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I. INTRODUCTION

General Relativity (GR) can account, in the context of
the cosmological standard model, for all cosmological
observations provided two unknown constituents, dark
energy (�DE ’ 0:73) and dark matter (�DM ’ 0:22) are
considered in the stress-energy tensor of Einstein field
equations. Given that the nature of dark energy and dark
matter is unknown it is quite natural that alternative theo-
ries of gravity are considered alongside with proposals for
dark energy and dark matter (see e.g. Refs. [1–3]).

In this respect, a particularly interesting alternative to
GR is the broad class of theories arising from replacing the
linear dependence of scalar curvature in the action of GR
by a more general function, the so-called fðRÞ theories [4].
In the context of this extension, one might also question the
assumption that gravity is coupled nonminimally with
matter [5,6]. A nonminimally coupling between matter
and curvature gives rise to a deviation of the geodesic
motion of test particles, nonconservation of the stress-
energy tensor and many other striking features. These
also include the breaking of the degeneracy of the
Lagrangian densities which, in GR, give rise to the
stress-energy tensor of the perfect fluid [7], deviation
from the hydrodynamic equilibrium of stars [8], mimick-
ing of dark matter in galaxies [9] and clusters of galaxies
[10], of dark energy at cosmological scales [11] and some-
what more natural conditions for preheating in inflationary
models [12]. It is also shown that the nonminimal coupling
between matter and curvature can be interpreted, under
conditions, as an effective pressure leading to a general-
ization of the Newtonian gravitational potential in the weak
field limit [13], and to mimic a cosmological constant for a
suitable matter distribution [14].

In this work we examine the role played by the non-
minimal coupling in wormhole geometries, namely tra-
versable wormholes, and on the possibility of generating

closed timelike curves (CTCs). Wormholes in classical GR
are rather exotic objects. In order to ensure that gravity is
attractive the Raychaudhuri’s equation for the expansion of
a congruence of geodesics defined by a tangent vector field
u� states that R��u

�u� � 0, which, using Einstein’s equa-

tions, implies that ðT�� � T
2 g��Þu�u� � 0. This last con-

dition is usually referred to as strong energy condition and
it directly implies the null energy condition (NEC), which
states that T��k

�k� � 0 where k� is a null vector. The

NEC, if applied for instance to a perfect fluid, implies that
�þ p � 0. However, in order to have wormhole solutions
it is required the violation of the NEC in a region contain-
ing the wormhole throat [15].
On the other hand, there are two other conditions that are

verified by the stress-energy tensor of all known types of
matter: the dominant energy condition (DEC) which im-
plies for a perfect fluid that � > 0 and p 2 ½��; ��, mean-
ing that the sound velocity cannot exceed the speed of
light, and the weak energy condition which states that
� > 0 and �þ p > 0. The DEC implies the weak energy
condition and this implies the NEC. Thus, if the NEC is
violated the three other energy conditions are also violated.
In GR, this implies that exotic and unknown forms of
matter are needed to obtain wormhole solutions so that
observers perceive negative energy densities.
One of the most striking features of stable wormhole

solutions is that one can generate CTCs from them [16].

This can give origin to controversy and one can wonder

whether traversable wormholes can be realistically cre-

ated [15]. Given the above requirements on the energy

density and pressure, several effects of quantum nature

have been invoked. For instance, it has been argued that

these exotic behaviors might arise, due to the Casimir

effect, gravitational backreaction and other effects.

However, given that these effects most often lead to

instabilities that prevent wormhole and CTCs, they ac-

tually turn impossible any form of time travel (see

Ref. [17] for a review). As we shall see, CTCs out of

wormhole solutions can be obtained, under conditions, in

the context of nonminimal curvature-matter coupled

theories even for ordinary matter.
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The present work extends the results of Refs. [18,19],
where exact wormhole solutions were obtained for a trivial
redshift function, the function that defines the g00 compo-
nent of the metric. As will be seen, theories of gravity with
nonminimal matter-curvature coupling admit solutions that
violate the NEC even for ordinary matter for the most
general type of wormholes, and these can give origin to
CTCs.

