar model,

though on the noncommutative plane R2
�, has appeared in

[11]. We have not found any reference in the literature
studying the solutions of these BPS equations; however, we
think that, in principal, it may be possible to construct them
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using the methods of [21,22]. This is beyond the scope of
the present article.

V. CONCLUSIONS

In the present article, we have investigated the SUð2Þ �
SUð2Þ-equivariant reduction of a Uð4Þ gauge theory
over S2F � S2F. We have started from an SUðN Þ gauge
theory suitably coupled to a set of scalar fields in the
adjoint of SUðN Þ on a manifold M, which leads in
general to a UðnÞ gauge theory on M� S2F � S2F after
spontaneous symmetry breaking. Focusing on the Uð4Þ
theory we have determined the most general SUð2Þ �
SUð2Þ-equivariant Uð4Þ gauge fields and performed the
dimensional reduction of the theory over S2F � S2F. We
have found that the emergent model is a Uð1Þ4 gauge
theory coupled to four complex and eight real scalar fields.
Studying this theory on R2 in two different limiting cases
we have demonstrated that these particular models have
vortex solutions with Uð1Þ3 gauge symmetry which tend to
attract or repel at the critical point of the parameter space
g~g ¼ 1 as discussed in the previous section.

We find this line of research very interesting as it gives
us concrete results on the structure of gauge theories with
fuzzy extra dimensions. In particular, we are interested in
investigating the SUð2Þ-equivariant formulation of a Uð3Þ
gauge theory onM� S2F. In this case, SUð2Þ gauge trans-
formations in Uð3Þ are generated by the SUð2Þ rank 1 and
rank 2 irreducible tensors in the adjoint representation of
SUð2Þ, and among the rotational invariants of the symme-
try generators, suitably contracted rank two tensor opera-
tors over the fuzzy sphere also appear. In other words, and
somewhat more accurately, a fuzzy version of xaxbQab,
Qab being the quadrupole tensor carrying the spin 2 rep-
resentations of SUð2Þ, appears as another rotational invari-
ant in the theory whose contribution should be taken into
account. We will report on these and related developments
elsewhere in the near future.

ACKNOWLEDGMENTS

I thank A. P. Balachandran and S. Vaidya for useful
discussions. I also thank A. Behtash for proofreading the
article. This work is supported by TÜBiTAK under Project
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APPENDIX A: S2
F AND S2

F � S2
F

The fuzzy sphere at level ‘ is defined to be the algebra
of ð2‘þ 1Þ � ð2‘þ 1Þ matrices Matð2‘þ 1Þ. The three
Hermitian ‘‘coordinate functions’’

x̂ a :¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp Xð2‘þ1Þ

a (A1)

satisfy

½x̂a; x̂b� ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp "abcx̂c; x̂ax̂a ¼ R; (A2)

and generate the full matrix algebra Matð2‘þ 1Þ. There
are three natural derivations of functions, defined by the
adjoint action of suð2Þ on S2F:

f ! adXð2‘þ1Þ
a f :¼ ½Xð2‘þ1Þ

a ; f�; f 2 Matð2‘þ 1Þ:
(A3)

In the limit ‘ ! 1, the functions x̂a are identified with the
standard coordinates xa on R

3, restricted to the unit sphere,
and the infinite-dimensional algebra C1ðS2Þ of functions on
the sphere is recovered. Also in this limit, the derivations

½Xð2‘þ1Þ
a ; �� become the vector fields �iLa ¼ "abcxa@b,

induced by the usual action of SOð3Þ.
In a similar manner the product space S2F � S2F is

defined to be the algebra of ðð2‘L þ 1Þð2‘R þ 1ÞÞ matrices
Matð2‘L þ 1Þð2‘R þ 1Þ. There are now six Hermitian
‘‘coordinate functions,’’

x̂ L
a :¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘Lð‘L þ 1Þp Xð2‘Lþ1Þ
a � 12‘Rþ1;

x̂Ra :¼ 12‘Lþ1 � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘Rð‘R þ 1Þp Xð2‘Rþ1Þ

a ; a ¼ 1; 2; 3;

