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Equivariant reduction of U(4) gauge theory over S2. X S2 and the emergent vortices
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We consider a U(4) Yang-Mills theory on M X S% X S% where M is an arbitrary Riemannian
manifold and S% X S% is the product of two fuzzy spheres spontaneously generated from a SU(N)
Yang-Mills theory on M which is suitably coupled to six scalars in the adjoint of U(IN'). We determine
the SU(2) X SU(2)-equivariant U(4) gauge fields and perform the dimensional reduction of the theory
over S2 X S%. The emergent model is a U(1)* gauge theory coupled to four complex and eight real scalar
fields. We study this theory on R? and find that, in certain limits, it admits vortex type solutions with U(1)?

gauge symmetry and discuss some of their properties.
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L. INTRODUCTION

Recently, there have been significant advances in under-
standing the structure of gauge theories possessing fuzzy
extra dimensions [1,2] (for a review on fuzzy spaces see
[3]). It is known that in certain SU(IN') Yang-Mills theo-
ries on a manifold M, which are suitably coupled to a set
of scalar fields, fuzzy spheres may be generated as extra
dimensions by spontaneous symmetry breaking. The vac-
uum expectation values of the scalar fields form the fuzzy
sphere(s), while the fluctuations around the vacuum are
interpreted as gauge fields over S% or S% X S% [2,4]. The
resulting theories can therefore be viewed as gauge theo-
ries over M X S% and M X S X S with smaller gauge
groups, which is further corroborated by the expansion of a
tower of Kaluza-Klein modes of the gauge fields. Inclusion
of fermions into this theory was considered in [4,5]. For
instance, in [5] an appropriate set of fermions in 6D
allowed for an effective description of Dirac fermions on
M* X §%, which was further confirmed by a Kaluza-Klein
modes’ expansion over S%. It was also found that a chi-
rality constraint on the fermions leads to a description in
terms of ““mirror fermions’ in which each chiral fermion
comes with a partner with opposite chirality and quantum
numbers.

It appears well motivated to investigate equivariant pa-
rametrization of gauge fields and perform dimensional
reduction over the fuzzy extra dimensions to shed some
further light into the structure of these theories. Essentially,
it is possible to use the well-known coset space dimen-
sional reduction (CSDR) techniques to achieve this task.
To briefly recall this consider a Yang-Mills theory with a
gauge group S over the product space M X G/H. G has a
natural action on its coset, and requiring the Yang-Mills
gauge fields to be invariant under the G action up to S
gauge transformations leads to a G-equivariant parametri-
zation of the gauge fields and subsequently to the dimen-
sional reduction of the theory after integrating over the
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coset space G/H [6,7]. CSDR techniques have been
widely used as a method in attempts to obtain the standard
model on the Minkowski space M* starting from a Yang-
Mills-Dirac theory on the higher dimensional space M* X
G/ H (for a review on this topic the reader can consult [7]).
The widely known, prototype example of CSDR is the
SU(2)-equivariant reduction of the Yang-Mills theory
over R* to an Abelian Higgs model on the two-dimensional
hyperbolic space H?, which was formulated by Witten [8]
prior to the development of the formal approach of [6], and
it led to the construction of instanton solutions with charge
greater than 1.

Another approach, parallel to the CSDR scheme, using
the language of vector bundles and quivers is also known in
the literature [9]. In recent times, this approach has been
employed in a wide variety of problems, including the
formulation of quiver gauge theory of non-Abelian vortices
over R2¢ corresponding to instantons on R2? X §2, R2? X
S2 X §2 [10,11], to the construction of vortex solutions
over Riemann surfaces which become integrable for an
appropriate choice of the parameters [12] and to the con-
struction of non-Abelian monopoles over R"! X $?in [13].
In [14], reduction of the Yang-Mills-Dirac theory on M X
S is considered with a particular emphasis on the effects of
the nontrivial monopole background on the physical parti-
cle spectrum of the reduced theory. Dimensional reduction
over the quantum sphere has been recently studied and has
led to the formulation of g-deformed quiver gauge theories
and non-Abelian ¢ vortices [15].

Both of these techniques have also been applied to Yang-
Mills theories over R2? X §? [16], where R2? is the 2d
dimensional Groenewold-Moyal space, a prime example
of a noncommutative space. In this framework, Donaldson-
Uhlenbeck-Yau equations of a U(2k) Yang-Mills theory
have been reduced to a set of equations on [R%d whose
solutions are given by Bogomol’nyi-Prasad-Sommerfeld
(BPS) vortices on R2? and the properties of the latter
have been elaborated.

Starting with the article [17], we have initiated inves-
tigations on the equivariant reduction of gauge theories
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over fuzzy extra dimensions. In [17] the most general
SU(2)-equivariant U(2) gauge field over M X S% has
been found, and it was utilized to perform the dimensional
reduction over S%. It was shown that for M = R? the
emergent theory is an Abelian Higgs type model which
has non-BPS vortex solutions corresponding to the instan-
tons in the original theory. There it was also found that
these non-BPS vortices attract or repel depending on the
parameters in the model. This article was followed up by
investigating the situation in which M is also a noncom-
mutative space [18]. Performing the SU(2)-equivariant
dimensional reduction of this theory led to a noncommu-
tative U(1) theory which couples adjointly to a set of scalar
fields. On the Groenewold-Moyal plane M = [R?(z, the
emergent models admit a noncommutative vortex as well
as fluxon solutions, which are non-BPS and devoid of a
smooth commutative limit as  — 0.

As we have noted earlier, gauge theory on M* X S2 X
S% has been recently investigated in [4]. For this purpose
authors of [4] have considered a SU(JN') gauge theory on
M?*, which is suitably coupled to six scalar fields in the
adjoint of U(IN'). The model has the same field content
as that of the bosonic part of the N = 4 super Yang-Mills
theory, but comes together with a potential breaking the
N = 4 supersymmetry and the R symmetry which is a
global SU(4). The deformed potential makes possible
(after spontaneous symmetry breaking) the identification
of the vacuum expectation values of the scalars with §% X
S% and the fluctuations around this vacuum as gauge fields
on $% X S%. The structure of fermions in this theory is
elaborated in [4]. In a related article, it was shown that
twisted fuzzy spheres can be dynamically generated as
extra dimensions starting from a certain orbifold projection
of a N = 4 super Yang-Mills theory whose consequences
have been discussed in [19]. For a review on these results
[20] can be consulted.

In the present article, we investigate the SU(2) X
SU(2)-equivariant formulation of a U(4) gauge theory
over S2 X §%. Starting from the SU(N) gauge theory
model described above, but now put on some
Riemannian manifold M, we focus on a U(4) gauge theory
on M X S$2 X S2 after spontaneous symmetry breaking.
We determine the SU(2) X SU(2)-equivariant U(4) gauge
fields and perform the dimensional reduction of the theory
over §% X §%. The emergent model is a U(1)* gauge theory
coupled to four complex and eight real scalar fields. We
study this theory on R? and find that, in certain limits, it
admits vortex type solutions with U(1)? gauge symmetry
and we discuss some of their properties.

Our work in the rest of the paper is organized as follows.
In Sec. II, we give the basics of the SU(IN') gauge theory
over M and indicate how the gauge theory over M
dynamically develops S% X S% as extra dimensions. This
is followed by a systematic construction of the SU(2) X
SU(2)-equivariant U(4) gauge field using essentially
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the SO(4) = SU(2) X SU(2) representation theory. In
Sec. III’, we present the results of the equivariant reduction
over M X §% X §% and give the reduced action in full, and
find that the emergent model is a U(1)* gauge theory
coupled to four complex and eight real scalar fields. This
is ensued by a discussion of the structure of the reduced
action. In Sec. IV, we present nontrivial solutions of the
reduced action on R? for two different limiting cases of the
parameters a; and ap in the theory and demonstrate that
these particular models have vortex solutions with U(1)3
gauge symmetry which tend to attract or repel at the
critical point of the parameter space g¢ = 1. For complete-
ness, brief definitions of S% and S§% X S% are given in
Appendix A and basics of the U(N') gauge theory over
M X S% and the U(2)-equivariant gauge field parametri-
zation are discussed in Appendix B. In Appendix C, we
collect the explicit expressions after dimensional reduction
which is presented in Sec. III".

