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We consider the dynamics of a strongly coupled SUðNÞ chiral gauge theory. By using its large-N

equivalence with N ¼ 1 super-Yang-Mills theory we find the vacuum structure of the former. We also

consider its finite-N dynamics.
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Chiral theories continue to be one of poorly explored
corners [1] of Yang-Mills theories with massless spinors at
strong coupling. The ’t Hooft matching condition [2] and
(qualitative) continuations from R3 � S1 ! R4 [3] are the
only (and rather limited) tools available at the moment in
theoretical analyses. The simplest chiral theory has gauge
group SU(2) and the fermion c in the three-index sym-
metric representation (SU(2)-spin 3=2). This theory has no
internal anomalies (nor global anomaly) and no Lorenz and
gauge invariant mass term is possible [4].

Another well-known example of a chiral theory is the

SU(5) theory with k decuplets c ½ij� and k antiquintets �i of
left-handed fermions. Finally, one can mention the so-
called quiver theories in which the gauge group is a product

SU ðNÞ1 � SUðNÞ2 � . . . SUðNÞk (1)

and the set of the left-handed fermions consists of k
bifundamentals

c i1
j2
; c i2

j3
; . . . c ik�1

jk
; c ik

j1
:

At k ¼ 2 the quiver theory is nonchiral, a gauge invariant
mass term can be built. However, if k � 3 the quiver theory
is chiral. This theory is nothing other than an orbifold
daughter of SUðkNÞ minimal supersymmetric Yang-Mills
theory [3].

In this paper we will consider an interesting example of
a chiral theory which so far escaped attention. This theory
is a result of cross-breeding between two orientifold
daughters [5] of N ¼ 1 minimal supersymmetric Yang-
Mills theory (also known as supersymmetric gluodynam-
ics). We will refer to it as hybrid. The hybrid theory per se
is not orientifold daughter of anything. The orientifold
projection of operators such as Tr�2 (where � is the gluino
field) is not defined in the hybrid theory.

In studying the hybrid chiral theory we will combine
several ideas and methods relevant to nonperturbative
QCD and Yang-Mills theories with massless spinors at
strong coupling in general, in addition to the planar equiva-
lence between the minimalN ¼ 1 supersymmetric Yang-
Mills and its orientifold daughters.

Consider a hybrid SUðNÞ chiral gauge theory with the
following matter content: a left-handed fermion c ½ij�

transforming in the two-index antisymmetric representa-

tion of the gauge group, a left-handed fermion �fijg
transforming in the (conjugate) two-index symmetric rep-
resentation of the gauge group, and eight left-handed
fundamental fermions �A

i (A ¼ 1; 2; . . . 8), see Table I.1

This theory is obviously chiral since no gauge invariant
fermion bilinears can be written. It is self-consistent, i.e.
the gauge symmetry is anomaly-free. Indeed, the (internal)
gauge anomaly is proportional to

X
R

�X
left

TrRðTafTb; TcgÞ � X
right

TrRðTafTb; TcgÞ
�
; (2)

where Ta;b;c denote the generators of the gauge group in the
representation R to which a given fermion belongs, the
sums run over all left-handed and right-handed fermions,
respectively, and over all representations, and TrR denotes
the trace in the representation R. Finally, the braces f. . .g
stand for the anticommutator. Note that if Ta is the gen-
erator in the representation R, the generator in the repre-
sentation �R is � ~Ta where tilde means transposition. In the
theory we suggest for consideration, Eq. (2) reduces to

ðN � 4Þ � ðN þ 4Þ þ 8 ¼ 0: (3)

Let us first discuss the global symmetries of the model.
At N ! 1 the fundamental quarks are unimportant. We
will discuss them later on, and ignore them for the time
being. Then the theory has two U(1) symmetries, with the
corresponding currents

j _��
ðc Þ ¼ �c _�c �; j _��

ð�Þ ¼ �� _���: (4)

Each of the above currents is anomalous,

1This matter content is applicable at N � 5. At N ¼ 2
antisymmetric fermions are color singlets; they decouple.
Symmetric fermions are equivalent to the adjoint representation,
which is real. Hence, the theory is self-consistent without
introducing �i’s and is nonchiral. At N ¼ 3 antisymmetric
fermions are equivalent to antifundamental fermions. Hence,
the model to be considered has a symmetric field �fijg and seven
�i’s. At N ¼ 4 the antisymmetric representation c ½ij� is in fact
real, and can be discarded.
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@� _�j
_�� ¼ @�j

�

¼ N � 2; for c

N þ 2; for �

 !
� 1

32�2
Fa
��

~F��a

!N!1 N

32�2
Fa
��

~F��a: (5)

One can consider two linear combinations of the above
currents

j _��
ð1Þ ¼ j _��

ðc Þ � j _��
ð�Þ ; j _��

ð2Þ ¼ j _��
ðc Þ þ j _��

ð�Þ : (6)

The first current is anomaly-free at N ¼ 1, while the
second is anomalous,

@� _�j
_��
ð2Þ ¼

N

16�2
Fa
��

~F��a: (7)

The current j _��
ð1Þ plays the role of a vector current, while j

_��
ð2Þ

plays the role of an axial current. The remnant of the latter
is the discrete Z2N symmetry, which, as we will argue
below, is broken down to Z2 presumably by the condensate

h�fijgFk
jc ½ik�i � 0.