(A4)

which satisfy

½x̂La ; x̂Lb � ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘Lð‘L þ 1Þp "abcx̂
L
c ;

½x̂Ra ; x̂Rb � ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘Rð‘R þ 1Þp "abcx̂
R
c ;

½x̂La ; x̂Rb � ¼ 0; x̂La x̂
L
a ¼ 1; x̂Ra x̂

R
a ¼ 1; (A5)

andgenerate the fullmatrix algebraMatð2‘L þ 1Þð2‘R þ 1Þ.
There are six natural derivations of functions, defined

by the adjoint action of suð2Þ � suð2Þ ¼ soð4Þ on
S2F � S2F:

f ! adXL
af :¼ ½XL

a ; f�; f ! adXR
a f :¼ ½XR

a ; f�;
f 2 Matð2‘L þ 1Þð2‘R þ 1Þ: (A6)

In the limit ‘L, ‘R ! 1, x̂La x̂Ra and are identified with
the standard coordinates xLa and xRa on R6, restricted to
S2 � S2, and the infinite-dimensional algebra C1ðS2 � S2Þ
of functions on S2 � S2 is recovered. Also in this limit, the
derivations become the vector fields �iLL

a ¼ "abcx
L
a@

L
b ,�iLR

a ¼ "abcx
R
a@

R
b induced by the usual action of

SOð3Þ � SOð3Þ.

EQUIVARIANT REDUCTION OF Uð4Þ GAUGE THEORY . . . PHYSICAL REVIEW D 85, 105004 (2012)

105004-13



APPENDIX B: Uð2Þ GAUGE THEORY M � S2
F

1. Gauge theory on M � S2
F

The relevant SUðN Þ Yang-Mills theory has the action

S ¼
Z
M

TrN

�
1

4g2
Fy
��F�� þ ðD��aÞyðD��aÞ

�

þ 1

~g2
TrN ðFy

abFabÞ þ a2 TrN ðð�a�a þ ~bÞ2Þ: (B1)

Here, �a (a ¼ 1, 2, 3) are anti-Hermitian scalars, trans-
forming in the adjoint of SUðN Þ and in the vector repre-
sentation of an additional global SOð3Þ symmetry,
D��a ¼ @��a þ ½A�;�a� are the covariant derivatives

and A� are the suðN Þ valued anti-Hermitian gauge fields

associated to the curvature F��. Fab is given as

Fab :¼ ½�a;�b� � "abc�c: (B2)

In the above a, ~b, g and ~g are constants and TrN ¼
N �1 Tr denotes a normalized trace.

This theory spontaneously develops extra dimensions in
the form of fuzzy spheres [2]. The potential terms for the
scalars are positive definite, and the solutions fulfilling

Fab ¼ 0; ��a�a ¼ ~b (B3)

are evidently global minima. The most general solution of
(B3) is not known. However, depending on the values taken

by the parameter ~b, a large class of solutions has been
found in [2]. Here we restrict ourselves to the simplest

situation. Taking the value of ~b as the quadratic Casimir
of an irreducible representation of SUð2Þ labeled by

‘, ~b ¼ ‘ð‘þ 1Þ with 2‘ 2 Z and assuming further that
the dimension N of the matrices �a is ð2‘þ 1Þn, (B3) is
solved by the configurations of the form

�a ¼ Xð2‘þ1Þ
a � 1n; (B4)

where Xð2‘þ1Þ
a are the (anti-Hermitian) generators of SUð2Þ

in the irreducible representation ‘, which has dimension
2‘þ 1. We observe that this vacuum configuration sponta-
neously breaks the UðN Þ down to UðnÞ which is the
commutant of �a in (B4).

