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We use dimensional regularization to compute the one loop quantum gravitational contribution to the

vacuum polarization on flat space background. Adding the appropriate Bogoliubov-Parsiuk-Hepp-

Zimmermann counterterm gives a fully renormalized result which we employ to quantum correct

Maxwell’s equations. These equations are solved to show that dynamical photons are unchanged, provided

the free state wave functional is appropriately corrected. The response to the instantaneous appearance of

a point dipole reveals a perturbative version of the long-conjectured, ‘‘smearing of the light cone’’. There

is no change in the far radiation field produced by an alternating dipole. However, the correction to the

static electric field of a point charge shows strengthening at short distances, in contrast to expectations

based on the renormalization group. We check for gauge dependence by working out the vacuum

polarization in a general 3-parameter family of covariant gauges.
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I. INTRODUCTION

Electromagnetism provided the first example of a rela-
tivistic, unified gauge theory. Later on, it was quantum
electrodynamics (QED) which produced the first quantita-
tive successes in the struggle to understand interacting
quantum field theories. It is therefore natural to wonder
what electromagnetism can tell us about quantum gravity.

Efforts along these lines date back more than half a
century, and were at first concerned with a phenomenon
termed, ‘‘smearing of the light cone’’ [1]. The idea is that
quantum gravitational effects might soften the divergences
of other quantum field theories because those divergences
are associated with the singularities all propagators de-
velop for null separations [2],

i�½g�ðx; x0Þ ¼ 1

2�2

1

�½g�ðx; x0Þ þOðlnð�ÞÞ: (1)

Here i�½g�ðx; x0Þ is the scalar propagator in the presence of
a general metric background g��, and �½g�ðx; x0Þ is 1

2 times

the square of the geodesic length from x� to x0� in that
metric. Although the propagator is a well-defined distribu-
tion—its four-dimensional integral against a test function
converges—powers of it are not. That is why there is a
quadratic ultraviolet divergence in the two loop ‘‘setting
sun’’ contribution to the ��4 self-mass-squared depicted in
Fig. 1,

� iM2
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q
½i�½g�ðx; x0Þ�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
:

(2)

For fixed x�, the singularity occurs at different points x0�
as the metric g�� is varied. Quantizing gravity entails

functionally averaging (2) over metrics, and this might be
expected to reduce or eliminate the singularity.
Of course smearing the light cone would distort the

propagation of light, and even a tiny angular deviation
might show up over cosmological distances. Metric fluc-
tuations can also induce luminosity and redshift variations,
as well as spectral line broadening and angular blurring.
These effects have typically been studied indirectly, by
working out the scattering of light by a classical metric
[3]. A significant example is the computation Sachs and
Wolfe made of the anisotropies cosmic microwave photons
acquire in propagating through primordial cosmological
perturbations [4]. More recent treatments have been given
of the effects of various ensembles of gravitons [5]. (It is
but a short step to adjust the distribution to reproduce
quantum 0-point fluctuations, but this does not seem to
have been done.) And there has been much recent interest
in metric fluctuations engendered by quantum oscillations
of matter fields [6], a representative diagram for which is
given in Fig. 2.
Quantum gravity also affects electrodynamic forces.

Radkowski seems to have performed the first computation
of the one loop correction to the Coulomb potential of a
point charge [7]. A somewhat different result was inferred
from the scattering of charged scalars [8]. Both of those
studies found that quantum gravity strengthens the electro-
static force at short distances. Much recent interest at-
tended the proposal of Robinson and Wilczek that the

FIG. 1. A two loop contribution to the self-mass-squared in
��4 theory.
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effect goes the other way, based on renormalization group
flows [9].

Awidely perceived impediment to all of these studies is
the fact that general relativity plus electromagnetism is not
perturbatively renormalizable, even at one loop order [10].
One consequence is that we cannot compute everything
reliably, but that does not mean we are unable to calculate
anything. One must simply view quantum gravity as a low
energy effective field theory whose divergences are ab-
sorbed using BPHZ (Bogoliubov, Parsiuk, Hepp and
Zimmermann) counterterms [11]. In this context, loops
of massless gravitons and photons engender nonlocal and
ultraviolet finite contributions to the effective action which
are unique predictions of the theory that cannot be changed
by its ultraviolet completion [12]. (For example, see the
string theory result in [13].). This is why Bloch and
Nordsieck were able to resolve the infrared problem of
QED [14], long before that theory’s renormalizablility was
understood. It is also why Weinberg was able to derive a
similar resolution for the infrared problem of quantum
gravity [15], and why Feinberg and Sucher were able to
use Fermi theory to compute the long range force engen-
dered by the exchange of massless neutrinos [16].

One is of course free to criticize the study of quantum
gravity plus electromagnetism on the grounds that the
predicted effects are too small to be observable. Our own
interest in the subject derives from its relevance as the flat
space correspondence limit of the regime of primordial
inflation, during which quantum gravitational effects are
not unobservably small. Indeed, the gravitational response
to quantum fluctuations of matter [17] has been resolved
[18], and the corresponding fluctuations of gravitational
radiation [19] may soon be detected [20].

Whether during primordial inflation or on flat space
background, the proper vehicle for studying quantum dis-
tortions of electrodynamics is the quantum-corrected
Maxwell equation. One gets this by first computing the
‘‘vacuum polarization’’ i½����ðx; x0Þ, which is the one-
particle-irreducible (1PI) 2-point function for the photon.
This is then used to quantum-correct Maxwell’s equation,

@�½ ffiffiffiffiffiffiffi�g
p

g��g��F��ðxÞ� þ
Z

d4x0½����ðx; x0ÞA�ðx0Þ
¼ J�ðxÞ: (3)

This framework has been employed to infer the effects of
inflationary charged scalar production on photons [21], and
on electrodynamic forces [22]. The purpose of this paper is
to facilitate a similar study of the effects of inflationary

graviton production by first working out the flat space
correspondence limit. An example of the utility of this
exercise is the recent examination of the effects of infla-
tionary scalars on gravitons [23], for which the flat space
limit [24] provided crucial guidance in dealing with the
vastly more complicated graviton self-energy [25] that
pertains during primordial inflation.
The quantum gravitational contribution to the one loop

vacuum polarization is derived in Sec. II. Section III solves
the quantum-corrected Maxwell equation (3) for photons,
for the instantaneous creation of a point dipole, for an
alternating point dipole, and for a static point charge.
The issue of gauge dependence is discussed in Sec. IV,
and our conclusions comprise Sec. V.

II. ONE LOOP VACUUM POLARIZATION

The purpose of this section is to compute the renormal-
ized, one loop contribution to the vacuum polarization
from quantum gravity on flat space background. We begin
by presenting the necessary Feynman rules. Then we use
them to compute the dimensionally regulated result. By a
process of successive partial integrations this is expressed
as a divergent, local term—which is canceled by a BPHZ
counterterm—plus the finite, nonlocal contribution which
constitutes the renormalized result.