We wish to argue that the planar hybrid theory is equiva-
lent, in a well-defined glueball sector, to planar N ¼ 1
super-Yang-Mills. The equivalence of an SUðNÞ theory
with a single Dirac fermion in the two-index antisymmetric
representation (or a theory with a fermion in the symmetric
representation) with N ¼ 1 super-Yang-Mills was dem-
onstrated in [5].

The reason for the perturbative equivalence is easy to
understand: there is a one-to-one correspondence between
the planar graphs of the two theories [5]. Moreover, at the
planar diagrammatic level there is no difference between
symmetric fermions or antisymmetric fermions. The dif-
ference between the two representations arises when fer-
mion lines (in the ’t Hooft double-index notation) cross,

see Fig. 1. These lines, however, do not cross in any planar
graph. For this reason the hybrid theory is perturbatively
planar equivalent to N ¼ 1 super-Yang-Mills.
The necessary and sufficient condition for nonperturba-

tive planar equivalence between our hybrid theory and the
minimal N ¼ 1 super-Yang-Mills is the charge conjuga-
tion invariance (C-invariance) of the vacuum states [6].
Note that the hybrid theory at finite N is not C invariant.
However, C-invariance is restored at N ¼ 1. In the
N ¼ 1 limit the nonperturbative dynamics of two
theories—the first with the Dirac fermion in the two-index
symmetric representation and the second with the Dirac
fermion in the two-index antisymmetric representation—
are identical because the two representations, symmetric
and antisymmetric, become the same representation.
Indeed, all the Casimirs coefficients of the two representa-
tions coincide in the limit N ! 1. As a result, their
dynamics are identical to the dynamics of the hybrid theory
we consider here. The dynamics of the three theories above
become equivalent (in the sector of glueball operators) to
the dynamics of a vector theory with oneMajorana fermion
in the adjoint representation (i.e. the minimal N ¼ 1
super-Yang-Mills).
The implications of the exact planar equivalence be-

tween the hybrid theory andN ¼ 1 supersymmetric gluo-
dynamics is the coincidence of the vacuum structure as
well as the bosonic glueball spectra and dynamics in these
theories. The parentN ¼ 1 theory has N discrete vacuum
states (see e.g. [1]), corresponding to the breaking Z2N !
Z2 and labeled by the order parameter h�2i � 0. The same
vacuum structure should be valid in the hybrid theory
at N ¼ 1. An order parameter for the breaking is

h�fijgFk
jc ½ik�i. The height of the ‘‘barriers’’ separating

these vacua is expected to be OðN2Þ [7].
The reason for coincidence of the bosonic glueball

spectra is as follows. Let us integrate over the fermions
of the hybrid theory. The resulting partition function is

Z ¼
Z

DA� expð�SYMÞ
Y
R;f

ðdetðDRÞÞð1=2Þ; (8)

where the above partition function (8) contains a product of
determinants over the representations and flavors in the
theory. In the planar limit the partition function (8) of the
hybrid theory coincides with the partition functions of
N ¼ 1 super-Yang-Mills and the vector-like orientifold
theories. For this reason all two-point functions of the form

hTrF2ðxÞ;TrF2ðyÞi; hTrF ~FðxÞ;TrF ~FðyÞi;
hTrF3ðxÞ;TrF3ðyÞi; (9)

and so on, coincide in all four theories; hence so do the
glueball spectra. The only caveat in the above procedure is
that in the hybrid theory it is impossible to introduce an
infrared cutoff in the form of a mass term. That should
not be a problem since the physical infrared spectrum is

+

−

Adjoint

Symmetric

Anti−Symmetric

FIG. 1. The ’t Hooft double-index notation for the fermion
propagator in either the adjoint, symmetric, or antisymmetric
representations in a UðNÞ gauge theory.

TABLE I. The matter content of the
chiral SUðNÞ theory and its U(1)
charges; the corresponding currents
are defined in (12) and (13).

c ½ij� 1 1 0

�fijg �1 1 0

�A
i

1
2 � N

4 1
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expected to develop a mass gap. Moreover, the parity
degeneracies in the glueball spectra noted [8] in super-
symmetric gluodynamics and its orientifold daughters are
inherited by the hybrid theory too.

Now, let us switch on 1=N corrections 2 and address the
most intriguing question of the chiral symmetry implemen-
tation in the sector of 8 fundamental fermion fields �A

i . The
global symmetry of this sector of our hybrid theory is
obviously SU(8), in addition to a U(1) symmetry which
we will consider shortly. No local color invariant bosonic
operator containing two � fields (without ��’s) and an
arbitrary number of other operators exists. It is tempting
to conclude that the chiral SU(8) is not spontaneously
broken.