II. U(4) GAUGE THEORY OVER M x §% x S%

A. Gauge theory on M x S3 x S%,

We start with an SU(IN') gauge theory coupled adjointly
to six scalar fields ®;, (i = 1, - - -, 6). The relevant action is
given in the form [4]

1
_ t
S = [M Trw(4g2 FLLF,, + (Dﬂ(Di)*(D#q)i)) V(D)
2.1)
In this expression, A, are su(/N') valued anti-Hermitian
gauge fields, ®;(i=1,---,6) are six anti-Hermitian

scalars transforming in the adjoint of SU(IN) and
D,®; =9, +[A,, ®]are the covariant derivatives.

It is assumed further that ®;, (i = 1, - - -, 6) transform
in the vector representation of a global SU(4) = SO(6)
group.

When considered on the four-dimensional Minkowski
spacetime M*, depending on the form of the potential term
V(®), the action (2.1) corresponds to the bosonic part of
the N = 4 super Yang-Mills theory with the global SU(4)
being its R symmetry, or a modification of it thereof. The
potential may have the form

V(P) = Vy=s(P) + Vi (D), (2.2)

where the first term corresponds to the potential of the
N = 4 super Yang-Mills theory

1 6
Vi=a(®) = 783 D [®; @;F, 23)
ij

while the second term breaks both the N = 4 supersym-
metry and the R symmetry. It is also worth mentioning that
the above action (2.1) descends from a ten-dimensional
N = 1 super Yang-Mills theory by dimensional reduction.
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We will not review this here as it is not necessary for our
purposes; however, a quick discussion can be found in [4].

We would like to see now how the product of two fuzzy
spheres emerges as extra dimensions from this theory as a
consequence of spontaneous breaking of the original gauge
symmetry. Following the discussion in [4], we consider a
potential of the form

1 1 1
V(D) = = V(L) + — Vi(DF) + 5=V, (DFF)
8L 8Rr LR
+ai VE(®y) + agVE(Dp), (2.4)
where
(I)g = (I)a’ (I)(Ize = (I)a+3: (a = 1) 2) 3)) (2'5)

and

V(®L) = Trp FETFL, FL = [®L, ®L] — &, DL,
Vi(@F) = TTNFSJF(I;!V Fgy, = [, OF] = £ L,
Vy(Ph) = TrN(CI){;(I)é + b~L)2,
Vo (OF) = Tro (DEDE + bp)?,

Vi(®LR) = Trp FERTFER R — (ol @F],

(2.6)

We observe that the potential V(®) is positive definite,
and it is possible to pick b; and by as the quadratic
Casimirs of, respectively, SU(2); and SU(2) with irre-
ducible representations (IRRs) labeled by €¢; and €j:
by =€, ({, + 1),

ER:€R(€R+1)’ 2€L:2€REZ

(2.7)

If it is further assumed that N = (2¢, + 1)(2€; + D)n
(n € Z), then the configuration

(I)tli = 22€L+1) ® 1(2€R+1) ® ln’
20 +1
DE = 10,4 8 X7 V01,

[P, PF]=0, 2.8)

is a global minimum of the potential V(®) where X0t

and X2 are the anti-Hermitian generators of SU(2);
and SU(2)g, respectively, in the IRRs €; and €, with the
commutation relations

[x26+D X£2€L+1)] X6t

abcc ’

[X‘(12€R+1) Xl(]2€R+1)] — 5, X2t D (2.9)

’ abc * N
This vacuum configuration spontaneously breaks the
SU(IN') down to U(n) which is the commutant of ®L,
®F in (2.8).
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Defining
ol _ [ 6, +1)
Xg = ——==X ® 12g,+1),
Jo, +n ¢ et
)%R =1 20, +1 ®7l X,(12€R+1),
C GG
RLRL =1,  FRzR =1, (2.10)

the vacuum is a product of two fuzzy spheres S% X S%
generated by £4 and 2. (See Appendix A for a description
of $2. X $2.)

Fluctuations about this vacuum give a U(n) gauge theory
over S% X §%. We can write

L = XL + AL DR = XR + AR (2.11)

where AL, AR € u(2€, + 1) ® u(2€x + 1) ® u(n) with the
shorthand notation XP“*V @ 1o¢,+1)®1, = XL and
1og,+1) ® X2 @1, =: XF.

Thus, ®L, OF are the “covariant coordinates” on 2 X
S%, and the associated curvatures FL, | FR, F™F take their
familiar form after expanding according to (2.11)

ng = [Xg’ Ai] - [XL’Aé] + [Ag’ Ai] - 8abcA£’
FE, = [XT AT — X5, AS]+ [AG, AF] — e4p AL,

FER = [XL, AR] — [ X%, AL] + [AL, AR]. (2.12)
Therefore, we can interpret the spontaneously broken
theory as a U(n) gauge theory on M X §% X §2 with
Ay = (A, AL AE) as the gauge fields and Fyy as the
corresponding field strength. The V4 and the VR serve as
constraint terms to suppress the normal components of the
gauge fields on each of the fuzzy spheres, in a similar
manner as discussed for the case of a single fuzzy sphere
in [2,17].

It is important to point out that this gauge theory can be
called the “standard” Yang-Mills theory on M X % X S2
if we take g; = gp = \/igL,R := g, scale the scalar fields
as @ = \/igd),» and take gg = 1, since only then it takes
the form of the L? norm of Fj,y.

We also note for future use that, with the developments
above,

1
Trp = T
N T2 + D2l + 1) Ma@eED

® Travtac26,+1) ® Trvat(n)s

(2.13)

where Mat(k) denotes the algebra of k X k matrices.

Finally, it is also useful to remark that there are other
possibilities for the vacuum configuration as discussed in
[4] which for instance lead to S% X S% carrying magnetic
fluxes under the U(1) component of the unbroken gauge
group SU(n) X SU(m) X U(1) after spontaneous symme-
try breaking.
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B. The SU(2) X SU(2)-equivariant gauge field

We will now formulate the SU(2); X SUQR)g =
SO(4)-equivariant, U(4) gauge theory on M X 2. X S2.
The gauge fields carry the fundamental representation of
U(4). We introduce SO(4) symmetry generators under
which A, is a scalar up to a U(4) gauge transformation;
that is, carrying the SO(4) IRR (0, 0) and AL and AR are
SO(4) tensors carrying the IRRs (1, 0) and (0, 1), respec-
tively. In other words, AL is a vector under the SU(2), and
a scalar under the SU(2)g, whereas AR is an SU(2), vector
and an SU(2), scalar.

On S% X S% the SU(2) X SU(2) = SO(4) rotational
symmetry is implemented by the adjoint actions adX%
and adX® (see Appendix A):

adX%- = [XE, ], adXR. = [XxR, .],

[adXL, adXR] = 0. (2.14)

Let us introduce the anti-Hermitian symmetry generators

L
a
A

2

2¢
wé — 51 L

+1 .
) Loe, 1) ® 1y = 1og, +1) ® Liag,+1) ® i

R
20p+1 .
@ =100, 11 @ XT* TV @14 — 10g, +1) ® Liag, 1) @ lja-

(2.15)

Here L% and LR are 4 X 4 matrices whose structure will be
given shortly. They are chosen so that w’ and w? fulfill the
consistency conditions

[(Ug, wﬁ] = isabcwf’

[wk, of] = 0.