A. Feynman rules

Our total Lagrangian contains three parts,

L ¼ LGR þLEM þLBPHZ: (4)

These are, respectively, the Lagrangians of general relativ-
ity, electromagnetism and the BPHZ counterterm required
for this computation,

L GR ¼ 1

16�G
R

ffiffiffiffiffiffiffi�g
p

; (5)

L EM ¼ � 1

4
F��F��g

��g��
ffiffiffiffiffiffiffi�g

p
; (6)

L BPHZ ¼ C4D�F��D	F��g
�	g��g��

ffiffiffiffiffiffiffi�g
p

: (7)

We employ a D-dimensional, spacelike metric g��, with

inverse g�� and determinant g ¼ detðg��Þ. Our affine

connection and Riemann tensor are

��
�� � 1

2g
��½@�g�� þ @�g�� � @�g���; (8)

R�
��� � @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��:

(9)

Our Ricci tensor is R�� � R�
��� and the associated Ricci

scalar is R � g��R��. The electromagnetic field strength

tensor and its first covariant derivative are

F�� � @�A� � @�A�; (10)

FIG. 2. Lowest order gravitational effect on light due to quan-
tum fluctuations of matter. Photon lines are wavy, graviton lines
are winding, and matter lines are solid.

KATIE E. LEONARD AND R. P. WOODARD PHYSICAL REVIEW D 85, 104048 (2012)

104048-2



D�F�� � @�F�� � �

��F
� � �


��F�
: (11)

We define the graviton field h��ðxÞ as the difference

between the full metric and its Minkowski background
value ���,

g��ðxÞ � ��� þ �h��ðxÞ; (12)

where �2 � 16�G is the loop counting parameter of quan-
tum gravity. We follow the usual conventions whereby a
comma denotes ordinary differentiation, the trace of the
graviton field is h � ���h��, and graviton indices are

raised and lowered using the Minkowski metric, h�� �
���h�� and h

�� � ������h��. After extracting a surface

term the gravitational Lagrangian can be written as

LGR � surface

¼ ffiffiffiffiffiffiffi�g
p

g�	g��g��

�
1

2
h��;�h��;	 � 1

2
h�	;�h��;�

þ 1

4
h�	;�h��;� � 1

4
h��;�h	�;�

�
: (13)

The quadratic part of the invariant Lagrangian is

L ð2Þ
GR ¼ 1

2h
��;�h��;� � 1

2h
��

;�h;� þ 1
4h

;�h;�

� 1
4h

��;�h��;�: (14)

We fix the gauge by adding

L GRfix ¼ �1
2�

��F�F�; F� � ���ðh��;� � 1
2h��;�Þ:

(15)

The resulting graviton propagator can be expressed in
terms of the massless scalar propagator i�ðx; x0Þ,

i½������ðx; x0Þ
¼

�
2��ð���Þ� � 2

D� 2
������

�
i�ðx; x0Þ: (16)

The spacetime dependence of the scalar propagator derives
from the Lorentz interval �x2ðx; x0Þ,

�x2ðx; x0Þ � k ~x� ~x0k2 � ðjt� t0j � i"Þ2

) i�ðx; x0Þ ¼ �ðD2 � 1Þ
4�ðD=2Þ

�
1

�x2

�ðD=2Þ�1
: (17)

The quadratic part of the electromagnetic action is

L EM ¼ �1
2@�A�@

�A� þ 1
2ð@�A�Þ2: (18)

We fix the gauge by adding,

L EMfix ¼ �1
2ð@�A�Þ2: (19)

The associated photon propagator is

i½����ðx; x0Þ ¼ ���i�ðx; x0Þ: (20)

Electromagnetic interaction vertices descend from the
second variational derivative of the action,


2SEM

A�ðxÞ
A�ðx0Þ ¼ @�f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
½g��ðxÞg��ðxÞ

� g��ðxÞg��ðxÞ�@�
Dðx� x0Þg: (21)

The necessary vertex functions are obtained by expanding
the metric factors,

ffiffiffiffiffiffiffi�g
p ðg��g�� � g��g��Þ � ������ � ������ þ �V�����	h�	 þ �2U�����	

h�	h

 þOð�3Þ: (22)

The 3-point and 4-point vertices are

V�����	 ¼ ��	��½����� þ 4��Þ½����½����ð	; (23)

U�����	

 ¼ ½14��	�

 � 1
2�

�ð
�
Þ	���½����� þ ��	�
Þ½����½����ð
 þ �

��Þ½����½����ð	

þ ��ð��	Þ½����ð
�
Þ� þ ��ð
�
Þ½����ð��	Þ� þ ��ð��	Þð
�
Þ½����� þ ��ð
�
Þð��	Þ½�����

þ ��½����ð��	Þð
�
Þ� þ ��½����ð
�
Þð��	Þ�: (24)

Note that parenthesized indices are symmetrized, whereas indices enclosed in square brackets are antisymmetrized.

B. Dimensionally regulated result

The three one loop diagrams which contribute to the vacuum polarization are depicted in Fig. 3. They can each be
expressed using the notation of the previous section. The left-hand diagram is

i½���
3pt�ðx; x0Þ ¼ ði�Þ2@�@0�fV�����	i½�	�

�ðx; x0ÞV����

@�@

0
�i½����ðx; x0Þg: (25)

Substituting expressions (16), (20), and (23), acting the inner derivatives and performing the inner contractions gives,
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i½���
3pt�ðx; x0Þ ¼ ði�Þ2 �

2ðD2 � 1Þ
16�D ��ðD� 3ÞD@�@�

�
2½������ � �������

�x2D�2
þD½�x��x���� � �x��x�����

�x2D

�D½�x��x���� ��x��x�����
�x2D

�
: (26)

The next step is to act the outer derivatives, at which point we can extract a manifestly transverse form,

i½���
3pt�ðx; x0Þ ¼ ��2�2ðD2 � 1Þ

16�D ðD� 3ÞðD� 2Þ2D
�ðDþ 1Þ���

�x2D
� 2D�x��x�

�x2Dþ2

�
; (27)

¼ ��2�2ðD2 � 1Þ
16�D

ðD� 3ÞðD� 2Þ2D
2ðD� 1Þ ½���@2 � @�@�� 1

�x2D�2
: (28)

The middle diagram of Fig. 1 is

i½���
4pt�ðx; x0Þ ¼ i�2@�fU�����	

i½�	�

�ðx; xÞ@�
Dðx� x0Þg: (29)

This diagram vanishes because the coincidence limit of the
massless scalar propagator in flat space is zero in dimen-
sional regularization, i�ðx; xÞ ¼ 0. The diagram on the
right of Fig. 1 is,

i½���
ctm�ðx; x0Þ ¼ i4C4ð���@2 � @�@�Þ@2
Dðx� x0Þ:

(30)

C. Renormalization

To renormalize (28) we must first localize the ultraviolet
divergence so that it can be subtracted by the counterterm
(30). This process of localization is accomplished by first
partially integrating the factor of 1=�x2D�2 in (28) until
the remainder is integrable [26]. In dimensional regulari-
zation the steps are [27]

1

�x2D�2
¼ @2

2ðD� 2Þ2
1

�x2D�4

¼ @4

4ðD� 2Þ2ðD� 3ÞðD� 4Þ
1

�x2D�6
: (31)

Next we add zero in the form [27],

@2
1

�xD�2
¼ i4�D=2

�ðD2 � 1Þ

Dðx� x0Þ: (32)

Adding (32) to the key part of (31) in a dimensionally
consistent way gives,

@2

D� 4

�
1

�x2D�6

�
¼ i4�D=2

�ðD2 � 1Þ
�D�4
Dðx� x0Þ

D� 4

þ @2

D� 4

�
1

�x2D�6
� �D�4

�xD�2

�
; (33)