Fluctuations about the vacuum (B4) may be written as

�a ¼ Xa þ Aa; (B5)

where Aa 2 uð2‘þ 1Þ � uðnÞ and we have used the short-
hand notation Xð2‘þ1Þ

a � 1n ¼: Xa. Then Aa (a ¼ 1, 2, 3)
may be interpreted as three components of a UðnÞ gauge
field on the fuzzy sphere S2F. �a are indeed the ‘‘covariant
coordinates’’ on S2F and Fab is the field strength, which
takes the form

Fab ¼ ½Xa; Ab� � ½Xb; Aa� þ ½Aa; Ab� � "abcAc (B6)

when expressed in terms of the gauge fields Aa.
To summarize, with (B5) the action in (B1) takes the

form of a UðnÞ gauge theory onM� S2Fð2‘þ 1Þ with the

gauge field components AMðŷÞ ¼ ðA�ðŷÞ; AaðŷÞÞ 2 uðnÞ �
uð2‘þ 1Þ and field strength tensor (ŷ are a set of coordi-
nates for the noncommutative manifold M)

F�� ¼ @�A� � @�A� þ ½A�; A��;
F�a ¼ D��a ¼ @��a þ ½A�;�a�;
Fab ¼ ½�a;�b� � �abc�c:

(B7)

2. The SUð2Þ-equivariant gauge field
Let us focus on the case of a Uð2Þ gauge theory on

M� S2F. The construction of the most general
SUð2Þ-equivariant gauge field on S2F can be performed as
follows [17]:
We pick the symmetry generators !a which generate

SUð2Þ rotations up to Uð2Þ gauge transformations.
Accordingly, we choose

!a ¼ Xð2‘þ1Þ
a � 12 � 12‘þ1 � ia

2
;

!a 2 uð2Þ � uð2‘þ 1Þ; for a ¼ 1; 2; 3:

(B8)

These !a are the generators of the representation 1=2 � ‘

of SUð2Þ, where by m we denote the spin m representation
of SUð2Þ of dimension 2mþ 1. SUð2Þ equivariance of the
theory requires the fulfillment of the symmetry constraints,

½!a; A�� ¼ 0; ½!a;�b� ¼ �abc�c; (B9)

on the gauge field and a consistency condition on these
constraints is ½!a;!b� ¼ "abc!c, which is readily satisfied
by our choice of !a.
The solutions to these constraints are obtained using the

representation theory of SUð2Þ. The adjoint action of !
expands into the Clebsch-Gordan series, whose relevant
part reads

ð1=2 � ‘Þ � ð1=2 � ‘Þ ¼ 20 � 41 � . . . : (B10)

Thus, the sets of solutions to equations in (B9) are two- and
four-dimensional, respectively. The fields are conveniently
parametrized as

A� ¼ 1
2Qa�ðŷÞ þ 1

2ib�ðŷÞ; (B11)

Aa ¼ 1
2’1ðŷÞ½Xa;Q� þ 1

2ð’2ðŷÞ � 1ÞQ½Xa;Q�
þ i12’3ðŷÞ12fX̂a; Qg þ 1

2’4ðŷÞ!̂a; (B12)

with�a ¼ Xa þ Aa, and a�, b� are HermitianUð1Þ gauge
fields, ’i are Hermitian scalar fields over M, the curly
brackets denote anticommutators throughout, and

X̂ a :¼ 1

‘þ 1=2
Xa; !̂a :¼ 1

‘þ 1=2
!a: (B13)

They contain, in addition to the Mat2ð2‘þ 1Þ identity
matrix, the only nontrivial rotational invariant under !,
which is
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Q :¼ Xa �a � i=2

‘þ 1=2
; Qy ¼ �Q; Q2 ¼ �12ð2‘þ1Þ:

(B14)

Indeed, Q is the fuzzy version of q :¼ i � x and con-
verges to it in the ‘ ! 1 limit.

APPENDIX C: EXPLICIT FORMULAS

In this appendix, we list the explicit expressions for PL	
1 ,

PL
2 and PL

3 ,
~PL
2 ,

~PL
3 , P

R	
1 , PR

2 and PR
3 ,

~PR
2 ,

~PR
3 , T

L;R
1 , TL;R

2 ,
~TL;R
2 , TL;R

3 , RL
1 , R

L
2 and ~RL

1 ,
~RL
2 and RR

1 , R
R
2 and ~RR

1 ,
~RR
2 ,

which were introduced for brevity of notation in Sec. III’.
We have

PL
1 ¼ ‘2L þ ‘L � 1=4

ð‘L þ 1=2Þ2 �3 þ 1

‘L þ 1=2
�4; (C1)

