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The generalized second law is proven for semiclassical quantum fields falling across a causal horizon,

minimally coupled to general relativity. The proof is much more general than previous proofs in that it

permits the quantum fields to be rapidly changing with time, and shows that entropy increases when

comparing any slice of the horizon to any earlier slice. The proof requires the existence of an algebra of

observables restricted to the horizon, satisfying certain axioms (determinism, ultralocality, local Lorentz

invariance, and stability). These axioms are explicitly verified in the case of free fields of various spins, as

well as 1þ 1 conformal field theories. The validity of the axioms for other interacting theories is

discussed.
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I. INTRODUCTION

This article will describe a set of physical assumptions
which are sufficient for a semiclassical gravitational theory
to obey the generalized second law (GSL) of thermody-
namics [1]. From these physical assumptions, a proof of
the GSL will be given for rapidly evolving matter fields and
arbitrary horizon slices. This shows that the GSL holds in
differential form, i.e. the entropy is increasing at each
spacetime point on the horizon. As far as I am aware,
this is the first time such a general proof of the GSL has
been given.

The GSL appears to hold on any causal horizon, i.e. the
boundary of the past of any future infinite worldline [2].
Causal horizons include black hole event horizons, as well
as Rindler and de Sitter horizons. The GSL states that on
any horizon, the total entropy of fields outside the horizon,
plus the total entropy of the horizon itself, must increase as
time passes. This total increasing quantity is known as the
generalized entropy.

More precisely, for any complete spatial slice � inter-
secting the horizon H, the generalized entropy of � is
given by

SH þ Sout: (1)

In general relativity, the horizon entropy is proportional to
the area:1

SH ¼ A

4ℏG
j�\H: (2)

The second term is the von Neumann entropy of the matter
fields restricted to the region outside of the horizon:

Sout ¼ �trð� ln�Þj�\I�ðHÞ: (3)

However, this outside entropy term has an ultraviolet di-
vergence at the horizon due to the entanglement entropy of
fields at very short distances. So to define the generalized
entropy, some kind of renormalization scheme must be
employed to subtract off these divergences (cf. Sec. II H).
Historically, the laws of thermodynamics for matter

have provided substantial clues about the microscopic
statistical mechanics of atomic systems. It seems probable
that the GSL will provide similar insight into the statistical
mechanics of spacetime itself [4]. Because quantum grav-
ity is currently outside of our experimental range of detec-
tion, any help which can be obtained from the GSL would
be very useful. The GSL is especially evocative because of
how surprising it is: it essentially says that an apparently
open system (the exterior of the horizon) behaves in
roughly the way that we would expect a closed thermody-
namic system to behave.
There are several different claims that in order for the

GSL to be true, certain restrictions must hold even semi-
classically on e.g. bounds on the entropy and/or number of
particle species proposed by Bekenstein [5], Bousso [6], or
Dvali [7], bounds on the fine structure constant [8], the
unbrokenness of the Lorentz group [9], and/or energy
conditions [10]. If true, these claims hint at important
restrictions on any good theory of quantum gravity.
(However, in my opinion, only the last two of these claims
have been clearly established.) One way to test these
proposed requirements is by proving the GSL, and thus
seeing explicitly what assumptions are necessary. Once
we know what key assumptions are necessary for the
GSL to hold semiclassically, we will be in a better position

*aroncwall@gmail.com
1Because Sout is a c-number, for consistency it is necessary to

interpret SH as a c-number as well. In this article, this will be
done by taking the semiclassical approximation, in which the
area A is a classical quantity, sourced by the expectation value of
a quantum operator. However, this semiclassical approximation
can only be an approximation to the true quantum gravity theory,
in which the area A becomes an operator. In Ref. [3] I argued that
one should then interpret A as being the expectation value of the
quantum area operator.
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to guess background-free constructions of quantum gravity
based on thermodynamic principles.

Until recently, there were satisfactory proofs of the
semiclassical GSL only in the ‘‘quasisteady’’ case in which
the fields falling into the black hole are slowly changing
with time [3]. One such quasisteady argument was the
illuminating but incomplete proof by Sorkin [11] (re-
viewed in Ref. [3]). Sorkin considered the case of a physi-
cal process P (which may involve information loss), with
the property that a thermal state

� ¼ e��H

Z
(4)

evolves to itself under the process:

P ð�Þ ¼ �: (5)

He then invoked a theorem saying that whenever this
happens, the free energy of any other state � cannot
increase under the same time evolution:

ðhHi � TSÞ� � ðhHi � TSÞP ð�Þ: (6)

The free energy can then be related to the generalized
entropy using the ‘‘first law’’ of horizon thermodynamics

dE ¼ TdSH (7)

(which applies only to slowly changing horizons).
Unfortunately, the proof founders when applied to black
holes [3], because the state outside the black hole could
only be shown to be thermal outside of the bifurcation
surface, while a nontrivial application of the GSL requires
time evolution from one slice of the horizon to another
slice. Furthermore, the Hartle-Hawking thermal state exists
only for nonrotating black holes, so there are even worse
problems in applying the proof to Kerr black holes.

My previous proof in Ref. [12] sidestepped these prob-
lems for the special case of (perturbed) Rindler wedges
evolving to other Rindler wedges. In this case it was
possible to show that the GSL holds semiclassically even
for rapid changes to the horizon, at every instant of time,
using a reasonable assumption about the renormalization
properties of Sout. However, this proof was limited to
Rindler horizons sliced by flat planes; it was unable to
reach de Sitter space, black holes, or even arbitrary slices
of Rindler horizons. The basic problem is that the proof
requires not only a boost symmetry of each wedge (in order
to show that the state restricted to the wedge is thermal), it
also needs a null translation symmetry (so that there will be
multiple thermal wedges). But, this is more symmetry than
is possessed by most spacetimes with stationary horizons.

In this article I will generalize the proof to (semiclassical
perturbations of) arbitrary slices� of the future horizonH.
The new ingredient is the technique of restricting the
quantum fields to a null hypersurface. In particular (at least
for free fields) there is an infinite dimensional symmetry
group due to the freedom to reparameterize each horizon

generator separately [13].2 This symmetry will play an
important role in the proof of the GSL in Sec. II F.
Restriction to a null surface is helpful for solving a

variety of quantum field theory (QFT) problems e.g. deep
inelastic scattering in QCD, because of the insight it gives
into the quantum vacuum [14]. The technique was used by
Sewell to derive the Hawking effect in a very illuminating
way [15]. More recently, it has also been used as a simple
way to characterize quantum fields on Schwarzschild past
horizons [16] and future horizons [17], certain past cos-
mological horizons [18], 1þ 1 Rindler horizons [19],
de Sitter horizons [20], and the conformal boundary of
asymptotically flat spacetimes [21].3

The algebra of observables AðHÞ on the horizon plays
an important role in the proof: it is required to exist and
satisfy four axioms described in Sec. II C. In the case of
free fields and 1þ 1 conformal field theories, it will be
shown that there exists a horizon algebra satisfying these
axioms.
In the case of general interacting quantum field theories,

the restriction of the fields to a null hypersurface is a
more delicate matter. Nevertheless, there are reasons to
believe that interacting field theories also satisfy the axi-
oms. At least at the level of formal perturbation theory, the
horizon algebra is completely unaffected by the addition
of certain kinds of interactions, including both nonderiva-
tive couplings, and non-Abelian Yang-Mills interactions.
However, renormalization effects can lead to the introduc-
tion of additional higher derivative couplings, as well as
infinite field strength renormalization. Because of these
issues, it is not completely clear whether general interact-
ing field theories have a null hypersurface formulation.
Some arguments for and against will be given in Sec. VB.
The plan of this article is as follows: Sec. II will outline

the physical assumptions used to prove the GSL, and show
why the GSL follows from them. Section III will describe
in detail the null hypersurface formulation for a free scalar
field. Section IV will generalize these results to free spin-
ors, photons, and gravitons. Section V will discuss what
happens when interactions are included.
Conventions.—The metric signature will be plus for

space and minus for time. On the horizon, y is a system
of D� 2 transverse coordinates which is constant on each
horizon generator, � is an affine parameter on each horizon
generator, and ka points along each horizon generator and
satisfies kara� ¼ 1. When moving off the horizon, u will

2This group is isomorphic to the subgroup of the Bondi-
Metzner-Sachs group which preserves horizon generators.

3Some of this work refers to this principle of restricting to a
null surface by the name of ‘‘holography,’’ because the null
surface has one less dimension than the rest of the spacetime.
But, this use of the term is somewhat misleading when compared
with the normal usage in quantum gravity, in which it refers to
the ability to determine spacetime data from a codimension 2
surface. Holography in this latter sense should normally only
arise when gravitational effects are taken into account.
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be a null coordinate such that the horizon is located at u ¼
0, and v will be a null coordinate which satisfies v ¼ � on
the horizon, such that the metric on the horizon is

ds2 ¼ �dudvþ hijdy
idyj: (8)

To reduce clutter, I will use the notation vaXa � Xv.

II. ARGUMENT FOR THE GSL

A. Outline of assumptions

In order to prove the GSL, I need to make three basic
physical assumptions:

(1) Semiclassical Einstein gravity.—The proof will ap-
ply to the semiclassical regime, in which all physical
effects can be controlled by an expansion in ℏG=�2,
where � is the characteristic de Broglie wavelength
of the matter fields. This expansion is valid when
� � Lplanck. By holding � and G fixed, one can

regard this as an expansion in ℏ. The leading-order
physics is given by quantum field theory on a fixed
classical spacetime. However, at higher orders in ℏ
there are perturbations to the spacetime metric due
to gravitational back-reaction.
These perturbations affect the horizon area A at
Oðℏ1Þ, and therefore affect SH at Oðℏ0Þ. At this
order, the gravitational backreaction will be treated
as a c-number, and will be calculated using the
semiclassical Einstein equation Gab ¼ 8�GhTabi.
It will also be assumed that the matter is minimally
coupled to the metric.

(2) The existence of a null hyperspace formalism.—
Ignoring the backreaction, matter is described by a
quantum field theory on the background spacetime.
This QFT which describes matter must have a null
hypersurface formulation, i.e. there must be a non-
trivial algebra of operators AðHÞ corresponding to
fields restricted to the horizon itself.
This algebra must satisfy four axioms:
Determinism means that all information outside
of the horizon can be predicted from the horizon
algebra AðHÞ together with the algebra AðIþÞ
at future null infinity. Ultralocality means that the
fields on different horizon generators are indepen-
dent, so that the algebra AðHÞ tensor factorizes
for spatially-disjoint open subsets in the trans-
verse y-directions.4 (Because the fields are

distributions it is still necessary to smear them
in the transverse directions to obtain well-defined
operators.) Local Lorentz symmetry means that
the degrees of freedom on each horizon generator
are symmetric under translations and boosts. And
stability is the requirement that the fields on each
horizon generator have positive energy with re-
spect to the null translation symmetry. (These
four axioms will be explicitly shown for free
QFTs in Sec. III and IV.)
In the case of a free field �, this algebra can
contain operators that depend on the pullback of
� to the horizon �ðu ¼ 0Þ, but not on e.g. the
derivative moving away from the horizon
ru�ðu ¼ 0Þ. For this definition, all four axioms
will be shown to hold for fields with various
spins (Secs. III and IV). But, in the case of
interacting fields, it is not clear which operator
(s) should be regarded as the fundamental field.
In this case it will simply be taken as an as-
sumption that there exists some algebra AðHÞ
satisfying these properties. Some tentative argu-
ments for and against this assumption will be
discussed in Sec. V.