¼ i4�D=2

�ðD2 � 1Þ
�D�4
Dðx� x0Þ

D� 4

� @2

2

�
lnð�2�x2Þ

�x2

�
þOðD� 4Þ: (34)

Substituting (31) and (34) into (28) results in the desired
localized divergence,

i½���
3pt�ðx; x0Þ ¼ � i�2�ðD2 � 1Þ

4�ðD=2Þ
D

8ðD� 1ÞðD� 4Þ
� ½���@2 � @�@��@2
Dðx� x0Þ

þ �2

192�4
½���@2 � @�@��

� @4
�
lnð�2�x2Þ

�x2

�
þOðD� 4Þ: (35)

The local divergence of expression (35) will be com-
pletely canceled by the counterterm (30) if we make the
choice,

FIG. 3. Graviton contributions to the one loop vacuum polarization.
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C4 ¼
�2�ðD2 � 1Þ
16�D=2

D

8ðD� 1ÞðD� 4Þ : (36)

We can then take the unregulated limit (D ! 4) to obtain
the fully renormalized graviton contribution to the one
loop vacuum polarization,

½���
ren�ðx; x0Þ ¼ � i�2

192�4
½���@2 � @�@��@4

�
lnð�2�x2Þ

�x2

�
:

(37)

Note that the ambiguity regarding the finite part of the
counterterm is reflected in the dimensional regularization
scale �.

III. QUANTUM CORRECTED MAXWELL
EQUATIONS

The purpose of this section is to use our one result (37)
for the one loop vacuum polarization to quantum correct
Maxwell’s equations, and then infer quantum gravitational
corrections to electrodynamics by solving these equations.
We begin by deriving the causal effective field equations of
the Schwinger-Keldysh formalism. Subsequent subsec-
tions solve these equations perturbatively for the special
cases of free photons, a point dipole pulse, an alternating
point dipole, and a static point charge.

A. Schwinger-Keldysh formalism

We come now to the question of what to use for the
vacuum polarization ½����ðx; x0Þ in the quantum corrected
Maxwell equation (3). It might seem obvious that the in-
out result (37) we have just derived should be used, but that
would lead to two problems:

(i) Causality—The in-out vacuum polarization (37) is
nonzero for points x0� which lie in the future of x�,
or at spacelike separation from it; and

(ii) Reality—The in-out vacuum polarization (37) is not
real.

One can get the right result for a static potential by simply
ignoring the imaginary part [7,8], but circumventing the
limitations of the in-out formalism becomes more and
more difficult as time dependent sources and higher order
corrections are included, and these techniques break down
entirely for the case of cosmology in which there may not
even be asymptotic vacua. Note that there is nothing wrong
with the in-out vacuum polarization (37); it is exactly the
right thing to correct the photon propagator for asymptotic
scattering computations in flat space. The point is rather
that employing (37) in Eq. (3) fails to provide a set of field
equations with the same scope and power as the classical
Maxwell’s equations.
The more appropriate field equations are those of the

Schwinger-Keldysh formalism. This technique provides a
way of computing true expectation values that is almost as
simple as the Feynman diagrams which produce in-out
matrix elements [28]. We shall develop the Schwinger-
Keldysh rules in the context of a scalar field ’ðxÞ whose
Lagrangian (the space integral of its Lagrangian density) at
time t is L½’ðtÞ�. Suppose we are given a Heisenberg state
j�i whose wave functional in terms of the operator eigen-
kets at time t0 is �½’ðt0Þ�, and we wish to take the
expectation value, in the presence of this state, of a product
of two functionals of the field operator: A½’�, which is anti-
time-ordered, and B½’�, which is time-ordered. The
Schwinger-Keldysh functional integral for this is [29]

h�jA½’�B½’�j�i ¼
Z
½d’þ�½d’��
½’�ðt1Þ � ’þðt1Þ�A½’��B½’þ���½’�ðt0Þ�ei

R
t1
t0
dtfL½’þðtÞ��L½’�ðtÞ�g�½’þðt0Þ�: (38)

The time t1 > t0 is arbitrary as long as no operator in either
A½’� or B½’� is evaluated at a later time.

The Schwinger-Keldysh rules can be read off from its
functional representation (38). Because the same field
operator is represented by two different dummy functional
variables, ’�ðxÞ, the endpoints of lines carry a � polarity.
External lines associated with the anti-time-ordered opera-
tor A½’� have the� polarity whereas those associated with
the time-ordered operator B½’� have the þ polarity.
Interaction vertices are either all þ or all �. Vertices
withþ polarity are the same as in the usual Feynman rules
whereas vertices with the � polarity have an additional
minus sign. If the state j�i is something other than free
vacuum then it contributes additional interaction vertices
on the initial value surface [30].

Propagators can beþþ ,þ� ,�þ , or�� . All four
polarity variations can be read off from the fundamental

relation (38) when the free Lagrangian is substituted for the
full one. It is useful to denote canonical expectation values
in the free theory with a subscript 0. With this convention
we see that the þþ propagator is just the ordinary
Feynman propagator,

i�þþðx; x0Þ ¼ h�jTð’ðxÞ’ðx0ÞÞj�i0 ¼ i�ðx; x0Þ; (39)

where T stands for time-ordering and �T denotes anti-time-
ordering. The other polarity variations are simple to read
off and to relate to the Feynman propagator,

i��þðx; x0Þ ¼ h�j’ðxÞ’ðx0Þj�i0
¼ �ðt� t0Þi�ðx; x0Þ þ �ðt0 � tÞ½i�ðx; x0Þ��;

(40)
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i�þ�ðx; x0Þ ¼ h�j’ðx0Þ’ðxÞj�i0
¼ �ðt� t0Þ½i�ðx; x0Þ�� þ �ðt0 � tÞi�ðx; x0Þ;

(41)

i���ðx; x0Þ ¼ h�j �Tð’ðxÞ’ðx0ÞÞj�i0 ¼ ½i�ðx; x0Þ��: (42)

In our case, both the photon and the graviton propagators
depend upon the massless scalar propagator (17), which is
a function of the Lorentz interval �x2ðx; x0Þ. It follows
from relations (40)–(42) that the various Schwinger-
Keldysh propagators can be obtained by making simple
replacements for the Lorentz interval,

�x2þþðx; x0Þ � k ~x� ~x0k2 � c2ðjt� t0j � i�Þ2; (43)

�x2þ�ðx; x0Þ � k ~x� ~x0k2 � c2ðt� t0 þ i�Þ2; (44)

�x2�þðx; x0Þ � k ~x� ~x0k2 � c2ðt� t0 � i�Þ2; (45)

�x2��ðx; x0Þ � k ~x� ~x0k2 � c2ðjt� t0j þ i�Þ2: (46)

Because each external line can be either þ or � in the
Schwinger-Keldysh formalism, every 1PIN-point function
of the in-out formalism gives rise to 2N 1PI N-point
functions in the Schwinger-Keldysh formalism. For every
classical field �ðxÞ of an in-out effective action, the cor-
responding Schwinger-Keldysh effective action must de-
pend upon two fields—call them �þðxÞ and ��ðxÞ—in
order to access the appropriate 1PI function [31]. For the
scalar paradigm we have been considering the 1PI 2-point
function as the scalar self-mass-squared, M2��ðx; x0Þ, and
the effective action takes the form,

�½�þ;���¼S½�þ��S½����1

2

Z
d4x

Z
d4x0

8<
:

�þðxÞM2þþðx;x0Þ�þðx0Þþ�þðxÞM2þ�ðx;x0Þ��ðx0Þ
þ��ðxÞM2�þðx;x0Þ�þðx0Þþ��ðxÞM2��ðx;x0Þ��ðx0Þ

9=
;þOð�3�Þ; (47)

where S is the classical action. The effective field equations are obtained by varying with respect to �þ and then setting
both fields equal [31],


�½�þ; ���

�þðxÞ

����������¼�
¼ ½@2 �m2��ðxÞ �

Z
d4x0½M2þþðx; x0Þ þM2þ�ðx; x0Þ��ðx0Þ þOð�2Þ: (48)

The two 1PI 2-point functions we would need to quantum
correct the linearized scalar field equation are M2þþðx; x0Þ
and M2þ�ðx; x0Þ. Their sum in (48) gives effective field
equations which are causal in the sense that the two 1PI
functions cancel unless x0� lies on or within the past light
cone of x�. Their sum is also real, which neither 1PI
function is separately.