PL0
1 ¼ ‘2L þ ‘L � 1=4

ð‘L þ 1=2Þ2 �0
3 þ

1

‘L þ 1=2
�0
4; (C2)

PL
2 ¼ ð1� �3Þ

�
1þ �4

‘L þ 1=2
� �3

2ð‘L þ 1=2Þ2
�

� �0
3

�
�0
4

‘L þ 1=2
� �0

3

2ð‘L þ 1=2Þ2
�
; (C3)

PL
3 ¼ ‘Lð‘L þ 1Þ

ð‘L þ 1=2Þ2 ð�
2
3 � 2�3Þ þ �2

4

þ 2
‘2L þ ‘L � 1=4

‘L þ 1=2
�4 þ ‘Lð‘L þ 1Þ

ð‘L þ 1=2Þ2 �
02
3 þ �02

4 ;

(C4)

PL	
1 ¼ PL

1 	 PL0
1 ; (C5)

PR
1 ¼ ‘2R þ ‘L � 1=4

ð‘R þ 1=2Þ2 �3 þ 1

‘R þ 1=2
�4; (C6)

PR0
1 ¼ ‘2R þ ‘R � 1=4

ð‘R þ 1=2Þ2 �0
3 þ

1

‘R þ 1=2
�0
4; (C7)

PR
2 ¼ ð1� �3Þ

�
1þ �4

‘R þ 1=2
� �3

2ð‘R þ 1=2Þ2
�

� �0
3

�
�0
4

‘R þ 1=2
� �0

3

2ð‘R þ 1=2Þ2
�
; (C8)

PR
3 ¼ ‘Rð‘R þ 1Þ

ð‘R þ 1=2Þ2 ð�
2
3 � 2�3Þ þ �2

4

þ 2
‘2R þ ‘R � 1=4

‘R þ 1=2
�4 þ ‘Rð‘R þ 1Þ

ð‘R þ 1=2Þ2 �
02
3 þ �02

4 ;

(C9)

PR	
1 ¼ PR

1 	 PR0
1 ; (C10)

~P L
2 ¼ �

�
1þ 1

2ð‘L þ 1=2Þ2
�
�0
3 þ

1

ð‘L þ 1=2Þ�
0
4

þ 1

ð‘L þ 1=2Þ2 �3�
0
3 �

1

ð‘L þ 1=2Þ ð�3�
0
4 þ �0

3�4Þ;
(C11)

~PL
3 ¼ 2ð‘2L þ ‘L � 1

4Þ
ð‘L þ 1=2Þ �0

4 þ
2‘Lð‘L þ 1Þ
ð‘L þ 1=2Þ2 ð�3 � 1Þ�0

3

þ 2�4�
0
4; (C12)

~P R
2 ¼ �

�
1þ 1

2ð‘R þ 1=2Þ2
�
�0
3 þ

1

ð‘R þ 1=2Þ�
0
4

þ 1

ð‘R þ 1=2Þ2 �3�
0
3 �

1

ð‘R þ 1=2Þ ð�3�
0
4 þ �0

3�4Þ;
(C13)

~PR
3 ¼ 2ð‘2R þ ‘R � 1

4Þ
ð‘R þ 1=2Þ �0

4 þ
2‘Rð‘R þ 1Þ
ð‘R þ 1=2Þ2 ð�3 � 1Þ�0

3

þ 2�4�
0
4; (C14)

TL
1 ¼ 4

‘Lð‘L þ 1Þð‘2L þ ‘L � 1=4Þ
ð‘L þ 1=2Þ4 ; (C15)

