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We consider d-dimensional static spacetimes in Einstein gravity with a cosmological constant in the

presence of a minimally coupled massless scalar field. The spacetimes have a ðd� 2Þ-dimensional base

manifold given by an Einstein space and the massless scalar field depends only on the radial coordinate.

The field equations are decoupled in the general case, and can be solved exactly for the cases when either

the cosmological constant vanishes or the base manifold is Ricci flat. We focus on the case of a negative

cosmological constant and a Ricci-flat base manifold. The solution has a curvature singularity located at

the origin, where also the scalar field diverges. Since there is no event horizon surrounding this singularity,

the solution describes a naked singularity dressed with a nontrivial scalar field. This spacetime is an

asymptotically locally anti–de Sitter one when the Ricci-flat base manifold is locally flat. The asymptotic

solution for an arbitrary Einstein base manifold is found and the corresponding mass, calculated through

the canonical generator of the time-translation invariance, is shown to be finite. The contribution to the

mass from the scalar field at infinity is also discussed.
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I. INTRODUCTION

Although no elementary scalar field has been discovered
to date, such fields are predicted to exist in a number of
different theories. In spite of this, in general relativity, the
so-called ‘‘no-hair’’ theorem rules out the existence of
black holes in the presence of a minimally coupled scalar
field, suggesting a possible incompatibility between
gravity and scalar fields at least for asymptotically flat
spacetimes. However, the AdS/CFT correspondence and
its recent developments, e.g. holographic superconductors,
have motived the search of solutions dressed with a scalar
field that asymptotically approach the anti–de Sitter (AdS)
spacetime. In the presence of a negative cosmological
constant the situation is completely different: AdS space-
times are stable against scalar field perturbations even
in the case of self-interaction potentials unbounded
from below, provided that the mass term fulfills the
Breitenlohner-Freedman bound [1,2]. In such a setup,
which is not possible in asymptotically flat spacetimes,
the standard no-hair theorem does not hold. Another way
for circumventing this theorem is to consider a nonminimal
conformal coupling and a negative cosmological constant.
In this case, a mass term, which is proportional to a
negative constant Ricci scalar, appears in the scalar field
equation. This was implemented in three dimensions1

yielding an exact black hole solution dressed with a regular

scalar field [4]. In the minimal coupling case with a self-
interaction potential, exact hairy black holes have been
found in three [5,6] and four spacetime dimensions [7].
In these solutions the cosmological constant plays a key
role since, in particular, a negative cosmological constant
opens up the possibility of having black holes in vacuum
with nonspherical event horizons [8–10]. Some exact sca-
lar hairy black hole solutions in diverse spacetime dimen-
sions, in this class of models, can be found in [11]. See [12]
for a comprehensive review and additional references.
In this article we study d-dimensional static solutions of

the Einstein field equations in the presence of a minimally
coupled massless scalar field and a negative cosmological
constant. The absence of a self-interaction potential or a
nonminimal coupling restricts the possibility of finding
black hole solutions. However, the problem deserves
proper attention since it represents the most simple way
of coupling matter to gravity with a negative cosmological
constant. Moreover, as it has been discussed in the litera-
ture (see e.g. [13–15]), asymptotically AdS spacetimes
containing naked singularities could play a role in the
context of the AdS/CFT correspondence.
For the case of a vanishing cosmological constant, the

general static and spherically symmetric solution of this
model was first found in four dimensions by Fisher [16]
and later rediscovered in [17,18] (see also [19]). The
instability of the Fisher solution under spherical perturba-
tions was recently proven in [20]. The higher-dimensional
generalization was found by Xanthopoulos and Zannias in
[21], and further studied in detail in [22], while the solution
for the three-dimensional case was reported in [23–25].
Regardless of the number of spacetime dimensions, the
results dictate that the static and spherically symmetric
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1In four dimensions, without a cosmological constant, the

addition of the conformal coupling 1
6R�

2 term to the action
yields a spherically symmetric solution, in which the scalar field
diverges at the event horizon [3].
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solution, with a nontrivial massless scalar field, corre-
sponds to a spacetime containing a naked singularity, as
it is expected by virtue of the no-hair theorem for asymp-
totically flat spacetimes.