This conclusion is not likely to materialize, however.
First, it goes against a (qualitative) argument due to Casher
[10] that in strong coupling Yang-Mills theories with mass-
less quarks confinement is impossible unless the chiral
symmetry is spontaneously broken 3 (for a review see
e.g. [1]). Second, if the chiral symmetry is unbroken, the
’t Hooft matching must be realized through saturation of
the anomalous triangles by massless composite-fermion
loops. A simple reflection shows that there is no way to
achieve such a saturation 4 at large N.

In view of the above, let us examine less trivial operators
for the role of order parameters for the SU(8) chiral sym-
metry breaking.

Using � and �� one can build, in principle, a Lorentz and
gauge invariant order parameter whose expectation value
could break SU(8), for instance,

O A
B ¼ ��A

i �� _�j
B ðF�	i

k D
$

� _�F
k
�	jÞ (10)

minus trace in A, B (the gluon field strength tensors are
given above in the spinorial notation). It is easy to see,
however, that even if hOA

Bi � 0, the chiral SU(8) is not
completely broken, but rather down to Uð1Þ7 at best. [In
fact, we would have Uð1Þ8, see below]. This is unsatisfac-
tory since in this case we will have to match the residual ’t
Hooft triangles, which does not seem possible.

The following operator built of six fermion fields:

O ABA0B0 ¼ ð��A
i �fijg

� �B
�jÞð��0A0

i0 �f�i0j0g�B0
�0j0 Þ; (11)

is the lowest-dimension operator breaking the global
symmetry in the � sector completely. Despite its rather
contrived structure, a nonvanishing expectation value

hOABA0B0 i is not ruled out a priori. Therefore, it is natural
to assume that U(8) is spontaneously broken. Then 64
Goldstone bosons (‘‘pions’’) appear. The vacua can no
longer be discrete, since the presence of pions means that
the vacuum manifolds are continuous (albeit compact).
Instead of having a set of discrete vacuum points, we
have a continuous extension around each point. We will
return to discussion of this aspect of the hybrid theory later.
A few words about the extra U(1) symmetry showing up

upon inclusion of the � fields. First, the conserved current
in (6)—the one that is analogous to the vector current and
does not belong to the common sector—now takes the
form

~j _��
ð1Þ ¼ j _��

ðc Þ � j _��
ð�Þ þ

1

2

X8
A¼1

�� _���: (12)

Note that the operator (11) is invariant under transfor-
mations generated by the current ~j _��

ð1Þ . Hence, its vacuum
expectation value does not break the corresponding vector-
like symmetry. This is a remarkable circumstance.
In addition, one can consider the following currents:

~j _��
ð2Þ ¼j _��

ðc Þþj _��
ð�Þ �

N

4

X8
A¼1

�� _���; j _��
ð3Þ ¼

X8
A¼1

�� _���: (13)

Unlike j _��
ð2Þ , the current ~j

_��
ð2Þ is anomaly-free, while the last

one is anomalous. Accounting for ~j _��
ð2Þ , we extend the

SU(8) global symmetry of the � sector to U(8). The
remnant of the anomalous j _��

ð3Þ is a discrete Z8 symmetry,

which is not broken by the condensate (10). It is broken
down to Z4 by the condensate (11).
The presence of the massless pions, even though they are

not in the common sector, somewhat dilutes the concept of
planar equivalence between our hybrid theory and super-
symmetric gluodynamics. Indeed, the latter theory, having
N discrete vacua, supports a number of BPS-saturated
domain walls, whose tension is determined by the differ-
ence of the gluino condensates in the vacua between which
the given wall interpolates [12]. In the hybrid theory the
vacuum manifold is continuous. Under these circumstan-
ces, strictly speaking, there are no domain walls. More
exactly, the would-be walls will have a double-layer struc-
ture: a finite-thickness core, and infinite-thickness pion
tails attached to it. Although the pion tails are suppressed
by 1=N, their contribution to the tension is actually infinite,
no matter how large N is. This seems to correlate with the
fact that the operator �2 has no projection onto the hybrid
theory.

We are very grateful to Mithat Ünsal for valuable dis-
cussions. This work is supported in part by DOE Grant
No. DE-FG02- 94ER-40823.

2A related discussion of possible phases of the chiral gauge
theories can be found in [9].

3Supersymmetric theories with confinement and no spontane-
ous breaking of a chiral symmetry are known, but this is because
of the presence of scalar quark fields which obviously negate the
Casher argument.

4This is despite the fact that, unlike QCD, in the hybrid theory,
even at large N, there exist three-quark spin-1=2 baryons, for

instance, �fA
i;��

Bg�
j �fijg

� , �½A
i;��

B�
j��

fijg�. The N factors still do not

match in the comparison of the ‘‘quark’’ and ‘‘hadron’’ triangles.
Warning: in the literature one can find reasonable arguments [11]
against the ‘‘straightforward’’ saturation.
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[3] M. Ünsal, Phys. Rev. D 80, 065001 (2009); M. Shifman
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