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In this paper we compute stringent astrophysical and cosmological constraints on a recently proposed

Eddington-inspired Born-Infeld theory of gravity. We find, using a generalized version of the Zel’dovich

approximation, that in this theory a pressureless, cold-dark matter fluid has a nonzero effective sound

speed. We compute the corresponding effective Jeans length and show that it is approximately equal to the

fundamental length of the theory R� ¼ �1=2G�1=2, where � is the only additional parameter of theory with

respect to general relativity andG is the gravitational constant. This scale determines the minimum size of

compact objects which are held together by gravity. We also estimate the critical mass above which

pressureless compact objects are unstable against collapse into a black hole, showing that it is

approximately equal to the fundamental mass M� ¼ �1=2c2G�3=2, and we show that the maximum

density attainable inside stable compact stars is roughly equal to the fundamental density �� ¼ ��1c2,

where c is the speed of light in vacuum. We find that the mere existence of astrophysical objects of size R,

which are held together by their own gravity, leads to the constraint � < GR2. In the case of neutron stars

this implies that � < 10�2 m5 kg�1 s�2, a limit which is stronger by about 10 orders of magnitude than big

bang nucleosynthesis constraints and by more than 7 orders of magnitude than solar constraints.
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I. INTRODUCTION

Recently, a new Eddington-inspired theory of gravity
with a Born-Infeld-like structure [1] has been proposed by
Banados and Ferreira [2] (see also [3–15] for other relevant
studies of Born-Infeld-type gravitational models and [16]
for a recent review on alternative theories of gravity). A
key feature of the Eddington-inspired Born-Infeld (EiBI)
theory of gravity introduced in [2] is that it is equivalent to
Einstein’s general relativity in vacuum. In [2] it was shown
that, in the nonrelativistic limit, the EiBI theory of gravity
leads to a modified Poisson equation given by

r2� ¼ 4�G�m þ �

4
r2�m; (1)

where � is the gravitational potential and �m is the matter
density. The gravitational constant G, �, and the speed of
light in vacuum c are the only parameters of the theory.
With these parameters it is possible to define a fundamental
length, time, mass, and density, respectively, by

R� ¼
ffiffiffiffi
�

G

r
; t� ¼

ffiffiffiffiffiffiffiffiffi
�

Gc2

r
; M� ¼

ffiffiffiffiffiffiffiffi
�c4

G3

s
; �� ¼ c2

�
;

(2)

whose physical interpretation will be revealed in this paper.
In [2] it was shown that the EiBI theory of gravity signifi-
cantly changes the Universe dynamics at early times, lead-
ing to a nonsingular cosmological model. In [17] the EiBI
theory has also been shown to support compact stars made
of pressureless dust. Astrophysical constraints on the

single extra parameter of the theory � have been deter-
mined considering the physics of astronomical objects
such as neutron stars [17] and the Sun [18].
In this paper we compute both astrophysical and cos-

mological constraints on the EiBI theory of gravity. In
Sec. II basic results for the evolution of the Universe during
the radiation era are reviewed and a constraint on the value
of � is derived from primordial nucleosynthesis. In Sec. III
the Zel’dovich approximation is generalized to account
for the modification to the Poisson equation in Eq. (1),
which it is shown to lead to an effective fundamental Jeans
length, in the case of pressureless, cold dark matter. We use
this result to compute the minimum size (allowed by the
theory) of compact objects which are held together by
gravity and to determine the maximum density attainable
inside stable compact stars. We also obtain the critical
mass above which pressureless compact stars cannot exist.
We then use these results to derive stringent astrophysical
constraints on the value of �. We conclude in Sec. IV.

II. BACKGROUND EVOLUTION OF
THE UNIVERSE

The EiBI theory of gravity leads to modifications to the
dynamics of the Universe at early times. In [2] it has been
shown that, in the radiation era, the Friedmann equation is
given by

H2 ¼ 8�Gc2

3�
� fð~�Þ; (3)
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fð~�Þ¼
�
~��1þð1þ ~�Þ1=2ð3� ~�Þ3=2

33=2

�
�ð1þ ~�Þð3� ~�Þ2

ð3þ ~�2Þ2 ;

(4)

~� ¼ ��=c2, H ¼ _a=a is the Hubble parameter, a is the
cosmological-scale factor and a dot represents a derivative
with respect to the physical time t. Two stationary points
with H ¼ 0 at ~� ¼ 3 and ~� ¼ �1 were identified, for
positive and negative �, respectively. For small ~� one
recovers the usual dynamics with

H2 ¼ 8�G�=3; (5)

but for values of ~� of order unity the dynamics is severely
modified. In this paper we shall assume that � > 0, so that
~� > 0 in order to avoid instabilities associated with an
imaginary, effective sound speed (see Sec. III).