The inclusion of a negative cosmological constant was
first considered in [26], where the general solution for d ¼
3 spacetime dimensions was found, and later independently
rediscovered in [14,27]. In four dimensions we can mention
the existence of a particular plane-symmetric solution with
nonzero cosmological constant (of arbitrary sign) given in
[28]. Finally, a particular solution to the problem in d
dimensions with a flat base manifold was found in [15].
As far as we know, there are no general exact results for this
model in higher dimensions. The main purpose of this
article is to generalize previous results in two different
ways: (i) by including a nonvanishing cosmological con-
stant term in arbitrary dimension, and (ii) by studying the
case in which the base manifold, i.e. the boundary of the
spacelike sections, is a ðd� 2Þ-dimensional Einstein mani-
fold rather than the usual ðd� 2Þ-sphere. An additional
goal in this work is to determine the mass of the configu-
rations and analyze the contribution of the asymptotic value
of the scalar field on the mass.

The paper is organized as follows. In Sec. II, after deriv-
ing the field equations, we introduce an appropriate variable
that allows the field equations to become a decoupled
system of differential equations. Next, we classify the cases
in which an exact integration of the equations can be done.
One case corresponds to a solution where the cosmological
constant is negative and the base manifold (an Einstein
space) is Ricci flat. Section III is devoted to the study of
this particular case and the corresponding general exact
solution is found and analyzed. For the general case, where
the cosmological constant is nonzero and the base manifold
is not a Ricci-flat one, an exact solution is not available.
However, as we show in Sec. IV, the asymptotic solution
can be found regardless of the value of the curvature of the
Einstein base manifold. Using the expression for the
canonical generator associated with the time-translation
invariance of the system, we present in Sec. V the compu-
tation of the mass of the solutions having the asymptotic
behavior determined in the previous section. In particular,
the mass of the exact solution discussed in Sec. III is given.
We also discuss the contribution to the mass coming from a
nonvanishing value of the scalar field at infinity. Finally,
some general remarks are given in Sec. VI.

II. ACTION AND FIELD EQUATIONS

We consider a real massless scalar field minimally
coupled to Einstein gravity in d > 2 spacetime dimensions
in the presence of a cosmological constant �. The action
for this model is given by

I½g��;��¼
Z
ddx

ffiffiffiffiffiffiffi�g
p �

R�2�

2�
�1

2
g��@��@��

�
; (1)

where � is the Einstein constant. The corresponding field
equations are

R�
� � 2�

d� 2
��

� ¼ �@��@��; (2)

and

h� ¼ 0: (3)

We are interested in static configurations defined by the
following Ansatz:

ds2¼�e2hðrÞf2ðrÞdt2þ dr2

f2ðrÞþr2�mndz
mdzn; with

�¼�ðrÞ:
(4)

Here �mn is the metric of a ðd� 2Þ-dimensional Einstein
manifold � of Euclidean signature, whose Ricci tensor is
given by R�

m
n ¼ ðd� 3Þ��m

n. The constant � can be

taken to be either 0,þ1, or�1. The manifold� is assumed
to be nonsingular and to have a finite volume, denoted
by Vð�Þ.
For this class of static configurations the field equations

can be reduced to a system of three ordinary nonlinear
differential equations for the metric functions hðrÞ, f2ðrÞ,
and the scalar field �ðrÞ:

ðd�3Þð��f2Þ�rðh0f2þðf2Þ0Þ¼ 2�

d�2
r2; (5a)

h0 ¼ �

ðd�2Þrð�
0Þ2; (5b)

�0 ¼ c0
ehf2rd�2

: (5c)

In the above equations 0 denotes derivation with respect to
r, and c0 is an arbitrary constant that comes from the
integration of the field equation (3). The first step in solv-
ing the system (5) is to find an adequate variable that allows
one to decouple these equations. Following [14], we define
the new variable aðrÞ :¼ rd�3ehf2, in terms of which
the system (5) becomes a decoupled set of differential
equations:

a2
�
r
a00

a0
�2�r2�ðd�3Þðd�4Þ�

2�
d�2r

2�ðd�3Þ�
�
¼ �c20
ðd�2Þ ; (6a)

h0 ¼ �c20
ðd�2Þ

1

ra2
; (6b)

�0 ¼ c0
ra

: (6c)

Note that Eq. (6a) is not well defined when � ¼ � ¼ 0. In
this case, Eq. (5a) implies the simple equation a0 ¼ 0.
In Ref. [14], where only a negative cosmological con-

stant was considered, and with a base manifold chosen to
be the ðd� 2Þ-dimensional round sphere, the system (6)
was exactly solved for the case d ¼ 3, and the asymptotic
spherically symmetric solution (r ! 1), which belongs to
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the class of asymptotic solutions with � ¼ 1, was also
given for arbitrary d.