(3) A renormalization scheme for the generalized
entropy.—Because the entanglement entropy out-
side of the horizon diverges, any proof that gener-
alized entropy increases must be formal unless this
divergence is regulated and renormalized. Rather
than specify a particular renormalization scheme, I
will simply describe what properties the scheme
must have. The proof of the GSL depends on prov-
ing that the free boost energy K � TS cannot in-
crease as time passes. Formally, this quantity can be
divided into two parts: the boost energy K and the
entropy S. Although K � TS can be rigorously de-
fined and is finite, both K and S suffer divergences
which must be renormalized. It is necessary to as-
sume that, when K is written in terms of the renor-
malized stress-energy tensor, and S is written in
terms of the renormalized entropy, the expected
relationship between these three quantities contin-
ues to hold. Since this property can be rigorously
shown for infinite lattice spin systems [22], it is
reasonable to believe that it also holds for quantum
field theories.

In the remainder of this section, the consequences
of these three assumptions will be described in more
detail.

B. The semiclassical regime

In the semiclassical approximation, we add certain
quantum fields � to the classical spacetime, and use their
expected stress-energy hTabi as a source for an order ℏ

4This is a stronger statement than microcausality, the assertion
that all commutators vanish at spacelike separation. For ex-
ample, ultralocality implies that in the vacuum state, all
n-point functions of the fields vanish at spacelike separations.
This property may be surprising at first to those familiar with
canonical quantization of fields on spacelike surfaces. However,
for free fields on a null surface it obtains because there are no
derivatives in the formulas for the null stress-energy Tkk or the
commutators of fields.
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perturbation to the metric. In the semiclassical limit one
takes ℏ to be small, so that the perturbation to the metric is
small compared to the classical metric.5

The perturbed metric can be expanded in ℏ as:

gab ¼ g0ab þ g1=2ab þ g1ab þOðℏ3=2Þ: (9)

The zeroth order term is the classical background metric,
the half-order term is due to quantized graviton fluctua-
tions, and the first-order term is due to the gravitational
field of matter or gravitons. Since the GSL is an inequality,
in the limit of ℏ ! 0, the truth or falsity of the GSL is
determined solely based on the highest order in ℏ contri-
bution to the time derivative of the generalized entropy.

The backreaction of the quantized fields is the Oðℏ1Þ
part of the metric, and will be calculated using the semi-
classical Einstein equation:

Gab ¼ 8�GhTabi; (10)

in which the Einstein tensorGab is regarded as a c-number,
while the stress-energy tensor Tab is a quantum operator.

A few words are in order about the justification of
Eq. (10). In reality, the metric tensor ought to be quantized
just as the matter fields are. When this is done, one should
use not the semiclassical Einstein equation, but the full
Einstein equation, interpreted as an operator equation.
However, in the linearized weak-field approximation limit,
the semiclassical Einstein equation should be recoverable
from the operator Einstein equation by taking expectation
values of theOðℏ1Þ part of the metric [3]. In addition, there
should be higher order in ℏ corrections to the Einstein
equation, coming from renormalization theory. However,
because this article only treats backreaction at leading
order in ℏ, effects which are higher order in ℏ may be
neglected.

Hence, because this article uses the semiclassical expan-
sion only when controlled by an ℏ expansion, the results
are presumably in correspondence with the full quantum
theory. This regime is much more circumscribed than the
‘‘self-consistent’’ semiclassical solutions of e.g. Flanagan
and Wald [23]. In particular, pathological features such as
runaway solutions are outside of the scope of this regime,
since they show up only when all orders in ℏ become
important.

Semiclassical expansion of the Raychaudhuri equa-
tion.—In the strictly classical ℏ ! 0 limit, the horizon
entropy SH ¼ 1=4Gℏ of the GSL dominates over the Sout
term. For any classical manifold with classical fields

obeying the null energy condition Tkk ¼ 0, the area of
any future horizon is required to be nondecreasing by
Hawking’s area increase theorem [24]. Let � be the expan-
sion of the horizon, and �ab be the shear. Then it follows
from the convergence property of the Raychaudhuri
equation:

rk� ¼ � �2

D� 2
� �ab�

ab � Rkk; (11)

together with the null-null component of the Einstein
equation,

Rkk ¼ 8�GTkk; (12)

and the absence of any singularities on the horizon itself,
that

� � 0: (13)

Furthermore, if any generator of the horizon has nonvan-
ishing null energy or shear anywhere, the entropy is strictly
increasing along that horizon generator prior to that time.
This is the classical area increase theorem.
This classical result can be used to divide the semiclas-

sical GSL into three cases based on the classical Oðℏ0Þ
part of the metric. Either (1) the horizon is classically
growing, (2) it is classically stationary, or (3) it is classi-
cally growing up to a certain time t, after which it
becomes stationary. In case (1), the zeroth order area
increase corresponds to an Oðℏ�1Þ increase in the gener-
alized entropy, which dominates over all other effects.
Therefore the GSL holds. In case (2) quantum effects can
cause the area to decrease, and therefore it is an interest-
ing question whether the GSL holds or not. In case (3),
the GSL must be true before time t, so the only question
is whether it holds after t. But, the GSL after t makes
no reference to anything that occurred before t. Conse-
quently without loss of generality we need consider only
case (2), in which the horizon is always classically sta-
tionary. Any violation of the GSL must come from quan-
tum effects, corresponding to order ℏ0 contributions to the
generalized entropy.6

Since there is no half-order contribution to Tab or
�ab�

ab, the half-order Raychaudhuri equation says

rk�
1=2 ¼ 0: (14)

5The semiclassical ℏ regime invoked here should be distin-
guished from the large N semiclassical regime in which one has
a large number of particle species and takes ℏ ! 0 while holding
ℏN fixed. In that kind of semiclassical regime the quantum
corrections to the metric can be of the same order as the classical
metric, so that it is not possible to regard it as a small perturba-
tion. Proving the GSL in the large N regime will be left for
another day.

6This article will not consider contributions to the generalized
entropy which are higher order in ℏ. In the semiclassical limit,
the only way these higher order corrections could violate the
GSL is if the GSL is saturated at order ℏ0. This would require the
fields on the horizon to be in a special state for which the time
derivative of the generalized entropy is exactly zero at order ℏ0.
Probably the only such equilibrium state is the Hartle-Hawking
state. But, in this state, the GSL holds to all orders in ℏ, by virtue
of time translation symmetry. Thus, the GSL can be expected to
hold to all orders in ℏ, in the semiclassical regime. A more
interesting question is what happens outside the semiclassical
regime, when all orders in ℏ can become equally important.
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We can now write the first-order part of the Raychaudhuri
equation as

rk�
1 ¼ �h�1=2

ab �ab1=2i � 8�hT1
kki: (15)

The �2 term is of order Oðℏ2Þ and is therefore negligible.

If one ignores gravitons, then the shear term �1=2
ab �

ab1=2

can be neglected. On the other hand, in processes in-
volving gravitons, the shear term must be included
(cf. Sec. IVC). The easiest way to handle gravitons is
to lump the shear-squared term in with Tkk as a gravita-
tional analogue of the null energy flux. Below, the stress-
energy tensor should be read as including the shear-
squared term, thus:

rk� ¼ �8�GhTkki: (16)

So when energy falls across the classically stationary
horizon, it makes it no longer stationary at order ℏ1.

Let us now calculate the area A of a slice � cutting the
horizon. A specific slice � may be defined by specifying
the affine parameter � ¼ �ðyÞ as a function of the horizon
generator. In order to calculate the effects of Tkk on the area
Að�Þ of the slice, we use the relation between the expan-
sion and the area:

� ¼ 1

A

dA

d�
¼ A�1rkA; (17)

where A is the area of an infinitesimal cross section of the
horizon. This allows the left-hand side of Eq. (16) to be
rewritten as:

rkA
�1rkA ¼ A�1r2

kA� A�2ðrkAÞ2; (18)

where the second term can be dropped in the semiclassical
approximation because it is nonlinear in rkA. Thus the
linearized Raychaudhuri Eq. (16) can be rewritten as

r2
kA ¼ �8�GhTkkiA: (19)

After integrating this twice in the � direction, one obtains
for the left-hand side of Eq. (19)

Z 1

�
d�0 Z 1

�0
d�r2

kAð�Þ ¼ �
Z 1

�
d�0rkAð�0Þ

¼ Að�Þ � Að1Þ; (20)

by using the fundamental theorem of calculus twice, as
well as applying the ‘‘teleological’’ boundary condition
suitable for a future event horizon:

�ðþ1Þ ¼ 0: (21)

Meanwhile, the identical transformation of Eq. (19)’s
right-hand side is

� 8�G
Z 1

�
d�0 Z 1

�0
d�hTkkiA

¼ �8�G
Z 1

�
hTkkiAð���Þd�: (22)

The final step is to integrate the infinitesimal areas A in
the D� 2 transverse y-directions. One obtains the key
relationship

Að�Þ ¼ Aðþ1Þ � 8�G
Z 1

�
hTkkið���Þd�dD�2y

� 8�GhKð�Þi; (23)

where the area element has been absorbed into the defini-
tion of the transverse integration measure dD�2y.
In the next section it will be seen that Kð�Þ is the

generator of a ‘‘boost’’ transformation on the horizon about
the slice �. Thus the physical interpretation of Eq. (23) is
that, up to an additive constant, the boost energy K is
proportional to the area:

Að�Þ ¼ C� 8�GhKð�Þi: (24)

The constant C can be dropped for purposes of the GSL,
which is only concerned with area differences.
In the special case where � is the bifurcation surface of

the unperturbed horizon, Eq. (23) is the ‘‘physical pro-
cesses’’ version of the first law of black hole thermody-
namics [25], while Eq. (24) indicates that the horizon area
is canonically conjugate to the Killing time [26]. But, to
show the GSL, it is important that these formulas hold even
when � is not the bifurcation surface.

C. Properties of the horizon algebra

As stated above, we are assuming that our matter quan-
tum field theory has a valid null hypersurface initial- value
formalism. That means that there must be a field algebra
AðHÞ which can be defined on the horizon H without
making reference to anything outside ofH. More precisely,
all properties of the algebra must be defined using no more
than (1) some set of quantum field operators � evaluated
on H, (2) the pullback of the metric to H, and (3) an affine
parameter � on each horizon generator (which actually
depends on a Christoffel symbol �v

vv ¼ guv;v in null

coordinates).
Assuming that an algebra can be so defined, one expects

it to obey the four axioms: determinism, ultralocality, local
Lorentz symmetry, and stability. These axioms will be
shown in Secs. III and IV for free fields, but plausibly
follow even for interacting fields, assuming that a null
hypersurface restriction makes sense at all for such fields.
The axiom of determinism says that AðHÞ gives a

complete specification of all information falling across
the horizon, so that together with the information in
AðIþÞ at null infinity one can determine all the informa-
tion outside the event horizon [Fig. 1(a)]. Consequently,
any symmetries of the horizonH will correspond to hidden
symmetries of the theory on the bulk. Thus by working out
the symmetry group of AðHÞ, hidden properties of the
bulk dynamics will become manifest.
The axiom of ultralocality says that the degrees of free-

dom on different horizon generators are independent
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systems. Thus the algebra AðHÞ tensor factorizes across
disjoint regions in the space of horizon generators.

Ultralocality is stronger than microcausality, which
merely asserts that the commutators of fields vanish at
spacelike separation. In particular, in the vacuum state
(whose existence is guaranteed by the other axioms of
local Lorentz invariance and stability), ultralocality im-
plies that all n-point functions of field operators in
AðHÞ vanish when evaluated on n distinct horizon
generators.