A. Primordial nucleosynthesis constraint

Up to one second after the big bang, protons and neu-
trons were in thermal equilibrium. However, about one
second after the big bang the temperature T drops below
1 MeV and the neutron-proton interconversion rate
(�G2

FT
5, where GF is the Fermi coupling constant) be-

comes smaller than expansion rate (H). This leads to the
approximate freeze out of the ratio between the number of
neutrons and the number of protons tnuc � 1 s after the
big bang, except for free neutron decay. Although the
formation of 4He is delayed until the temperature of
the Universe is low enough for deuterium to form (at about
T ¼ 0:1 MeV), it is crucial that the dynamics of the
Universe at the start of the primordial nucleosynthesis
epoch (tnuc � 1 s) is very close to the standard one in order
that the good agreement between primordial nucleosynthe-
sis predictions and observed light element abundances is
preserved (see [19] for a recent review). This implies
that the following very conservative constraint must be
satisfied:

~� nuc ¼ ��nuc

c2
< 3; (6)

with �nuc ¼ �ðtnucÞ. Hence, taking into account that
�nuc � 3H2

nuc=ð8�GÞ, Eq. (6) implies that

� < 8�GR2
Hnuc � 6� 108 m5 kg�1 s�2; (7)

where Hnuc ¼ HðtnucÞ, the Hubble radius is defined by
RH ¼ cH�1, and its value at the nucleosynthesis epoch is
RHnuc � R� � 2 light seconds (R� is the solar radius). The
constraint in Eq. (7) may be improved by almost an order
of magnitude by requiring that the variation of the Hubble
parameter at tnuc � 1 s, with respect to the standard model
value, is less than 10%. Primordial nucleosynthesis pro-
vides the strongest cosmological constraint on the EiBI
theory of gravity. In the next section we shall show that the
constraint in Eq. (7) might be improved by several orders
of magnitude by taking into account the mere existence of
compact, round astronomical objects.

III. LINEAR EVOLUTION OF DENSITY
PERTURBATIONS

In this section we shall consider the nonrelativistic
regime and generalize the Zel’dovich approximation
[20], for the evolution of cold-dark matter density pertur-
bations in an expanding background, to account for the
modification to the Poisson equation in Eq. (1). Here we
shall consider times much later than tnuc and, consequently,
the background evolution of the Universe is that of the
standard cosmological model.
The trajectory of the cold-dark matter particles in a

homogeneous and isotropic Friedmann-Robertson-Walker
background can be written as

~r ¼ aðtÞ½ ~qþ ~c ð ~q; tÞ�; (8)

where ~q is the unperturbed comoving position and ~c ð ~q; tÞ
is the comoving displacement. Calculating the first deriva-
tive of Eq. (8) with respect to the physical time, one obtains

~v ¼ H~rþ ~vpec; (9)

where ~v ¼ _~r and ~vpec ¼ a
_~c is the peculiar velocity.

The gravitational acceleration felt by the cold-dark mat-
ter particles is equal to

~a � €~r ¼ �r�; (10)

where � is given by a generalized Poisson equation

r2� ¼ 4�Gð ��þ 3 �pþ ��mÞ þ �

4
r2�m; (11)

where ��m � �m � ��m, �m is the matter density, ��m is the
average matter density, �� is the average density, and �p is
the average pressure. Equation (11) generalizes Eq. (1) to
account for a homogeneous cosmological background with
an arbitrary equation of state. However, the two equations
are equivalent if �p ¼ 0.
Mass conservation requires that

��ma
3d3q ¼ �md

3r; (12)

where the infinitesimal volume elements d3r and d3q are
related by

d3r

d3q
¼

��������
@~r

@ ~q

��������
¼ a3

�
1þX

i

c i;i þ . . .

�

� a3ð1þ ar � ~c Þ; (13)

a comma denotes a partial derivative with respect to the
comoving coordinates and the approximation is valid up to
first order in the comoving displacement. Hence,

���ar � ~c ; (14)

where � � ��m= ��m. Integrating Eq. (11) one obtains the
first-order solution
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r� ¼ 4�Gð ��þ 3 �pÞ
3

~r� 4�G ��ma ~c k þ � ��m

4
r�; (15)

with ~c ¼ ~c k þ ~c? where ~c k and ~c? are the irrotational

and divergence parts of the comoving displacement,

respectively, (r� ~c k ¼ ~0 and r � ~c? ¼ 0). A more gen-

eral solution may be obtained by adding to the right-hand
side of Eq. (11) the term r’ where ’ is an arbitrary scalar
field satisfying the Laplace equation r2’ ¼ 0. For sim-
plicity, we shall ignore that extra term since it will not have
any impact on our conclusions. Using the Rachaudhury
equation

€a

a
¼ � 4�Gð ��þ 3 �pÞ

3
; (16)

together with Eqs. (8), (10), and (15), one may show that

€~c þ 2H
_~c � 4�G ��m

~c k ¼ �� ��m

4a
r�: (17)

Decomposing Eq. (17) into its parallel and perpendicular
components one finds

€~c k þ 2H
_~c k � 4�G ��m

~c k ¼ � 1

a

�

4
r�m; (18)

€~c ? þ 2H
_~c? ¼ 0: (19)

Integrating Eq. (19) one finds that ~vpec? ¼ a
_~c pec? / a�1,

which simply expresses the conservation of angular
momentum. On the other hand, using Eqs. (14) and (17),
one finally obtains an equation for the evolution of the
cold-dark matter density perturbations

€�þ 2H _�� 4�G ��m� ¼ c2seffr2�; (20)

where c2seff ¼ � ��m=4 is the effective sound speed squared

of the cold dark matter in the EiBI theory of gravity.
In Fourier space one obtains

€� ~k þ 2H _�~k �
�
4�G ��m � k2c2seff

a2

�
�~k ¼ 0; (21)

where ~k is the comoving wave number and k ¼ j ~kj. In this
paper we assume that c2seff > 0, or equivalently � > 0, in

order to avoid unwanted instabilities associated with an
imaginary effective sound speed.

