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We show that coupling the standard model to a Lorentz symmetry-violating sector may coexist with

viable phenomenology provided that the interaction between the two is mediated by higher-dimensional

operators. In particular, if the new sector acquires anisotropic-scaling behavior above a ‘‘Hořava-Lifshitz’’

energy scale �HL and couples to the standard model through interactions suppressed by Mpl, the

transmission of the Lorentz violation into the standard model is protected by the ratio �2
HL=M

2
pl. A

wide-scale separation �HL � Mpl can then make Lorentz-violating terms in the standard model sector

within experimental bounds without fine-tuning. We first illustrate our point with a toy example of

Lifshitz-type neutral fermion coupled to photon via the magnetic moment operator, and then implement

similar proposal for the Hořava-Lifshitz gravity coupled to conventional Lorentz-symmetric matter fields.

We find that most radiatively induced Lorentz violation can be controlled by a large-scale separation, but

the existence of instantaneously propagating non-Lifshitz modes in gravity can cause a certain class of

diagrams to remain quadratically divergent above �HL. Such problematic quadratic divergence however

can be removed by extending the action with terms of higher Lifshitz-dimension, resulting in a completely

consistent setup that can cope with the stringent tests of Lorentz invariance.
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I. INTRODUCTION

Lorentz symmetry and its universality with respect to
propagation and interaction of different types of particles
is a very well-established symmetry of nature. Stringent
constraints are derived on the parameters of effective
Lagrangian that encode possible departures from Lorentz
symmetry [1,2]. Existing models of Lorentz symmetry-
breaking did not go far beyond the effective Lagrangian
description, and the idea that either a vector or the gradient
of a scalar field condense at intermediate or low-energy
while restoring the Lorentz symmetry at high energies
[3–5] so far has not found any reasonable ultraviolet
(UV) completion. Even more, it is not fully understood
whether such completions exist in principle.

It is also conceivable that Lorentz symmetry is somehow
broken by the UV physics, and, for example, quantum
gravity is often being tauted as being the cause (see e.g.
[6]). If Lorentz violation (LV) is indeed a UV-related
phenomenon, then there is a significant conceptual hier-
archy problem. One would expect that LV should manifest
itself in the lowest-dimensional operators. Since the set of
such operators starts from dimensions three and four [1,2],
one should naively expect that the strength of LV interac-
tions is of the order of �LV for dimension-three operators,
and Oð1Þ for dimension four. Several mechanisms for
protecting higher-dimensional LV operators from ‘‘leak-
ing’’ into the lower-dimensional ones have been proposed
and partially summarized in [7].

The localization of LV to higher-dimensional operators
can occur in various ways. For example, Ref. [8] assumed
that operators responsible for Lorentz violation are tensors
of a higher rank and irreducible, and therefore their appear-
ance in dimension-three and dimension-four operators is
prohibited. Refs. [9,10] argue that supersymmetrization of
the standard model (SM) leads to automatic elimination of
lower-dimensional LV operators. The soft-breaking terms
allow this leakage into lower dimensions to happen but in a
controllable way: e.g. the coefficients of dimension-four
operators are induced by the dimension-six operators

cð4ÞLV �m2
softc

ð6Þ
LV �m2

soft

�2
LV

: (1)

If there is a wide-enough scale separation between the
SUSY-breaking mass and the high-energy scale where
LV originates, msoft � �LV, the existence of Lorentz
breaking can be made consistent with the variety of

experimental constraints. Dimension four coefficients cð4ÞLV

induce a difference between propagation speed for differ-
ent particles, limited by the most-stringent constraints to be
at the level of 10�23 (see e.g. [11]), which is perfectly safe;
for example, ifmsoft is at the weak scale and�LV is close to
Planck scale.
In this paper we examine another generic but very differ-

ent way of protecting against LV leaking into the SM
sector. Consider a LV-sector that couples to the SM via a
power-suppressed interaction,
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whereOn
LV andOk

SM are some operators from LV- and SM-

sectors of dimensions n and k, respectively, nþ k � 5, and
M is a very high-energy scale. Being power-suppressed,
this operator would typically generate a power-divergent
loop integral. For example, when n ¼ 1 and k ¼ 4,
integrating-out fields in the LV-sector is likely to generate
a quadratic divergence leading to an LV-term in the SM as

1

M
Oð1Þ

LVO
ð4Þ
SM ! �2

UV

M2
Oð4Þ

SM; LV: (3)

Theories of this kind are usually not considered viable
on the phenomenological ground. The induced LV-term
is generically of order one since naturally �UV �M.
However, particularly interesting cases exist when the
loops in the LV-sector are stabilized at high energy through
certain mechanism so that �UV gets replaced by a well-
defined physical scale that can be separated far fromM. In
the latter case, the induced LV-terms as in (3) can be made
arbitrarily small.

A well-known class of mechanisms of such kind is
introducing higher-derivative terms in the interactions or
propagators, which improves the convergence of loop
integrals. Examples include the noncommutative field
theories [12,13], the so-called Lee-Wick theories [14,15]
and Hořava-Lifshitz-type theories [16,17]. In the last ex-
ample, the following modification of a particle propagator
is assumed at very large spatial momentum

i

!2 � k2
! i

!2 � k6

�4
HL

: (4)

While such a propagator leads to better convergent-loop
integrals, the absence of higher derivatives with respect to
time in the Lagrangian and, consequently, the absence of
!4 etc. terms in the propagator allows one to extend the
regime of validity of this theory beyond �HL without
immediately encountering pathological ghostlike features.
But, at the same time such a construction leads to the
violation of Lorentz symmetry explicitly above the
Lifshitz scale. If, however, a theory of this type is coupled
to SM sector through power-suppressed interactions only,
it is conceivable that the size of induced LV-terms in SM is
controlled by the ratio �2

HL=M
2 and can be made small

given a sufficiently large separation between �HL and M.
There would be no need for fine-tuning since radiative
corrections become stabilized so that �HL � M alone
would be sufficient.

We shall illustrate this mechanism in a toy example with
a neutral fermion that has a Lifshitz-type propagator.
It couples to photon through an anomalous magnetic
moment, which is a power-suppressed interaction. In this
case, as expected, the LV corrections induced by the fer-
mion to the photon sector is controlled by�2�2

HL, where�
is the anomalous magnetic moment. Given that this prod-
uct can be made arbitrarily small, approximate Lorentz

symmetry in the photon sector is maintained despite being
completely broken for the neutral fermion.
Perhaps the most interesting example of this type would

be gravity since its interactions are suppressed by a very
large scale. Besides many interesting features of Lifshitz-
type field theories that have been intensively studied in the
past, they have attracted a lot attention when Hořava
proposed that a theory of this type stands as a candidate
for a renormalizable theory of gravity [17]. Among differ-
ent issues that Hořava’s theory for gravity is facing at
phenomenological level, the question of LV is not the last
on the list. Given that the graviton propagators violate
Lorentz symmetry in the ultraviolet, is it reasonable to
expect that such a theory would respect Lorentz symmetry
at low energies without tremendous fine-tuning? The an-
swer to this question is by no means a straightforward one.
If Hořava-Lifshitz-type behavior is more than just a cute
way of making loops better convergent but indeed a de-
scription of nature at short distances, one has to specify
how this behavior is consistent with stringent tests of
Lorentz symmetry performed with a variety of the SM
particles. We have two classes of interaction: (i) those
that have dimensionless couplings in the standard model
(�s, �W , �EM), and (ii) those with gravity whose strength
is controlled by the Newton constant GN ¼ 1

8�M2
pl

. Various

loop corrections to the propagation of SM particles will
have different types of divergences, and all of them must
not introduce an overwhelming amount of LV. A priori, one
has the option as to where to put Lifshitz behavior: in the
matter sector, in the gravity sector, or in both. We shall
distinguish two generic options:
(i) Option 1 Both SM- and gravity-sectors flow into the

Lifshitz-type behavior above �HL.
(ii) Option 2 Only gravitational propagators become

Lifshitz-type at �HL, while the bare SM action
preserves normal Lorentz-symmetric propagators
all the way to the Planck scale.