This property may be shocking to those who are used to
canonical quantization on a spacelike initial data surface,
because on a spacelike surface it is impossible for any
Hadamard state to have vanishing entanglement across
short spatial distances. In contrast, on a stationary null
surface the vacuum entanglement is arranged solely along
each horizon generator and not between different horizon
generators [13]. In the case of a free field ’, this vanishing
of n-point functions is possible because (1) the null stress-
energy Tkk does not depend on transverse y-derivatives of
the field, but only the null derivative rk’, and (2) the
horizon algebra AðHÞ does not include the field ’ itself
(which has nonvanishing n-point functions at spacelike
separation on the null surface), but only rk’ (which
does not).7

Because ultralocality requires that the different horizon
generators can be treated as independent systems (although
the field operators still need to be integrated in the trans-
verse y-directions to give well-defined operators), the re-
maining two axioms, Lorentz symmetry and stability, can
without loss of generality be applied to each horizon
generator separately.

Local Lorentz symmetry means that the algebra AðHÞ
is invariant under an infinite dimensional group of symme-
tries corresponding to affine transformations of each hori-
zon generator:

�� ¼ aðyÞ þ bðyÞ�; (25)

a and b being functions of y. This is quite a bit more
symmetry than can be possessed by the spacetime in which
H is embedded [Fig. 1(b)]. These secret symmetries of H,
together with the other assumptions, will turn out to imply
the GSL. (In the case of free fields, it will be shown in
Sec. III G that the horizon algebra is also invariant under
special conformal transformations �� ¼ cðyÞ�2, but this
additional symmetry is not required to prove the GSL.)

In order to implement these symmetries, we need not
only the field f but also certain integrals of the Tkk com-
ponent of the stress-energy tensor. This component of the
stress-energy tensor represents the flux of null energy
across the horizon. Since the null energy is the generator

of null diffeomorphisms, Tkk can be integrated to obtain the
generator of affine reparameterizations.
The generator of a null translation �� ¼ aðyÞ is given by

pkðaÞ �
Z

Tkkd�aðyÞdD�2y: (26)

(Here and below, the area element of the horizon will be
considered to be implicit in the integration measure
dD�2y.)
Stability says that so long as aðyÞ> 0, pk � 0. In other

words, the generator of null translations must be non-
negative. By taking the limit in which the amount of trans-
lation is a delta function (aðyÞ ! �D�2ðyÞ), one finds that
stability is equivalent to the average null energy condition
(ANEC) [27], as evaluated on horizon generators;

pkðyÞ �
Z þ1

�1
Tkkd�: (27)

The ANEC is a manifestation of the positivity of energies
in a quantum field theory.8 It is possible to show that the

FIG. 1. (a) An eternal black hole spacetime is shown. The GSL
says that the generalized entropy must increase from time slice 1
to time slice 2. However, all information outside of the horizon
must either fall across the horizon H or else reach future null
infinity Iþ (determinism). Hence one can ‘‘push forward’’ each
of the two time slices to part of H and all of Iþ without losing
any information. In addition to the Killing symmetry which acts
on the horizon as a dilation, there is a translation symmetry of H
(shown as an arrow) which is not a symmetry of the whole
spacetime. (b) A transverse view of H in the same spacetime is
shown. Vertical lines represent horizon generators. Each horizon
generator can be independently translated and dilated (local
Lorentz symmetry); this permits any two slices on H to be
translated into each other, and ensures that region above each
slice on H is thermal with respect to dilations about that slice. In
order to prove the GSL this thermal property is needed for both
slice 1 and slice 2.

7A nice exercise is to demonstrate explicitly, for a free massive
scalar � in Minkowski space, in a null coordinate system
ðu; v; yiÞ that the n-point functions of rv� vanish when eval-
uated on the null surface u ¼ 0 for distinct values of y.

8The ANEC can be derived from the stability of the quantum
field theory by the following argument: any stationary horizon H
can be embedded in a spacetimeM1;1 � ð� \HÞ, where the first
factor is 1þ 1 dimensional Minkowski space, and the second is
some D� 2 dimensional Riemannian manifold. Now suppose
that the quantum fields have their energy bounded below, relative
to time translation on M1;1. By Lorentz symmetry and continu-
ity, the null energy on M1;1 must also be bounded below. All
null energy must eventually cross the horizon H, hence the null
energy on H is bounded below. But, by ultralocality this is only
possible if each horizon generator is separately stable.
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ANEC holds on the null generators of a stationary horizon
by invoking the GSL [10]. Here we go in the converse
direction, using the ANEC to help prove the GSL.

Given any aðyÞ> 0, it is possible to define the vacuum
state j0i on the horizon as being the ground state with
respect to the null energy pkðaÞ [15]. However, in an
ultralocal theory, there can be no interaction between the
different horizon generators. Therefore the state factorizes:
it is a ground state with respect to each pkðyÞ separately.
This means that each possible choice of aðyÞ> 0 defines
the same vacuum state.

We can also perform a dilation �� ¼ bðyÞ�. This sym-
metry is generated by

KðyÞ �
Z

Tkk�d�bðyÞdD�2y: (28)

For any particular spatial slice of the horizon located at
� ¼ �ðyÞ, one can define a canonical ‘‘boost energy’’ K of
the horizon in the region � >�ðyÞ:

Kð�Þ �
Z 1

�
Tkkð���Þd�dD�2y: (29)

The definition of K depends on the slice �ðyÞ in two
different ways: not only does the lower limit of integration
change, but the horizon Killing vector ��� which pre-
serves the slice� also changes. The next section will show
that the vacuum state j0i is thermal in the region � >�ðyÞ
with respect to Kð�Þ, no matter what slice � is chosen
[Fig. 1(b)].

D. Thermality of the horizon

The purpose of this section is to show that j0i is thermal
with respect to boosts when evaluated above any arbitrary
slice � on the horizon. The boost acts geometrically on
each horizon generator y:

ð���ðyÞÞ ! etð���ðyÞÞ: (30)

The axiom of local Lorentz invariance requires that this
geometrical action of the boost correspond to an automor-
phism of the algebra of observables Að� >�Þ localized
above the slice �. This induces a 1-parameter group of
automorphisms 	t acting on operatos in Að� >�Þ.

KMS States.—The thermality of the vacuum state j0i
means that it obeys the Kubo-Martin-Schwinger (KMS)
condition: For any two observables A and B, hB	tðAÞi0
must be an analytic function of z when 0< ImðtÞ< iℏ�,
and also

hABi0 ¼ hB	iℏ�ðAÞi0; (31)

where � ¼ 2�=ℏ is the inverse Unruh temperature. In
order to establish this, we appeal to an analogue of the
Bisognano-Wichmann theorem.

The Bisongano-Wichmann theorem [28] implies that for
any set of quantum fields in Minkowski space (interacting
or not) satisfying the Wightman axioms, in the vacuum
state j0i, the fields restricted to a Rindler wedge W are

thermal with respect to the boost energy. This is the Unruh
effect. The basic inputs of the theorem are (1) the Lorentz
symmetry of the wedge, and (2) the spectral condition (i.e.
positivity of energies) with respect to time translation.
The basic idea of their (highly technical) theorem is to

analytically continue the boost symmetry of the group to
complex values. One can then boost a Rindler wedge by an
amount i� in order to ‘‘rotate’’ it into the complementary
Rindler wedge region W 0 on the other side of the bifurca-
tion surface. This rotation corresponds to acting with the

operator e�K=ℏ, where K is the generator of the boost
symmetry in W.
Using the spectral condition to ensure convergence,

Bisognano and Wichmann showed that the wedge algebra
AðWÞ satisfies

Je��K=ℏAðWÞj0i ¼ A�ðWÞj0i; (32)

where J is the (antiunitary) CPT symmetry transformation
corresponding to reflecting one time and one space dimen-
sion through the bifurcation surface of W, and � is
Hermitian conjugation.
Sewell [29] observed that Eq. (32) implies that j0i is a

KMS state with temperature ℏ=2�, with respect to boosts,
when restricted to W. This is because

h0jABj0i ¼ h0jA�e��K=ℏJ � Je��K=ℏB�j0i ¼ (33)

h0jBe�2�K=ℏAj0i ¼ h0jB	2i�ðAÞj0i; (34)

where in going from the first line to the second we have
used the fact that J, being antiunitary, converts bras to kets
and vice versa. Sewell also observed that, given certain
axioms, the Bisognano-Wichmann theorem could be ap-
plied to black hole spacetimes to derive thermality outside
of the bifurcation surface of a black hole.
In a later article [15], Sewell generalized the Bisongano-

Wichmann theorem further to the case of a quantum field
algebra restricted to a stationary horizon (under the as-
sumption that this algebra exists). In this generalization,
(1) the dilation symmetry b is analogous to the boost
symmetry, and (2) stability with respect to translation
symmetry a is analogous to the spectral condition. This
generalization can be used here to show that when the
vacuum state j0i is restricted to the region � >�, it is a
KMS state with respect to the dilation generated by Kð�Þ,
with a temperature T ¼ ℏ=2�. This is just the Unruh/
Hawking effect as viewed on the horizon itself.
In Sewell’s construction, j0i is simply the Hartle-

Hawking state associated with the fields on the horizon
H itself. This means that if the bulk spacetime possesses a
Hartle-Hawking state, it will restrict to j0i on H. However,
even in spacetimes which do not possess a Hartle-Hawking
state (such as the Kerr black hole), the state j0i is still well-
defined. This fills a lacuna in certain previous proofs of the
GSL, which did not apply to such horizons [3].
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There is also an applicable proof that the vacuum is
KMS relative to boosts using in the algebraic approach to
QFT [30], at least in situations where the horizon gener-
ators also a possess special conformal symmetry �� ¼
cðyÞ�2.

Gibbs states.—Another definition of thermal states
which is sometimes used is the Gibbs definition, in which
a thermal state with respect to some Hamiltonian (in this
case the boost energy K) is defined as the exponentially
decaying density matrix

e��K

trðe��KÞ ; (35)

where the denominator is the partition function. The rela-
tionship between the KMS and Gibbs definitions is as
follows: in situations with a finite number of degrees of
freedom, in which the algebra of observables A is just
type I (i.e. the complete collection of operators on a Hilbert
Space), the Gibbs and the KMS definitions are equivalent.9

However, in QFT there are an infinite number of degrees of
freedom, and typically the resulting algberas are type III
(meaning that there is no trace operation). In this case, the
KMS definition still works, while the Gibbs definition
becomes ill-defined. Nevertheless, it is a common practice
in QFT to formally manipulate expressions like Eq. (35)
in order to extract finite answers. Such procedures can in
principle be justified by a renormalization procedure in
which one regulates the divergences in Eq. (35) and then
renormalizes.