From the preceding discussion it is apparent that we
wish to make the following substitution in Eq. (3):

½����ðx; x0Þ ! ½�þ��þ�ðx; x0Þ þ ½�þ����ðx; x0Þ; (49)

where we can read off the appropriate Schwinger-Keldysh
vacuum polarization from expression (37),

½������ðx; x0Þ ¼ � ð�Þð�Þi�2

192�4
½���@2 � @�@��@4

�
lnð�2�x2��Þ

�x2��

�
; (50)

¼ �ð�Þð�Þi�2

1536�4
½���@2 � @�@��@6fln2ð�2�x2��Þ � 2 lnð�2�x2��Þg: (51)

Now define the temporal and spatial intervals as,

�t � t� t0; �r � k ~x� ~x0k: (52)

It is apparent from expressions (43) and (44) that differences of logarithms of the þþ and þ� intervals give,

lnð�2�x2þþÞ � lnð�2�x2þ�Þ ¼ 2�i�ð�t� �rÞ; (53)

ln 2ð�2�x2þþÞ � ln2ð�2�x2þ�Þ ¼ 4�i�ð�t��rÞ ln½�2ð�t2 ��r2Þ�: (54)

Hence the vacuum polarization which belongs in Eq. (3) is

½����ðx; x0Þ ¼ �2

384�3
½���@2 � @�@��@6f�ð�t��rÞ½ln½�2�t2 � �r2Þ� � 1�g þOð�4Þ: (55)
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B. Photons

Expression (55) gives all the one loop contributions
which derive exclusively from interaction vertices, but
there are also contributions from perturbative corrections
to the initial state wave functionals. In the scalar functional
integral (38) these wave functionals are �½’þðt0Þ� and
��½’�ðt0Þ�; for gravity plus electromagnetism they would
be functionals of A� and h��, evaluated at the initial time.

Each state wave functional can be expressed as the wave
functional of free vacuum times a series of perturbative
corrections,

�½A; h� ¼ �0½A; h� � f1þOð�hA2Þg: (56)

It is straightforward to show that the free vacuum contri-
bution is what fixes the real part of the propagator in the
functional formalism [32]. If there were no perturbative
state corrections then merely employing the correct propa-
gators would completely account for the state wave
functionals. However, there must be perturbative state
corrections because free vacuum cannot be the true vacuum
state of an interacting quantum field theory.

Perturbative state corrections manifest as new interac-
tions on the initial value surface [29]. When the initial
value surface is in the asymptotic past (or the asymptotic
past and future for in-out matrix elements) these interac-
tions have no effect on operators at finite times. However,
they can be important when the initial value surface is at a
finite time, as it must be in cosmology. The first correction
relevant for a massless, minimally coupled ��4 theory has
recently been worked out on de Sitter background [30]. In
this case the initial state correction is necessary to make the
linearized effective field equation well defined at the initial
time [33], and to eliminate an infinite series of rapidly
redshifting terms from the two loop expectation value of
the stress tensor [27].

We shall assume that the missing state corrections ex-
actly cancel the surface terms which arise when (55) is
partially integrated. To see what this entails, first note that
all orders of the ‘‘pure-vertex’’ part of the vacuum polar-
ization take the manifestly transverse form,

½����ðx; x0Þ ¼ ð���@2 � @�@�Þ�ðx� x0Þ: (57)

The partial integration we have in mind concerns the
quantum correction to Maxwell’s equation,

Z
d4x0ð���@2 � @�@�Þ�ðx� x0ÞA�ðx0Þ

¼
Z

d4x0�ðx� x0Þ@0�F��ðx0Þ þ surface terms: (58)

In the Schwinger-Keldysh formalism the þþ and þ�
contributions exactly cancel on the future temporal sur-
face, as well as on the surface at spatial infinity. Hence the
only surface terms come from the initial time. Of course
this is also true of perturbative state corrections. We

assume that the two contributions exactly cancel, so that
the full, quantum-corrected Maxwell equation is

@�F��ðxÞ þ
Z

d4x0�ðx� x0Þ@0�F��ðx0Þ ¼ J�ðxÞ: (59)

We are finally ready to consider the case of free photons,
which corresponds to J�ðxÞ ¼ 0. Note from Eq. (59) that

these obey @�F��ðxÞ ¼ 0, the same as in the classical

theory. One might worry about the potential for solutions
of the form @�F��ðxÞ ¼ S�ðxÞ, where S�ðxÞ obeys the

integral equation,

S�ðxÞ þ
Z

d4x0�ðx� x0ÞS�ðx0Þ ¼ 0: (60)

However, an effective field equation such as (59) can only
be used to perturbatively correct classical solutions [34],
which means we must exclude any such solutions. Hence
we conclude that quantum gravity on flat space back-
ground makes no correction to free photons at any order,
except for possible field strength renormalization.

C. Instantaneously creating a point dipole

The charge density of a static point electric dipole ~p at

the origin is � ¼ � ~p � ~r
3ð ~xÞ. We might imagine creating
such a dipole at the instant t ¼ 0 by separating the charges
in a very small, neutral particle such as a neutron. The
conserved 4-current associated with this event is

J0ðt; ~xÞ ¼ ��ðtÞ ~p � ~r
3ð ~xÞ; Jiðt; ~xÞ ¼ pi
ðtÞ
3ð ~xÞ:
(61)

The response of the magnetic field provides a good pertur-
bative illustration of the smearing of the light cone which
was conjectured so long ago [1].
Before proceeding it is desirable to reorganize Eq. (59)

in two ways. The first has to do with the limitation inherent
in only possessing the first order term in the loop expansion
of �ðx� x0Þ,
�ðx� x0Þ ¼ �ð1Þðx� x0Þ þ�ð2Þðx� x0Þ þOð�6Þ: (62)

Of course this means we can only infer the one loop
correction to the field strength, so we may as well
expand it,

F��ðxÞ ¼ Fð0Þ
��ðxÞ þ Fð1Þ

��ðxÞ þ Fð2Þ
��ðxÞ þOð�6Þ: (63)

Substituting (62) and (63) in the quantum-corrected
Maxwell equation (59) and segregating different orders
of �2 produces the hierarchy,

@�Fð0Þ
��ðxÞ ¼ J�ðxÞ; (64)