Option 1 leads to fine-tuning issues even in the limit as
gravity is decoupled. Indeed, various SM-loop corrections
to the dimension-four kinetic operators are not universal
for different types of particles; e.g. compared to leptons
and photons, quarks and gluons will have extra corrections
due to the strong group, etc. In the absence of additional
protective symmetries, this should lead to a Lorentz non-
universality of radiative corrections. Even if one assumes
an exact universality of the speed of propagation for differ-
ent species, simple one-loop corrections would introduce a
nonuniversality of the order of �SM=�� 10�3 � 10�2,
which has to be tuned away at 1 part per 1020. This was
recently illustrated by the calculation of radiative correc-
tions in the toy model that involved two different scalar
fields [18]. Therefore, it seems that this option is trouble-
some even before the gravity effects are taken into account
and regardless of whether one has a large-scale separation
between �HL and Planck scale.
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Option 2 seems to be more viable. Indeed all the loop
corrections that involve SM fields but not gravity are
automatically Lorentz-preserving. The fact that gravity
couples to the SM fields only through Planck-mass sup-
pressed interaction leads us to consider the protection
mechanism outlined above. Our proposal is that the gravi-
tational loops (which normally would be power-divergent)
get stabilized at Hořava-Lifshitz scale, so that possible
nonuniversality generated through quantum corrections in
the propagation speed of different species will indicate that
the induced LV in the SM-sector scales is

�c� �2
HL

�2M2
pl

: (5)

Similar to the toy example discussed earlier, one could
hope to have control over this quantity via the ratio
�2

HL=M
2
pl, demanding sufficient-scale separation to ensure

that it is small.
We perform a detailed one-loop analysis of Hořava-type

gravity, calculating corrections to the speed of propagation
for vectors and scalars and find that loop corrections pro-
duced by the spin-2 and spin-1 graviton do indeed exhibit
the behavior described by (5), but some quadratic diver-
gences associated with the vector-graviton loop diagrams
remain. We see that these remaining quadratic-divergent
corrections are not universal between scalars and vectors,
thus potentially reinstating the issue of fine-tuning in the
theory.

Our analysis, however, points toward a relatively easy
solution to the fine-tuning problem. The inclusion into the
action of a single-term that respects all the symmetries of
the original model of Hořava-Lifshitz gravity but with a
Lifshitz-dimension higher than 6; counted in a naive way is
sufficient to suppress all quadratically divergent contribu-
tions and render the loop-induced Lorentz violation in the
standard model sector completely under control. In such an
extended model, the mechanism we conjectured above is
fully at work, and the need for fine-tuning to maintain the
Lorentz symmetry in consistency with the observations is
totally absent. The model, on the other hand, might still
harbor additional problems associated with the new terms
we introduce, and wewill defer extended discussion on this
topic to follow-up works.

The status of Hořava’s original proposal [17] as well as
its various extensions [19–21], both on theoretical and
phenomenological ground, is still being actively discussed
and debated in the literature [22–39,50]. We make no
attempts to delve on these issues in the current study,
concentrating instead on the perturbative calculation at
one-loop level using linearized-gravity action to illustrate
our main points. Furthermore, to make calculations more
straightforward we work within the ‘‘healthy-extension’’
framework proposed in [20], and assume that the full
nonlinear theory is consistent provided that the parameters
are chosen properly. It would become clear that our main

conclusion is largely independent of the specific choice of
those model-dependent parameters. We mention in passing
that Lorentz-violating effects in Hořava’s gravity, consid-
ered from very different angles, have also been discussed
in other works [40,41,43,49].
Gravitational-loop calculations can be cumbersome, not

least due to the necessity of introducing explicit gauge-
fixing in the gravity sector. At one-loop level, quantum
corrections to the effective action for each individual par-
ticle is gauge-choice dependent, but fortunately such
dependence is always canceled when one compares the
same correction for different matter fields. The actual
Lorentz-violation effect we present in this paper, exhibited
by dimension-four operators, i.e. the difference of the
propagation speeds of massless particles with different
spins or other quantum numbers, is independent of the
gauge choice and therefore bares true physical meaning.
Of course, radiative corrections to the propagation speed
identical for all matters can be absorbed by a simple
scaling of space and time coordinates and, therefore, do
not lead to real Lorentz symmetry-violating effects.
Our calculations deal with the divergent-loop integrals,

and therefore the choice of regularization may affect the
answer. Let us further clarify the basic assumptions and the
main goals of this paper. We adopt the Wilsonian point of
view on radiative corrections and use a hard-cutoff regu-
lator for the 3-momentum implicitly. Introducing a hard-
cutoff breaks the diffeomorphism invariance of the general
relativity as well as the Hořava-Lifshitz theory. As a con-
sequence, one has to be cautious in calculating the full one-
loop-corrected effective action, as coefficients in front of
all quadratically divergent terms may not have direct
physical meaning. However, the Lorentz symmetry, being
a global symmetry, is not broken by the hard cutoff in the
3-momentum space in a perturbative calculation above the
flat spacetime background. Therefore, as long as the fate of
the Lorentz symmetry is concerned, which is the main
topic of this paper, the simplest regularization scheme we
use is acceptable. This observation is also related to the fact
that one-loop corrections to the kinetic terms for each
individual particle we derive below is not gauge-choice
independent, but the net effect of the Lorentz-violating
observable given the difference among the one-loop
corrections for different species turns out to be fully
gauge-invariant. There, of course, exist other regulariza-
tion schemes where any power-law divergences are nulli-
fied, such as dimensional regularization. We believe that
such regularizations are not useful for answering the ques-
tion of technical naturalness of LV theories. Such schemes
can be adopted as self-consistent methods as long as the
theory is believed to be valid up to arbitrarily high scale
without any new physics emerging at UV, which in the
authors’ opinion is a somewhat unrealistic assumption. As
long as one holds the viewpoint that the Lagrangian we are
dealing with should be understood only within a context of
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an effective theory below a certain scale, power-law
divergent-radiative corrections are real physical effects in
the sense that they indicate the low-energy theory is sensi-
tive to the UV physics. Should the quadratic sensitivity to
the cutoff appear in the observables such theories are not
free from the fine-tuning problem.

In the current context, our working assumption is that
the Lorentz symmetry starts emerging in the bare
Lagrangian at certain high scale. We wish to calculate
how the radiative corrections are to maintain or destroy
this symmetry for observations made at a much lower
scales within the reach of current experiments. The theory
will be free from fine-tuning if power-law divergent-loop
diagrams are absent. In fact, in the following discussions,
the cancellation or noncancellation for power-law diver-
gent diagrams are presented in terms of the loop integrals
themselves without the need of evaluating them explicitly.
Different regularization may associate to those integrals
different numbers, reflecting the UV sensitivity of the
model itself, but if they are canceled identically without
the need of evaluating the loop integrals explicitly, it
certainly remains so in any regularization scheme, in which
case we claim the low-energy theory is robust against
radiative corrections. In this sense, a naive UV cutoff
serves merely as overly simplified terminology that allows
us to refer to the UV-sensitive loop integrals as being
‘‘power-law divergent.’’

On the other hand, any Lorentz-violating effects given
by the logarithmically divergent-loop integrals remain the
same in any regularization scheme one happens to prefer
including, for example, the dimensional regularization
with only the �UV replaced by the renormalization scale.

This paper is organized as follows. In Sec. II we analyze
a toy model with a neutral Lifshitz-type fermion interact-
ing with photon via the magnetic moment, and calculate
its radiative corrections to the photon action and the
induced Lorentz violation. In Sec. III we introduce the
Hořava-Lifshitz-type theories for gravity, truncate the ac-
tion to the quadratic level, and derive the propagators for
the gauge-invariant modes. In Sec. IV we calculate the
difference of the propagation speed for vectors and scalars,
both minimally coupled to gravity, where we will find
residual fine-tuning in the standard Hořava-Lifshitz mod-
els. Section V presents a simple extension to the same
model where such fine-tuning can be eliminated. We in-
clude further discussion in Sec. VI. More details regarding
the loop calculations are presented in Appendixes A and B.
Appendix C includes two toy models for the Lifshitz-type
QED, which being gauge theories shares a lot of common
properties and issues with the Hořava-Lifshitz gravity.