Using this less rigorous Gibbs definition, the thermality
of the Rindler wedge can also be proven by a simple path
integral argument developed by Unruh and Weiss [31].
Assuming that the vacuum state j0i is the lowest energy
state, it can be generated by the boundary of a Euclidean
path integral extending from time t ¼ �1 to t ¼ 0.
Expressed in terms of the Hamiltonian H and the partition
function Z,

j0i ¼ lim
t!1

e�tH=ℏ

trðe�tH=ℏÞ : (36)

However, this same Euclidean path integral can be viewed
in radial coordinates as a path integral extending from an
angle � ¼ 0 to an angle � ¼ �. This indicates that when
one traces out over the degrees of freedom in the comple-
mentary wedge W 0, the state of W is

� ¼ e�2�K=ℏ

trðe�2�H=ℏÞ ; (37)

which is thermal.
In order to show an analogous Unruh-Wiess thermality

for the horizon algbera, one would have to find a way to

write the vacuum state j0i in terms of a path integral over a
complexified � coordinate. The periodicity of the path
integral in radial coordinates would then imply the ther-
mality of the restricted vacuum with respect to the boosts.
However, it is not entirely clear what the conditions are for
such a path integral to exist. In Secs. III and IV, it will be
shown how to reduce free fields restricted to the horizon to
free left-moving conformal fields in 1þ 1 dimension,
which would allow the vacuum state to be written in terms
of free two-dimensional path integrals.
In conclusion, there exist proofs of the thermality of the

vacuum in the Wightman, algberaic, and path integral
approaches to QFT. The first two approaches prove that
the vacuum is thermal in the KMS sense, while the third is
a formal demonstration using the less rigorous Gibbs defi-
nition. All three approaches are potentially capable of
being adapted to the observables living on the horizon
itself. However, the algebraic approach currently assumes
special conformal symmetry, and the path integral ap-
proach must of course assume the existence of a path
integral.

E. The relative entropy

In order to prove that the generalized entropy in-
creases, I need to use a monotonicity property of an
information-theoretical quantity known as the ‘‘relative
entropy.’’ The relationship between the relative and gen-
eralized entropies was made explicit by Casini [32], and
was used in my earlier proof of the GSL for Rindler
wedges [12].
For a finite dimensional system, the relative entropy of

two states � and � is defined as

Sð�j�Þ ¼ trð� ln�Þ � trð� ln�Þ: (38)

For a QFT system with infinitely many degrees of free-
dom, it may be defined as the limit of this expression as
the number of degrees of freedom go to infinity [33].10

The relative entropy lies in the range ½0;þ1�. In some
sense it measures how far apart the two states � and �
are, but it is asymmetric: Sð�j�Þ is not in general the
same as Sð�j�Þ.
Examples.—When the two states are the same the rela-

tive entropy vanishes:

Sð�j�Þ ¼ 0: (39)

When � ¼ � is a pure state and � � �, the relative
entropy is infinite:

Sð�j�Þ ¼ þ1: (40)

9The standard way to show this is to plug Eq. (35) into
Eq. (31), and use the cyclic property of the trace.

10The von Neumann algebra of a bounded region in a QFT is a
hyperfinite type III algebra [34]. Hyperfinite means that one can
approximate it by a series of finite dimensional algebras, hence
the limit. Because of the monotonicity property, it does not
matter how the limit is taken.
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Normally, one wants to use a faithful state for � (i.e. one
without probability zeros) so that Sð�j�Þ is finite on a
dense subspace of the possible choices for �.

When � is the maximally mixed state in an N state
system, the relative entropy is just the entropy difference:

Sð�j1=NÞ ¼ lnN � S�: (41)

When � is a Gibbs state with respect to a some
Hamiltonian ‘‘energy’’ H, the relative entropy Sð�j�Þ is
the difference of free energy, divided by the temperature:

Sð�j�Þ ¼ ½ðhHi� � T�S�Þ � ðhHi� � T�S�Þ�=T�; (42)

where T� is the temperature of �. This can be verified by
inserting Eq. (35) into Eq. (38).

One would also like to be able to apply Eq. (42) to KMS
states of systems with infinitely many degrees of freedom,
even when the Gibbs definition of thermality is ill-
defined.11 Although the relative entropy itself is typically
finite for sufficiently reasonable states, the individual com-
ponents H and S can diverge. The GSL proof presented in
the next section assumes that Eq. (42) can be applied even
in this context so long as one uses the renormalized entropy
and energy values. Some evidence for this unproven as-
sumption will be discussed in Sec. II H.

Monotonicity.—However, the most important property
of the relative entropy is that it monotonically decreases
under restriction. Given any two mixed states � and �
defined for a system with algebra M, if we restrict to a
smaller system described by a subalgebra of observables
M0, the relative entropy cannot increase [36]:

Sð�j�ÞM � Sð�j�ÞM0 : (43)

Intuitively, since the relative entropy measures how differ-
ent � is from �, if there are less observables which can be
used to distinguish the two states, the relative entropy
should be smaller.

F. Proving the GSL on the horizon

The monotonicity property looks very similar to the
GSL. And in fact, with the right choice of � and � it is
the GSL.

It was observed in Sec. II D that the vacuum state j0i
defined on H is a KMS state with respect to Kð�Þ, no
matter what � slice is chosen. Therefore, under horizon
evolution a thermal state restricts to another thermal state.
Of course, the GSL holds trivially for this vacuum state j0i
because of null translation symmetry—the goal is to prove
it for some other arbitrary mixed state of the horizon. Let
�ðHÞ be the state of the horizon algebra AðHÞ which we

wish to prove the GSL for, and let � ¼ j0ih0j be the
vacuum state with respect to null translations.
Since � is a KMS state when restricted to the region

above any slice, the relative entropy Sð�j�Þ is a free energy
difference of the form Eq. (42), where E is the boost energy
Kð�Þ of the region � >�, S is the entropy of � >�, and
T ¼ ℏ=2� is the Unruh temperature.
Furthermore by virtue of null translation symmetry,

ðhKi � TSÞ� is just a constant. So the monotonicity of
relative entropy therefore tells us that as we evolve from
a slice � to a later slice �0,

2�

ℏ
hKð�Þi � Sð�Þ � 2�

ℏ
hKð�0Þi � Sð�0Þ: (44)

Using Eq. (24), this implies that the GSL holds on the
horizon for the state �ðHÞ:

A

4ℏG
ð�0Þ þ Sð�0Þ � A

4ℏG
ð�Þ þ Sð�Þ: (45)

G. The region outside the horizon

This does not yet amount to a complete proof of the
GSL, because the GSL refers to the entropy Sout on a
spacelike surface � outside of H, not just to the entropy
which falls acrossH. Depending on howH is embedded in
the spacetime, it cannot necessarily be assumed that all of
the information on � will fall across the horizon. Some of
it may escape.
Suppose we have an arbitrary quantum state � defined

on the region of spacetime R exterior to some stationary
horizon H. All of the information in R should either fall
across the horizon H or else escape to future infinity Iþ.
(This assumes that any singularities are hidden behindH—
otherwise the information falling into these will need to be
included as well.) H and Iþ should factorize into inde-
pendent Hilbert spaces, but � may be some entangled state
on H [ Iþ.
We can now generalize the proof above by choosing a

reference state � that factors into the vacuum state on H
times some other state:

�ðH [ IþÞ ¼ j0ih0jðHÞ � �ðIþÞ: (46)

The second factor �ðIþÞ can be chosen to be any faithful
state (so long as the relative entropy Sð�j�Þ is finite). After
slicing the horizon at�ðyÞ, the relative entropy is then once
again a free energy with respect to some modular energy E:

Sð�j�Þ ¼ ðhEi � SÞ� � ðhEi � SÞ�; (47)

where because� is a product state, the modular energy E is
a sum of terms for the horizon system H�>� and Iþ:

EðH�>� [ IþÞ ¼ 2�

ℏ
Kð�Þ þ EðIþÞ; (48)

with EðIþÞ being the modular energy conjugate to the
modular flow of �ðIþÞ. The addition of the new modular

11In fact, all faithful states can be regarded as KMS states with
respect to some notion of ‘‘time’’ defined relative to that state
[35]. This notion of time evolution is known as the ‘‘modular
flow.’’
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energy term EðIþÞ makes no difference to �E, the change
in the relative entropy with time, because EðIþÞ� is not a

function of the horizon slice �. Consequently one can still
use Eq. (24) to show that

h�Ei ¼ 2�

ℏ
h�Ki ¼ � �A

4ℏG
: (49)

On the other hand, S is now interpreted as the total entropy
of � on on the combined system H�>� [ Iþ. Because of
unitarity, the entropy Sð�Þ of any slice � that intersects the
horizon at � must be the same as the entropy SðH�>� [
IþÞ. In other words, S ¼ Sout, for any state �. (Note that �,
unlike �, may have entanglement between H and Iþ.)
Thus, the monotonicity property of Sð�j�Þ is equivalent to
the GSL.

H. Renormalization

It should be noted that in every QFT, K and S are both
subject to divergences. The relative entropy packages all of
these divergent quantities together in a way that can be
rigorously defined for arbitrary algebras of observables
[33]. However, in order to apply the Raychaudhuri equa-
tion [as needed to obtain Eq. (24)] it is necessary to
unpackage the relative entropy into separateK and S terms,
each of which needs to be renormalized separately.
Because of the connection between the relative entropy
and the free energy for finite dimensional subsytems, one
expects that after defining K in terms of the renormalized
stress-energy tensor ~Tkk, and the entropy in terms of some

renormalized entropy ~S,12 that Eq. (42) still holds:

Sð�j�Þ ¼ ½ðh ~Ki � T ~SÞ� � ðh ~Ki � T ~SÞ��=T: (50)

This is especially plausible given that the only quantities
that enter into Eq. (42) are energy and entropy differences.

As in my previous proof for Rindler horizons [12], I will
assume that this equation is in fact true in an appropriate
renormalization scheme. There is a theorem to this effect
for quantum spin systems on an infinite lattice [22], and it
seems likely that any QFT can be approximated arbitrarily
well by such a lattice.

If one wishes to interpret the GSL as a statement about a
regulated entanglement entropy on a spacelike surface,
then it is also necessary for the regulator scheme defining
~S on the null surfaceH [ Iþ to give the same answer as the

regulator scheme defining ~Sout on a spacelike surface �.
This is a plausible assumption since there exist choices of
� which are arbitrarily close to H. But it is not entirely
trivial, because the way that the entropy divergence is
localized on a null surface is different from the way it is
localized on a spacelike surface.

In the case of a spacelike surface the entropy can be
regulated by cutting off all entropy closer than a certain
distance x0 to the boundary. As x0 ! 0, the divergence
with respect to that cutoff then scales like x2�D

0 on dimen-

sional grounds.
This method cannot work on H because there is no

invariant notion of distance along the horizon generators.
By dimensional analysis, this means that the entropy must
be logarithmically divergent along the null direction.
Therefore, there is an infrared divergence as well as an
ultraviolet divergence.
Even if one cuts off the entropy at an affine distance �U

in the ultraviolet and �I in the infrared, the entanglement
entropy is still infinite due to the infinite number of horizon
generators. One must in addition regulate by e.g. discretiz-
ing the space of horizon generators to a finite number N.
One then finds that the entropy divergence of the vacuum
state scales like

Sdiv / Nðln�I � ln�UÞ: (51)

(Cf. Sec. III G for a justification of this statement.) The

renormalized entropy ~S can then found by subtracting the
entropy of the vacuum state:

~Sð�Þ ¼ Sð�Þ � Sð�Þ: (52)

It is reasonable to hope that this renormalized entropy is
the same as the renormalized entropy defined on a spatial
slice. Formally, one can simply take the limit of the entropy
difference as a spatial slice � slants closer and closer to H.
However, the renormalization of the generalized entropy is
itself a limiting process, so there are issues involving
orders of limits. The analysis of Sec. II G implicitly
assumes that these limits commute.
Another consequence of renormalization is to add higher

curvature contributions to the Lagrangian (cf. Sec. VC)
[38]. For example, for free fields in four-dimensional
spacetime, the coefficients of the curvature squared terms
in the Lagrangian are logarithmically divergent. This
would invalidate the assumption that the matter is mini-
mally coupled to general relativity. Fortunately, this effect
can be neglected here, because the effects of these higher
order terms on the generalized entropy are of higher order
in ℏ.