[wﬁ, w}%] = isabcwcL‘r
(2.16)

In order to write down the matrices L% and L¥ consider
first the 4 X 4 matrices denoted as e,,,(m, n = 1,2, 3,4),
whose entries are all zero except the entry on the mth row
and the nth column which is 1. We let

Jo= —itaeer K, = —ileq —es), (217
and define
L:E=J,+K, LR=1J,—K,. (2.18)
These matrices fulfill
(LG, Li] = 2iegp L, [L§, L] = 2igqp L,
[LL, LR] = 0. (2.19)

Therefore we have altogether six antisymmetric SU(4)
matrices generating the two subgroups SU(2); and
SU(2)g. The remaining nine symmetric generators of
SU(4) may be taken as LLLR. Together with the 4 X 4
identity 14, L%, L¥ and LLLE span U(4) and furnish a basis
for the fundamental representation of U(4).

L% and LR form a 4 X 4 basis of the Lie algebra so(4) =
su(2) ® su(2). In addition, these matrices satisfy the
relations
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Lé‘LIL; = isabch + 5(11714’

LRLR = ig,, LR + 8,1, (2.20)

which permits us to view them as two sets of 4 X 4 “Pauli
matrices.”

From the point of view of the SO(4) representation
theory LL, LR carry the reducible representations of
SU(2), and SU(2)g. LL carries two copies of the IRR
(3, 0), whereas L¥ carries two copies of the IRR (0, 1),
which can be clearly observed from their Casimir operators
with the eigenvalues 3.

As the gauge fields AL and AR on S2 X S% are u(4)
valued, they are elements of u(2€¢, + 1) ® u(2€z + 1) ®
u(4). Therefore, it is now clear that L. and L% in (2.15) are
responsible for generating the U(4) gauge symmetry in
SO(4).

The SU(2) X SU(2) = SO(4)-equivariance conditions
stated at the beginning of this section can now be explicitly
described as the fulfillment of the following conditions
under the adjoint actions of w’ and w*.

[0)2, Ap,] =0= [0)5, A,u.l [(1)5, Ai] = SubcAg’
[(1)5, Af] = SabcAfJ [wé’ Af] =0= [ws’ Aé]
(2.21)

It is necessary to find explicit parametrizations of A, AL
and AR fulfilling these conditions. The adjoint actions of
ol and w® expand in the Clebsch-Gordan series as

=4(0,008(1,0)0® -, (2.22)
=40,0080, e ---, (2.23)

where the factor of 2 in each line above is due to the two
copies of the IRRs (}, 0) and (0,3) in L% and LX, respec-
tively. Therefore the relevant part of the Clebsch-Gordan
expansion takes the form

4(0,0) @ 8(1,0) ® 8(0, 1). (2.24)

The solution space for A, is then four-dimensional,
whereas each of the solution spaces of AL and A% is
eight-dimensional.

It is not very hard to see that there are four invariants
under the action of w’ and wX. These are the three “idem-
potents”

€ L _ i
_ X" ® 1 ® Ly —51 b
01 = —Lige,+1)26p+1) (2.25)
€ R _ i
1 XL —11
_ @a+1 a a 2 t_
Ok eSS , Or Or,
0% = —Lyae, +1)2t,+1) (2.26)
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Q10 =1

(Xa" @ Loy ® L = 31 (lag, 1) ® X ® L — 1)
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2

(iQLQR)T = —iQ; Og,

which are all [4(2€, + 1)(2€; + 1)]> matrices and the
identity matrix —l4¢, +1)26,+1)-
These lead to the parametrization

1 1 1 1.
A = 5ah 0"+ akOF + b1 + i, 0H0F, (2.28)

where a,, b,, c, and d, are all Hermitian U(1) gauge
fields, and to the parametrizations

AL =300+ XDIXE 081+ 500 + x5 — DOMXE, 0]
+ l%)@%{)zé: O + Ixa®k + 300 — x)
X iQF[XE, O] + 3(x2 — X0 O XL, 0']

+ il LioR(XE, Ot} + LxhioR &L, (2.29)

A =30 + ADIXE OFT + 34, + Ay — DORXE, 0]
+ i HXE, OF) + I, 0F + LA, — A))
X IQMXZ, OF] + 5(A, — 19)iQ" OF[XE, OF]
+ AL OHXER, OFY + LX,iQE R, (2.30)

Here x;, xi, A; and AL i = (1,2, 3,4) are Hermitian scalar
fields over M, the curly brackets denote anticommutators
throughout, and we have used

) 1 1
Xti=— —  xL ol = ———f,
T 120 R el
) 1 1
RRi= = xR oR:= -~ R (23]
« T /27 Ca g 127 2.31)

Let us also introduce the notation

AL = AL 4 jQRAL, AR := AR 4 jQLAR (232)

for future convenience.

III. REDUCTION OF THE YANG-MILLS
ACTION OVER S2%

Using the SU(2) X SU(2)-equivariant gauge field in the
action functional of the U(4) Yang-Mills theory on M ®
§%2 X S2., we can explicitly trace it over the fuzzy spheres
to reduce it to a theory on M. It is quite useful to note the
following identities:

{0.[x,0=0, {X,[X, Q=0

(3.1)
(sum over repeated a is implied),

(€, +1/2)(€g +1/2) ’
(iQLQR)Z = _14(2€L+1)(2€R+1)’

(2.27)

[0.{X,, 011 =0, [Xo (X0 0} =0

(3.2)
(sum over repeated a is implied).
which are valid for both the left and the right quantities and
they significantly simplify the calculations, since they
greatly reduce the number of traces to be computed.
The reduced action has the form

1 1 1
M 8L 8R 8LR
+ a?VE + ai VR, (3.3)
Each term in this expression is defined and evaluated
below, while some details are relegated to Appendix C.

A. The field strength term
The field strength can be expressed as

i

F =
2

1 1 i
wv Ef/LAVQL + Ef;liVQR + g/,LV14 + Eh,u,yQLQR:

(3.4)

where

L — L _ L R — R _ R
MV—aﬂaV a,,aﬂ, M,,—aﬂa,, ayaﬂ,

(3.5)

8uv = b, —d,b,, hy, = 9,0, = 9,0,

The corresponding contribution to the Lagrangian is
1 T
£F = rgz TrN(F#VFMV)

1
= —1682 (Ifﬁy 2 4 |ffLy|2 + |glw|2 + |h;w|2
2 1
+ L R _ Y R
2€, +1)2€g + 1) wvS (20r + 1)(f,“,gw,

_ fL — L — R
f,u.vhp,v) (2€L n 1) uv8uv f,u,vh/u;)

2
T (20, + )2, + 1)g“”h’”)‘ (3.6)

B. The gradient term

The covariant derivatives are naturally expressed in two
pieces:
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1 i
D,®; = E(D,L(Xl + x1) + 0D, (x> + X)IXE, OF] + Zaw\%{x O + = GMXMU