TL
2 ¼ 2

‘Lð‘L þ 1Þ
ð‘L þ 1=2Þ2

�
ðPLþ

1 Þ2 � ‘2L þ ‘L � 1=4

ð‘L þ 1=2Þ2 ðPL
2 þ ~PL

2 Þ

þ 1

2ð‘L þ 1=2Þ2 ðP
L
3 þ ~PL

3 Þ
�
þ 1

ð‘R þ 1=2Þ
� 1

ð‘L þ 1=2Þ2
�
‘Lð‘L þ 1ÞðPLþ

1 Þ2

þ 2‘Lð‘L þ 1Þð‘2L þ ‘L � 1=4Þ
ð‘L þ 1=2Þ2

�
1� 1

2
ðPL

2 þ ~PL
2 Þ
�

þ 1

2ð‘L þ 1=2Þ ðP
L
3 þ ~PL

3 Þ
�
; (C16)

~TL
2 ¼ 2

‘Lð‘L þ 1Þ
ð‘L þ 1=2Þ2

�
ðPL�

1 Þ2 � ‘2L þ ‘L � 1=4

ð‘L þ 1=2Þ2

� ðPL
2 � ~PL

2 Þ þ
1

2ð‘L þ 1=2Þ2 ðP
L
3 � ~PL

3 Þ
�

þ 1

ð‘R þ 1=2Þ
1

ð‘L þ 1=2Þ2
�
�‘Lð‘L þ 1ÞðPL�

1 Þ2

� 2‘Lð‘L þ 1Þð‘2L þ ‘L � 1=4Þ
ð‘L þ 1=2Þ2

�
1� 1

2
ð ~PL

2 � PL
2 Þ
�

þ 1

2ð‘L þ 1=2Þ ð
~PL
3 � PL

3 Þ
�
; (C17)
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TL
3 ¼ 1

2ð‘L þ 1=2Þ4
�
‘Lð‘L þ 1Þð‘2L þ ‘L � 1=4ÞððPL

2 Þ2 þ ð ~PL
2 Þ2Þ þ

1

4
ð‘2L þ ‘L þ 3=4ÞððPL

3 Þ2 þ ð ~PL
3 Þ2Þ

� ‘Lð‘L þ 1ÞðPL
2P

L
3 þ ~PL

2
~PL
3 Þ
�
þ 1

2

1

ð‘R þ 1=2Þ
1

ð‘L þ 1=2Þ3
�
‘Lð‘L þ 1Þð‘2L þ ‘L � 1=4Þ

ð‘L þ 1=2Þ PL
2
~PL
2

þ 1

4

ð‘2L þ ‘L þ 3=4Þ
ð‘L þ 1=2Þ PL

3
~PL
3 � 1

2
ðPL

2
~PL
3 þ ~PL

2P
L
3 Þ
�
; (C18)

TR
1 ¼ 4

‘Rð‘R þ 1Þð‘RL þ ‘R � 1=4Þ
ð‘R þ 1=2Þ4 ; (C19)

TR
2 ¼ 2

‘Rð‘R þ 1Þ
ð‘R þ 1=2Þ2

�
ðPRþ

1 Þ2 � ‘2R þ ‘R � 1=4

ð‘R þ 1=2Þ2 ðPR
2 þ ~PR

2 Þ þ
1

2ð‘R þ 1=2Þ2 ðP
R
3 þ ~PR

3 Þ
�
þ 1

ð‘L þ 1=2Þ

� 1

ð‘R þ 1=2Þ2
�
‘Rð‘R þ 1ÞðPRþ

1 Þ2 þ 2‘Rð‘R þ 1Þð‘2R þ ‘R � 1=4Þ
ð‘R þ 1=2Þ2

�
1� 1

2
ðPR

2 þ ~PR
2 Þ
�
þ 1

2ð‘R þ 1=2Þ ðP
R
3 þ ~PR

3 Þ
�
;

(C20)

~TR
2 ¼ 2

‘Rð‘R þ 1Þ
ð‘R þ 1=2Þ2

�
ðPR�

1 Þ2 � ‘2R þ ‘R � 1=4

ð‘R þ 1=2Þ2 ðPR
2 � ~PR

2 Þ þ
1

2ð‘R þ 1=2Þ2 ðP
R
3 � ~PR

3 Þ
�
þ 1

ð‘L þ 1=2Þ
1

ð‘R þ 1=2Þ2

�
�
�‘Rð‘R þ 1ÞðPR�

1 Þ2 � 2‘Rð‘R þ 1Þð‘2R þ ‘R � 1=4Þ
ð‘R þ 1=2Þ2

�
1� 1

2
ð ~PR

2 � PR
2 Þ
�
þ 1

2ð‘R þ 1=2Þ ð
~PR
3 � PR

3 Þ
�
; (C21)