III. QUANTIZING A FREE SCALAR
ON THE HORIZON

The proof of the GSL in Sec. II was incomplete: it
depended on four axioms describing the properties of
quantum fields on the null surface. The purpose of this
section is to explicitly show how these axioms are satisfied
in the simplest case: a free scalar field. This completes the
proof in Sec. II of the semiclassical GSL.
Since the reader may not be familiar with the technical

issues regarding null quantization, this section will dem-
onstrate null surface quantization for a free, minimally

12The proper way to renormalize the entropy is not completely
clear, but one promising regulator scheme uses the ‘‘mutual
information’’ between two regions at finite spatial separation
[37].
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coupled scalar field � with mass m2 � 0 in D> 2 dimen-
sions. This is a quick way to construct the algebra of
observables AðHÞ. It will be shown that this algebra is
nontrivial, and obeys the four axioms required to prove the
GSL: determinism, ultralocality, local Lorentz symmetry,
and stability.

It will also be shown that the horizon algebra can be
approximated by the left-moving modes in a large number
of 1þ 1 dimensional conformal field theories. This allows
one to understand, using the conformal anomaly, why
the horizon algebra is not symmetric under arbitrary
reparameterizations of �, but only special conformal
transformations.

The discussion of null quantization will be confined
mostly to those issues which are of interest in determining
the symmetry properties of the horizon. For a more de-
tailed review of null quantization, including a fuller treat-
ment of the technically difficult ‘‘zero modes,’’ consult
Burkardt [14].

A. Stress-energy tensor

The Lagrangian of the Klein-Gordon field is

L ¼ �ðr2 �m2Þ�=2: (53)

The classical stress-energy tensor on the horizon H can be
derived by varying with respect to the gkk component of the
metric:

Tkk ¼ ðrk�Þ2=2: (54)

This is positive except when � is constant, and depends
only on the pullback of� toH. The total null energy on the
horizon can be found by inserting Eq. (54) into Eq. (26)13:

pk ¼
Z ðrk�Þ2

2
d�dD�2y: (55)

The positivity of this quantity indicates thatAðHÞ satisfies
stability. Classically this positivity is obvious. Quantum
mechanically, this expression is divergent. After subtract-
ing off this divergence, one finds that Tkk is actually
unbounded below. Nevertheless, the integral of Tkk is
bounded below by a vacuum state. This will become
obvious after a Fock space quantization is performed in
Sec. III F.

B. Equation of motion and zero modes

For the purposes of specifying initial data, � acts more
like a space dimension than a time dimension, in the sense
that the value of � at one value of � is (almost) indepen-
dent of the value of� at other values of �. However, there
are some zero mode constraints on the field which must be
treated carefully. There are also some convergence

properties required if the total flux of momentum across
the null surface is to be finite.
The Klein-Gordon equation of motion is

ðr2 �m2Þ� ¼ 0: (56)

This equation can be written in terms of horizon coordi-
nates as

ru� ¼ r�1
v ðr2

y �m2Þ�: (57)

This equation almost permits us to arbitrarily specify
�ðy; �Þ as ‘‘initial data’’ on H. The only constraint is
that ru� must be finite. This requires that the operator
rv be invertible, which places constraints on the zero
modes of �ð�Þ.
If one decomposes � into its Fourier modes:

~�ðy;!Þ ¼
Z e�i!�ffiffiffiffiffiffiffi

2�
p �ðy; �Þd�; (58)

then r�1
v ¼ 1=!, which is singular at ! ¼ 0. Thus for

Eq. (57) to be well-defined, it is necessary to require that

Z þ1

�1
�d� ¼ finite: (59)

An exception for this arises when m ¼ 0, for solutions
which are also zero modes in the y direction (i.e. they lie
in the kernel of r2

y). In this case, Eq. (57) becomes un-

defined rather than infinite. Thus one can add a mode
defined by

Z þ1

�1
�d� ¼ C; (60)

for some C which is constant over the whole (connected
component of) H.
In addition to the zero mode constraints, it is natural to

require that the flux of stress-energy across the horizon be
finite. In order for the null momentum to be finite, one
needs the integral of Tkk to converge:

Z þ1

�1
ðrk�Þ2d� ¼ finite: (61)

One can also demand that the other components of mo-
mentum have finite flux over the horizon. This leads to an
additional constraint:

Z þ1

�1
m2�2d� ¼ finite; (62)

which is a nontrivial constraint only for a massive field.
This permits massless fields to have solitonlike solutions in
which the asymptotic behavior of� at � ¼ þ1may differ
from the behavior at � ¼ �1.
In the Fourier transformed description, the field should

look like this near ! ¼ 0:

~�ðy;!Þ ¼ c1�ð0Þ þ c2
!

þ c3ðyÞ þOð!Þ; (63)
13This formula would have to be modified if the scalar field had
a nonminimal coupling term �2R.
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where c1 corresponds to constant �, c2 corresponds to a
soliton with �ðþ1Þ ¼ ��ð�1Þ, and c3 corresponds to
the value of the integral (62). For a massive field,
c1 ¼ c2 ¼ 0.14

None of the zero mode constraints are physically
important when proving the GSL. That is because they
relate to infrared issues on the horizon—to modes which
are very long wavelength with respect to �. In other words,
they relate to the behavior of the fields at � ! 	1. But
the GSL has to do with the relationship between two
horizon slices at finite values of �. Any information
which can only be measured at � ¼ �1 is totally irrele-
vant because it does not appear above either horizon slice.
On the other hand, information stored at � ¼ þ1 can
without loss of generality be equally well regarded as
present in the asymptotic region Iþ which ‘‘meets’’ the
horizon at � ¼ þ1.

Consequently the zero modes can simply be ignored.
This is a relief because zero mode issues tend to be one of
the trickier aspects of quantum field theory on a null
surface [14]. Since the massm only matters for calculating
the zero mode and finite energy constraints, it will not be of
significance for anything that follows.

C. Smearing the field

Now �ðxÞ is not a bona fide operator, because the value
of a field at a single point undergoes infinite fluctuations
and therefore does not have well-defined eigenvalues (even
though its expectation value h�ðxÞi is well-defined for a
dense set of states). In order to get an operator, we need to
smear the field in some n of the D dimensions with a
smooth quasilocalized test function f:

�ðfÞ ¼
Z

f�dnx: (64)

Because free fields are Gaussian, a finite width probability
spectrum is sufficient to show that the operator is well-
behaved. So to check that �ðfÞ has finite fluctuations, one
can look to see whether its mean square h�ðfÞ2i is well-
defined in the vacuum state. Since spacetime is locally
Minkowskian everywhere, the leading-order divergence
can be calculated in momentum space using the Fourier

transform of the smearing function ~f. Because fðxÞ is

smooth, ~f falls off faster than any polynomial at large p
values in all dimensions in which it is smeared, while it is
constant in all the other dimensions. Up to error terms
associated with m2 and the curvature (whose degree of
divergence must be less by 2 powers of the momentum),
the fluctuations in � are thus given by:

h�ðfÞ2i /
Z

dDp�ðp2ÞHðp0Þ~f2ðpÞ

¼
Z
E¼jpj

dD�1p

2E
~f2ðE; pÞ; (65)

where H is the Heaviside step function. This means that in
order to damp out the divergences coming from large p
values, it is sufficient to smear either in all the space
directions or in the time dimension. But neither of these
is convenient for a null quantization procedure. Instead one
wants to be able to smear the integral in a null plane. To do
this we rewrite Eq. (65) in a null coordinate system
ðpu; pv; pyÞ where y represents all transverse directions.

The mass shell condition is

pv ¼ p2
y þm2

pu

; (66)

and the integral over the lightcone (again neglecting mass
and curvature) is

h�ðfÞ2i /
Z
pupv¼p2

y

dD�2pyHðpuÞdpu

pu

~f2ðpv; pyÞ; (67)

where f is smeared in the v and y dimensions but not in the
u dimension. The integral is dominated by momenta that
point nearly in the pu direction. It falls off like 1=pu for
large pu, so it is logarithmically divergent. Therefore �
does not make sense as an operator when restricted to a
horizon.
However, rk� does make sense as an operator, since its

mean square has two extra powers of the null energy pv

(one for each derivative):

h½rk�ðfÞ�2i /
Z
pupv¼p2

y

dD�2pyHðpuÞ dpu

pu

p2
v
~f2ðpv; pyÞ:

(68)

By substituting in Eq. (66), this integral becomes

Z
pupv¼p2

y

dD�2pyHðpuÞ
dpup

4
y

p3
u

~f2ðpu; pyÞ; (69)

which is convergent. (This may seem surprising, because
taking derivatives normally makes fields more divergent,
not less. The extra factors of pv do make the integral more
divergent in the v direction, but that direction is already

very convergent because of the rapid falloff of ~f.)
Since rk�ðfÞ is a genuine operator, it generates an

algebra AðHÞ on the horizon.

D. Determinism

Specifying � on H is almost enough to determine the
value of� outside the horizon as well, by using Eq. (57) as
a time evolution equation in the u direction. Since Eq. (57)
is first order in ru it is not necessary to specify the
velocities of the field, only their positions. The reason it

14Because of the noninvertibility of ! ¼ 0, one might be
tempted to require that c3 ¼ 0 as well, but this would be a
mistake. First of all, ~�ð0Þ can be defined as lim!!0

~�ð!Þ using
continuity. Second, the requirement c3 ¼ 0 is not invariant under
special conformal transformations such as the inversion � !
1=�.
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does not quite work is that r�1
v is a nonlocal operator,

making other boundary conditions potentially relevant.
Whether or not � can actually be determined is there-

fore a global issue depending on the causal structure of the
whole spacetime. In the case of a de Sitter horizon, � is
determined by the value on H since it is almost a complete
Cauchy surface once one adds a single point a conformal
timelike infinity (the value of a free field must exponen-
tially die away when approaching this conformal timelike
point, so the addition of this point does not change any-
thing). In the case of a Rindler horizon in Minkowski space
the field is generically determined, since the only modes
which are not determined are massless modes propagating
in the exact same direction as the horizon. But for a black
hole horizon, the field� is not determined, since fields can
also leave to future timelike or null infinity (Iþ).

Let� be a complete Cauchy surface of the exterior ofH,
which includes bothH itself, and the asymptotic future Iþ
outside ofH.H and Iþ can be connected only at � ¼ þ1.
However, any zero mode information measurable at � ¼
þ1 can be assigned to the system Iþ. In order to remove
this redundant information from H, one can write the field
at one time as the boundary term in an integral:

�ð�Þ ¼ �ðþ1Þ �
Z þ1

�
rk�d�0; (70)

showing that classically, all the information in �ð�Þ not
measurable at � ¼ þ1 is stored in the derivative rk�.
And this derivative, as shown in Sec. III C, is a well-defined
operator after smearing with a test function.

Thus the algebra of the whole spacetime can therefore be
factorized into AðHÞ �AðIþÞ, ignoring any degrees of
freedom in the zero modes.

This means that there also exist states that factorize:

�ð�Þ ¼ �½�ðHÞ� ��½�ðIþÞ�: (71)

The existence of these factor states is needed for the
validity of the proof of the GSL in Sec. II G. If there are
any operators in the algebra which depend on the zero
modes of �, these may be considered part of the algebra
of Iþ.