1 N

I i . 1
D,®f = E(D“(Al +A) + 0fD, (A, + A))[XE, OF] + —3 A3{X§, of} + —3 )l4w§

1
+iQL(§(D#()11 = X))+ QFD, O — AN, OF+ 10, MRS QR}+ Y AR) (3.8)
where we have (i = 1, 2)
D,xi=0,xi t €jiauXxj+ €jiCuXs Dyxi=duxi+ €iau X — ejicu X’ 3.9
with (i = 1, 2).
The gradient term takes the form
L=LL+ LR =Tra(D,PH(D,PL) + (D, PXT (D, DF)), (3.10)
where
0,0, +1) 1 1
LL =t [(1+ )D 2+ (D 2+( )D 2+ (D ’2]
5= tir L 3 ) @ax) + P + (1= 5 J 0P + (D,
- ux3)? + (0, x5+ ——0,x30 ’]
4 (€L T 1/2)4 ( ,u,X3) ( /.LX3) (€R+%) /.LX3 ,u,/\/3
1 €6, +1) 1
20, + 1727 I:aMXsaﬂ)m T O X50 X0 T m(aw\@aw\/i& + a,qua/-L/\/ﬁl)]
162 4+¢, +3/4 1
- (0 24+ (d X0 + d ] 11
4 (€L n 1/2)2 [( p,X4) ( ,u,/\/4) (€ + 1) ,u,/\/4 /.LX4 (3 )
Cellp + 1) 1 1
LR = [(1+ )DA2+DA2+(1 )DN2+DN2:|
+ = 9,037 + (9,A%)* + AaA]
4 (lr + 1/2)* [( p M) O+ Gy dus
1 €ptg + 1) 1
; m[aMA3aMA4 R e I aMAgaMA4)]
162+ 4 +3/4 1
——a/\2+a)u2+7 /\8)\] 12
sy (DA ey DR G
I
It is useful to form the complex fields C. The potential term
Y= x1+ ixa T=x1— ixs Working with the duals, we have for FE,
A=A +iky, A=A — i)y (3.13) S€abcFhy = 3€apc[ P, ] — ®L == FL + iQRFE,
then the covariant derivatives are expressed as G.15)
D,x=0,x +ild + s 1 -
X = Bl el FE= (P + Q1) + PE (1) + xAQ1)IXE, 011
D, x' =ad,x +ila —c)x. ; i 2 ok ob
= i(ak + -2y + 21y - <
D A=0d,A+i(ak +c,)A 4( | IxX'|* — P3 )(€L 12
D AN =d,N +ia® —c, )N (3.14) . wl 516
We note that primed fields carry charge —1 under c,,. 477, +1/2% .
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- 1
Fi= E(Pf+(/\/1 +x20") — Pi~(xi + x20M)IXE, 0F]

i = X5 01}
+ -2 2 _ 2 /12 PL c
7 Clxl bd )(h 1)
1 P ok
(3.17)

g 3((5 +1/2)%

and PL=, PL and P%, PL, P% are given in Appendix C.
Similarly for F®, we have

%8athR = % abc[q)ay (I)R] (I)f = Ff + lQLﬁf’

(3.18)

FE = S(PRY 0+ 00" + PR + M 0R)XE, OF]

{x& 0%}

[
+—(2[A]2 + 2|2 — PX
FRIE+ 2P — P et

L
| W%

473 (Ug + 1/2)% G19

FE = SOPFR (A + 4,09) = PR (1 + M 0F)IXE, 0]

i 2 2 _ BR { QR}
+4(2|/\| 2|N|? — P§ Tt 12

L
| [0}

g 0

and PR*, PR and P, PR, PX are given in Appendix C.
In addition, we have for F' ébR
Fift = i((x2 + xh) — (i + xDOMIXE, QHAR
+IAF((A + A) = (A + ADORXE, 0F],
(3.21)

where the notation introduced earlier in (2.32) is used.
With these we find for V£, VF and V¥
VE = TrpFEFL,
= —2Trp((F5)? + (FE)? + 2iQgFEFE)
= THxI* + Y1) + T3 X PP + T3P + T4,
(3.22)

VR = Trp FRIFR,
= —2Trp (FF)? + (FR)? + 2iQ, FRFR)
= TR(IAI + [N4) + TRIAR + TRV + 7%,
(3.23)
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VIR =28,(IxA" = XA + 1Ay = X V) + |x + X1
X (SEAZ + SEAZ 4+ SEMAL) + (A + VP2

X (SEXE + SExZ + SExhxh), (3.24)

where T{%, T3, T5R, T3 %, S, 8%, 85, Sk, S%, S and S%
are given in Appendix C.

D. The constraint term
Taking EL = €L(€L + 1) and ER = fR(gR +
cussed earlier in Sec. II we find
OLOL + 0, (€, +1)=RE + iQ"RS + iQR(RY + iQFRE),
(3.25)

1) as dis-

DRDR + (p(€r + 1) = RE + iQRRE + iQL(RF + iQLRE),

(3.26)
where RY, RS and R}, RS and RE, R¥ and RE, R are given
in Appendix C.

The constraint terms in the action take the form

VE = (RF)? + (RE)? + (RE)? + (RE)? + ~(RYR%
(€L +7)
- 1 8 8
+ RERE) + m(R’leL + RERE)
1 S
+ RERE + RERD), 3.27
206, + i + R RIR, 62D
. . 1
VE = (R})? + (RE)? + (R})* + (RE)* + -
(g +7)
- 1 . .
X (RFRE + RERR) + ) (RRRY + RERY)
L2
1 e
(RRRE + RERE). (3.28)

+
206, + ) (g + )

E. Structure of the reduced theory

In order to understand the structure of the reduced theory
it is useful to analyze its vacuum structure. The potential
has the form

1 L .

V=—2V1 VitV +a?VE+aiVR,

8L I R 81 LR

(3.29)

Apart from the case a; = ap = 0, V is zero if and only if
VE, VR VPR VE VE all vanish. Noting that zeros of V¥,
VR, VR coincide with zeros of the curvature terms, it is
left to find the solutions of

Ft,=0, FR =0 FLE=0, (3.30)

using the results obtained in the previous section.
It turns out that the only solution to these equations,
which is also a zero of both V£, VX, is given as

105004-7
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xl=IxI=1Al =N =3
XN =xXA Ay =xX,

X3=X§=X4=XZ=0, )\32)\'3:/\4:/\!1:0-

(3.31)

In fact, the first condition on the second line together
with the first line implies the second condition on the
second line. It should be clear that vacuum is not simply
connected. The first two lines of (3.31) imply that one of
the complex fields can be written in terms of the other

three. For instance, A’ = X—)/(A = 4x' A x. The vacuum mani-

fold has therefore the structure of 73 = §' X S! x S!,
which has in particular 7(T3) =Z & Z & Z.

Let us record the form of the action in the limit €;, € —
oo, which is going to be of essential interest in the next
section:

Lo=——=fL PR 12 +1g >+ 1,17, (3.32)

16 16g2
Lo=ID, x>+ D, x>+ D AR + D, NP
+ 30, x3)% + (0, x5 + (0, x0)* + (9, x4)*
F(3,A3)% + (9,497 + (9,497 + (3,47,
(3.33)
1 1 1\2
VE=—(4(1xI* + - (x5 + X! —7)
F= (4 oo -
112 1 / 1\2 12 2
+4( x| +Z(X3 —X3)—Z +2(x3 + x5)°lxl

1
F20 - PP 0G D) 634

1 1 1\2
VR =4[ IAI> + (A3 + A ——)
e C GRS TR
112 1 / 1 2 1\2 2
1
200 = AP + 5 (0] + Af)), (3.35)
1 _ _
yER = (2<|XN AR+ 1Ay — ¥ XP)
=0 7 ¢

- —(I)( + X PAE + A A+ N PE + XS )

(3.36)

IV. VORTICES

We will now discuss the vortex solutions of the reduced
theory in the €, €z — oo limit. For simplicity, we restrict

PHYSICAL REVIEW D 85, 105004 (2012)

our attention to the case M = R?. There is no canonical
choice for the coefficients a?, a% of the fuzzy constraint
term; here we consider only the extreme cases of a7 =
a% = 0 and a?, a% — oo, which correspond, respectively,
to imposing no constraint at all, and to imposing the

constraints ‘‘by hand.”

A. Case 1: No constraint

As the constraint terms are absent, it is observed
from Egs. (3.33), (3.34), (3.35), and (3.36) that b, x4
and A, decouple. In this case we have a U(1)® gauge
theory. The vacuum has the nontrivial structure given
in (3.31). On R? this leads to vortices since the map-
ping of the circle at spatial infinity to the vacuum
manifold

S1(c0) — T3 4.1)
is characterized by 7(T?) =Z & Z e Z.