A. Astrophysical constraints

An effective Jeans length can be defined for the cold
dark matter as

�Jeff ¼ 2�a

kJeff
¼ cseff

ffiffiffiffiffiffiffiffiffiffi
�

G ��m

s
¼

ffiffiffiffiffiffiffi
��

4G

r
� R�; (22)

where kJeff is the value of k for which the term within

brackets in Eq. (21) is equal to zero. The effective Jeans
length for the cold dark matter in the EiBI theory of gravity
defines the critical scale below which the collapse of
pressureless dust is no longer possible (for wavelengths

� < �Jeff � R� matter fields oscillate coherently).

Consequently, �Jeff determines the minimum scale of

compact objects which are held together by gravity (note
that including pressure increases the Jeans scale). The
demonstration that �Jeff is independent of the matter

density, being approximately equal to the fundamental
scale of the theory R� is one of the key results of this paper.
By requiring that �Jeff is equal to the Schwarzchild

radius rs,

�Jeff ¼
ffiffiffiffiffiffiffi
��

4G

r
¼ 2GM

c2
¼ rs; (23)

one obtains the critical mass above, which pressureless
compact stars are unstable against collapse into a black
hole

M ¼
ffiffiffiffi
�

p
4

�1=2c2G�3=2 �M�; (24)

which is essentially equal to the fundamental mass of the
theory M�. The fundamental density, given by

�� ¼ M�
R3�

¼ c2

�
� c2

G
��2
eff; (25)

provides an estimate of the maximum density attainable
inside stable compact stars (note that adding pressure in-
creases the Jeans scale, leading to a decrease of the maxi-
mum density with respect to the pressureless case).
By requiring that �Jeff is smaller than the solar radius

R�, one obtains the following conservative constraint:

� <
4

�
GR2� � 3� 107 m5 kg�1 s�2; (26)

which is about 2 orders of magnitude weaker than that
derived in [18], where a detailed model for the structure of
the Sun has been considered. However, much stronger
constraints on � may be obtained by considering smaller
astrophysical objects.
There are several natural satellites in the Solar System,

which are massive enough to relax to a rounded shape
through their internal gravity. Some of them have radii of
the order of 100 km [21]. Substituting R� by R ¼ 100 km
in Eq. (26) improves the � constraint by more than 7 orders
of magnitude. On the other hand, neutron stars [22] with a
typical radius of about RNS � 12 km (nearly 5 orders of
magnitude smaller than R�) are also held together by
gravity. They have core densities which are predicted to
be larger than �c � 1017 kgm3. By requiring that �� >
1017 kgm3 one obtains the constraint � < 1 m5 kg�1 s�2

which is similar to the one obtained in [17], considering a
relativistic model for internal structure of the neutron star.
An even tighter constraint may be obtained by requiring
that the minimum scale of compact objects which are held
together by gravity �Jeff � R� is smaller than 12 km.

Substituting R� by R ¼ 12 km in Eq. (26) one obtains
the constraint
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� < 10�2 m5 kg�1 s�2; (27)

which is more than 9 orders of magnitude stronger than the
limit given in Eq. (26) and more than 7 orders of magnitude
tighter than the solar constraints obtained in [18]. Equation
(27) also strengthens the constraint given in [17] by 2
orders of magnitude.

IV. CONCLUSIONS

In this paper we determined astrophysical and cosmo-
logical constraints on a recently proposed EiBI theory of
gravity. Using a generalized version of the Zel’dovich
approximation, we have shown that, in this theory, a pres-
sureless, cold-dark matter fluid has a nonzero effective
Jeans length. We used this result to provide a physical
interpretation of the fundamental length R�, mass M�,
and density �� of the theory and to obtain stringent limits
on �, the only additional parameter of theory with respect
to general relativity.

The cosmological and astrophysical constraints can be
summarized as � & GR2, where R is either the Hubble
radius at the onset of primordial nucleosynthesis
(tnuc � 1 s) or the scale of compact objects, which are
held together by gravity. The strongest astrophysical limit
(� < 10�2 m5 kg�1 s�2) is about 10 orders of magnitude
stronger than big bang nucleosynthesis constraints, yield-
ing a constraint on the fundamental mass (M� < 5M�) and
density (�� > 9� 1018 kgm�3) of the theory. These limits
imply that large changes with respect to the dynamics of
the standard cosmological model in the early Universe are
expected in the context of the EiBI theory of gravity but
only for cosmic times t < 10�5 s.
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