TR
3 ¼ 1

2ð‘R þ 1=2Þ4
�
‘Rð‘R þ 1Þð‘2R þ ‘R � 1=4ÞððPR

2 Þ2 þ ð ~PR
2 Þ2Þ þ

1

4
ð‘2R þ ‘R þ 3=4ÞððPR

3 Þ2 þ ð ~PR
3 Þ2Þ

� ‘Rð‘R þ 1ÞðPR
2P

R
3 þ ~PR

2
~PR
3 Þ
�
þ 1

2

1

ð‘L þ 1=2Þ
1

ð‘R þ 1=2Þ3
�
‘Rð‘R þ 1Þð‘2R þ ‘R � 1=4Þ

ð‘R þ 1=2Þ PR
2
~PR
2

þ 1

4

ð‘2R þ ‘R þ 3=4Þ
ð‘R þ 1=2Þ PR

3
~PR
3 � 1

2
ðPR

2
~PR
3 þ ~PR

2P
R
3 Þ
�
; (C22)

RL
1 ¼ � 1

2
ð2ð�2

1 þ �2
2Þ þ 2ð�02

1 þ �02
2 Þ � 1Þ � 1

4ð‘L þ 1
2Þ2

�3 �
��
‘L þ 1

2

�
� 1

2ð‘L þ 1
2Þ
�
�4

� 4‘Lð‘L þ 1Þ � 2

16ð‘L þ 1
2Þ2

ð�2
3 þ �02

3 Þ �
1

4
ð�2

4 þ �02
4 Þ �

1

4ð‘L þ 1
2Þ
ð�3�4 þ �0

3�
0
4Þ; (C23)

RL
2 ¼ 1

4ð‘L þ 1
2Þ
ð2ð�2

1 þ �2
2Þ þ 2ð�02

1 þ �02
2 Þ � 1Þ �

��
‘L þ 1

2

�
� 3

4ð‘L þ 1
2Þ
�
�3 � 1

2
�4 � 1

16ð‘L þ 1
2Þ3

ð�2
3 þ �02

3 Þ

�
�
1

2
� 1

4ð‘L þ 1
2Þ2

�
ð�3�4 þ �0

3�
0
4Þ �

1

4ð‘L þ 1
2Þ
ð�2

4 þ �02
4 Þ; (C24)

~RL
1 ¼ � 1

2
ð2ð�2

1 þ �2
2Þ � 2ð�02

1 þ �02
2 ÞÞ �

1

4ð‘L þ 1
2Þ2

�0
3 �

��
‘L þ 1

2

�
� 1

2ð‘L þ 1
2Þ
�
�0
4 �

4‘Lð‘L þ 1Þ � 2

16ð‘L þ 1
2Þ2

ð2�3�
0
3Þ

� 1

4
ð2�4�

0
4Þ �

1

4ð‘L þ 1
2Þ
ð�3�

0
4 þ �0

3�4Þ; (C25)
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~RL
2 ¼ 1

4ð‘L þ 1
2Þ
ð2ð�2

1 þ �2
2Þ � 2ð�02

1 þ �02
2 ÞÞ �

��
‘L þ 1

2

�
� 3

4ð‘L þ 1
2Þ
�
�0
3 �

1

2
�0
4 �

1

16ð‘L þ 1
2Þ3

ð2�3�
0
3Þ

�
�
1

2
� 1

4ð‘L þ 1
2Þ2

�
ð�3�

0
4 þ �0

3�4Þ � 1

4ð‘L þ 1
2Þ
ð2�4�

0
4Þ; (C26)