To obtain a detailed description of these vortices
we can select the radial gauge in which af = af =
¢, = 0 and make the rotationally symmetric ansatz by
setting

x= X(r)ein](} — %einl(}’ X — X/(r)emz(} — 2ezn20
r—00
A= /\(r)eim,f) — Leimlﬂ’ N =)\ (r)ezmza — lelmZe.
r—002 r—002
4.2)

From (3.31) and (4.2) we see that the integers n;, n,,
m;, m, are not all independent but related to each
other as
(ny — ny) — (my —my) =0, 4.3)
which is consistent with the fact that 7(7T°) =7 &
Ze®/Z. In what follows we eliminate m, using (4.3)
and take the winding numbers of the complex fields as
the set (I’ll, ny, ml).
The real scalars are

xs=x3(r) 3= x3000 A= A0,
3 3 3 3 3 3 (4.4)
Ay=xa500) xg=xa(n) A= A0
and they all tend to zero at spatial infinity (r — o).
As for the gauge fields we have
_I_
ag_ag(’") . 2712’
m1 +m2_ 2m1—(n1 _l’lz)
aa =dy (r) 3 =- 3 ,
ny—n
cy= c{,(r):oo —- 5 2 4.5)

Asymptotic profiles of the fields listed above are all
dictated by the finiteness of the action (4.6).
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The action takes the form
1 1 1 1
S= 277'/ rdr[ 35 ( (0,a ﬁ(arag 2 +p(6,c0)2) +(9,x)? +ﬁ(n1 +ak + el )2+ (9,x)?
1 1
+ p(”z +ak —cp)?x? +(9,0)* + ﬁ(”ﬁ +al +cy)? A2+ (9,4 + p(ml —(ny —ny) +af —cy)* A\

1 1 1 1\2

#3OXP 02 @+ 0,0+ 0,252 + 0,48 + (4 506+ ) —5)
L

2 1 / 1\2 1\2,,2 124,12 1 2 1 2 1 ! 1\2

+H X"+ (s —x3) — ) P20t X)X 200 — X)X T oxf | = H AT (A3 +A) ——

4 4 2 & 4 4

1 1\2 1 1 - _
" 4(N2 S UEUE Z) 20+ A2A2 4 2(A — AYPAR + 5)\53) T QU — AR+ 2R — R+ F)],
8

LR
4.6)
where
F= {_%(()( FXPAF+ A+ A+ V)2 (xE + 7)) forny =n, 4.7
O+ XHAZ + A7) + (A2 + A’z)(,\/ X3) for ny # n,. :

The equations of motion for the scalar and the gauge fields follow from (4.6) and (4.7) in a straightforward manner.
These are coupled nonlinear differential equations for which we have not found any exact analytical solutions. However, it
is possible to obtain the asymptotic profiles of the fields as » — oo. In this case we can write down the fluctuations around
the vacuum values as

1 /

=_— 95y, =
X 2 X X

2my — (ny — ny)
§=——2 + 8ak, cp=—

n +n
— oN, al = -2 sal

8y, A=
X 2

N[ =

a M4 e, (4.8)

while we can keep the same notation for the real scalars as they all fluctuate about the zero vacuum values. Assuming

L R . . . .
further that (5%)2, (5%)2, (‘%C)2 are subleading' to the fluctuations in the complex and the real scalar fields, we obtain the
following coupled set of linear second order differential equations:

1 1 1
0%28at — —Sal — 4g*dal =0, 028aR — —8ak — 4g?6ak = 0, 028c — —6c — 8g%8c =0,
r r r

1 4 1 1
Fox +—8x + —2<—5X +—(xs + Xé)) ———(6x —6x) =0,
r 8L 4 8LR

1 4 1 1
o) +-6x + —2<_5X +—(xs — Xé)) +—5—(6x—8x) =0,
r 8L 4 8LR

1 4 1
828A+—8/\+—2<—5A+—(A3+Ag))—2—(6)\—8)t’)=0,

r 8 LR
2 !/ 1 ! 4 / !
2SN + =8N + —(—8A+ - (/\g—)\3) —— (81— 8)) =0,

r gR LR

1 4 3 1 3 y
32X3+—X3+—<5)(+5X'_—X3) 0, S X5 (5)(—5)(’——X’)+—X’ =0,
T g 2 3 s 25 g

1 4 3 1 3,
a%A3+—A3+—2<5A+5A/——A3>=0, PN + = AL + 2(5,\ SN — )+2L,v3=o,

r R 2 r 8k 2 8L.R

1 2 y | 2
Iy + —SXi T X, =0, PN+ =N, — N+ =L x =0, 4.9
rX4 rX4 g%/\/4 g%’RX4 rfa T g% 4 g%,R 4 (4.9)
where

'The region of validity of this approximation in terms of the parameters of the model will be given a little later on.
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. 1 for ny # ny
Y= {2 for ny = np. (410)
The gauge fields have the asymptotic profiles
dat = FLrK,(2gr), dak = FRrK,(2gr), Sc = FrK,(2\2gn). (4.11)
Some algebra yields the asymptotic profiles of the scalar fields as
2 242 e '
5/\/ = CIK()(\/_r.) + C2K0< \/_r> + CSK()( aﬁr) + C4K0( CYEV),
8L 8L
V2r 24/2r e '
8/\/ =C Ko( 2 ) + C2K0< ) C';Ko( a+r) C4K0( r)
L
\/Er 2\/§r
X3 = CIKO( ) 2C2K0( )
8L 8L
X5 = CiKo(yJahr) + CiKo(y akr), Xy = CSK()(VBL”),
2
SA=D K0<\/_r) + DZKO( \/_r) + D3Ko(yak r) + DyKo(yaR ),
8Rr 8Rr
2
SN =D K()(\/_r) + DQKO( \/_r) DsKo(yak r) — DyKo(yak ),
8Rr
2
A =D K0<\/_r) - 2D2KO( */_r)
8R 8R
Ay = DiKo(yJafr) + DQKO(VCMIE r), A, = DSKO(V,BRr), (4.12)
|
where D, = (% of — Sk — 2)D3,
1/2 LR
ok =2 4 1 _<§ LJri)/ fory—1 y=1- (4.18)
- 2 2g7 2 2 g2 4 ’ r— (8 R _ S8k _
8L 8LR g1 818,k 8LR D, = (7 at — o~ 2)D4,
5 9 4 4 \1/2
8. \8L 818Lr 8LR D} = —2D;,
y=2— D —D (4.19)
R_ D I 1736 12 9 \!/2 47
ax =315 2o2 oA fory=1 .
8%  28Lr 2 gk 8RELR SLR The coefficients C,, D, FX, Fg, F(a=1,+-+,5) can be
P 36 4 4 \1/2 found by numerical methods. Such a numerical computa-
ax =g_24—r (g_4_ 2222 g4—) fory=2 (414)  {ion was given in [17], for the case of U(l) vortices
k R GRSLER LR emerging from the equivariant reduction of a U(2) theory
) y o) y over M X S%. We will not go into numerical calculations
,BL =—=+—=, ,BR =5+t (4.15) in this article. However, we can still note a few qualitative
gL 8L.R 8r  8LR

We further have that the coefficients C} and C are fixed in
terms of C5 and C, as

c, = (2 ot —%—2)03,
y=1— i . (4.16)
Cy=(%at -5 -2]C
4 277 gig »
Cl, = —2C;,
y=2— B (4.17)
C, = Cy

and likewise for the D} and D),

features stemming from the asymptotic profiles of fields
listed above. Focusing on the special case, g; = ggr =
\/igL, r ‘= &, the expressions above simplify to

_6x23
gZ

R
I+

for y =1,

4.20)
6 V17 (
2 Y

Q
|+l~

for y =2,

and B8 = &% for y = 2. For y = 1, it is easily observed
that there are no fluctuations in zero vacuum value of the
fields x/, and A} at this approximation. It follows from the
asymptotic form of the Bessel functions that (5“ )2, (8 )2
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(5C)2 are subleading to the fluctuations in the complex and
the real scalar fields, as long as 4g > V2/8 g. Furthermore,
the field strengths decay faster than the scalar fields if 2g >
/2/. This result indicates that vortices tend to attract as
long as 2g > V2/ g, since it is known that field strengths
are responsible for the repulsive and scalars are responsible
for the attractive forces between vortices [21]. In particular,
the reduced standard Yang-Mills theory with gg = 1 falls
into this region of the parameter space.