@�Fð1Þ
��ðxÞ ¼ �

Z
d4x0�ðx� x0ÞJ�ðx0Þ � Jð1Þ� ðxÞ; (65)

and so on. Note the classical source J�ðxÞ is 0th order.
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The second reorganization concerns deriving the field
strength directly, without constructing the vector potential.
Consider taking the curl of the classical Maxwell equation,

�����@�@
�F�� ¼ @2�����@�A� ¼ �����@�J� ) @2F��

¼ @�J� � @�J�: (66)

Combining this with (64) and (65) implies,

@2Fð0Þ
�� ¼ @�J� � @�J�; (67)

@2Fð1Þ
�� ¼ @�J

ð1Þ
� � @�J

ð1Þ
� : (68)

Now recall that our one loop current density can be ex-
pressed as the d’Alembertian of something,

Jð1Þ� ðxÞ � �
Z

d4x0�ð1Þðx� x0ÞJ�ðx0Þ; (69)

¼ i�2@4

192�4

Z
d4x0

�
lnð�2�x2þþÞ

�x2þþ
� lnð�2�x2þ�Þ

�x2þ�

�
J�ðx0Þ;

(70)

¼ �2@6

384�3

Z
d4x0�ð�t��rÞfln½�2ð�t2 ��r2Þ�� 1gJ�ðx0Þ:

(71)

Comparison of (68) with (70) or (71) implies a result for
the one loop field strength, up to possible homogeneous
terms,

Fð1Þ
��ðxÞ ¼ i�2@2

192�4
2@½�

Z
d4x0

�
lnð�2�x2þþÞ

�x2þþ

� lnð�2�x2þ�Þ
�x2þ�

�
J��ðx0Þ; (72)

¼ �2@4

384�3
2@½�

Z
d4x0�ð�t� �rÞ

� fln½�2ð�t2 � �r2Þ� � 1gJ��ðx0Þ: (73)

We are now ready to specialize to the current density
(61) of an instantaneously created dipole. Substituting in
(64) and specializing to purely spatial indices gives,

@2Fð0Þ
ij ðxÞ ¼ ð@ipj � @jpiÞ
4ðxÞ: (74)

The solution can be expressed in a convenient form by
noting the D ¼ 4-dimensional version of relation (32),

@2
�

1

�x2þþ

�
¼ 4�2i
4ðx� x0Þ; @2

�
1

�x2þ�

�
¼ 0: (75)

Hence we have,

Fð0Þ
ij ðxÞ ¼ � i

4�2
ð@ipj � @jpiÞ

�
1

�x2þþ
� 1

�x2þ�

�
; (76)

where x0� ¼ 0 is understood. Now write out the two
intervals,

�x2þþ ¼ r2 � t2 þ �2 þ 2�jtji; (77)

�x2þ� ¼ r2 � t2 þ �2 � 2�ti: (78)

Combining these relations with the Dirac identity results in
the familiar form for the Liénard-Wiechert potential,

Fð0Þ
ij ðxÞ ¼ � 1

2�
ð@ipj � @jpiÞ�ðtÞ
ðr2 � t2Þ: (79)

The most convenient form for the one loop correction
is (72)

Fð1Þ
ij ðxÞ ¼ ð@ipj � @jpiÞ i�

2@2

192�4

�
lnð�2�x2þþÞ

�x2þþ

� lnð�2�x2þ�Þ
�x2þ�

�
; (80)

¼ ð@ipj � @jpiÞ i�
2@2

48�4

�
1

�x4þþ
� 1

�x4þ�

�
; (81)

¼ ð@ipj � @jpiÞ
�

�2

12�2

@

@r2

��
�ðtÞ
ðr2 � t2Þ

2�

�
: (82)

Adding the one loop magnetic field (82) to the tree one (79)
leads to an interesting form,

FijðxÞ ¼ � 1

2�
ð@ipj � @jpiÞ�ðtÞ

�
1� �2

12�2

@

@r2

�

� 
ðr2 � t2Þ þOð�4Þ; (83)

¼ � 1

2�
ð@ipj � @jpiÞ�ðtÞ


�
r2 � t2 � �2

12�2

�
þOð�4Þ:

(84)

It would therefore be fair to say that, by time t the signal
has reached a distance r slightly outside the classical light
cone,

r2 ¼ t2 þ �2

12�2
þOð�4Þ: (85)

Although intriguing, the superluminality we have just
found is unobservably small. In particular, it cannot serve
as any sort of explanation for the OPERA result [35]. It
also is not cumulative, so looking at cosmological sources
makes the effect no larger. Another thing our effect fails to
do is break Lorentz invariance, as could have been pre-
dicted from the fact that perturbative quantum gravity
provides no mechanism for spontaneously breaking this
symmetry. Instead of signals propagating along the classi-
cal light cone ���x

�x� ¼ 0, they now propagate along

���x
�x� ¼ 4G

3� . So it is not that the speed of light or the

dispersion relation has been changed.
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Of course theories with a nonlinear kinetic operator can
show superluminal propagation even classically [36]. Our
effect is different in that it arises from quantum fluctuations
of the metric operator which sets the light cone. One
interpretation for the net superluminal propagation is that
there is more volume outside the classical light cone than
inside. This might be checked by extending the graviton
expansion of the volume of the past light cone one order
higher than in [37] and then computing its expectation
value. If the one loop correction is positive then our con-
jecture is verified. Note also that this check would be
independent of the choice of gauge because the volume
of the past light cone is a gauge invariant operator.

There have been many claims of superluminal propaga-
tion from quantum electrodynamics in nontrivial geome-
tries [38,39]. Our result is different in that it occurs in flat
space, and is due to fluctuations of the metric operator,
rather than of some matter field. We also doubt that the
earlier claims result from true superluminal propagation.
One cannot compute the vacuum polarization produced by
fermions in an arbitrary geometry because the fermion
propagator is not known for general metric. What was
done instead is a derivative expansion. This should be valid
for low energy effective field theory; for example, it should
give correct results for the phase velocity of some continu-
ous, low frequency signal. However, demonstrating true
superluminality requires following the propagation of a
pulse, and the high frequency modes which are essential
for this are not correctly treated by derivative expansions.
In fact the Schwinger-Keldysh formalism [28] implies
there cannot be superluminal propagation from the fermi-
onic contribution to vacuum polarization.

D. An alternating point dipole

The 4-current associated with an alternating point
dipole is

J0ðt; ~xÞ ¼ � ~p � ~r
3ð ~xÞe�i!t;

Jiðt; ~xÞ ¼ �i!pi
3ð ~xÞe�i!t:
(86)

To find the quantum correction to the current we employ
the same expansion technique used in the previous section
where the first order correction is defined as

J�ð1ÞðxÞ ¼ � G@6

24�2

Z
d4x0�ð�t��xÞ

� fln½�2ð�t2 � �x2Þ� � 1gJ�ðx0Þ: (87)

We can evaluate this integral by rewriting x and the differ-
ential operators as x ¼ 1

2 ðxþ tÞ þ 1
2 ðx� tÞ and @2 ¼ 1

x �ð@x � @tÞð@x þ @tÞx. Thus we come to the convenient form,

@4 ¼ 1

2x
ð@x � @tÞ2ð@x þ @tÞ2ðxþ tÞ

þ 1

2x
ð@x � @tÞ2ð@x þ @tÞ2ðx� tÞ: (88)

By substituting (88) for @4 in (87) and applying the zeroth
order currents (86) we find the one loop currents to be

J0ð1Þðt; ~xÞ ¼ @2
�
G ~p � ~r
6�2

�
� i!

x2
þ 1

x3

�
e�i!ðt�xÞ

�
; (89)

Jið1Þðt; ~xÞ ¼ @2
�
i!piG

6�2

�
� i!

x2
þ 1

x3

�
e�i!ðt�xÞ

�
: (90)

From (67) we see that the zeroth order field strengths for
this source obey,

@2Fð0Þ
0i ðt; ~xÞ ¼ �½!2pi � @i ~p � ~r�
3ð ~xÞe�i!t; (91)

@2Fð0Þ
ij ðt; ~x ¼ �i!½@ipj � @jpi�
3ð ~xÞe�i!t: (92)

Applying the Liénard-Wiechert Green’s function we find,

Fð0Þ
0i ðt; ~xÞ ¼

1

4�
½!2pi � @i ~p � ~r� e

�i!ðt�xÞ

x
; (93)

Fð0Þ
ij ðt; ~xÞ ¼

i!