This paper is organized as follows: Section II presents a
brief outline of the nonminimal curvature-matter coupling
in fðRÞ theories of gravity. In Sec. III, we introduce the
wormhole geometry supported by this type of modified
theories of gravity. We consider the field equations for a
perfect fluid. In Sec. IV, we look for traversable wormhole
solutions in some specific limits. We analyze the violation
of the NEC and we relate it with the possibility of time
travel. In Sec. V, we discuss our results and present our
conclusions.

II. NONMINIMAL CURVATURE-MATTER
COUPLING IN fðRÞ THEORIES

The action for a nonminimal curvature-matter coupling
in fðRÞ theories is given by [5]

S ¼
Z �

1

2k
f1ðRÞ þ ð1þ �f2ðRÞÞLM

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where k2 ¼ 8�G, f1, f2 are arbitrary functions of the
scalar curvature, R, and LM is the matter Lagrangian
density. The coupling constant � characterizes the strength
of the interaction between curvature and matter and has
suitable units. Notice that theories with similar features
have also been examined in the context of late time-
accelerating universes [6].

Varying the action with respect to the metric, we obtain
the field equations and adapting that k2 ¼ 1:

F1ðRÞR���1

2
f1ðRÞg��

¼r�r�F1ðRÞ�g��hF1ðRÞþ2�ð����R��ÞLMF2ðRÞ
þð1þ�f2ðRÞÞTðmÞ

�� ; (2)

where Fi � dfiðRÞ
dR , ��� � r�r� � g��h and TðmÞ

�� is the

usual stress-energy tensor of matter defined as

TðmÞ
�� ¼ �2ffiffiffiffiffiffiffi�g

p �ð ffiffiffiffiffiffiffi�g
p

LMÞ
�ðg��Þ : (3)

Equation (2) can be rewritten in a more conventional
form in terms of the Einstein’s tensor

R�� � 1

2
Rg�� � G�� ¼ Teff

��; (4)

where the effective stress-energy tensor has been defined as

Teff
�� ¼ 1

F1

��
r�r� � g��

�
hþ 1

2
R

��
F1ðRÞ

þ 1

2
g��f1ðRÞ þ 2�ð��� � R��ÞLMF2ðRÞ

þ ð1þ �f2ðRÞÞTðmÞ
��

�
: (5)

Applying the Bianchi identity, r�G�� ¼ 0, in Eq. (2)

and using the relation

ðhr� �r�hÞFi ¼ R��r�Fi; (6)

we obtain for the stress-energy tensor of matter

r�TðmÞ
�� ¼ �F2

1þ �f2
½g��LM � TðmÞ

�� �r�R; (7)

meaning that its covariant derivative does not vanish
automatically.
Equation (7) implies that the motion of a test particle is

nongeodesic as an extra force shows up [5]

dU�

ds
þ �

�
��U

�U� ¼ f�: (8)

For the specific case of a perfect fluid with stress-energy
tensor given by

TðmÞ
�� ¼ ð�þ pÞU�U� þ pg��; (9)

where � is the energy density, p is the pressure and U� the

4-velocity, the extra force is given by [5]

f� ¼ 1

�þ p

�
�F2

1þ �f2
ðLM � pÞr�Rþr�p

�
h��;

(10)

where h�� ¼ g�� þU�U� is the projection operator.

III. TRAVERSABLE WORMHOLE GEOMETRIES
SUPPORTED BY THE NONMINIMAL
CURVATURE-MATTER COUPLING

A. Wormhole metric and the gravitational
field equations

We consider the wormhole metric written as
follows [15]:

ds2 ¼ �e2�ðrÞdt2 þ dr2

1� bðrÞ
r

þ r2ðd	2 þ sin2	d
2Þ;