A few words on the convention we would follow in this
paper: we will consider only one-loop diagrams, which
either consist of only one propagator and one vertex, or
two propagators and two vertices. Each vertex contains a
factor of 1

iℏ , and it cancels precisely the factor of iℏ carried

by each propagator. Consequently, we can safely ignore
these factors altogether. Just to fix the notation, if the action
is given by the form S ¼ � 1

2�O�þ ��2, we would say

the propagator isO�1 and the vertex is �. We shall also use
the convention that h ¼ �@2t þ �. Its transformation into
the momentum space is given by the rule @t ! �i! and

@i ! iki, and therefore h ! !2 � ~k2.

II. A TOY MODEL OF A NEUTRAL
LIFSHITZ FERMION

Let us first consider a simple toy example. Suppose
we have a Lifshitz-type neutral fermion whose action is
given by

L c ¼ �c ½�0@t þ�1�z
HL ð

ffiffiffiffiffiffiffiffi
��

p
Þz�1�i@i�c ; (6)

where we have introduced a Lifshitz scale �HL and the
Lifshitz critical exponent z. When z > 1, this action has an
anisotropic-scaling behavior. In principle one should in-

clude all the lower spatial-derivative-terms but at large ~k,
which is the limit that we are mainly interested in; the
highest spatial-derivative term dominates and we will keep
only it.
Let us suppose that this fermion couples to photon

through an irrelevant operator given by

L I ¼ 1

2M
F�� �c���c ; (7)

where M is a mass parameter, which gives the fermion an
anomalous magnetic moment � ¼ M�1. The photon-
kinetic term takes the usual form LA ¼ � 1

4F��F
��.

We would like to evaluate the fermion one-loop correc-
tion to the photon-kinetic operator. In particular we are
looking for Lorentz symmetry-violating effect. It is useful
to define

ð~k0; ~~kÞ � ðk0; jkjz�1 ~k=�z�1
HL Þ (8)

and

~k 2 � �k20 þ
j ~kj2z
�2z�2

HL

: (9)

With these notations, the fermion propagator is 1=~6k.
The one-loop integral that contributes to the photon-

kinetic operator in the zero external-momentum limit is
given by

K ¼ � 1

4ið2�Þ4M2

Z
d4k

F��F�	tr���
~6k��	

~6k
~k4

: (10)

Detailed calculation of this integral is presented in
Appendix B. It is found that when z ¼ 1 and the theory
respects the Lorentz symmetry K vanishes identically,
leading to no correction to the photon-kinetic term at this
level. When z > 1 and the Lorentz symmetry is broken
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K ¼ �3ð1�1=zÞ
HL ðft � fxÞ

2M2
ðE2 þB2Þ; (11)

where

ft � � 8

ið2�Þ4
Z

d4k
k20

zj ~kj3ð1�1=zÞk4
; (12)

and

fx � 8

3ið2�Þ4
Z

d4k
j ~kj2

zj ~kj3ð1�1=zÞk4
: (13)

As z ¼ 3, both ft and fx are logarithmically divergent and
it turns out that ft ¼ 3fx. Consequently, including the one-
loop correction, the photon-kinetic term becomes

LA ¼ 1

2

�
1þ �2

HL

3�2M2
log

�UV

�HL

�
E2

� 1

2

�
1� �2

HL

3�2M2
log

�UV

�HL

�
B2; (14)

which leads to an effective ‘‘speed of light’’

c02 ¼
�
1� 2�2

HL

3�2M2
log

�UV

�HL

�
c2: (15)

One can easily see that this correction is under control if
there is a wide-scale separation between �HL and M.
Notice also that the Lorentz symmetry of the interaction-
term in (7) is not essential for the scaling (15) to hold. We
could, for example, ‘‘disbalance’’ �0iF

0i and �ijF
ij in a

LV way, which would affect the numerical coefficient in
(15), but not change the ratios of the dimensionful scales.

III. ACTION AND PROPAGATORS FOR THE
HORı́AVA-TYPE GRAVITY

From this point on, we would like to consider quantum
corrections to ordinary matter fields coupled to a Hořava-
Lifshitz-type gravity. The main point is that since gravity is
coupled to matter through irrelevant couplings, the loop
effects are suppressed by 1=M2

pl but this suppression is

compensated in GR by a quadratic UV divergence. Such
divergences have been encountered in previous calcula-
tions of LV effects with graviton loops (see e.g. [42,43]).
Hořava gravity has the virtue that at least some parts of the
loop diagrams are more convergent since the graviton-
propagator scales anisotropically at large momentum. For
Lifshitz critical exponent z ¼ 3, the better convergent
loops are logarithmically divergent only, leading to a loga-
rithmic running of the effective speed of light in the matter
sector. If all the loop-induced quantum corrections are
logarithmically divergent as such, it is conceivable that
given a wide separation between the scale �HL and Mpl,

similar to what we found in the previous section, the
induced violation of the Lorentz symmetry might be under
control. The main physics question to be addressed is

whether the matter actions acquire quantum corrections
that lead to the nonuniversality of the propagation speed,
and, if so, with what coefficients? In fact, as we show below,
such corrections are generically not universal and different
c2 for different species induces observable LVeffects.
In this section, we briefly describe the gravity theory of

interest. The fact that Hořava theory is a gauge theory,
which contains constraints and nondynamical fields makes
the problem more involved compared to the simple toy
example presented above. We will find that at one-loop
level, the theory exhibits mixed properties: while some
loops are better convergent as expected, others remain
quadratically divergent. Nonlinearity makes any gravita-
tional theory quite difficult to analyze perturbatively with-
out running into various subtleties. The physics is
much more transparent in simpler examples, such as a
Lifshitz-type quantum electrodynamics, which we present
in Appendix C as an analogy to the calculation we perform
for the gravity case below.
We define the fields for the metric perturbations above

the flat spacetime background as

� g00 ¼ 1þ n; (16)

g0i ¼ nj; (17)

gij ¼ 
ij þ hij: (18)

Einstein’s theory of general relativity, expressed in ADM
formalism, is described by the Lagrangian LEH ¼
M2

pl

ffiffiffiffi
�

p
NðRþ KijK

ij � K2Þ. The action for Hořava gravity
is different from it in two aspects, both leading to the
violation of Lorentz symmetry. In the lowmomentum-limit
it differs from GR in that the combination KijK

ij � K2 is

replaced by a more general expression KijK
ij � �K2,

where a model-dependent parameter � is introduced. In
the large momentum-limit, it is proposed that higher
spatial-derivative terms dominate the action and are the
key ingredients that render the graviton-loop more con-
vergent and the theory renormalizable. For our purpose, the
highest dimensional operators are the most important, and
they include Rij�R

ij and R�R. We adopt the so-called

‘‘healthy extension’’ [20] of the original theory in this
paper, where additional terms such as

R�2n ¼ � 2��3n

M2
pl

(19)

and n�3n are also needed to completely Lifshitzise
the scalar sector. All the fields introduced above are
spacetime-dependent functions and it is the so-called
‘‘nonprojectable’’ version that is being considered here.
We parameterize the highest spatial-derivative terms by

LHo�rava ¼ M2
pl

�
. . .þ��4

HLRij�R
ij þ a� 3

8
��4

HLR�R

þ b

2
��4

HLn�
3n� c

2
��4

HLR�
2n

�
: (20)
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Here, a Lifshitz scale �HL as well as three model-
dependent parameters a, b, and c are introduced. We will
leave these parameters completely undetermined (other
than requiring b � 0), and simply assume that some rea-
sonable choices of these parameters exist such that the
theory is free from instabilities or strong coupling issues.

To derive the propagators, we expand the metric pertur-
bation into different modes that do not mix with each other,
and then invert the kinetic-term in each sector individually.
It is most natural in this setup to decompose the fields into
different spin-sectors with respect to the three-dimensional
rotational symmetry. From that point of view, n is a scalar
and we define

ni ¼ nTi þ @i’; (21)

hij ¼ hTTij þ ð@iVT
j þ @jV

T
i Þ þ

�

ij �

@i@j
�

�
�þ @i@j

�
�;

(22)

where notation TT and T denote traceless-transverse and
transverse conditions, respectively. We have altogether one
transverse-traceless tensor hTTij , two transverse vectors VT

i

and nTi , and four scalars n, ’, �, and �.
Expanding the action LHo�rava in terms of these variables

to quadratic order, we decompose the result into three
independent sectors, which are referred to as the spin-2,
spin-1, and spin-0 parts of the action and denoted byL2;1;0,

respectively. Explicitly, they are

L 2 ¼ 1

4
_hTT2

ij þ 1

4
hTTij�hTTij þ 1

4�4
HL

hTTij �
3hTTij ;

L1 ¼ � 1

2
ð _VT

i � nTiÞ�ð _VTi � nTi Þ;

L0 ¼ 1� 2�

2
_�2 � 1

2
���� ð�� 1Þ

�
�’� 1

2
_�

�
2

þ � _�ð2�’� _�Þ � 2n��þ a

2�4
HL

��3�

þ b

2�4
HL

n�3nþ c

�4
HL

��3n:

(23)

Since � appears only inL0, bothL1 andL2 are identical
forLEH andLHo�rava if higher-derivative terms are omitted.