E. Commutation relations

Ordinarily we are used to quantizing a scalar field with
equal-time canonical commutation relation:

½�ðx1Þ; _�ðx2Þ� ¼ iℏ�D�1ðx1 � x2Þ: (72)

On a curved spacetime this relation can be covariantly
adapted to any spacelike slice � by using the determinant
of the spatial metric q and �’s future orthonormal vector
na:

½�ðx1Þ;rn�ðx2Þ� ¼ iℏ�D�1ðx1 � x2Þ= ffiffiffi
q

p
: (73)

In order to obtain the commutation relations on a null
surface, one can take the limit of an infinitely boosted

spacelike surface. Measured in any fixed coordinate sys-

tem, each side of Eq. (73) diverges like 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
due to

the Lorentz transformation of na or 1=
ffiffiffi
q

p
. By dividing out

the common divergent factor as one takes the limit, one
ends up with

½�ðy1; �1Þ;rk�ðy2; �2Þ� ¼ iℏ�D�2ðy1 � y2Þ�ð�1

� �2Þ=
ffiffiffi
h

p
; (74)

where h is the determinant of the D� 2 spatial com-
ponents of the horizon metric. From now on, the factors

of 1=
ffiffiffi
g

p
or 1=

ffiffiffi
h

p
will be automatically be absorbed into

the definition of the delta functions dD�1x or dD�2y,
respectively.
By integrating Eq. (74) in the �1 direction, one can find

the commutator of � with itself in terms of the Heaviside
step function H:

½�ðy1; �1Þ;�ðy2; �2Þ� ¼ iℏ�D�2ðy1 � y2Þ½Hð�2 � �1Þ
�Hð�1 � �2Þ�=2; (75)

where because the constant of integration only affects the
zero modes, I have chosen it so that the commutator is
antisymmetric.15

Notice how even though the null surface acts like an
initial data slice, there are nontrivial commutation relations
of � on the horizon. Since neither the commutation rela-
tions nor the generator of local null translations Tkk carry
any derivatives in the space directions, the horizon theory
satisfies ultralocality, i.e. the horizon theory is just the
integral over a bunch of independent degrees of freedom
for each horizon generator.

F. Fock space quantization

In order to perform Fock quantization, the fields will be

analyzed in terms of the modes ~� with definite null-
frequency !:

~�ðy;!Þ ¼
Z e�i!�ffiffiffiffiffiffiffi

2�
p �ðy; �Þd�; (76)

taking! � 0 in order to ignore the zero modes. Because of
ultralocality, it is possible to define a Fock representation
even when y is kept in the position basis.
The commutation relations of the field in this basis can

be calculated by taking the Fourier transform of Eq. (75):

½ ~�ðy1; !1Þ; ~�ðy2; !2Þ� ¼ 2ℏ
�ð!1 þ!2Þ
!2 �!1

�D�2y: (77)

15One should not attempt to use Eq. (75) in situations where
zero modes are important, because then the constant of integra-
tion is undefined. This happens because the commutator of the
full spacetime theory is ill-defined for null separations. The
reason Eq. (75) can be used for the horizon theory is because
all horizon observables will ultimately be expressed in terms of
rk�.
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One can use this to define creation and annihilation opera-
tor densities

ayðy;!Þ ¼ ~�ðy;!Þ
ffiffiffiffi
!

ℏ

r
; aðy;!Þ ¼ ~�ðy;�!Þ

ffiffiffiffi
!

ℏ

r
;

(78)

which create and destroy particles of any frequency!> 0,
and satisfy the commutation relations

½aðy1; !1Þ; ayðy1; !1Þ� ¼ �ð!1 �!2Þ�D�2ðy1 � y2Þ:
(79)

The single particle Hilbert space corresponds to normal-
izable wavefunctions in the space �ðy; !Þ (!> 0) of
creation operators. By taking the Fock space, one con-
structs the full Hilbert space of the scalar field on the
horizon.

Because Tkk is quadratic in the free field�, the divergent
part of the null energy pk is a state-independent constant.
In order to be Lorentz invariant the Hartle-Hawking vac-
uum j0i must have pk ¼ 0, so any physically reasonable
renormalization of pk (e.g. point-splitting) is equivalent to
simply subtracting off the zero-point energy of the vacuum
state. Hence the renormalized null energy of the state can
be calculated by rewriting Eq. (55) in terms of the normal-
ordered creation and annihilation operators:

pk ¼
Z 1

!¼�1
!2: ~�� ~�:

2
d!dD�2y

¼
Z 1

!¼0
ℏ!ayad!dD�2y ¼ X

n

ℏ!n; (80)

where the last equality is evaluated in the Fock basis of
states which have a definite number of quanta of frequency
!1 . . .!n. Thus the particles satisfy the Planck quantiza-
tion formula.

The resulting picture of the scalar field theory on the
horizon is surprisingly simple: each state is simply a su-
perposition of a finite number of particles localized at
distinct positions on the horizon, each with some positive
amount of null energy ℏ!. In contrast to the usual quan-
tization on a spacelike surface, each particle can be arbi-
trarily well-localized near any horizon generator. The
particles cannot however be localized with respect to the
� coordinate on the horizon generator. No two particles can
reside on exactly the same horizon generator, because that
would not be a normalizable vector in the Fock space.

There is an enormous amount of symmetry of the
scalar field theory on the horizon. The only geometrical
structures used in the quantization are the affine parameters
of each horizon generator (up to rescaling), and the area
element (coming in via the dD�2y integration), which
comes in through the commutation relation (74).
Therefore the Fock space is invariant under (1) arbitrary
translations and dilations of the affine parameter of each
horizon generator independently, (2) area-preserving

diffeomorphisms acting on the space of horizon generators,
and even (3) any non-area preserving diffeomorphism that
sends dD�2y ! �ðyÞ2dD�2y so long as one also sends
� ! �ðyÞ�1�. This is so much symmetry that the only
invariant quantity is the total number n of particles; every
n-particle subspace of the Hilbert space is a single irreduc-
ible representation of the group of symmetries.16

G. Conformal symmetry

Even this does not exhaust the symmetries of the scalar
field on the horizon (minus zero modes); one is actually
free to perform any special conformal transformation of
each �ðyÞ, i.e. any combination of a translation, dilation,
and inversion � ! 1=�. It is easiest to see this if the
quantization is done in a slightly different way: by discre-
tizing the horizon into a finite number of horizon gener-
ators. Let there be N discrete horizon generators spread
evenly throughout the horizon area A, and let the field
�ðn; �Þ be defined only on this discretized space. The
commutator is

½�ðm;�1Þ;rk�ðn; �2Þ� ¼ iℏ
A

N
�mn�ð�1 � �2Þ; (81)

and the null energy is

pk ¼
XN
n¼1

A

N

Z ðrk�nÞ2
2

d�: (82)

These expressions converge to Eq. (74) and (55) respec-
tively as N ! 1. Since the theory is ultralocal there are no
divergences associated with the transverse directions, so
the limit should exist. Every continuum horizon state can
be described as the N ! 1 limit of a sequence of states in
the discretized model. However, not every smooth seeming
limit of states in the discretized model corresponds to a
state in the continuum model; for example, there is no
continuum limit of states in which one horizon generator
has two particles on it and the rest are empty.
The discretized model is nothing other than a collection

of N different conformal field theories each of which is the
left-moving sector of one massless scalar field in 1þ 1
dimensions. The entanglement entropy divergence is there-
fore just the same as in a conformal field theory (CFT) with
N scalar fields, which has central charge c ¼ N [39]:

16To see that this is the case, note that every n-particle state can
be written as a superposition of states in which each of the n
identical particles is localized in a delta function on n different
horizon generators. All such states are equivalent to one another
by the symmetry transformations, so pick one of them, �. If the
n-particle representation was reducible, there would have to exist
a projection operator which is invariant under all the symmetry
and acts nontrivially on this state by turning it into a linearly
independent state�0. But by virtue of the symmetry,�0 must be
zero except on the n horizon generators initially chosen, and
therefore linearly dependent on �. Consequently the projection
operator does not exist and the representation is irreducible.
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Sdiv ¼ c

12
ln

�
�I

�U

�
; (83)

where �I is the affine distance of the infrared cutoff from
the boundary, and �U is the affine distance of the ultraviolet
cutoff. This justifies Eq. (51) mentioned in Sec. II H on
renormalization.

In any CFT, the vacuum state j0i is invariant under all
special conformal transformations. Since the N ! 1 limit
of j0i is just the vacuum of the continuum theory, the
continuum vacuum is also invariant under the group of
special conformal transformations SOð2; 1Þ.

A 1þ 1 dimensional CFT is also invariant under general
conformal transformations, i.e. arbitrary reparameteriza-
tions of a null coordinate v ! fðvÞ. However, the vacuum
state is not invariant under general conformal transforma-
tions. This is a consequence of the anomalous transforma-
tion law of the stress-energy tensor Tvv [39]:

Tvv ! f0ðvÞ�2Tvv þ c

12
SðfÞ; (84)

where c ¼ 1 is the central charge of one scalar field, and
SðfÞ is the Schwarzian derivative:

SðfÞ ¼ f000

f0
� 3

2

ðf00Þ2
ðf0Þ2 ; (85)

which vanishes only when fðvÞ is special. Since the vac-
uum must have Tvv ¼ 0, any nonspecial conformal trans-
formation of the vacuum must produce a nonvacuum state
with positive expectation value of the null energy pk.

What if one tries to perform a general conformal trans-
formation � ! fð�; yÞ of the horizon generator parameters
� for D> 2 dimensions? In the discretized model, the null
energy of the transformed vacuum is

pk ¼
XN
n¼1

1

12

Z
Sðf; nÞd� (86)

and the integrand is positive. But now disaster strikes—as
N ! 1, pk ! 1 too. The general conformal transforma-
tion takes the vacuum out of the Hilbert space altogether,
by creating infinitely many quanta. So the conformal
anomaly prevents � from being reparameterized, except
by a special conformal transformation.

Since the stress-energy Tkk is the generator of repara-
meterizations, this means that most integrals of Tkk on the
horizon do not give rise to operators in the Hilbert space.
Since Tkk ¼ ðrk�Þ2=2 is a product of two fields, there is a
danger of divergence. The fact that only special conformal
transformations of the vacuum are allowed implies that the
only integrals of Tkk which are horizon observables are
those of this form:

Z þ1

�1
Tkk½aðyÞ þ bðyÞ�þ cðyÞ�2�d�dD�2y: (87)

For example, the restricted boost energy

Kð�Þ ¼
Z 1

�
Tkkð���Þd�dD�2y (88)

is not an operator because of the limitation of the integral to
� >�. However, the proof is only concerned with the
expectation value hKð�Þi. This is a function of hTkkðxÞi,
which does not need to be smeared to be finite.

IV. OTHER SPINS

In this section some basic details of null quantization for
alternative spins will be briefly provided, omitting detailed
derivations and neglecting zero modes.