(11)

where �ðrÞ and bðrÞ are arbitrary functions, usually re-
ferred to as redshift and shape functions, respectively. The
radial coordinate has specific properties. Contrary to the
proper length, l, which is monotonic and that vanishes at
the wormhole throat, the radial coordinate is defined only
in the interval ½r0;þ1� where it is nonmonotonic with a
minimum at the wormhole throat, r0. At this point we have
a coordinate singularity: bðr0Þ ¼ r0.
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Furthermore, functions�ðrÞ and bðrÞ must satisfy some
additional constrains [15]: (1) The so-called flaring out
condition implies that at or close to the throat, ðbðrÞ �
b0ðrÞrÞ=b2ðrÞ> 0. This is the constraint that induces the
violation of the NEC; (2) Moreover, in order to have a
proper length function that is finite and well behaved, the

condition 1� bðrÞ
r � 0 must be satisfied everywhere;

(3) Finally, functions �ðrÞ and bðrÞ should also verify
the condition ðr� bðrÞÞ�0ðrÞ ! 0 as r ! r0, which
follows from the finiteness of the energy density �ðrÞ
and b0ðrÞ.

These conditions, for functions �ðrÞ and bðrÞ, ensure
sensible wormhole solutions. But if the goal is to obtain a
traversable wormhole, the existence of horizons must be
prevented. Hence, the redshift function �ðrÞ must remain
finite everywhere and should vanish as we approach
asymptotic flat regions. Additionally, there are a few quan-
titative conditions that must be verified concerning the
duration of the hypothetical journey through the wormhole
and about the forces felt by the hypothetical traveler. These
constraints are discussed in great detail in Ref. [15].

B. Energy conditions

A wormhole must violate the NEC, and in GR this
translates into the condition T��k

�k� < 0 in the vicinity

of the wormhole throat. In a theory with nonminimal
curvature-matter coupling, the energy conditions were
studied in Ref. [20] and the condition to have wormhole
solutions translates into Teff

��k
�k� < 0 as follow from

Eq. (4). This is a fundamental feature of our analysis since
it allows, in principle, for some values of the nonminimal
coupling parameter �, to violate the NEC while satisfying
for the stress-energy tensor of matter the condition:

TðmÞ
�� k�k� � 0. Furthermore, wormhole solutions can be

obtained even if matter satisfies the DEC.

C. Time machines

Once a wormhole solution has been obtained, it can be
shown that one can convert it into a time machine. For
instance, following Ref. [16] one way of doing such con-
version consists in accelerating one of the wormhole
mouths close to the speed of light and then revert its motion
to its original location. This acceleration can be achieved
by gravitational or electromagnetic means. The metric that
describes this procedure, within the accelerated wormhole
and outside but near its mouths, is given by

ds2 ¼ �ð1þ gðtÞlFðlÞ cos	Þe2�dt2 þ dl2

þ r2ðd	2 þ sin2	d
2Þ;

where l is the proper length, � is the same redshift func-
tion, FðlÞ is a form factor that localizes the acceleration in
one of the wormhole mouths and gðtÞ is the acceleration of

that mouth as measured by its own asymptotic frame. Some
other alternative ways of producing time machines are also
described in Ref. [17]. In summary, the construction of a
time machine requires three indispensable steps: a stable
traversable wormhole, a time shift between the two
mouths, and a pull to bring them close together
adiabatically.
The procedure of inducing a time-shift implies some

additional conditions on the type of acceleration applied
to the wormhole mouth in order to keep it traversable and
stable. But the subtle point here is that there is no addi-
tional constraints on the geometry. This means that a stable
traversable wormhole yields CTCs. As we shall see, in
theories with a nonminimal coupling between matter and
curvature, stable configurations that allow for time travel
can be obtained even for ordinary matter, that is, matter
that satisfy the DEC.

IV. RESULTS

A. Specific case: f1ðRÞ ¼ f2ðRÞ ¼ R

The field Eqs. (4) are very complex, and following
Ref. [19], we consider the simplest case of f1ðRÞ ¼
f2ðRÞ ¼ R and introduce to start with the stress-energy
tensor of an anisotropic distribution of matter given by