In a truncated expansion of the gravity action the full
diffeomorphism-symmetry is lost but a ‘‘partial gauge-
symmetry’’ remains. It is easily verified that the action
given above makes explicit the following gauge symmetry:

VT
i ! VT

i þ �Ti ; nTi ! nTi þ _�Ti ; (24)

’ ! ’þ _!; � ! �þ 2�!; (25)

where �Ti and! are arbitrary infinitesimal functions. When
� ¼ 1, the linearized Einstein-Hilbert action enjoys an
additional gauge-symmetry generated by

n ! n� 2 _; ’ ! ’þ : (26)

For future purposes, we also define the gauge-invariant
combinations

vT
i � _VT

i � nTi ;  � 1

2
_�� �’; (27)

which, instead of VT
i , n

T
i , � and ’ are the real ‘‘gauge-

independent degrees of freedom.’’ In Hořava-Lifshitz
gravity, the ‘‘fourth’’ gauge-symmetry is missing so that
n is ‘‘physical’’ by itself (apart from the time-
reparameterization symmetry).
The action L2 leads to the propagators for spin-2 grav-

itons without any gauge ambiguity. Directly read from the
action, it is given by

hhTTij hTTkl i ¼ � �ð ~kÞij;kl
!2 � ~k2 ���4

HL
~k6
; (28)

where

�ð ~kÞij;kl ¼
�

ik � kikk

~k2

��

jl �

kjkl
~k2

�

þ
�

jk �

kjkk
~k2

��

il � kikl

~k2

�

�
�

ij �

kikj
~k2

��

kl � kkkl

~k2

�
: (29)

The propagators given byL1;0, to the contrary, cannot be

determined without making a gauge choice. The technical
details, including the gauge-fixing and the propagators are
presented in Appendix A. In what follows, as much as
possible, we carry out our calculations without choosing
any particular gauge and express the results in terms of the
physical quantities consisting of gauge-invariant combina-
tions only. Itwill be shown that our final conclusion is valid in
general and manifestly independent of the gauge conditions.

IV. LOOP-INDUCED LORENTZ VIOLATION IN
THE MATTER SECTOR

We will consider in this section one-loop corrections to
the matter kinetic-terms due to their coupling to gravity
described by a Hořava-type theory. Our goal is to compute
the radiative corrections to the effective propagation speed
for different species. Any difference cspecies 1 � cspecies 2 �

0, if present, would indicate the violation of Lorentz sym-
metry at the quantum level.
We briefly mention the strategy for the calculation.

Since we are only interested in the one-loop corrections,
it is sufficient to expand the action in metric perturbations
up to quadratic order. For those terms that are linear in
metric perturbations, we ‘‘square’’ them to form a one-loop
diagram, using two vertices, each containing one graviton
leg. For these diagrams, the loop is formed by one graviton
propagator and one matter propagator. For terms quadratic
in metric perturbation, we must form a closed graviton-loop
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with single graviton-propagator. We focus on the leading
divergent contributions, and therefore will set the external
momentum to zero inside the loop integrals. Moreover, we
are interested only in those one-loop radiative corrections
to the matter kinetic-term that can actually lead to violation
of the Lorentz symmetry, and therefore it suffices to ex-
pand

ffiffiffiffiffiffiffi�g
p

to the first-order because at one-loop level the

radiative corrections from the quadratic expansion of
ffiffiffiffiffiffiffi�g

p
can only renormalize Mpl. Since terms that contain metric

perturbations at quadratic order contribute only when the
metric perturbations are contracted among themselves
forming a single graviton closed-loop, we are allowed to
replace all the quadratic expression of the metric perturba-
tions in the action by their correlation functions directly,
which entails a sequence of simplifications. For example, a
term in the action of the form Fijðhkl; n; nkÞ@i�@j�, where

Fij is a quadratic expression of the metric perturbations

can be equivalently replaced by its correlation function
hFiji ¼ 1

3 hFkl

kli
ij. In this last step, we have made use

of the three-dimensional rotational symmetry that remains
valid in Hořava’s gravity. Similarly, terms of the form of

Fiðhkl; n; nkÞ@i� _�, where Fi is a three-dimensional vector
that is also a quadratic function of the metric perturbations
cannot contribute at one-loop level and will be omitted.
Vertices that mix different spin components of gravitons do
not contribute at one-loop either and are omitted. We will
apply these simplifications implicitly from this point on,
and, for brevity, drop the h�i sign in the action if any
quadratic expression of the metric perturbation fields are
replaced by the corresponding correlation function.

We would repeatedly encounter the divergent integrals

L � 1

ið2�Þ4
Z d!d3k

!2 ���4
HL

~k6
; (30)

and when the fields are canonically normalized and the

proper scales are restored, we have L ¼ �2
HL

8�2M2
pl

log
�2

UV

�2
HL

.

Individual diagrams may also be quadratically divergent
and proportional to �2

UV=M
2
pl. As explained in the intro-

duction, by referring to those diagrams as quadratically
divergent, we have implicitly assumed that the integrals are
to be regularized by a hard cutoff �UV in the 3-momentum
space. At �UV-scale the theory for the matter sector is
described by the bare Lagrangian that is manifestly
Lorentz invariant, such as those given in (31) and (41), or
more generally, by the Lagrangian for the standard model
of particles and fields. We wish to investigate, for a low-
energy observer, to what extent the Lorentz symmetry
exhibited by the bare Lagrangian defined at �UV can be
preserved. We emphasize that explicit UV-cutoff breaks
the gauge symmetries in the gravity sector and a more
involved regulator will be needed if we are looking for
the physically meaningful effects coming from the
�UV-scale. It is however sufficient in the current discussion
since the hard cutoff does not break the Lorentz symmetry

itself. We will not need to evaluate those loop integrals
explicitly, and it suffices to recognize that the presence of
such radiative corrections indicates that the low-energy
theory is sensitive to the UV physics, leading to the fine-
tuning problem.
Finally, let us fix the convention for the notation of

correlation functions. Since all correlation functions con-
sidered here are two-point functions of two operators, and
we always take the external momentum to zero, we can
omit the ‘‘,’’ and denote hABi � hA; Bi, which in momen-

tum space should be understood as hAð!; ~kÞ; Bð�!;� ~kÞi.
For brevity, we also introduce a notation for the correlation

functions of two identical operators: we denote hA; . . .i �
hAð!; ~kÞAð�!;� ~kÞi.
Let us first consider a scalar � minimally coupled to

gravity described by the Lorentz-symmetric ‘‘bare’’
Lagrangian

L ¼ � 1

2

ffiffiffiffiffiffiffi�g
p

g��@��@��; (31)

whose propagator is of course just h��i ¼ �1=ð!2 � ~k2Þ.
It is meant to represent an elementary SM matter field,
such as the Higgs field.
Following the strategy explained above, we expand the

action to the quadratic order in terms of the metric pertur-
bations and decompose the interaction terms into each spin
sector defined by the relevant metric perturbations in-
volved. Explicitly, we have

L I
2 ¼

�
1

2
hTTij � 1

2 � 3 h
TTklhTTkl 


ij

�
@i�@j�; (32)

LI
1 ¼ �nTi@i� _�þ @iVTj@i�@j�

� 1

3
ð@kVT

l @
kVTl þ nTk n

TkÞ@i�@i�þ . . . ; (33)

and

LI
0 ¼

1

2

�
�þ 1

2
�� n

�
_�2 � @i’@i� _�

þ 1

2

�
@i@j
�

ð�� �Þ � 1

2
�
ij � n
ij

�
@i�@j�

þ 1

2
ð2n2Þ _�2 � 1

2
� 2
3

�
nð2�þ �Þ � ��

þ 1

4
�2 þ @k’@k’

�
@i�@i�þ . . . : (34)

Here, ellipses stands for terms that are manifestly Lorentz
invariant, which we drop in the subsequent calculations.
Let us denote the one-loop radiative correction to the

kinetic term of � as


ð@��@��Þ ¼ 1

2
ðKt _�2 � Kx@i�@i�Þ; (35)

and the contributions from each part of the interaction
LI

2;1;0 as K
t
2;1;0 and Kx

2;1;0, respectively.
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It is clear that Kt
2 ¼ 0 and Kx

2 ¼ � 4
3 � L. The contribu-

tion induced by the vector-gravitons is also easy to com-
pute and the result is identical to that in GR. We find
Kt

1 ¼ 0, and1

Kx
1 ¼

1

3

Z
d!d3 ~k

h _nTi � �VTi ; . . .i
!2 � ~k2

þ 2

3

�
Z

d!d3 ~kh@kVT
l @

kVTl þ nTk n
Tki: (37)

We denote the combination given above as Kx
1scalar. This

expression is gauge-choice dependent and therefore cannot
be physical. It will be cancelled in the final result by other
contributions, as we will show shortly.