4�
½@ipj � @jpi� e

�i!ðt�xÞ

x
: (94)

From (68) we see that one loop field strengths follow by
simply deleting the @2 from (89) and (90) and acting some
derivatives,

Fð1Þ
0i ðt; ~xÞ ¼ � i!G

6�2
½!2pi � @i ~p � ~r�

�
1þ i

!x

�
e�i!ðt�xÞ

x2
;

(95)

Fð1Þ
ij ðt; ~xÞ ¼ � i!G

6�2
ði!Þ½@ipj � @jpi�

�
1þ i

!x

�
e�i!ðt�xÞ

x2
:

(96)

Adding the loop correction to the tree results gives,

F0iðt; ~xÞ ¼ ½!2pi � @i ~p � ~r� � e�i!ðt�xÞ

4�x

�
�
1� 2i!G

3�x

�
1þ i

!x

�
þOðG2Þ

�
; (97)

Fijðt; ~xÞ ¼ i!½@ipj � @jpi� � e�i!ðt�xÞ

4�x

�
�
1� 2i!G

3�x

�
1þ i

!x

�
þOðG2Þ

�
: (98)

Of course the obvious conclusion is that the one loop
corrections have no effect in the far field regime, and the
near field regime is unobservably close to the source.

E. A static point charge

The charge density of a static point charge q at the origin
is � ¼ q
3ð ~xÞ. The conserved 4-current associated with
this source is
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J�ðxÞ ¼ q
3ð ~xÞ
�
0 : (99)

Because the � ¼ 0 component differs from the alternating
dipole of the previous subsection only by setting ! ¼ 0

and replacing � ~p � ~r with q, we can read off the one loop
current density from (89),

J0ð1Þðt; ~xÞ ¼ � Gq

�2x5
: (100)

Of course the vector components vanish so we find the
correction to the Coulomb potential is

�ðrÞ ¼ q

4�r

�
1þ 2G

3�r2
þOðG2Þ

�
: (101)

Our result (101) agrees with that found in 1970 by
Radkowski [7]. The one loop correction that Bjerrum-
Bohr inferred from the scattering of charged, gravitating
scalars differs from what we got by a factor of 9 [8]. Part of
this discrepancy may be due to different sources; Bjerrum-
Bohr considered a charged scalar whereas we used a point
particle with worldline ��ð�Þ,

Lpoint ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��ð�ð�ÞÞ _��ð�Þ _��ð�Þ

q
þ q _��ð�ÞA�ð�ð�ÞÞ: (102)

However, we believe the largest part of the discrepancy
arises from Bjerrum-Bohr having implicitly included cor-
rections to the current density like the diagram depicted in
Fig. 4. We could have and should have done this, but we
will see in the next section that it would only have altered
all our one loop field strengths by an overall constant.

Radkowski [7], Bjerrum-Bohr [8] and we all agree that
quantum gravity strengthens the electromagnetic force at
one loop. The opposite conclusion seems to arise from
computations of the quantum gravitational contribution
to the electromagnetic beta function [9,40,41]. These
show that quantum gravity decreases the electromagnetic
coupling constant at high energy scales. That would nor-
mally be assumed to mean that quantum gravity weakens

the electromagnetic force at short distances, but it is well
to keep in mind that the beta function is not directly
observable. The observable thing is the strength scattering
between charged particles, and the Bjerrum-Bohr compu-
tation shows that one loop quantum gravity effects weaken
this, rather than strengthening it.

IV. GAUGE DEPENDENCE

The purpose of this section is to examine how the results
of the previous section depend upon our choices of the
gravitational gauge fixing term (15) and the electromag-
netic gauge fixing term (19). We begin with some general
considerations which reduce the issue to a single propor-
tionality constant. The graviton and photon propagators are
then worked out for a general 3-parameter family of co-
variant gauges. Although one of these parameters drops
out, the other two can change the proportionality constant
all the way from minus infinity to plus infinity. We close by
exploiting the gauge independent result of Bjerrum-Bohr
to argue that this seeming gauge dependence may cancel
out if quantum gravitational corrections to the current
density are included.

A. General considerations

Note from expression (25) that the vacuum polarization
is transverse on each of its two indices as a trivial conse-
quence of the antisymmetry of the vertex function on its
first and third indices,

V�����	 ¼ �V�����	: (103)

This is completely without regard to the gauges employed
to define graviton and photon propagators. Suppose we
now restrict attention to gauges which preserve Poincaré
invariance. Because the Lagrangians (5) and (7) and the
background are also Poincaré invariant, the vacuum polar-
ization must inherit this symmetry. Then dimensional
analysis, transversality and the standard �2 of a one
loop quantum gravity result, together imply a form like
that of (28),

i½���
3pt�ðx; x0Þ ¼ �constant� �2½���@2 � @�@��

� 1

�x2D�2
: (104)

However, the constant prefactor might be gauge dependent,
and that same gauge dependent constant would multiply all
of our one loop corrections.
It is useful to begin at a somewhat earlier point. If

different—but Poincaré invariant—graviton and photon
propagators had been employed in expression (25), then
the combination of Poincaré invariance, dimensional
analysis and the algebraic symmetries of the vertex func-
tion and the propagators imply that the result can be ex-
pressed in terms of two constants A and B,

FIG. 4. Vertex correction included (along with many other
diagrams) in the Bjerrum-Bohr result [8], but not in either our
result (101) or that of Radkowski [7]. Charged scalar lines are
solid with an arrow, photon lines are wavy and graviton lines are
winding.
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ði�Þ2@�@0�fV�����	i½�	�new


 �ðx; x0ÞV����

@�@

0
�i½��new

� �ðx; x0Þg

¼ ði�Þ2 �
2ðD2 � 1Þ
16�D ðD� 2Þ@�@0�

�
A� 4�x½����½��x��

�x2D
þ B� ��½�����

�x2D�2

�
; (105)

¼ ��2�2ðD2 � 1Þ
16�D � ðD� 2Þ½DA� 2ðD� 1ÞB�

�ðDþ 1Þ���

�x2D
� 2D�x��x�

�x2Dþ2

�
; (106)

¼ ��2�2ðD2 � 1Þ
16�D � ðD� 2Þ½DA� 2ðD� 1ÞB�

2ðD� 1Þ � ½���@2 � @�@�� 1

�x2D�2
: (107)

We can therefore identify the proportionality constant in (104) as

constant ¼ �2ðD2 � 1Þ
16�D � ðD� 2Þ½DA� 2ðD� 1ÞB�

2ðD� 1Þ ; (108)