T�� ¼ ð�þ ptÞU�U� þ ptg�� þ ðpr � ptÞ���� (12)

where U� is the 4-velocity, �� is the unit spacelike vector

in the radial direction, i.e., �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðrÞ

r

q
��

r, �ðrÞ is the
energy density, prðrÞ is the radial pressure measured in the
direction of �� and ptðrÞ is the tangential pressure mea-
sured in the orthogonal direction to ��.
A relevant point is that there are various Lagrangian

densities compatible with the equation of state of a perfect
fluid [7]. Here we chose LM ¼ ��ðrÞ [8].
Having specified f1ðRÞ and f2ðRÞ, Eq. (4) simplifies to

G�� ¼ ð1þ �RÞTðmÞ
�� þ 2�ð�R�� �����Þ (13)

where, for the wormhole metric Eq. (11), the Ricci scalar is
given by

R ¼ 2b0

r2
� 2

�
1� b

r

��
�00 þ�0

r

�
2� b0r� b

2rð1� b
rÞ
�
þ ð�0Þ2

�
:

(14)

Equation (13) gives rise to the following gravitational
field equations:

b0

r2
þ 2�

�
1� b

r

��
�00 þ �0

r2

�
2r� b0r� b

2ð1� b
rÞ
��

� �

�
1þ 2�b0

r2

�
¼ 0; (15)
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pr�

�
2b0

r2
� 2

�
1� b

r

��
�00 þ�0

r

�
2� b0r� b

2rð1� b
rÞ
�
þ ð�0Þ2

��
þ 2��

�
��00

�
1� b

r

�
þ b0r� b

2r2
�0

�
�
1� b

r

�
ð�0Þ2 þ b0r� b

r3

�
þ pr þ b

r3
þ

�
1� b

r

��
2�0

r
þ 2��0

�
�0 þ 2

r

��
¼ 0; (16)

ptr
2�

�
2b0

r2
� 2

�
1� b

r

��
�00 þ�0

r

�
2� b0r� b

2rð1� b
rÞ
�
þ ð�0Þ2

��
þ 2��

�
b0rþ b

2r
� r�0

�
1� b

r

��

þ prr
2 � b

2r
þ b0

2
þ 2�r2

�
1� b

r

��
�00 � �0

�
b0r� b

2r2ð1� b
rÞ
� 1

r
��0

��

� r2
�
1� b

r

��
�00 þ�0

r

�
1� b0r� b

2rð1� b
rÞ
�
þ ð�0Þ2

�
¼ 0: (17)

That is, we have three Eqs. involving five unknown
functions of r, i.e., �ðrÞ, prðrÞ, ptðrÞ, bðrÞ, �ðrÞ. Thus,
we have to simplify our problem. An interesting possibility
is to consider an isotropic pressure (pr ¼ pt) and specify a
simple and plausible energy density function �ðrÞ thread-
ing the wormhole.

Notice that Eq. (15), relating the functions bðrÞ and �ðrÞ,
can be integrated before any simplification:

bðrÞ ¼
�Z regðrÞð��rþ 2��00rþ 4��0Þ

�ð�0rþ 2�Þ � 1
drþ C

�
(18)

where C is an integration constant and gðrÞ is a function
defined as

gðrÞ ¼ �
Z 3�0 þ 2�00r

�ð�0rþ 2�Þ � 1
dr: (19)

B. Specific solutions

Following the procedure described above, we consider
for pr ¼ pt two different energy densities.

1. Constant and localized energy density

First, we examine the case of a constant energy density
localized within the region r < r2

�1ðrÞ ¼
�
�0; r < r2
0; r > r2

(20)

where r2 is an arbitrary radial coordinate which we will fix
later in order to better determine our problem.

With these conditions and neglecting any possible ef-
fects arising from the discontinuity of the energy density at
r ¼ r2, we obtain the following shape function bðrÞ from
Eqs. (18) and (19):

b1ðrÞ ¼
�
Ar3 þ C1; r < r2
C2; r > r2

(21)

where A ¼ ��0=3ð2�0�� 1Þ and C1, C2 are integration
constants. Imposing b1ðr0Þ ¼ r0, it allows us to fix C1 as

C1 ¼ r0 þ �0r
3
0

3ð2��0 � 1Þ : (22)

From the continuity at r ¼ r2, it follows that

C2 ¼ �0

3ð2��0 � 1Þ ðr
3
0 � r32Þ þ r0: (23)