Similarly, we can compute the contributions from the
spin-0 sector as

Kt
0 ¼

Z
d!d3 ~k

�
�h _�� _nþ ; . . .i

!2 � ~k2
þ h2nni

�
(38)

and2

Kx
0 ¼

Z
d!d3 ~k

�
1

3
� h� _�� _n; . . .i

!2� ~k2

þ
�
1

12
�2� 1

3
ð��nÞ2� 1

3
��þ �nþ ~k2’2

��
: (39)

All contributions combined, we find that the effective
change of the propagation speed for a neutral scalar, given
by the difference between Kx and Kt is


c2scalar ¼ � 4

3
� Lþ Kx

1scalar þ
Z

d!d3 ~k
1

!2 � ~k2

�
�
1

3
h� _�� _n; . . .i þ h _�� _nþ ; . . .i

�

þ
Z

d!d3 ~k

�
1

12
�2 � 1

3
ð�� nÞ2 � 1

3
��

þ �nþ ~k2’2 � 2n2
�
: (40)

Let us do the same calculation for a Uð1Þ-gauge field
coupled to gravity. The action for the minimally coupled
photon is given by

L ¼ � 1

4

ffiffiffiffiffiffiffi�g
p

g��g�	F��F�	: (41)

To avoid choosing a gauge for photon, we work with the
physical fields Ei ¼ F0i and Bi ¼ 1

2"ijkF
jk and their cor-

relation functions. It is easily verified that in any gauge

hEiEji ¼
�!2
ij þ kikj

!2 � ~k2
;

hBiBji ¼
� ~k2
ij þ kikj

!2 � ~k2
;

hEiBji ¼
"ijn!kn

!2 � ~k2
: (42)

Following the same procedure as before, we find the
relevant part of the graviton-photon interactions, separated
into different spin-sectors is given by

L I
2 ¼ � 1

2
hTTijðEiEj þ BiBjÞ � 1

2 � 6 h
TTijhTTij B

2 þ . . . ;

(43)

LI
1 ¼ �@iV

T
j ðEiEj þ BiBjÞ � "ijkn

TiEjBk

� 1

6
ðnTinTi þ @iV

T
j @

iVTjÞB2 þ . . . ; (44)

LI
0 ¼ � 1

2

��
n� 1

2
�

�

ij þ @i@j

�
ð�� �Þ

�
ðEiEj þ BiBjÞ

� "ijk@
i’EjBk þ 1

2
ð2n2ÞE2

� 1

2

�
1

3
�2 þ 1

6
�2 þ 1

3
@i’@i’

�
B2 þ . . . ; (45)

and, again ‘‘. . .’’ represents those terms shared by both E2

and B2 that do not lead to any Lorentz-symmetry violation.
Let us consider the one-loop correction to the photon-

kinetic term, denoted similarly as 1
2 ðKtE2 � KxB2Þ. Again,

the contributions fromeach spin-sectorLI
2;1;0 are denoted as

Kt
2;1;0 and K

x
2;1;0, respectively. It is most easily checked that

Kt
2 ¼

4

3
� L; and Kx

2 ¼ � 2

3
� L: (46)

To evaluate the contributions from the spin-1 sector, the
vertex "ijkn

TiEjBk is very important. When all the crossing-

terms are properly included, one finds that many terms com-
bine into a ‘‘complete square’’ so thatKt

1 can be expressed as

Kt
1 ¼ � 1

3

Z
d!d3k ~k2hVT

i V
Tii � 1

3

Z
d!d3k

~k2hvT
i v

Tii
!2 � ~k2

;

(47)

where vT
i ¼ _VT

i � nTi is the gauge-invariant combination
defined in Eq. (27). Similarly,

1It so happens that in the current theory

Z
d!d3kh@iVT

j @
iVTj þ nTi n

Ti i ¼ 0; (36)

in any gauge when the symmetry-preserving regularization of
the UV divergence is employed. In any event, this term cancels
out in the final answer by itself without employing the vanishing
of this loop integral.

2We attempt to express everything in terms of the gauge-
invariant combinations, in this case,  as defined in (27).

To do so, identities as
~k2!2

!2� ~k2
¼ ð ~k2 þ ~k4

!2� ~k2
Þ and

~k2

!2� ~k2
¼

ð�1þ !2

!2� ~k2
Þ are used so that we can trade time-derivative for

spatial-derivatives and vice versa, at the cost of generating extra
terms that can be combined with those generated by the single
graviton-loop diagrams. We will apply the similar identities
while computing the spin-0 graviton-loop corrections to the
photon-kinetic term as well.
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Kx
1 ¼

1

3

Z
d!d3khnTi nTii þ 1

3

Z
d!d3k

h _nTi ��VT
i ; . . .i

!2 � ~k2

þ 1

3

Z
d!d3 ~kh@kVT

l @
kVTl þ nTk n

Tki: (48)

The contributions from loop diagrams with a scalar-
graviton propagator are somewhat more cumbersome but
still straightforward to calculate. With all the crossing-
terms included and everything expressed in terms of the
gauge-invariant combinations whenever possible, one
eventually finds that

Kt
0 ¼

Z
d!d3k

�
� 2

3

h _n� ; . . .i
!2 � ~k2

� 1

3

�
nþ 1

2
�� �; . . .

�
þ h2nni

�
; (49)

and

Kx
0 ¼

Z
d!d3k

�
2

3

h _n� ; . . .i
!2 � ~k2

þ
�
� 2

3

�
n� 1

2
�

�
2

þ 1

3
�2 þ 1

6
�2 þ ~k2’2

��
: (50)

Putting these formulas together, we find the effective
change of the speed of light for photon is


c2photon ¼ �2 � Lþ Kx
1 scalar þ

1

3

Z
d!d3k

~k2hvT
i v

Tii
!2 � ~k2

þ 4

3

Z
d!d3k

h _n� ; . . .i
!2 � ~k2

þ
Z

d!d3k

�
� 1

3
n2 þ 1

12
�2 þ 2

3
�2 þ n�

� 2

3
n�� 1

3
��þ ~k2’2 � 2n2

�
; (51)

where Kx
1 scalar is the exact combination given in Eq. (37).

Now, we are ready to examine the real Lorentz-
symmetry violating effect given by the difference of the
graviton one-loop correction to the propagation speed for
different species, e.g. scalar and photon field in the current
case. The final answer, being the difference between
Eqs. (51) and (40), is rather simple and reads


c2photon � 
c2scalar ¼ � 2

3
� Lþ 1

3

Z
d!d3k

~k2hvT
i v

Tii
!2 � ~k2

þ 4

3

Z
d!d3k

~k2h�ni � h _�i
!2 � ~k2

� 1

3

Z
d!d3k

!2 þ 3 ~k2

!2 � ~k2
h�2i: (52)

It is this quantity that measures the actual violation of the
Lorentz symmetry, which cannot be simply scaled away by
field and coordinate redefinitions. In this final result, all
gauge-dependent quantities including Kx

1scalar and any cor-

relation functions that explicitly contain � and’ disappear.