A. Spinors

The Lagrangian of a spinor field in spinor notation is

L ¼ 
ABi�Ari�B þm�AB�A�B; (89)

where A or B belong to spinor representations written in a
real (Majorana) basis, 
ABi is the gamma matrix, and �AB is
the invariant symplectic structure on the spinor space.17 As
long as D> 2, the qualitative features of null surface
quantization are the same for every kind of spinor.18

The equation of motion is

ri�B

ABi ¼ m�A; (90)

using �AB to raise the spinor index. At any point on a
spacelike slice of the horizon, the D dimensional spinor
decomposes into the tensor product of a Majorana spinor in
D� 2 dimensional space, and a Dirac spinor on a 1þ 1
dimensional spacetime. The Dirac spinor in 1þ 1 dimen-
sions decomposes into the direct sum of a left-pointing
spinor �L that and a right-handed spinor �R, where we
take 
LLa to point in the ka direction and 
RRa to point
along the other lightray la. The Majorana Eq. (90) takes the
schematic form:

rLL�R þrLR�L þm�L ¼ rk�R þry�L þm�L;

(91)

rRR�L þrRL�R þm�R ¼ rl�L þry�R þm�R:

(92)

The first Eq. (92) only involves derivatives that lie on the
horizon itself, and can be used to define�R as a function of
�L (up to zero modes):

17In dimensions Dmod 8 ¼ 0, 1, 2, 6, the irreducible spinor
representations do not possess an invariant symplectic structure
�AB. Consequently, for m> 0 it is necessary to use reducible
spinor representations. The Majorana spinor basis has been
chosen in order to keep the spinor expressions homogeneous
across different spacetime dimensions. Dirac and/or Weyl spin-
ors may be obtained from representations which admit a com-
plex structure.
18In D ¼ 2, the chirality of the field determines whether it
propagates to the left or to the right. Only fields which propagate
across a null surface can be quantized on that surface.
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�Rð�Þ ¼ �Rðþ1Þ �
Z þ1

�
ðry�L þm�LÞd�0: (93)

On the other hand, Eq. (91) determines the derivative of
�L off the horizon, and so it does not act as a constraint.
Therefore, the spinor degrees of freedom are determined
by the arbitrary specification of �Lðy; �Þ on the horizon.
From now on we will focus on just the�Lðy; �Þ degrees of
freedom.

�Lðy; �Þ yields a (fermionic) operator when smeared
over the horizon directions by a test function f. The mean
square of a massless spinor in momentum space is

h�LðfÞ2i /
Z
pupv¼p2

y

dD�2pyHðpuÞ dpu

pu

pv
~f2ðpu; pyÞ:

(94)

The extra power of pLL ¼ pv ¼ ðp2
y þm2Þ=pu comes

from the contraction of the momentum with the spin in
the propagator, and serves to render the integral conver-
gent. Thus for spinors there is no need to take a rk

derivative in order to restrict the field to the horizon.
The anticommutator of the field on a spatial slice �with

normal vector na is:

f�Aðx1Þ;�Bðx2Þg ¼ �iℏ
AB
n �D�1ðx1 � x2Þ: (95)

By making an infinite boost, one can obtain the anticom-
mutator for the field �L on the horizon:

f�ILðy1; �1Þ;�JLðy2; �2Þg ¼ �iℏgIJ�ð�1 � �2Þ

 �D�2ðy1 � y2Þ; (96)

where I and J are (real) spinor representations of
SOðD� 2Þ (the group of rotations of the D� 2 dimen-
sional transverse space). Since these representations are
unitary, there is a natural metric gIJ ¼ 
ILJL

k on the trans-

verse spinor space.
The null-null component of the stress energy is

Tkk ¼ gIJ�ILrk�JL: (97)

Tkk and the anticommutation relations look just like the
integral of the corresponding quantities for left-moving
spinor fields in 1þ 1 dimensions. Therefore, if the horizon
generators are discretized, the corresponding CFT is that of
N=2 massless left-moving chiral fermions, where N is the
number of components of the spinor field.

B. Photons

The Maxwell Lagrangian is

L ¼ FabF
ab=4: (98)

After imposing Lorentz gauge raA
a ¼ 0 and null gauge

Ak ¼ 0, the only remaining (nonzero mode) degrees of
freedom are the transverse directions Ay on the horizon.

The commutator is

½Aiðy1; �1Þ;rkAjðy2; �2Þ� ¼ iℏgij�D�2ðy1 � y2Þ

 �ð�1 � �2Þ; (99)

and the stress-energy tensor is

Tkk ¼ gijðrkAiÞrkAj; (100)

where the indices i, j are restricted to the transverse
directions. Ai cannot be smeared to make a valid operator
on the horizon, but rkAi can.
After discretization of horizon generators, the CFT of

each horizon generator consists of D� 2 left-moving
massless scalars.

C. Gravitons

In the semiclassical limit the metric can be described as

a background metric gab � g0ab plus an order ℏ1=2 metric

perturbation hab ¼ g1=2ab . Impose Lorentz gauge rah
a
b ¼ 0

and null gauge hka ¼ 0.
The Lagrangian and equations of motion are simply

that of perturbative general relativity (GR). The only con-
straint on hab on the horizon at half order is the null-null
component of the Einstein equation:

Gkk ¼ 0: (101)

By integrating rk�
1=2 ¼ 0 (the half-order Raychaudhuri

Eq. (14), one finds that there is no half order contribution to
the area:

hijg
ij ¼ 0: (102)

In order to keep things simple, the trace degree of freedom
of hij will therefore be set to zero before quantization. Only

the traceless part of hij represents physical graviton de-

grees of freedom.19

hij cannot be smeared to make an operator on the

horizon, but rkhij can. Thus, the only physical compo-

nents of the field are the transverse shear components�ij /
rkhij.

In GR, gravitons do not contribute to the gravitational
stress-energy tensor Tab found by varying the matter
Lagrangian with respect to the metric, since gravitons do
not contribute to the matter Lagrangian. And if one varies
with respect to the full gravitational Lagrangian, the result-
ing tensor vanishes when the equations of motion are
satisfied. However, in perturbative GR, one can still define
a stress-energy tensor perturbatively by varying the

19Rotational symmetry assures that the commutator of the trace
degrees of freedom cannot mix with the commutator of the
traceless degrees of freedom. The constraint (101) generates
diffeomorphisms in the k direction. Consequently if one wished
to impose this constraint after quantization, for consistency it
would also be necessary to include as a physical degree of
freedom the parameter � which breaks this symmetry.
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Lagrangian with respect to the background metric, rather
than the perturbed metric. The resulting stress-energy ten-
sor is proportional to the contribution of hab to the Einstein
tensor:

T1
ab ¼ G1

ab=8�G; (103)

to first order in ℏ. On the horizon this is just

Tkk ¼ ðrkhijÞrkh
ij=32�G: (104)

The canonically conjugate quantities for canonical gen-
eral relativity on a spacelike slice � are the spatial metric
qab and the extrinsic curvature Kab ¼ rnqab=2 [40]:

½qabðx1Þ; ðKcd � qcdKÞðx2Þ� ¼ iℏð8�GÞ�
c
a�

d
b þ �c

b�
d
a

2


 �D�1ðx1 � x2Þ: (105)

If one takes the infinite boost limit, the spatial extrinsic
curvature Kij with i, j lying in the transverse plane be-

comes the null extrinsic curvature:

Kij ! Bij ¼ rkhij=2 ¼ �ij þ 1

D� 2
gij�: (106)

Because the trace part has been made to vanish by Eq.
(102), only the traceless shear part remains. Therefore the
commutator is

½hijðy1; �1Þ; �lmðy1; �1Þ� ¼ iℏð8�GÞ�lm
ij �

D�2ðy1 � y2Þ

 �ð�1 � �2Þ; (107)

where �lm
ij ¼ ð1=2Þð�l

i�
m
j þ �l

j�
m
i Þ � ð1=D� 2Þgijglm

is the Kroneker delta for the traceless symmetric
representation.

As for the other bosonic fields,�ij is an observable when

smeared on the horizon, but hij is not. When the horizon

generators are discretized, the graviton CFT is that of
ðD� 2Þ2 � 1 left-moving scalar fields.

V. INTERACTIONS

Does the argument given in Sec. II for the GSL continue
to work when the quantum fields have nontrivial interac-
tions besides the minimal coupling to gravity? The ques-
tion is whether one can continue to define a horizon algebra
AðHÞ satisfying the four axioms required for the proof
described in Secs. II A and II C: determinism, ultralocality,
local Lorentz invariance, and stability. Except for free
fields and 1þ 1 CFTs (see below), it is not obvious that
this is the case. Some evidence for and against the exis-
tence of such an algebra will be presented below.

A. Perturbative Yang-Mills and potential interactions

Let �i stand for a field (indexed by i) in any free field
theory, of any spin. What happens to the horizon algebra
upon adding interactions?

In general, the addition of arbitrary terms to the
Lagrangian will change both the commutation relations
and the value of the null stress-energy tensor Tkk. But for
certain special kinds of interactions, the null algebra may
remain unaffected.
In particular, at least at the level of formal perturbation

theory, the horizon fields �i do not care about the addi-
tion of an arbitrary potential term Vð�Þ to the Lagrangian.
In order to be a potential, V must depend only on the
fields and the metric, not field derivatives or the Riemann
tensor.
The general horizon commutator can be written as

½�i;�
i� ¼ iℏ�D�2ðy1 � y2Þ�ð�1 � �2Þ; (108)

where the conjugate momentum to the field in the null
direction is given by

�i ¼ @L
rk�i

; (109)

and the commutator is replaced with an anticommutator for
fermionic fields. Now since V does not depend on any
derivatives of the field,

@V

rk�i

¼ 0; (110)

and the momentum �i is the same as in the free theory.
Since the horizon algebra is generated by the free field
operators subject to the above commutation relation, the
horizon algebra AðHÞ is unaffected by the perturbation.
A similar result holds for Yang-Mills interactions. The

Yang-Mills Lagrangian coupled to spinors and scalars is

L ¼ �1
4FabF

ab � 1
2ra�ra�þ 
ABi�Ari�B; (111)

where Fab ¼ raAb �rbAa. Because ra is the covariant
derivative, there are cubic boson interactions which depend
on the rk derivative, of the form AaAkrkAa and A

k�rk�.
However, these interactions both depend on Ak which
vanishes in null gauge, which was used to obtain the
horizon algebra in Sec. IVB). The spinor interactions do
not depend rk. So Yang-Mills interactions also do not
affectAðHÞ, as a special consequence of gauge symmetry.
Because the horizon algebra is the same, the generator of

null translations Tkk must also be the same. Since for
minimally coupled theories the canonical stress tensor
and the gravitational stress tensor of matter are the same
up to boundary terms at infinity [41], this means that the
formula for the area A in terms of Tkk is the same. Also, the
(translation-invariant) vacuum state j0i of the interacting
field theory is the same as the free field vacuum, up to zero
modes [14]. This is because, unlike spatial surfaces, null
surfaces have a kinematic momentum operator pk which is
required to be positive.20 Since everything in AðHÞ is

20In the case of spacelike surfaces, the interacting vacuum
cannot even lie in the Fock space of the free vacuum [42].
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exactly the same as in the free case, at the level of formal
perturbation theory the entire proof goes through without
depending in any way on the interactions.

However, this entire discussion needs to be taken with a
large grain of salt, because it assumes that the interactions
in the Lagrangian can be treated as a finite perturbation.
Once loop corrections are taken into account, there will be
divergences which have to be absorbed into the coupling
constants. Even if one starts with an interaction potential
Vð�Þ which seems not to have any harmful derivative
couplings in it, renormalization will typically produce
derivative couplings which will affect the commutation
relations.

For example, a field strength renormalization of the
propagator term will change the overall coefficient of the
commutation relation. This field strength renormalization
will usually be infinite, except when the theory is super-
renormalizable. Even then, it is not clear whether the null-
hypersurface formulation of the theory continues to exist
nonperturbatively.