Moreover, we can set C2 ¼ 0 by a suitable choice of r2.
Of course, the obtained shape function must satisfy the

conditions discussed in Sec. III A. Therefore, the parame-
ters of the theory are constrained by some inequalities. The
shape function Eq. (21) satisfies automatically all but the
flaring out condition. On its turn, the flaring condition
implies that

�0

ð2��0 � 1Þ >� 1

r20
: (24)

2. Exponentially decaying energy density

The second case is an energy density given by

�2ðrÞ ¼ �0r0
r

e�ððr�r0Þ=ð
ffiffiffiffi
2�

p ÞÞ; (25)

which satisfies the differential equation ��2rþ 2��00
2rþ

4��0
2 ¼ 0 that appears in Eq. (18). The solution for �2ðrÞ is

real only if � � 0. This choice for the energy density
implies that the shape function is constant and given by

b2ðrÞ ¼ r0 (26)

due to the condition b2ðr0Þ ¼ r0.
The obtained shape function satisfies the conditions

discussed in Sec. III A.

C. Solutions for the redshift function �ðrÞ
and the pressure pðrÞ

Using the matter distribution Eq. (20), the condition
that pr ¼ pt and the solution Eq. (21), we are left with
Eqs. (16) and (17) and two unknown functions
ð�ðrÞ; pðrÞÞ. Using these equations, we can eliminate the
pressure to obtain a nonlinear differential equation for the
redshift function �ðrÞ:
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ð1� 2��Þ
�
3b� b0r

2r
��0 b

0r� b

2

�
þ r

�
1� b

r

�
ð1� 2��Þ

�
�00 þ ð�0Þ2 þ�0

r

�
r

þ r

�
1� b

r

�
½2�0 þ 2�ð�0 � �00rÞ� þ ��0ðb0r� bÞ ¼ 0: (27)

This is a very complex equation and an analytical solu-
tion to �ðrÞ is out of reach. However, we are only inter-
ested in two limits: the vicinity of the wormhole throat,
where the violation of the NEC is supposed to take place;
and at infinity, where the solution is asymptotically flat.

In the vicinity of r ¼ r0, ð1� bðrÞ
r Þ ! 0 and in this limit

we obtain a simpler differential equation:

ð1� 2��Þ
�
3b� b0r

2r
� b0r� b

2
�0

�
þ ��0ðb0r� bÞ ¼ 0:

(28)

In the first case, using Eqs. (20) and (21) and assuming
that ð1� 2��0Þ � 0, which has to be satisfied in order to
achieve a well-defined shape function, it follows that

�1ðrÞ ¼ log

�
C1

r3
� 2A

�
þ C3; (29)

where C3 is an integration constant.
Notice that the condition ðr� b1Þ�0

1 ! 0 is satisfied as
r ! r0. Concerning the limit r ! þ1, b1ðrÞ ¼ �1ðrÞ ¼ 0
by Eqs. (20), (21), and (23), and we also expect that
rð�0

1Þ2 � �0
1. Hence, Eq. (27) simplifies to

r2�00
1 þ 3r�0

1 ¼ 0; (30)

whose solution is

�1ðrÞ ¼ � C4

2r2
þ C5; (31)

where C4, C5 are integration constants. Setting C5 ¼ 0, we
can easily see that �1ðrÞ ! 0 as r ! þ1 as it should. We
can also verify that the nonlinear terms are negligible in
this limit.

Substituting the solution for�1ðrÞ back into Eq. (16) we
obtain an algebraic equation for the pressure. The solution
is obtained following the same procedure. Close to the

wormhole throat we neglect the terms in ð1� b1ðrÞ
r Þ to

obtain

p1ðrÞ ¼ �Ar3 þ C1 þ 2��0½2Ar3 þ C1

2 �
½r2 þ �ð6Ar3 þ 3C1

r Þ�r : (32)