Therefore, it is fully physical and independent of the
gauge-fixing scheme. The second-term above is quadrati-
cally divergent, leading to a residual fine-tuning problem in
this model as we discuss further below. This divergence is
the direct consequence of the non-Lifshitz behavior of
propagators for the spin-1 gravitons. The second line,
generated by the spin-0 gravitons, on the other hand, leads
only to logarithmic divergence, which can be easily seen
from the explicit propagators given in Appendix A. All the
model-dependent quadratic divergences contributed by the
spin-0 gravitons are completely canceled out in this final
answer, so that the only remaining quadratic divergences
comes from the vector-graviton loops.
We can furhter simplify this formula slightly if we use

the knowledge that all propagators h _�i, h��i, and h�ni
are of Lifshitz-type, and loop integrals can be reduced to

Z d!d3k!2

!2 � ~k2
hLifshitzi 	

Z
d!d3khLifshitzi

þ finite terms;

Z d!d3k ~k2

!2 � ~k2
hLifshitzi ¼ finite:

(53)

Dropping all finite contributions, we have


c2photon � 
c2scalar ¼ � 2

3
� Lþ 1

3

Z
d!d3k

� ~k2hvT
i v

Tii
!2 � ~k2

�
�
4

!2
h _�i þ h��i

��
: (54)

Substituting-in the explicit forms for the propagators
given in Appendix A, we reach our final result in the
current version of Hořava-Lifshitz gravity,

ð
c2Þphoton � ð
c2Þscalar ¼ � �2
HL

12�2M2
pl

log
�2

UV

�2
HL

� 3�þ 1

ð3�� 1Þ
�02

HL

24�2M2
pl

log
�2

UV

�02
HL

� �2
UV

24�2M2
pl

: (55)

Here �0
HL is the model-dependent Lifshitz energy-scale

defined in Eq. (A5).
Very similar results are found in the case of simple

Lifshitz-Abelian gauge theory, which we demonstrate in
Appendix C.
We will discuss the implications of this result and pro-

pose ways to improve the model in order to eliminate all
the quadratic divergence in Sec. V.

V. AN IMPROVED MODEL AND THE ABSENCE
OF FINE-TUNING

Our calculations in the previous section show that
Hořava-Lifshitz gravity and its extensions discussed in
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the literature thus far induce Lorentz-violation effects in
the standard model sector with quadratic sensitivity to the
cutoff. This poses a serious problem since the model has
essentially no natural protection against large Lorentz-
violation in the matter sector, and therefore a tremendous
amount of fine-tunning is required to keep the model
consistent with observations. This quadratic divergence
in 
c2photon � 
c2scalar means that our proposal based on a

large-scale separation�HL=Mpl � 1 to protect the Lorentz

symmetry in the standard model does not work, and we
must modify the theory in order to remove such remaining
divergence.

Given our formula (54), the problematic piece is easy to
spot. It is the vector-graviton contribution, identical to
those in GR that leads to the problem because

hvT
i v

Tii ¼ � 2

~k2
; (56)

and does not go to zero at large j ~kj the same way the
Lifshitz propagators do. This part of the calculation
entirely parallels its counterpart in the Einstein theory
and therefore it is not at all surprising that it remains
quadratically divergent.

There are ways to modify the theory to remove the
quadratic divergence. Naturally, one thinks of including
in the theory a term that contains vT

i �
2vTi so that at

large momenta the propagator receives Lifshitz scaling

vT
i v

Ti � 1= ~k4 sufficient to suppress the relevant loop-
integral and make it logarithmic. In the three-dimensional
covariant notation, such terms may originate either from
Kij�K

ij or riKijrkKkj. Both possibilities are usually not

considered since their Lifshitz dimensions are higher than
6 in the naive counting method. Note, however, such
counting is questionable in theories with mixed Lifshitz
and non-Lifshitz behavior considered in this paper.

The consequences of Kij�K
ij or riKijrkKkj terms in

the action are not explored. One potential worry is the
modification to the ordinary kinetic-term for the spin-2
gravitons by Kij�K

ij-term, and to avoid this we shall

consider the addition to the Hořava-Lifshitz Lagrangian
given by

L 0 ¼ 2

�2
riKijrkKkj; (57)

so that at the linearized-level it only modifies the spin-1
and spin-0 graviton actions, and produces terms

L 0 ¼ 1

2�2
vT
i �

2vTi � 2

�2
�: (58)

We can easily repeat our calculation in this new model
when such terms are included. The propagators are given in
Appendix A, and using them we find

ð
c2Þphoton � ð
c2Þscalar ¼� �2
HL

12�2M2
pl

�
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 2�Þ��1
p
2ð2�� 1Þ

�
log

�2
UV

�2
HL

� �2

12�2M2
pl

log
�2

UV

�2
: (59)

This expression contains logarithmically divergent pieces
only, and we note that each of the spin-2, spin-1, and spin-0
sector contributes one term.
In the new theory with the additional term (57) included

in the Lagrangian, the mechanism we proposed in the
introduction is fully at work. One can safely put both
�HL and � well below the Planck scale, and the entire
framework, consisting of both a Lifshitz-type gravity and a
nearly Lorentz-invariant standard model sector would stay
completely consistent with observations.

VI. DISCUSSION

In this paper we argue that a large amount of Lorentz
violation in the irrelevantly coupled-sectors (axions, grav-
ity, etc.) can coexist with the Lorentz-symmetric phenome-
nology of SM particles and fields provided that quantum
corrections are stabilized by a Lifshitz-type behavior above
�HL, a scale that can be adjusted. This idea is of particular
interest if the LV-sector is gravity and is described
by a Hořava-type theory. The key to this proposal is
the ‘‘self-regulating’’ behavior of Lifshitz-type propaga-
tors that participate in the loops. Given that one could
entertain a possibility of very large energy-scale separation
�HL � Mpl, the induced differences in the speed of propa-

gation for different SM species can be under control by the
ratio ð�HL=MplÞ2 and no fine-tuned choice of bare parame-

ters to maintain Lorentz symmetry will be needed.
Our explicit calculations for a generalized Hořava-type

gravity coupled with conventional matter-fields have con-
firmed this expectation in the following sense: those fields
in the gravitational sector that fully acquire the anisotropic
scaling, such as the truly dynamical transverse and
traceless gravitons induce Lorentz violation controlled
by ð�HL=MplÞ2 log�UV. The quadratic divergence of

graviton-loop is explicitly softened to the logarithmic one
above the Hořava-Lifshitz scale. However, our result,
Eq. (55), shows that in the conventional extensions of
Hořava-Lifshitz gravity, loop-induced Lorentz-violating
effects do contain a residual quadratic divergence. This
divergence is generated by the non-Lifshitz parts of the
gravitational action for the vector-gravitons. Therefore, for
the choice of �UV �Mpl, our idea of putting dimension-

four LV operators under control of a small ratio of two-
dimensionful parameters does not quite work there: LV
from the Hořava gravity-sector will be efficiently trans-
mitted to the SM sector with the quadratic sensitivity to the
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cutoff ð�UV=MplÞ2. (In some sense, the situation is remi-

niscent of noncommutative field theories, where certain
divergences are self-regulated while others remain.)

Could this problem be resolved? A quick remedy we
proposed is to include terms that suppress the vector-
graviton propagator in the UV, such as riKijrkK

kj. This

addition term in the action ensures the Lifshitz-type be-
havior for the vector modes of the metric perturbations and
is consistent with all the symmetries of Hořava gravity. It
contains no more than two time-derivatives as required.
Typically such terms are not considered because of their
higher Lifshitz-dimension, but in the theory with mixed-
behavior (Lifshitz for gravity and non-Lifshitz for matter)
the naive counting of scaling dimensions can be mislead-
ing. Such terms appear to be admissible and they lead to
the same softening of the loop integrals for the spin-1
modes as those of the other graviton modes. With these
terms included, the one-loop corrections to the propagation
speed of different species are fully under control and al-
ways proportional to ð�HL=MplÞ2 log�UV. Provided that

�HL � Mpl, the induced Lorentz-violation effect in the

standard model can be minimized to the phenomenologi-
cally acceptable level. We also emphasize that the intro-
duction of these new operator structures will exorcize
quadratic divergence in any regulator scheme, while the
coefficients in front of the logarithmic-divergent terms will
be regularization-scheme independent. We reserve more
detailed analysis of the proposed extension for the follow-
up works.