B. Case 2: The constraints fully imposed

The fuzzy constraints

PHYSICAL REVIEW D 85, 105004 (2012)

are equivalent to the algebraic equations

(4.22)

where expressions for all R are given in Appendix C.
These equations can be solved order by order in powers
of the parameters % and é to obtain expressions for the
real scalar fields in terms of the modulus of the complex

scalars in the theory. Substituting the leading order
solutions of the real fields yields an action involving

Ll — RPHR —
Py®g + €0, + 1) =0, a®g + Cr(lr +1) =0 the complex scalars only.
4.21) To leading order in % and lR, (4.22) yields
|
1 ) 1 1 1 1
o + /12 _ _ 2 + 2 _ — /= 2 _ /12
=gl =) =g (W= 5) = el - P
1 1 1
/= 2 I2, A ()‘2+ /\12 ) /\:__(/\2_,_ Al2__>,
e G (E P S (PR P N P R GRs:
1
Ny=S (AP =P, A= ——(I/\I2 — [\ (4.23)
€r €r
Substituting (4.23) into the reduced action obtained in Sec. III" gives
s= [y (1 g )l + (1~ )l + g fhat e+ Wl + 3 (7~ s
16g% 16¢2 1662 8C, Lp” MY mr AN mormy
1 1 1 1 1 1
— + D x>+ (1——— |2
(=g )+ (5 g )t + (1= g KO G 1) 2!
1 1 1 1
+(1-— DA2+<1— )D)U2 X + (9, 1x1)?
(T L 3@ 30 ) PN+ LR + G PR
5 1\2 1\2 4 5 1\2
D O (R R () R T (O
#ag (e @unee) o (e ) (e = 5) + (e =3)) + (0 (e =5
1\2 1 - -
(12 = 3)) o (2004 = WA 1 = R = S+ X POAR AP
4 8LR 265
A+ Nyl /|2 2), 4.24
2€2| (x> = X' (4.24)
where we have already solved the equations of motion for xl =Xl =1Al =[N =4
b, and inserted , , - .
XA = XA Ay = X'\ (4.26)
D D
AV A A V- T
(4.25)

It is readily observed that the minimum of the potential
resides at

105004-

We can again pick the radial gauge, and make the rotation-
ally symmetric ansatz to look for vortex solutions. The
action takes the form
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1 /1 1 . ( |

= - +
S 277/0 rdr[8g< (1 1662)(6’0’9) T
+ll(i
r22 €R

1 1
+ = (ny + ak + ¢y)? 2)+<1———
2 ag +eolx 4 2+ 1)
( 1 1
(1=t

402 206, + 1

1 2 2
ol = (0= ) + @ — @PA?) + 0RO + X0 +
L

) L(a,aby + z(arcev)

)b, + 55 (5~ o) ,en) + (1= g +

)><(ar/\)2 + r—lz(m1 + af + c(,)z)@) + (1

PHYSICAL REVIEW D 85, 105004 (2012)

3
2 8€, Ly

2(€R1 1))((‘” ?

(0,a%)(9,ak)

1 1
7)((3%/)2 + p("z +af — Ce)z)('z)

1 1 ,
YT )@

(A%(9,4)% + A2(9,1)%)
R

i LG (G R D A ) (GRS G

+ gz—(z()m’ — Y2+ 2(Ax — YA+ F) ]
L,R

where

{ 5k O PO = AR
F — R

_ﬁ(/\/z + Xlz)(/\z _

To leading order asymptotic profiles of the gauge fields are

171 1
dal = ayrK,(2gr) + aer1<2g(1 + - < —))r),

T

. 111
da® = arK,(2gr) + a,rK; (Zg(l + - (62 6—2));’),

R

371 1

(4.29)
The asymptotic profiles of the scalar fields read
Sx = CiKo(Juir) + CoKo((/1ar),
ox' = C\Ky(J/m1r) + CLK(\Jipr), 4.30)
A = C3Ky(\Jw1r) + C4Ko(J7ar),
6x = CiKo(\frir) + C4Ko(/vyr).
Focusing on the case g; = gp = \/fgL,R = g, we find

2f 2 3 3
ST = 1+—) Jin =21+ -2 - ),
- ( 46%) H2 g( 8¢ 8€§)
22 2 3 3
= 1+ — =Z(1+=-—)
T ( 4€§)’ V2 g( 802 862)

4.31)

In this case, it follows from the asymptotic form of the
Bessel functions that (5%1‘)2, (a—j’R)z, (2€)? are subleading to
the fluctuations in the complex and the real scalar fields, as
long as 4g > 2+/2/g. For finite values of €, €z, at the
critical g& = 1 coupling the vortices tend to repel since the

_ ﬁ()‘ + )‘/)Z(Xz _ X/2)2

A/Z)Z — ﬁ()‘z + /\12)()(2 — X/2)2

4.27)

for n; = n,

(4.28)
for ny * ns.

scalars decay faster than the field strength. In particular, in
the strict limit €;, €z — oo the model collapses to the
critically coupled BPS vortices at g¢ = 1. The BPS bound
for this model can be written. Saturating the bound gives
the action

S = g(nl + ny + nmy + mz) = 7T(7’l2 + ml)! (432)

since my, = —(n; — n,) + m; and the BPS equations are
Dy *iD,xy =0, DX =iD,xy' =0,
1 2 1 2 433)
DlAilD2)\:0, Dl)l/i iDz)l/:O,
BL + iB ¥ 4\/§g2(|)(|2 - l) =0
2 4
1 1
Bl ——B ¥ 4\/§g2(|)(’|2 - —> =0,
V2 4
(4.34)
Bt + B 4\/§g2<|)t|2 - l) =0
V2 4
1 1
BR— —BF4/2 2<A’2——)=O,
7 3
together with the supplementary conditions
XA = XA Ay = X'\, (4.35)
and where BE = fL BR = fR B = hL . A similar model,

though on the noncommutative plane R, has appeared in
[11]. We have not found any reference in the literature
studying the solutions of these BPS equations; however, we
think that, in principal, it may be possible to construct them
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using the methods of [21,22]. This is beyond the scope of
the present article.

V. CONCLUSIONS

In the present article, we have investigated the SU(2) X
SU(2)-equivariant reduction of a U(4) gauge theory
over S% X S2. We have started from an SU(IN') gauge
theory suitably coupled to a set of scalar fields in the
adjoint of SU(N') on a manifold M, which leads in
general to a U(n) gauge theory on M X S2 X §% after
spontaneous symmetry breaking. Focusing on the U(4)
theory we have determined the most general SU(2) X
SU(2)-equivariant U(4) gauge fields and performed the
dimensional reduction of the theory over S% X S%. We
have found that the emergent model is a U(1)* gauge
theory coupled to four complex and eight real scalar fields.
Studying this theory on R? in two different limiting cases
we have demonstrated that these particular models have
vortex solutions with U(1)? gauge symmetry which tend to
attract or repel at the critical point of the parameter space
g& = 1 as discussed in the previous section.