So that in the limit r ! þ1, once again we can neglect
the nonlinear terms to obtain

p1ðrÞ ¼ � 2C4

r4 þ 4�C4

; (33)

which vanishes for r ! þ1.
Concerning the second energy density given by Eq. (25),

using Eq. (26), we have that in the vicinity of r ¼ r0,

ð1� b2ðrÞ
r Þ ! 0 and in this limit the redshift is given by

�2ðrÞ ¼ �2 logðrÞ � logð2��0r0e
�ððr�r0Þ=ð ffiffiffiffi

2�
p ÞÞ � rÞ þ C5;

(34)

whereC5 is an integration constant. In order to have a well-
defined redshift function one has to ensure that

2��0r0e
�ððr�r0Þ=ð ffiffiffiffi

2�
p ÞÞ � r > 0 near the wormhole throat,

which translates into the condition 2��0 > 1.
Notice that the condition ðr� b2Þ�0

2 ! 0 is satisfied as
r ! r0. Concerning the limit r ! þ1, the energy density
�2ðrÞ decays very fast, hence, it can be neglected along
with its derivatives. Moreover, we can depreciate the terms
in b2=r in comparison to the unity and also ð�0

2ðrÞÞ2 in
comparison to �00

2 ðrÞ. Thus, Eq. (28) simplifies to

r2�00
2 þ 3r�0

2 þ
3b2
r

¼ 0; (35)

whose solution is

�2ðrÞ ¼ 3r0
2r

� C6

2r2
þ C7; (36)

where C5, C6 are integration constants. Setting C7 ¼ 0, it
can be easily seen that �ðrÞ ! 0 as r ! þ1 as it should.
We can also verify that our considerations in neglecting
some terms are consistent.
Substituting the solution for �2ðrÞ back into Eq. (16)

leads to an algebraic equation for the pressure. The solu-
tion is obtained following the same procedure. Close to the

wormhole throat, we neglect the terms in ð1� b2ðrÞ
r Þ to

obtain

p2ðrÞ ¼ ��2ðr�0
2 þ 2Þ � 1

rðr2b2 � ��0
2Þ

: (37)

Once again, in the limit r ! þ1 we can neglect the
energy density and its derivatives along with terms such as
b2=r in comparison to unity to obtain

p2ðrÞ ¼ � b2 þ 2�0
2r

2

r3
; (38)

which vanishes for r ! þ1.

D. Violation of the NEC

Finally, we analyze the energy conditions of the ob-
tained solutions. This analysis consists in verifying if the
violation of the NEC at the vicinity of the wormhole throat,
that is

Teff
��k

�k� < 0 (39)
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with k� being a null vector. For simplicity, we choose k� to

be radial. In the limit r ! r0, where ð1� bðrÞ
r Þ ! 0, the

inequality Eq. (39) yields

ð�þ pÞ
�
1þ 2�b0

r2

�
þ �

r2
ðb0r� bÞ

�
�
�0 þ 2�

r
þ�0ð�þ pÞ

�
< 0: (40)

Restricting to the throat itself, at r ¼ r0, for the first case,
after using Eqs. (21), (29), and (32), the NEC condition is
equivalent to

r20�0

�
1� 2��0

2��0 � 1

�
< 1: (41)

If the matter threading the wormhole satisfies �0 > 0, from
Eq. (41) it follows for �:

� <
1� �0r

2
0

2�0

or � >
1

2�0

: (42)

The first condition is incompatible with Eq. (24). However,
the second one is always compatible. Furthermore, from
the DEC, jpðr0Þj< �0, which, for � > 1=2�0, yields

�0 >
1

2�

�
1þ r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ r20

q
�
: (43)

Therefore, we conclude that wormhole solutions are ob-
tained if � > 1=2�0 and for ordinary matter if �0 >