We close-up with additional comments on the viability
of the whole setup, and various phenomenological options.

(i) On the choice of scale for �HL. Our answer suggests
the maximum scale for the transition to Hořava-
Lifshitz behavior. Given that various phenomeno-
logical constraints on dimension-four LV operators
are more stringent than 10�20, one would need to
have�HL & 1010 GeV. This is an intermediate scale
often appearing in particle physics, a geometric
mean of weak and Planck scales. A much more
definitive statement about the limit on �HL can be
made once we extend our calculations to actual SM
fermions (electrons, quarks), which we plan to ad-
dress in the future. On the other hand, nothing pre-
vents choosing much lower scales for �HL, such as a
TeV or even meV scales. The latter is the absolute
minimum set by precision tests of gravity at sub-mm
scales.

(ii) Graviton propagation speed. So far we have con-
sidered only corrections to the propagation speed of
matter, but graviton propagation is also of phenome-
nological interest. Deep inside the Hořava-Lifshitz
regime the gravitons are superluminal and therefore
cannot be constrained by e.g. Cerenkov radiation.
However, there are also much milder 1%-level
accuracy constraints on cgraviton coming from the

gravitational energy loss of binary pulsars. There
are no good arguments in this theory as to why the
matter and gravity should propagate with the same
speed in the IR and possibly some additional emer-
gent symmetry is required.

(iii) Higher-dimensional operators and higher-loop
corrections. So far in our considerations we ne-
glected external momenta of particles. This corre-
sponds to explicitly calculating dimension-four LV
operators, while neglecting dimension six. It turns
out that the highest-energy cosmic rays can also be
(barely) sensitive to the Planck scale normalized
dimension-six operators [11]. Investigating the
actual size of these operators induced by graviton
loops is worthly of a separate investigation.
Similarly, an important subject to address is the
higher-loop order, where normal SM radiative cor-
rections and gravitational corrections are combined.

(iv) Hořava gravity and supersymmetry. Super-
symmetry of the Hořava-type theories was consid-
ered recently in e.g. [44]. It may bring additional
benefits of making the speed of light universal, not
only among matter fields but also for gravitons. In
addition, the nonlinear terms in the gravity action
may be used as a way of breaking supersymmetry
[45], in which case one should expect the soft-
breaking mass in the matter sector to scale as
msoft ��2

HL=Mpl. This is again suggestive of the

intermediate scale of 1010 GeV as a reasonable
choice for �HL.

(v) Regularization dependence. In the current study, we
have simply used a hard cutoff of spatial momentum
as a regulator. As we have explained, as long as the
Lorentz-violation effects and the associated fine-
tuning problem in the standard model is concerned,
such regularization scheme is sufficient since it
preserves the global symmetry under concern. It is
no longer valid if we wish to calculate the complete
gauge-invariant one-loop effective action, such as
exact value of �c=c associated with quadratic
divergence, or nonlogarithmic corrections to
logð�UV=�HLÞ coming from the upper-limit of in-
tegration. Technically, more challenging regulator
procedures may involve a finite splitting between
any pair of vertices in loop diagrams in terms of
their geodesic distance in the coordinate space, or
employ a hard cutoff for some gauge-invariant quan-
tities in the momentum space.
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APPENDIX A: PROPAGATORS AND GAUGE-
FIXING IN HORı́AVA-LIFSHITZ GRAVITY

The action L1 is identical in both Einstein’s and
Hořava’s theories if operators with Lifshitz dimensions
higher than 6 are ignored. Both L1 and L0 contain gauge
symmetries generated by (24) and (25), and one must
choose a gauge-fixing scheme to derive the propagators
for vector and scalar gravitons.

The simplest gauge condition3 to choose that respects
the Lifshitz symmetry at large momentum would be
ni ¼ 0. In this gauge, we easily derive the propagators

hVT
i V

T
j i ¼ �
ij � kikj= ~k

2

!2 ~k2
; hnTi 
i ¼ 0; (A1)

for vector-gravitons and at large ~k

h��i ¼ �
~�

!2 � �~���4
HL

~k6
;

h��i ¼ �
~�� 1

!2 � �~���4
HL

~k6
;

h�ni ¼ c

b

~�

!2 � �~���4
HL

~k6
; h’
i ¼ 0;

(A2)

for spin-0 gravitons. We have defined the parameters

� � a� c2

b
; ~� � �� 1

3�� 1
(A3)

in the above expressions, and omitted the correlations
functions that are irrelevant to our results. In this gauge,
some of the propagators are singular and more involved
regularization scheme is proposed [46,47], but those
subtleties do not complicate our calculation here since
our final answer is manifestly gauge-choice independent

and any divergences that may arise in the individual-loop
diagram will be canceled out in physical quantities. Or, if
any doubts remain, one can also carry out the calculation in
the R� gauge where a gauge-fixing term L ¼ � 1

2� ð _ni �
��ViÞ2 is introduced. All the propagators in that gauge
will be ‘‘healthy’’ and the final answer not only is inde-
pendent of the choice of � and � but also agrees with that
found in the ni ¼ 0 gauge. Explicit calculation shows that

hvT
i v

Tii ¼ � 2

~k2
; h _�i ¼ �

3�� 1

!2

!2 � �~���4
HL

~k6
:

(A4)

We would like to make a few more comments on these
results. We find a new scale emerging in the spin-0 sector.
The propagators do exhibit anisotropic-scaling properties
with the Lifshitz critical exponent z ¼ 3, but with a new
Lifshitz scale related �HL as

�0
HL ¼ ð�~�Þ�ð1=4Þ�HL: (A5)

Depending on the value of � and ~�, it can be much higher,
lower than, or equal to �HL. We will refer to this scale as
the induced-Lifshitz scale for the spin-0 sector.
Of course the choice of parameters a, b, and c, including

their signs, may have direct consequences for the stability
and strong coupling problems in the gravity sector. It is

well-known by analyzing the case for pure gravity that ~� >
0 is a necessary condition to avoid ghosts. This cannot be
immediately seen from the above propagators, as we have
not fully diagonalized the action. We do not dwell on this
issue further and simply assume that there exists reasonable
choices of parameters so that the theory is well-defined.
To remove all quadratic divergence in the loop-induced

Lorentz-violation effect observed in Sec. IV, we introduce
the additional term in the theory

L 0 ¼ 2

�2
ðriK

ijÞðrkKkjÞ ¼ 1

2�2
vT
i �

2vTi � 2

�2
�:

(A6)

It is easily checked that the propagators become

hVT
i V

T
j i ¼ � 
ij � kikj= ~k

2

!2ð ~k2 þ��2 ~k4Þ ; hnTi 
i ¼ 0; (A7)

for vector-gravitons and at large ~k

h��i ¼ 1

ð2�� 1Þ
1

!2 � �ð1� 2�Þ�1��4
HL

~k6
;

h�i ¼ i�

ð4�� 2Þ
�2!

~k2ð!2 � �ð1� 2�Þ�1��4
HL

~k6Þ ;

h�ni ¼ � c

b

1

ð2�� 1Þ
1

!2 � �ð1� 2�Þ�1��4
HL

~k6
;

(A8)

for spin-0 gravitons. Because of the additional ~k2 suppres-
sion in the �- correlator, only the very last term in

3As a matter of additional check, we have also performed
calculations in the generalized R� gauge for the spin-1 gravitons,
when L ¼ � 1

2� ð _ni � ��ViÞ2-term is added to the action.
Explicit calculations of cscalar and cphoton can be carried out,
and the result for their difference shows complete independence
on the choice of � and � parameters.
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Eq. (54) contributes to the logarithmic divergence pro-
duced by the scalar-graviton loops.