We find this line of research very interesting as it gives
us concrete results on the structure of gauge theories with
fuzzy extra dimensions. In particular, we are interested in
investigating the SU(2)-equivariant formulation of a U(3)
gauge theory on M X S%. In this case, SU(2) gauge trans-
formations in U(3) are generated by the SU(2) rank 1 and
rank 2 irreducible tensors in the adjoint representation of
SU(2), and among the rotational invariants of the symme-
try generators, suitably contracted rank two tensor opera-
tors over the fuzzy sphere also appear. In other words, and
somewhat more accurately, a fuzzy version of x,x,0Q,p,
0, being the quadrupole tensor carrying the spin 2 rep-
resentations of SU(2), appears as another rotational invari-
ant in the theory whose contribution should be taken into
account. We will report on these and related developments
elsewhere in the near future.
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APPENDIX A: S%4 AND S2 x S%

The fuzzy sphere at level € is defined to be the algebra
of (2¢ + 1) X (2¢ + 1) matrices Mat(2¢ + 1). The three
Hermitian ‘“‘coordinate functions”

i
x @6+

N

(AD)

R,0=

satisfy

PHYSICAL REVIEW D 85, 105004 (2012)
i

S A2
i+ 1) A2

[ﬁw ih] = 8abc-ﬁec’ ),eaxa = R’

and generate the full matrix algebra Mat(2¢ + 1). There
are three natural derivations of functions, defined by the
adjoint action of su(2) on S2:

f—oadXPV =[x £ f e Mat(2¢ + 1).

(A3)

In the limit € — oo, the functions %, are identified with the
standard coordinates x, on R3, restricted to the unit sphere,
and the infinite-dimensional algebra C®(S?) of functions on
the sphere is recovered. Also in this limit, the derivations
[XZ*D ] become the vector fields —iL, = &,p.%,0p,
induced by the usual action of SO(3).

In a similar manner the product space S% X S% is
defined to be the algebra of ((2¢; + 1)(2€x + 1)) matrices
Mat(2¢;, + 1)(2€; + 1). There are now six Hermitian
“coordinate functions,”

i

)’EL = 7X(2€L+1) ® 12€ 1»
LG ED o
R - i 25+1
x5 = Lag, +1 ®mxg o ), a=123,
R\R
(A4)
which satisfy
i
[)%15’ 55]1;] = Sabcjeg’
VO, +1)
SR SRT — i SR
x5 2] = EabeXes
V(g + 1)
(%G, %f1=0 L& =1, 2535 =1 (AS)

and generate the full matrix algebra Mat(2¢; + 1)(2€z + 1).

There are six natural derivations of functions, defined
by the adjoint action of su(2)® su(2) = so(4) on
52 X 82

f— adXif =X, f]
f € Mat(2¢, + 1)(2€; + 1).

f— adX{f =X f1
(A6)

In the limit €;, €z — oo, L %R and are identified with

the standard coordinates x% and x® on RO, restricted to
§% X S2, and the infinite-dimensional algebra C*(S% X S?)
of functions on S2 X §2 is recovered. Also in this limit, the
derivations become the vector fields —iLL = g, xL ok,
—iLR =g, xR0% induced by the usual action of
SO(3) X SO(3).
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APPENDIX B: U(2) GAUGE THEORY M x S2

1. Gauge theory on M x S%
The relevant SU(IN') Yang-Mills theory has the action

s= [ Trw<é FluF o + (0,801(D,9,))

+ é Trac(FY Fup) + a Tea(bada + 5. (BD)

Here, ¢, (a = 1, 2, 3) are anti-Hermitian scalars, trans-
forming in the adjoint of SU(JN') and in the vector repre-
sentation of an additional global SO(3) symmetry,
D,¢,= 0,0, +[A, ¢,] are the covariant derivatives
and A, are the su(JN') valued anti-Hermitian gauge fields
associated to the curvature F,,,. F,;, is given as

Fab = [¢ar ¢b] - 8abc¢c~

In the above a, b, g and g are constants and Try =
N ~!'Tr denotes a normalized trace.

This theory spontaneously develops extra dimensions in
the form of fuzzy spheres [2]. The potential terms for the
scalars are positive definite, and the solutions fulfilling

_¢a¢a = l; (B3)

are evidently global minima. The most general solution of
(B3) is not known. However, depending on the values taken
by the parameter b, a large class of solutions has been
found in [2]. Here we restrict ourselves to the simplest
situation. Taking the value of b as the quadratic Casimir
of an irreducible representation of SU(2) labeled by
€, b =€+ 1) with 2¢ € Z and assuming further that
the dimension N of the matrices ¢, is (2¢ + 1)n, (B3) is
solved by the configurations of the form

(B2)

Fabzo’

¢a _ X((12€+1) ® ln’ (B4)

where XY are the (anti-Hermitian) generators of SU(2)
in the irreducible representation €, which has dimension
2¢ + 1. We observe that this vacuum configuration sponta-
neously breaks the U(IN') down to U(n) which is the
commutant of ¢, in (B4).

Fluctuations about the vacuum (B4) may be written as

b, =X, + A, (B5)

where A, € u(2€¢ + 1) ® u(n) and we have used the short-
hand notation X" ® 1, =: X,. Then A, (a = 1, 2, 3)
may be interpreted as three components of a U(n) gauge
field on the fuzzy sphere S%. ¢, are indeed the ““covariant
coordinates” on SzF and F,;, is the field strength, which
takes the form

Fah = [Xa’ Ab] - [Xb’ Aa] + [Aa: Ah] - sabc‘Ac (B6)

when expressed in terms of the gauge fields A,,.
To summarize, with (B5) the action in (B1) takes the
form of a U(n) gauge theory on M X §%(2¢ + 1) with the
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gauge field components Ay, (9) = (A, (9), A, () € u(n) ®
u(2€ + 1) and field strength tensor (§ are a set of coordi-
nates for the noncommutative manifold M)

Fu,= (")#A,, — BVA'M + [A/L,A,,],
F,u.a = D/J,d)a = a,u¢'a + [A,Lu ¢a]’
Fab = [d’a’ ¢b] - Eubc¢c‘

(B7)

2. The SU(2)-equivariant gauge field

Let us focus on the case of a U(2) gauge theory on
M X S%. The construction of the most general
SU(2)-equivariant gauge field on S% can be performed as
follows [17]:

We pick the symmetry generators w, which generate
SU(2) rotations up to U(2) gauge transformations.
Accordingly, we choose

a

_ w6+ i

=X ®1, —1 @ —,
wy a 2 20+1 3 (BS)
w, €Eu)®u2¢ +1), fora=1273.

These w, are the generators of the representation 1/2 ® €
of SU(2), where by m we denote the spin m representation
of SU(2) of dimension 2m + 1. SU(2) equivariance of the
theory requires the fulfillment of the symmetry constraints,

[wa’ A,u] = 0! [a)a’ ¢b] = Eabc‘d)w (B9)

on the gauge field and a consistency condition on these
constraints is [w,, @, ] = &, ®., Which is readily satisfied
by our choice of w,.

The solutions to these constraints are obtained using the
representation theory of SU(2). The adjoint action of w
expands into the Clebsch-Gordan series, whose relevant
part reads

(1206)®(1/20¢) =2004l@.... (B10)

Thus, the sets of solutions to equations in (B9) are two- and
four-dimensional, respectively. The fields are conveniently
parametrized as

A, =10a,(®) +1ib, (), (B11)
Aa = %QD]()A})[XQ, Q] + %(QDZ(),}) - I)Q[Xal Q]
+ o (MUK, O} + 1ps() @, (B12)

with ¢, = X, + A,,and a,,, b, are Hermitian U(1) gauge
fields, ¢; are Hermitian scalar fields over M, the curly
brackets denote anticommutators throughout, and

A 1 1
=—X, v, = ——w,
Xa €+1/27¢ @a €+1/2w“
They contain, in addition to the Mat2(2¢ + 1) identity

matrix, the only nontrivial rotational invariant under w,
which is

(B13)
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X, ® 0% —i/2

2 —
C+1/2 0

Q= ot =-0,

—Ly041)-
(B14)

Indeed, Q is the fuzzy version of ¢ := io - x and con-

verges to it in the € — oo limit.