1
2� �

ð1þ r0ffiffiffiffiffiffiffiffiffiffi
2�þr2

0

p Þ. However, we still have to require that �ðrÞ
ensues no horizons and that pðrÞ is well behaved every-
where. But we see that b0ðrÞ has a discontinuity at r ¼ r2

and both the redshift function and the pressure depend on
b0ðrÞ. Therefore, those quantities are ill defined at this point
and that gives rise to problems associated to singularities,
horizons, or unsuitable asymptotic behavior. Therefore,
this wormhole solution is not a traversable wormhole.
For the second case, the inequality Eq. (39) restricted to

the throat itself is satisfied by the 3D surface presented in
Fig. 1. However, in order to transform this wormhole
solution in a traversable wormhole we have to impose
two other constrains. First, we must ensure that the redshift
function Eq. (34) is well defined, which means that
2��0 > 1. Moreover, when we impose the constraint that
the matter should verify at the same time the DEC we
obtain the region depicted in Fig. 2.
Therefore, we conclude from Fig. 2 that there are re-

gions in the parameter space ð�0; r0; �Þ for which travers-
able wormhole solutions with ordinary matter can be
found. The region close to � ¼ 0 is not included in the
solution space. Because of the fact that the functions �2ðrÞ
and b2ðrÞ are C1 functions, the redshift function and the
pressure behave properly in the vicinity of the throat and at
infinity, �ðrÞ and pðrÞ seem to be well behaved for � > 0.
Thus we conclude, in opposition to the first studied energy
density, that a matter distribution as Eq. (25) presents no
horizons and hence the region depicted in Fig. 2 constitutes
the space of traversable wormhole solutions and therefore
of time machines.

V. DISCUSSION AND CONCLUSION

GR admits a rich class of solutions such as wormholes
and CTCs. Despite the healthy skepticism about the exis-
tence and stability of these solutions, the search of stable
wormhole configurations and CTCs is a topic of great
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FIG. 1 (color online). Region in the parameter space ð�; �0; r0Þ
for which the NEC is violated at the wormhole throat.
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FIG. 2 (color online). Region in the parameter space ð�; �0; r0Þ
for which the NEC is violated and the DEC is satisfied at the
wormhole throat.
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interest. However, the construction of the traversable
wormholes and the formation of CTCs requires in GR
the violation of the NEC, which in turn demands the
existence of exotic and yet unknown forms of matter
threading the wormhole.

In this work, we have sought for traversable wormholes
and CTCs solutions in the context of fðRÞ theories with
nonminimal coupling between curvature and matter. For
simplicity the nonminimal coupling function was chosen to
be linear in the scalar curvature. There were studied two
different energy densities threading the wormhole: one
constant and localized within a certain region and another
decaying and localized near the wormhole throat. The field
equations were then solved for a perfect fluid.

In the first case, the obtained solution for the shape
function and, in the limits r ! r0 and r ! 1, for the
redshift function and the pressure violate the NEC. This
violation ensures that the obtained solution is a wormhole,
and it is verified, at the wormhole throat for a positive
energy density, provided the coupling parameter of the
theory satisfies the condition � > 1=2�0. Furthermore, if
the energy density satisfies the inequality �0 >

1
2� �

ð1þ r0ffiffiffiffiffiffiffiffiffiffi
2�þr2

0

p Þ these wormhole solutions can be obtained

even for ordinary matter. Nevertheless, there is a disconti-
nuity at an arbitrary scale of the problem which is unavoid-
able and transforms the wormhole in a nontraversable one.

Concerning the energy density Eq. (25), the obtained
solution for the shape function and for the redshift function
violates the NEC if the parameters are within a region
shown in Fig. 1. Therefore, this region ensures the exis-
tence of wormhole solutions which can be created even
with ordinary matter if the parameters ð�0; r0Þ and the
coupling parameter of the theory ð�Þ are within the regions
depicted in Fig. 2. The key point is that in this second case
the found solutions are stable configurations and well
behaved, without horizons. So one can conclude that
CTCs are, in this context, unproblematic and allow for
time travel if the quantitative conditions, both for travers-
able wormholes and for the acceleration which produces
the time-shift, are satisfied.
Clearly, our solutions can be obtained if and only if � �

0 and � > 0, i.e. in the presence of the nonminimal cou-
pling. It is thus no surprise that the limit � ! 0 is out of the
solutions space. Of course, our solution reveals that the
onus of generating the wormhole solutions lies on the
magnitude of the nonminimal coupling for a given matter
energy density and wormhole size (cf. condition Eq. (43)).
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