In the case of spacelike hypersurfaces, there is a series of
theorems [43] which show that for any quantum field
theory which is reducible to bosons and fermions satisfying
the equal-time canonical (anti-)commutation relations
(ETCCR), the theory must be free unless the interactions
are sufficiently weak in the ultraviolet. Superrenorma-
lizable theories do obey the ETCCR, nonrenormalizable
theories cannot obey the ETCCR (even if they can be
defined using a ultraviolet fixed point), while the status
of marginally renormalizable theories is unclear. The prob-
lem arises because of infinite renormalization of the fields.
Thus there exist at least some QFTs which do not satisfy
the equal-time ETCCR. One possible interpretation of this
result is that the ‘‘equal time’’ is at fault, and it is necessary
to smear the fields in time as well as in space in order to get
a well-defined operator. This probably would mean that
such fields are not well-defined when smeared on a null
surface either. However, it could still be that there exist a
different set of fields which do not obey canonical commu-
tation relations, and can be defined on the horizon algebra.

B. Conformal field theories

So do nonperturbatively interacting QFTs really have a
horizon algebra? One can get some insight by studying
CFT. Any physically consistent QFT must have good
ultraviolet behavior as length scales are taken to zero.
The conventional wisdom is that this happens if and only
if the theory approaches an ultraviolet fixed point of the
renormalization group flow. At short distances, the theory
is therefore scale invariant. All known scale invariant QFTs
are also conformally invariant, so let us ask whether CFTs
have a null surface formalism. Since the near-horizon limit
is a type of ultraviolet limit, it seems probable that a QFT
has a null surface formulation if and only if the scaling
limit CFT does.

The situation is very different for 1þ 1 CFTs (which
have an infinite conformal group) and higher dimensional
CFTs (which have a finite conformal group).
1þ 1 CFT.—In the case of 1þ 1 CFTs, there always

exists a nontrivial algebra of observables AðHÞ on the
horizon (i.e. on a lightray), which is simply the algebra of
the left-moving chiral fields. To see this, we remind the
reader of some facts about 1þ 1 CFTs (from e.g. [39]).
The operators of a CFT fall into infinite dimensional
representations of the conformal algebra associated with
the theory’s central charges c and ~c. These representations
are classified by the weight spectrum of primary operators

ðh; ~hÞ, which specify the weight of the primary operator in
the representation with respect to left and right dilations.
Descendants of these operators have weights given by the
primary operators plus integers.
The algebra of operators which are well-defined on the

horizon is simply the algebra of left-moving chiral opera-
tors (i.e. the algebra generated by quasiprimary operators
weight ðh; 0Þ). Such fields do not depend on the u coor-
dinate and therefore must be localizable to the horizon. (On
the other hand, the 2 two-point function of a nonchiral
operator diverges when the two points are null separated on
the horizon, so such operators cannot be smeared in one
null direction alone.) Since the identity operator has weight
(0,0), there is always an infinite sequence of such opera-
tors, including the null stress-energy Tkk of weight (2,0).
Thus there is always an infinite nontrivial horizon algebra
AðHÞ, which includes the generators of the conformal
group itself.
We now examine whether this horizon algebra obeys the

necessary axioms described in Sec. II C for the proof of the
GSL. Ultralocality is trivial in 1þ 1 dimensions, since
there is only one horizon generator. Lorentz symmetry
and stability hold by virtue of the normal QFT axioms.21

The only tricky point is determinism, which requires the
exterior of the horizon to be determined by AðHÞ and
AðIþÞ. In the case of a chiral CFT which breaks into
independent left-moving and right-moving sectors, deter-
minism is obvious. In the case of a nonchiral theory, the
only new issue is that there may be superselection con-
straints relating the left-moving and right-moving fields.
For example, in the theory of a free fermion, it is possible
to introduce a ‘‘twist operator’’ with weight (1=16, 1=16),
but one cannot view this operator as a product of two
operators with weight (1=16, 0) and (0, 1=16) without
destroying modular invariance [39]. Thus there might be
nontrivial constraints relating AðHÞ with AðIþÞ.

21Although the discussion in this subsection is entirely about
QFT on a fixed background spacetime, the reader may wonder
why one would want to consider a 1þ 1 CFT for a matter sector
given that GR is topological in 2 dimensions. The answer is that
the proof given in Sec. II is equally applicable to two-dimensonal
dilaton gravity, in which the dilaton plays the role of the ‘‘area.’’
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However, a nonchiral CFT can be extended into a chiral
CFT simply by ignoring these superselection constraints
and make the left-moving and right-moving sectors inde-
pendent. This can ruin modular invariance, but modular
invariance was not needed for the proof of the GSL. By
the operator-state correspondence, it will also increase the
number of states of the theory, but it does not affect the
vacuum state �, and one can simply choose the state � to
satisfy the constraints of the nonchiral CFT.

Higher dimensional CFT.—In higher dimensional inter-
acting CFTs, a local field will no longer obey the free wave
equation. This means that it must have a nonzero anoma-
lous dimension �. For example, a primary scalar field in D
dimensions will have a dimension � ¼ ðD� 2Þ=2þ �,
with �> 0 due to the unitarity bound. Such fields do not
form operators when smeared on the horizon alone. This
can be seen from evaluating the square of the smeared field
using the spectral decomposition of the operator:

h�ðfÞ2i /
Z
p2<0

dDpHðp0Þ
~f2ðpv; pyÞ
ð�p2Þ1��

; (112)

where ~f is the Fourier transform of the smearing integral
on the horizon. This expression is the analogue of Eq. (67),
but now the integral is performed over all timelike mo-
menta p2 < 0. Because of the smearing, the integral is
dominated by momenta which point nearly in the pu

direction. Since p2 ¼ p2
y � pupv, the integral falls off in

the pu direction like p
��1
u . This is divergent for all permit-

ted values of �. Consequently no operator can be defined.
Unlike the free case, it is no longer possible to improve the
situation by taking rv derivatives, since the pu and pv

directions are no longer related by the null mass shell
condition.

Similar arguments rule out operators formed from inter-
acting fields with spin �I, where I transforms in a spin-s
irrep. Let the conjugate field be written��

I0 . In this case it is

necessary (but not always sufficient) to satisfy the unitary
bound that the primary have weight� ¼ ðD� 2Þ=2þ sþ
� for an �> 0 [44]. The absolute square of the field
smeared on the horizon looks like the following:

h�ðfÞI��ðfÞ0Ii /
Z
p2<0

dDpHðp0Þ�II0 ðpÞ
~f2ðpv; pyÞ
ð�p2Þ1�s��

;

(113)

where �II0 ðpÞ is the scalar product of the spins I and I0 in
the little group SOðD� 1Þ that preserves the momentum
p. At fixed pv and large pu, � can scale like p2x

u , where
�s � x � s depends on the weight of the particular polar-
ization under Lorentz boosts. This integral is still diver-
gent. So it is also impossible to constructAðHÞ from fields
of higher spin.

Nevertheless, this does not entirely rule out the possi-
bility that there might be a nontrivial horizon algebra
AðHÞ, so long as it is constructed from operators that
do not come from smearing local fields. As an analogy,

there exist CFTs in which fields cannot be defined by
smearing on a D� 1 dimensional spacelike surface �.22

Nevertheless, one can still define a local algebra on an
incomplete spatial surface � by means of the Hodge dual-
ityAð�Þ ¼ A0ð�0Þ, i.e. by definingAð�Þ to include any
observable that commutes with all observables which are
spacelike separated from �. It may be that some similar
trick can be used to define the observables on a null
surface.
A possible argument that AðHÞ should exist is that in a

CFT there is no distinction between finite and infinite
distances. Consequently, one can apply a Weyl rescaling
gab ! �2ðxÞgab with the property that the affine distance
to the horizon becomes infinite. Because curvature has
mass dimension 2, this also should lead to the scaling
away of any curvature effects. The existence of an algebra
on the horizon is now equivalent to the existence of final
scattering observables for particles travelling into this new,
nearly flat asymptotic region. This converts the ultraviolet
problem of null restriction to the infrared problem of final
scattering states.
However, because a CFT has no mass gap, there are long

range interactions, and the asymptotic states might not
form a Fock space, due to the possibility of creating an
infinite number of soft massless particles. In order to apply
the proof of the GSL in Sec. II, one would need to show
that despite the existence of these long range forces, the
final scattering algebra can be decomposed into a part
associated with H and a part associated with Iþ:

A ðH [ IþÞ ¼ AðHÞ �AðIþÞÞ; (114)

and also show that AðHÞ obeys the other three axioms:
ultralocality, local Lorentz invariance, and stability.
If there are any QFTs in which the algebra AðHÞ does

not exist, extending the proof would presumably require a
more delicate near-horizon limit. One would have to show
that a small smearing of fields out from the horizon does
not break the symmetry group of the horizon sufficiently to
spoil the proof.

C. Higher curvature and nonminimal coupling

Further generalization of the proof is necessary when the
gravity theory goes beyond the Einstein theory, either
because the matter fields are nonminimally coupled, or
because there are higher curvature terms in the gravita-
tional Lagrangian. In general, the presence of such terms
will not only change the metric field equations, but also
lead to the addition of extra terms in the horizon entropy
SH. These corrections can be calculated for stationary
black holes by means of the Wald Noether charge method
[45]; however, there are certain ambiguities which arise
for the case of dynamically evolving horizons. Except for

22This can be seen by doing a spectral decomposition of a
primary scalar field with � � 1=2.
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some special cases like fðRÞ gravity (which can be related
by field redefinitions to scalar fields minimally coupled to
general relativity [46]) it is unknown whether such theories
even obey a classical second law, let alone a generalized
one. For example, it appears that the Wald entropy can
decrease when black holes merge in Lovelock gravity [47].

Although the present work is restricted to the Einstein
theory, some insight into these problems might be gained
by analyzing the structure of horizon observables in non-
Einstein theories. The reason why the GSL holds on black
holes in general relativity is that AðHÞ is small enough to
have lots of symmetry (local Lorentz invariance) and yet
large enough to contain all the information falling across
the horizon (determinism). In general, alternative gravities
will require AðHÞ to depend on additional information
besides the metric and affine parameter on the horizon e.g.
curvature components.

If this additional information breaks the ability to trans-
late each horizon generator independently, this may ac-
count for the failure of the second law in these theories.
Another reason why theories may fail to obey the second
law is if the theory permits negative energy excitations,
violating the stability axiom.

On the other hand, if a horizon field theory for matter
and gravitons can be found, which still obeys all four
axioms used in Sec. II, this is auspicious for the GSL. It
might be that the ambiguities in the Wald Noether charge
can be fixed by requiring that SH depend only on quantities
measurable in AðHÞ itself. Suppose that this were done.
Then the GSL might be shown by the following argument.

First we need an analogue of Eq. (23), relating the
horizon entropy to the boost energy falling across the
horizon:

SHð�Þ¼SHðþ1Þ�2�

ℏ

Z 1

�
hTkkið���Þd�dD�2y: (115)

But the Wald Noether charge method shows that this is true
in any classical diffeomorphism invariant theory when Tkk

is interpreted as a canonical stress-energy current [45].
(The ‘‘gravitational’’ stress-energy tensor defined by vary-
ing with respect to the metric is not very meaningful at this
level of generality, because it is not invariant under field
redefinitions of the metric). Wald’s argument is classical,
so in order to use Eq. (115), one would have to show that it
survives a semiclassical quantization of the matter fields.
Since the canonical stress-energy tensor generates dif-

feomorphisms, one can also rewrite Eq. (115) in terms of
Kð�Þ, the generator of boost symmetries about a horizon
slice with � ¼ �:

SHð�Þ ¼ C� 8�GhKð�Þi: (116)

Since the canonical stress-energy tensor is the generator
K of boost symmetries, by the Bisongano-Wichmann theo-
rem, the quantum fields should be in a thermal state with
respect to K. Assuming that a non-Einstein gravity theory
satisfies each of the criteria described above, it too should
obey a semiclassical GSL.
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