� �2ðD2 � 1Þ
16�D � 1

2

�
D� 2

D� 1

�
� C: (109)

B. General covariant gauges

The most general Poincaré invariant extension of the graviton gauge fixing functional (15) depends upon two parameters
a and b,

L GRnew ¼ � 1

2a
���F �F �; F � � ���

�
h��;� � b

2
h��;�

�
: (110)

The associated propagator is [42],

i½�	�new


 �ðx; x0Þ ¼ X5

I¼1

CIðD; a; bÞ � ½��T I
��
� � i�ðx; x0Þ; (111)

where the coefficient functions CIðD; a; b; Þ and the tensor differential operators ½��T I
��
� are given in Table I. The

propagator can be given a more revealing expression using the transverse projection operator ��� � ��� � @�@�
@2

,

i½�	�new


 �ðx; x0Þ ¼

�
2��ð���Þ� � 2

D� 1
������ � 2

ðD� 2ÞðD� 1Þ
�

�
��� �

�
Db� 2

b� 2

�
@�@�

@2

��
��� �

�
Db� 2

b� 2

�
@�@�

@2

�
þ 4a� @ð���Þð�@�Þ

@2
þ 4a

ðb� 2Þ2 �
@�@�@�@�

@4

�
:

(112)

Of course the tranverse-traceless term on the first line
represents the contribution from dynamical, spin two grav-
itons. This term looms large in the quantum gravity litera-
ture but it is well to recall that it plays no role in the solar
system tests of general relativity. The phenomenologically
more important parts of the graviton propagator are those
on the second and third lines, which mediate the gravita-
tional interaction between sources of stress energy. Note
that the longitudinal terms proportional to the gauge pa-
rameter a would vanish in the exact gauge h��;� ¼ b

2 h;�.
The most general Poincaré invariant extension of the

photon gauge fixing functional (19) depends upon a single
parameter c,

TABLE I. Coefficient functions CIðD; a; bÞ and the tensor dif-
ferential operators ½��T I

��
� for the graviton propagator (111)

defined with the general gauge fixing functional (110).

I CIðD; a; bÞ ½��T I
���

1 1 2��ð���Þ�
2 � 2

D�2 ������

3 4ðb�1Þ
ðD�2Þðb�2Þ ���

@�@�
@2

þ @�@�
@2

���

4 a� 1 4
@ð���Þð�@�Þ

@2

5 � 4aðb�1Þðb�3Þ
ðb�2Þ2 � 8ðb�1ÞðbþD�3Þ

ðb�2Þ2ðD�2Þ
@�@�@�@�

@4
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L EMnew ¼ � 1

2c
ð@�A�Þ2: (113)

The associated propagator is

i½��new
� �ðx; x0Þ ¼

�
��� þ ðc� 1Þ @�@�

@2

�
i�ðx; x0Þ: (114)

The longitudinal term proportional to c� 1 can make no
contribution to the general gauge vacuum polarization
(105) because the vertex function (23) is antisymmetric
under interchange of its second and fourth indices,

V�����	 ¼ �V�����	: (115)

It remains to explain how to act the tensor differential
operators of Table I on the scalar propagator (17). First

note that inverse d’Alembertians act on 1=�xD�2 to give,

1

@2
1

�xD�2
¼ � 1

2ðD� 4Þ
1

�xD�4
; (116)

1

@4
1

�xD�2
¼ 1

8ðD� 4ÞðD� 6Þ
1

�xD�6
: (117)

Now just act the derivatives in the numerator to conclude,

@�@�

@2
i�ðx; x0Þ ¼ 1

2
�

�
��� �

ðD� 2Þ�x��x�
�x2

�
i�ðx; x0Þ;

(118)

@�@�@�@�

@4
i�ðx; x0Þ ¼ 1

8
�

�
3�ð�����Þ �

6ðD� 2Þ�ð���x��x�Þ
�x2

(119)

þDðD� 2Þ�x��x��x��x�
�x4

�
i�ðx; x0Þ: (120)

C. Gauge dependent proportionality constant

We are now ready to compute the crucial proportionality
constant of relation (104). Because the gauge dependence
of the photon propagator drops out, we need only consider
the gauge dependence of the graviton propagator. Because
the graviton propagator (111) is a sum of gauge-dependent
coefficients CIðD; a; bÞ times tensor operators ½��T I

���,
acting on the scalar propagator, we may as well work out
the result for each tensor operator separately. Table II
presents the coefficients AIðDÞ and BIðDÞ which were
defined in relation (105), for each of the five tensor differ-
ential operators of Table I. Also given is the contribution of
each tensor differential operator to the coefficient CIðDÞ,

CIðDÞ � D� AIðDÞ � 2ðD� 1Þ � BIðDÞ: (121)

To recover the full result for CðD; a; bÞ defined in rela-
tion (109) we multiply each CIðDÞ by the appropriate
gauge dependent coefficient CðD; a; bÞ from Table I,

CðD; a; bÞ ¼ X5
I¼1

CIðD; a; bÞ � CIðDÞ: (122)

The formula for arbitraryD is not illuminating, but special-
izing to D ¼ 4 gives,

Cð4;a;bÞ¼�12a�ð3b2�12bþ8Þ
ðb�2Þ2 � 4

ðb�2Þ2 : (123)

Our original gauge corresponds to a ¼ b ¼ 1, which gives
Cð4; a; 1Þ ¼ 8. Hence the various one loop corrections
computed in section are valid for general a and b if we
multiply by the proportionality constant,

Kða; bÞ � Cð4; a; bÞ
Cð4; 1; 1Þ

¼ � 3

2
a� ð3b2 � 12bþ 8Þ

ðb� 2Þ2 � 1

2ðb� 2Þ2 : (124)

It is interesting to note that the gauge independent contri-
bution from dynamical gravitons vanishes in D ¼ 4 di-
mensions,

TABLE II. Coefficients AI , BI and CI defined in relations (105) and (109), under the replacement i½���
new
�� �ðx; x0Þ ! ½��T I

��
� �

i�ðx; x0Þ for each of the five tensor differential operators defined in Table I.

I AI BI CI

1 1
2Dð3D� 8Þ 3D� 8 1

2 ðD� 2Þ2ð3D� 8Þ
2 1

4 ðD� 4Þ2D 1
2 ðD� 4Þ2 1

4 ðD� 4Þ2ðD� 2Þ2
3 1

2 ðD� 4Þ2ðD� 1Þ D� 4 1
2 ðD� 4ÞðD� 2Þ2ðD� 1Þ

4 ðD� 1Þð3D� 8Þ D2 � 2D� 2 ðD� 2Þ2ðD� 1Þ
5 1

8 ðD� 2ÞðD� 1ÞD 1
4 ðD� 2ÞðD� 1Þ 1

8 ðD� 2Þ3ðD� 1Þ
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C1ðDÞ � C4ðDÞ þ 2C5ðDÞ
� 2

D� 1
½C2ðDÞ � C3ðDÞ þ C5ðDÞ�

¼ ðD� 4ÞðD� 2Þ2ðDþ 1ÞðDþ 2Þ
4ðD� 1Þ : (125)

It is apparent that the gauge dependent proportionality
constant (124) can be made to have either sign by varying
the gauge parameter a. Furthermore, Kða; bÞ can be made
arbitrarily large in magnitude by taking the gauge parame-
ter b close to 2. Hence it would seem that our results are
completely gauge dependent and unphysical. Gauge de-
pendence has also been noted in the renormalization group
approach [43,44].