APPENDIX C: EXPLICIT FORMULAS

In this appendix, we list the explicit expressions for PL=,
Pk and P%, P%, PL, PR*, PX and PX, PR, PR, T[-R, TEX,
5% TR RE, RY and RY, R and RE, R% and RE, R%,
which were introduced for brevity of notation in Sec. III".

We have

246, —1/4 1
L _ L
T i g e ©D
246, —1/4 1
pL — L / / o)
U T, 127 BT 2 €
PL=(-y)1+ 2 X )
2 =( X3)( €, +1/2 206, + 1)2)
o Xy X5 )
X 3<eL +1/2 206, + 1/22) ©3)

AT I
Py = m( 2x3) + X3

+2 £ = 7 _LANTLE T /2+ 2
20 1 Mt s T
(C4)
PL* = pL + pL/ (C5)
G+, —1/4 1
R — L A+ A
LT G2 B rpt (O
03+ 44— 1/4 1
RI — "R R / /
! (g +1/2)2 3 Lr+1/)2 As €N
A A
PR=(1—- 1)1+ —2—-— > )
2 = ( )‘3)( Cr+1/2 20z + 1/2)?
A, A
_ AI 4 _ 3 )’
( +1/2 2(6x +1/2)? (€8)
Cp(€p +1)
PR =_"FCR (A2 —205) + A3
3 (g + 1/2)7 (A3 =225) + X4
0+ €p—1/4 €r(€r + 1)
e I e L
lp +1/2 (Cg +1/2)273% 74
(C9)
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PR* = pR + pR/ (C10)
PL=—<1+41 )X/ +71 X
2 200, +1/2)2)3 (€, +1/2)"4
+;X X —;(X Xs + Xix4)
(€, + 1722707 (€, + 1/2) 74 7 A2
(C11)
22+, - 20,(€, + 1)
L — L L4 L\t . /
s €y +1/2) (€, +1/2)? 6 = D
+ 2Xa X (C12)
PR = —(1 TR )/\’ RN Y
2 200 +1/2)2)73  (Lp+1/2)7*
1 1
+ ! / + !
(€ + 1/2)? A3 (€g + 1/2) (A3Ay + A3A4),
(C13)
o 2062 + € — b 20,6 + 1)
R _ Z\'R R 4 R\'R /
B =512 @, + 127~ D
+ 204A, (C14)
€W, + D)2 +4€, —1/4)
L — L\YL L L
Ty =4 (€, +1/2)* ' 1>
O +1) G+, —1/4 8
L — L\PL L+y2 _ ZL L L 4 pL
=25 (P T P )

1 ~ 1
*W(P“Pé))*m
X (@t ey
20,00, + D+ —1/4)( 1 )
@ + 12 (1 IR 5))
+ mu{% + 135)), (C16)
o A+ 1) o el —1/4
=2 v 12 ((P [y o Yo7

- 1 ~
X (P = P+ 5 (P - P§))

1 ] _

" (Cr +1/2) (€, +1/2)2 <_€L(€L + 1)(PL)?
20,6, + NG+ 6, = 1/4) (1 5

_ G ()

1

3, T 1/2) (€17)

G|
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. 1

~ 1 -
T4 = 7 (G + D+ 6~ 1aPER + (PEP) + (6 + €+ 3/4(PE? + ()

B Lol L BLAL 1 1 1 G, + DG +4€,—1/4) , «
QW NP PR 5 e T g i
1 (€2 +¢, +3/4 - 1 - -
et L LR )| o
Iy =4 (p + 1/2)° ’ (C19)
R Cr(lr + 1) R+2_€§+€R—1/4 ° L sk 1 P 1
B 2 e+ 1/2)2((P‘ G e PR Y g e +'}3)) €. +1/2)
1 R+\2 2€R(€R+1)(€%+€R_1/4) _l R SR R SR
e+ 1/2) U + 1/2) > 2l + 1/2) ’
% 2<€R(€R +1)(PR)? + L (1 (PR + Pz)) + (PR + P3))
(C20)
1 1

(PX — PR) +

-p _ Ll + 1) ((PR_)2_€§+€R— 1/4 1
2 (Lp + 1/2)2 (€p + 1/2)2 20, + 1/2)2
2Up(lp + 1)(€% + € — 1/4)
(€g +1/2)? (

(P = PD) + @ 7 1/2) (g ¥ 127
1 - 1 -
- (P - P§)) ey i P§)), 21)

x (—eR(eR + (PR —

R 1

- 1 .
T8 = 73 (Gl DG+ = 1/APER + (PEP) + (G + e+ /(P2 + (PE)

e+ PP PEPD) 45 ot ot (O O e
; —(6%( — A bt — L (PAPY + PEPY)), (22
RE= =500+ 8+ 200 a8 -1 - e~ ((6005) ~ 5 o e
LT3 L '3
- %(9{ X5 %(xi + X7 — m(){sm + X5X4), (C23)

1 1 3 1 1
RL 2 2 + 2 +2 2 + 2\ 1) — << + ) ) - _ /2
T )( Ot +x2) 207 +x3) — D = ({6 + 5 26, )¢ 2% T Tee, 717 (3 +
2 2 2

1 1 1
- - - = + I 0 — /2 24
(2 i, +%)2)(X3)(4 X5X4) 200, & 2)()(4 (C24)
3 1 1 1 1 46,6, +1) =2
L BN UV R NI (0 RS B W TR TEE T
1 2( (/\/1 Xz) ( /\/2 )) 4(€L +%)2X3 L 2 2(€L +%) 16(€L _’_%)2 ( X3X3)
1 1
— 7 @xaxd) - W@+ D 1 (Xs T X3xa) (C25)
Lt 2
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3 1 3 1 1
RL + 2\ 2 12 + 12 _ ((€ + ) ) /
2 4(€L 2)( (Xl X2) (Xl X2 )) L 2 4(€L 2) 2X4 16(€L + %)3 (2/\/3/\/3)
1 1 ) 1
(1 L N, C26
(2 T %)2)()(3)(4 X5Xa) — 20, 2)( XaX4) (C26)
1 1 1 1 Ap(le +1) =2
RR=——2A2+A2+2A’2+/\’2—1—4)\—<<€ +—)— )A— kR A2+ A2
! 2(( | A) 24 2) =1 4L +1)? 3 B72) 20+ 4 16(¢ + 1) (45 + 45)
1 1
- Z()\i + A7) — PTTE )(A3)\4 + ALA)), (C27)
R T2
RE=— 1 02+ A +20%+ D) — 1) - ((e + 1) & ) S5 WL S Y-
ST Lo B72) 4+ 270 16, + 1
1 1 1
A3y + A5AL) — A3+ 2B,
(5~ e 1)2)< st A = g O+ 49 (C28)
RR = — l(2()\2 + A3) —2(A2 + AD)) — ! ((eR 1) ! )
2 R (M 1)2 2) 20g+3)
40,0 + 1) =2 1 1
_ %—Jr%)z(z/\SAg) -7 2N — 4 e — (M3 A, ALy, (C29)
2
R ST Q0T ) 208 + ag) - ((e n 1) ) e L Y
406, + 1) b2 B72) 4t +) 2
— ;(2){ A — (1 - ;)(/\ N+ My — ! — (204 (C30)
166 + 13 777 20 4l + H2) 50 T BT (g, + )T

€ + D€ + 1)

U, T 12U + 128 (€30
= (;R%)f;z_ Se1) (€2
§i=- % {éi&i j/lz))(%:j 1 /Z)%?) ’ (€33)

S5 = _% (Z(?ngfggf T/;; T 2(t, Jlr 72> €34
=5 (2(?172%:% 1+/32 (* (ZL%)f;L); 2 1) (39
5 1 €r(lg + DF + € +3) (©36)

2 (6, + 1/2)%(p + 1/2)°
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