APPENDIX B: ADDITIONAL DETAILS ABOUT
LIFSHITZ-TYPE LOOP INTEGRALS

When the internal propagators all share the same
Liftshitz-type behavior with the same exponent z, the
loop integral can be easily cast into a normal Feynman
integral so that standard textbook formulas are directly
applicable. Take, as an example, the fermion one-loop
correction discussed in Sec. II,

K ¼ � 1

4ið2�Þ4M2

Z
d4k

F��F�	tr���
~k��	

~k

~k4
; (B1)

where

ð~k0; ~~kÞ � ðk0; jkjz�1 ~k=�z�1
HL Þ: (B2)

It is easy to verify that

d 4~k ¼ zj ~kj3ðz�1Þ

�3ðz�1Þ
HL

d4k ¼ zj~~kj3ð1�1=zÞ

�3ð1�1=zÞ
HL

d4k: (B3)

Changing the loop-integral variable from d4k to d4~k, and
dropping the tilde for brevity, we have

K¼� �3ð1�1=zÞ
HL

4ið2�Þ4M2

Z
d4k

F��F�	tr���k��	k

zj ~kj3ð1�1=zÞk4
: (B4)

The following identity is also easily checked

tr ��� 6k��	6k ¼ 4k2ðg�	g�� � g��g�	Þ þ 8ðg��k�k	

� g�	k�k� þ g�	k�k� � g��k�k	Þ:
(B5)

Full Lorentz symmetry emerges as z ¼ 1, in which case
each pair of k�k	 in the above expressions can be replaced

by 1
4 k

2g�	 and, consequently, K vanishes identically by

simple symmetry considerations.
While z > 1 and the Lorentz symmetry is broken, using

parity and spatial-rotational symmetry, one can still replace
each pair of k�k	 in the integral by g00f

t þP
igiif

x. Here

ft � � 8

ið2�Þ4
Z

d4k
k20

zj ~kj3ð1�1=zÞk4
; (B6)

and

fx � 8

3ið2�Þ4
Z

d4k
j ~kj2

zj ~kj3ð1�1=zÞk4
: (B7)

Therefore,

K ¼ ��3ð1�1=zÞ
HL

M2

�
� ft þ 3fx

4
F��F

��

þ ftF�0F
�0 þX

i

fxF�iF
�i

�

¼ �3ð1�1=zÞ
HL ðft � fxÞ

2M2
ðE2 þB2Þ: (B8)

Generally in the Euclidean signature, we have the
integral [48]

IAr;s�
Z dD̂p̂

ð2�ÞD̂
Z dD �p

ð2�Þ �D
ðp̂2Þrð �p2Þs

ðp̂2þ �p2þm2ÞA

¼m2ðrþsÞþD̂þ �D�2A
�ðsþ �D

2Þ�ðrþ D̂
2Þ�ðA�r�s� D̂þ �D

2 Þ
ð4�ÞðD̂þ �DÞ=2�ðD̂=2Þ�ð �D=2Þ�ðAÞ :

(B9)

Choosing D̂ ¼ 1, �D ¼ 3, and aWick rotation leads to ft ¼
8
z I

2
1;3=ð2zÞ�3=2 and fx ¼ 8

3z I
2
0;3=ð2zÞ�1=2. For both ft and fx

rþ s ¼ 3
2z � 1

2:

Therefore, the ratio of the two is immediately given by

ft

fx
¼ 3�ð32Þ�ð 32zÞ

�ð12Þ�ð 32z þ 1Þ : (B10)

As z ¼ 1, ft ¼ fx as expected. z ¼ 3 is a particular inter-
esting case where we find

ft ¼ 3fx ¼ 1

2�2
�ð0Þ: (B11)

�ð0Þ encodes the UV divergence in this formula, which
gives rise to a logarithmically divergent-terms for both ft

and fx, if we use dimensional regularizations. The fact that
they are different by a factor of 3 implies violation of the
Lorentz symmetry.

APPENDIX C: TWO TOY MODELS OF
LIFSHITZ SCALAR-QED

To achieve better understanding of the physics in
Lifshitz-type gauge theories, we intend to work out two
different toy models in which an ordinary, complex scalar
is coupled to a Lifshitz-type photon. In order to retain
analogy to the graviton-radiative corrections to the kinetic
terms of non-Lifshitz matter fields, we evaluate the mass
renormalization of the complex scalar generated by the
photon loops. These loop integrals are also quadratically
divergent in ordinary QED and expected to become better
convergent if the photon is Lifshtiz-like.
There are two way of ‘‘Lifshitzizing’’ the photon. One

can do so by breaking all the gauge symmetries as in the
following theory:
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L ¼ �ð@��� iA��Þð@��þ iA��yÞ
þ 1

2
A�f½h� ð��Þz��2ðz�1Þ

HL �g�� � @�@�gA�; (C1)

where z * 2. We used the combination ð��Þ ¼ ~k2 since it
is a positive-definite operator. This theory appears like the
standard scalar-QED if �HL ! 1 but breaks gauge sym-
metry explicitly as long as�HL is finite. In this theory there
is no need of gauge fixing and the propagators of A� is

given by

hA�A�i ¼ �
g�� þ k�k�

��2ðz�1Þ
HL

~k2z

!2 � ~k2 ���2ðz�1Þ
HL

~k2z
: (C2)

There are two relevant diagrams to evaluate for the mass
renormalization of �. The single-vertex diagram corre-
sponds to the following loop integral:

I1 ¼ 1

ð2�Þ4
Z d!d3 ~k½4þ�2ðz�1Þ

HL ð�!2 þ ~k2Þ= ~k2z�
!2 � ~k2 ���2ðz�1Þ

HL
~k2z

	 3

ð2�Þ4
Z d!d3 ~k

!2 ���2ðz�1Þ
HL

~k2z
: (C3)

Here we have used the residue theorem and assumed that
the dominant part of the integral is contributed by the pole

at ! ¼ �j ~kjz=�z�1
HL . This integral is logarithmically diver-

gent if z * 3.
The double-vertex diagram consists of one scalar-

propagator and one photon-propagator, and in the limit of
zero-external momentum is given by the integral

I2 ¼ 1

ð2�Þ4
Z d!d3 ~kk2½1þ k2�2ðz�1Þ

HL = ~k2z�
ð!2 � ~k2Þ½!2 � ~k2 � ��2ðz�1Þ

L
~k2z� : (C4)

This integral is finite as long as z * 2.
Therefore, in this toy model the mass renormalization

of � is only linearly divergent if z ¼ 2, logarithmically if
z ¼ 3, and finite if z > 3.

We will now examine a different toy model, which is
much closer in spirit to Hořava’s theory of gravity. We
would Lifshitzize photon without breaking the gauge sym-
metry. Consider the Lagrangian

L ¼ � 1

2
F0iF

0i � 1

4�2ðz�1Þ
HL

Fijð��Þz�1Fij: (C5)

Similar to Arnowitt-Deser-Misner formalism in Lifshitz
gravity, we separate the variables A0 and Ai � AT

i þ @i’
and rewrite the action as

L ¼ � 1

2
AT
i ½@2t þ��2ðz�1Þ

HL ð��Þz�ATi

� 1

2
ðA0 þ _’Þ�ðA0 þ _’Þ: (C6)

This expression makes explicit the gauge symmetry

A0 ! A0 � _!; ’ ! ’þ!; (C7)

which is nothing but the original gauge symmetry A� !
A� þ @�!. We would like to compute the mass renor-

malization for the complex scalar in this model as well.
Clearly,

I2 ¼ 1

ð2�Þ4
Z

d4kk�k�hA�A�ih��yi; (C8)

and

I1 ¼ � 1

ð2�Þ4
Z

d4kg��hA�A�i: (C9)

Therefore, the sum

I1 þ I2 ¼ � 1

ð2�Þ4
Z

d4k

�
g�� � k�k�

k2

�
hA�A�i (C10)

pickup only the gauge-independent part of the photon
propagator automatically. We can choose any gauge that
we like to evaluate these integrals. For example, in the
A0 ¼ 0 gauge, analogous to the ni ¼ 0 gauge in gravity,
the photon propagators are

hAiAji ¼ � 1

!2 ���2ðz�1Þ
HL

~k2z

�

ij �

kikj
~k2

�
� kikj

!2 ~k2
;

hA0A0i ¼ hA0Aii ¼ 0: (C11)

Therefore,

I1 þ I2 ¼ 2

ð2�Þ4
Z d!d3 ~k

!2 ���2ðz�1Þ
HL

~k2z

þ 1

ð2�Þ4
Z d!d3 ~k

!2 � ~k2
: (C12)

Just as we have observed in the case of Hořava-type
gravity, the result for z ¼ 3 contains both logarithmic
and quadratic divergences. The difference is that it is
manifestly gauge-independent in this simple toy model.

When z ¼ 1, I1 þ I2 ¼ 3
ð2�Þ4

R
d!d3kð!2 � ~k2Þ�1, recov-

ering the standard scalar-QED result.
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