A moment’s thought reveals that all is not lost because
the result of Bjerrum-Bohr [8] for the quantum gravita-
tional correction to the Coulomb potential was derived
from the gauge independent S-matrix of scalar QED.
Roughly speaking, this correction derives from the fact
that gravity is sourced by the electromagnetic fields of
the two charged particles being scattered, and this source
changes as the particles move with respect to one another.
That is a real effect, not some gauge artifact. And it is
crucially important to note that we agree with Bjerrum-
Bohr up to a factor of þ9. We attributed this factor to our
having only quantum corrected the left-hand side of the
operator Maxwell equation,

@�½ ffiffiffiffiffiffiffi�g
p

g��g��F��ðxÞ� ¼ J�ðxÞ: (126)

The right-hand side is also an operator and it must also
suffer quantum gravitational corrections, one of which is
depicted in Fig. 4. By Poincaré invariance, current conser-
vation and dimensional analysis, those corrections must
take exactly the same form as we found for the left-hand
side, up to an overall constant. We conjecture that the
gauge dependence Kða; bÞ we have just found for correc-
tions to the left-hand side is canceled by gauge dependence
in corrections to the right-hand side. If this is correct, then
the overall, gauge independent correction to the various
results derived in Sec. III can be inferred by comparing any
one of them with its S-matrix analogue. For scalar QED the
correction factor would be 9, and it could be computed for
the point particle source we used.

The resolution we have just proposed to the gauge issue
recalls some old work by DeWitt [45] about dependence
upon the gauge fixing functionals even in the gauge invari-
ant background field effective action � ¼ Sþ �. DeWitt
states [46], ‘‘The functional form of � is not independent
of the choice of these terms. However, the solutions of the
effective field equation can be shown to be the same for all
choices.’’ At the order we are working there is no distinc-
tion between our effective field equations and those of the
gauge invariant background field effective action. (One can
see this from the transversality of our vacuum polariza-
tion.) However, we have just shown that DeWitt’s

statement cannot be correct if the source (or the asymptotic
field strengths for scattering solutions) is not normalized in
some physical way. Our proposal is that including quantum
corrections to the right-hand side of the equation provides
this physical normalization. More work is obviously re-
quired, in particular, an explicit computation of the quan-
tum gravitational corrections to the source, but it would be
wonderful if solutions to the effective field equations could
be physically interpreted the same way as classical
solutions.

V. DISCUSSION

We used dimensional regularization to compute the one
loop quantum gravitational contribution (28) to the vacuum
polarization on flat space background. A fully renormal-
ized result (37) was obtained by first partially integrating to
localize the ultraviolet divergence and then absorbing it
into the appropriate BPHZ counterterm (30) with coeffi-
cient (36). The Schwinger-Keldysh formalism [28,31] was
then employed to reach the manifestly real and causal
form (55).
We used (55) to solve the quantum corrected Maxwell’s

equation (3) for various special cases. Provided the appro-
priate perturbative corrections to the initial state cancel the
surface terms involved in reaching the form (59), there is
no change in the source-free solutions at any order in the
loop expansion. However, sources induce a variety of
interesting effects.
Probably the most provocative source is the current

density (61) of an instantaneously created, point electric
dipole. The pulse (84) which results in the magnetic field
propagates slightly outside the classical light cone. It
seems to arise from quantum fluctuations of the metric
operator, which are isotropic but favor superluminal propa-
gation because there is more volume outside the light cone
than inside. That this sort of thing might occur has been
realized since the earliest days of quantum gravity [1]. Our
superluminal effect is completely Lorentz invariant,
merely changing the characteristic surface from
���x

�x� ¼ 0 to ���x
�x� ¼ 4G

3� . Despite many claims to

the contrary, this seems to be the first case of superluminal
propagation from a quantum field theory whose classical
analogue does not allow superluminal propagation. All
previous claims have been based derivative expansions
[38,39], which are perfectly valid for most applications
of low energy effective field theory but which incorrectly
treat the high frequency modes needed to resolve the
propagation of a pulse.
The other interesting source we studied is the response

to a static, point charge. Our result (101) for the quantum
corrected Coulomb potential agrees with what Radkowski
found more than four decades ago [7]. It does not agree
with the Coulomb potential Bjerrum-Bohr inferred from
the scattering of charged, gravitating scalars [8], but we all
find quantum gravity strengthens the electrostatic force at
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short distances. We believe that the factor of 9 discrepancy
with Bjerrum-Bohr derives from his S-matrix technique
implicitly including quantum gravitational corrections to
the charge density, like the diagram depicted in Fig. 4. This
should have been done for our point particle source, but it
would only have changed the one loop field strengths by an
overall constant.

Renormalization group analyzes [9,40,41] seem to pro-
vide a more serious discrepancy. These studies find that
quantum gravity reduces the electrodynamic coupling con-
stant at large scales. The usual inference would be that
quantum gravity weakens the electrostatic force at short
distances. However, the beta function is not itself observ-
able; several other effects must be combined to infer the
impact of quantum gravity. The S-matrix computation of
Bjerrum-Bohr should include all of these effects, and it
shows that quantum gravity strengthens the electrostatic
force at short distances.

Gauge dependence poses a major obstacle to the
physical interpretation of solutions to the effective field
equations. If one restricts to Poincaré invariant gauge
fixing functionals, the only possible change to our vac-
uum polarization (55) is rescaling by an overall, gauge-
dependent constant. In Sec. IV we considered the most
general 2-parameter family of graviton gauges (110),
and the most general 1-parameter family of photon
gauges (113). We showed that the vacuum polarization
has no dependence upon the electromagnetic gauge fix-
ing parameter c, but it depends strongly on the two
gravitational gauge fixing parameters a and b. The effect
of being in a general covariant gauge is to rescale (55)
by the function Kða; bÞ given in Eq. (124). By varying
the constants a and b, one can make Kða; bÞ assume any
values from plus infinity to minus infinity.

Such massive gauge dependence would seem to in-
validate any physical inference from the results of
Sec. III, however, the gauge independent result of

Bjerrum-Bohr suggests a simple resolution. There is no
question that one must include quantum gravitational
corrections to the current density operator. This seems
to be why Bjerrum-Bohr (who implicitly did this) gets a
factor of 9 different one loop correction to the Coulomb
potential. We conjecture that making such corrections in
a general gauge—which seems quite feasible using the
techniques of Sec. IV—would completely cancel the
gauge dependence of our result. If this could be dem-
onstrated then it would be possible to realize the old
dream [45,46] of using solutions to the effective field
equations as freely as one does classical solutions. Note
also that it would provide an important class of observ-
ables in cosmology, for which the S-matrix does not
exist.
The point of this exercise has been to establish the flat

space correspondence limit for a planned investigation of
the effects of inflationary gravitons on electromagnetism.
Our model has been a similar study of the effects of infla-
tionary scalars on gravity [24,25], the flat space limit of
which [23] played a crucial role in guiding the analysis. In
retrospect, we can recognize the simplicity of flat space as
the ideal venue for sorting out the troublesome issues of
dependence upon the choice of field variable and the
choice of gauge which are so important to a correct inter-
pretation of the many solutions which now exist to line-
arized effective field equations on de Sitter background
[21,22,33,47–51].
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