RR
1 ¼ � 1

2
ð2ð�2

1 þ �2
2Þ þ 2ð�02

1 þ �02
2 Þ � 1Þ � 1

4ð‘R þ 1
2Þ2

�3 �
��

‘R þ 1

2

�
� 1

2ð‘R þ 1
2Þ
�
�4 � 4‘Rð‘R þ 1Þ � 2

16ð‘R þ 1
2Þ2

ð�2
3 þ �02

3 Þ

� 1

4
ð�2

4 þ �02
4 Þ �

1

4ð‘R þ 1
2Þ
ð�3�4 þ �0

3�
0
4Þ; (C27)

RR
2 ¼ 1

4ð‘R þ 1
2Þ
ð2ð�2

1 þ �2
2Þ þ 2ð�02

1 þ �02
2 Þ � 1Þ �

��
‘R þ 1

2

�
� 3

4ð‘R þ 1
2Þ
�
�3 � 1

2
�4 � 1

16ð‘R þ 1
2Þ3

ð�2
3 þ �02

3 Þ

�
�
1

2
� 1

4ð‘R þ 1
2Þ2

�
ð�3�4 þ �0

3�
0
4Þ �

1

4ð‘R þ 1
2Þ
ð�2

4 þ �02
4 Þ; (C28)

~RR
1 ¼ � 1

2
ð2ð�2

1 þ �2
2Þ � 2ð�02

1 þ �02
2 ÞÞ �

1

4ð‘R þ 1
2Þ2

�0
3 �

��
‘R þ 1

2

�
� 1

2ð‘R þ 1
2Þ
�
�0
4

� 4‘Rð‘R þ 1Þ � 2

16ð‘R þ 1
2Þ2

ð2�3�
0
3Þ �

1

4
ð2�4�

0
4Þ �

1

4ð‘R þ 1
2Þ
ð�3�

0
4 þ �0

3�4Þ; (C29)

~RR
2 ¼ 1

4ð‘R þ 1
2Þ
ð2ð�2

1 þ �2
2Þ � 2ð�02

1 þ �02
2 ÞÞ �

��
‘R þ 1

2

�
� 3

4ð‘R þ 1
2Þ
�
�0
3 �

1

2
�0
4

� 1

16ð‘R þ 1
2Þ3

ð2�3�
0
3Þ �

�
1

2
� 1

4ð‘R þ 1
2Þ2

�
ð�3�

0
4 þ �0

3�4Þ � 1
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S1 ¼ ‘Lð‘L þ 1Þ‘Rð‘R þ 1Þ
ð‘L þ 1=2Þ2ð‘R þ 1=2Þ2 ; (C31)

SL2 ¼ � 1

4

‘Lð‘L þ 1Þ‘Rð‘R þ 1Þ
ð‘L þ 1=2Þ2ð‘R þ 1=2Þ2

�ð‘R þ 3
2Þð‘R � 1

2Þ
ð‘R þ 1

2Þ2
þ 1

�
; (C32)

~S L
2 ¼ � 1

2

‘Lð‘L þ 1Þð‘2R þ ‘R þ 3
4Þ

ð‘L þ 1=2Þ2ð‘R þ 1=2Þ2 ; (C33)

SL3 ¼ � 1

2

‘Lð‘L þ 1Þ‘Rð‘R þ 1Þ
ð‘L þ 1=2Þ2ð‘R þ 1=2Þ3 ¼ � 1

2ð‘R þ 1=2Þ S1; (C34)

SR2 ¼ � 1

4

‘Lð‘L þ 1Þ‘Rð‘R þ 1Þ
ð‘L þ 1=2Þ2ð‘R þ 1=2Þ2

�ð‘L þ 3
2Þð‘L � 1

2Þ
ð‘L þ 1

2Þ2
þ 1

�
; (C35)

~S R
2 ¼ � 1

2

‘Rð‘R þ 1Þð‘2L þ ‘L þ 3
4Þ

ð‘L þ 1=2Þ2ð‘R þ 1=2Þ2 ; (C36)
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SR3 ¼ � 1

2

‘Lð‘L þ 1Þ‘Rð‘R þ 1Þ
ð‘L þ 1=2Þ3ð‘R þ 1=2Þ2 ¼ � 1

2ð‘L þ 1=2Þ S1: (C37)
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