Depending on the values of� and �, four different cases
can be recognized:

(1) � ¼ 0, � � 0: Eq. (6a) reduces to

a2
�
r
a00

a0
� ðd� 4Þ

�
¼ �c20

ðd� 2Þ : (7)

(2) � � 0, � ¼ 0: Now Eq. (6a) reduces to a very
similar equation,

a2
�
r
a00

a0
� ðd� 2Þ

�
¼ �c20

ðd� 2Þ : (8)

(3) �¼0, �¼0: This is the simplest case. Equation (5a)
implies

a0 ¼ 0: (9)

(4) � � 0, � � 0: This is the general case of (6a).
Since Eqs. (7)–(9), can be integrated, the first three cases

can be completely solved. For the last one, as far as the
authors know, there is no exact solution available. It is
possible, however, to find the asymptotic solution for (6a)
in the general case, as we will show below.

In this article we focus mainly on the case of a negative
cosmological constant and a Ricci-flat base manifold �
(i.e., with � ¼ 0). The analysis of the remaining cases,
which include both known and new exact solutions, is left
for the interested readers.

III. EXACT GENERAL SOLUTION WITH
A RICCI-FLAT BASE MANIFOLD

In this section we consider spacetimes with a Ricci-flat
base manifold, i.e. with � ¼ 0, in the presence of a nega-
tive cosmological constant, which is written in terms of the
AdS radius l as � ¼ �ðd� 1Þðd� 2Þ=ð2l2Þ. We then find
the general solution of (6a) to be implicitly given by

rd�1 ¼ a0ða� a1Þa1=ða1þa2Þðaþ a2Þa2=ða1þa2Þ: (10)

Here a0, a1, a2 are integration constants. The constant a0
can be set as ld�1 without loss of generality, since the
system (6) has a scale invariance r ! �r in the case
� ¼ 0. Thus a becomes dimensionless. The constants a1
and a2 are related to the constant c0 above and are defined
so that they have the same sign. There is no restriction
to assume that they are non-negative. Thus, the coordinate
range r � 0 implies the condition a � a1 for the
variable a.

The resulting metric, after adjusting the irrelevant inte-
gration constant coming from (6b), written in terms of the
new radial coordinate a, reads

ds2¼�ða�a1Þððd�1Þa2�ðd�3Þa1Þ=ððd�1Þða1þa2ÞÞ

�ðaþa2Þððd�1Þa1�ðd�3Þa2Þ=ððd�1Þða1þa2ÞÞdt2

þ l2

ðd�1Þ2
da2

ða�a1Þðaþa2Þ
þ l2ða�a1Þ2a1=ððd�1Þða1þa2ÞÞ

�ðaþa2Þ2a2=ððd�1Þða1þa2ÞÞ�mndz
mdzn: (11)

The solution for the scalar field is given by

�ðaÞ ¼ �0 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

d� 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2

�ða1 þ a2Þ2
s

ln

�
a� a1
aþ a2

�
; (12)

where �0 is an arbitrary constant. Thus, the general solu-
tion contains three integration constants �0, a1, and a2,
since c0 can be written in terms of a1 and a2. It is usual to
assume that �0 ¼ 0. However, we shall keep its value
generic for now, and discuss its relation to the spacetime
mass in Sec. V.We remark that the second term in the right-
hand side of (12) could have positive or negative sign,
which is obvious from the fact that only �02 enters in the
Einstein equations. We have written it with a plus sign in
front just for simplicity, where strictly it should go with a
‘‘�’’ sign.
A more simple expression for the solution can be

obtained by defining the variable x :¼ aþ ða2 � a1Þ=2,
and the constants b :¼ ða1 þ a2Þ=2 and p :¼ða2�a1Þ=
ða1þa2Þ. Then the solution can be written in the form

ds2 ¼ �ðx� bÞð1þðd�2ÞpÞ=ðd�1Þðxþ bÞð1�ðd�2ÞpÞ=ðd�1Þdt2

þ l2

ðd� 1Þ2
dx2

ðx2 � b2Þ þ l2ðx� bÞð1�pÞ=ðd�1Þ

� ðxþ bÞð1þpÞ=ðd�1Þ�mndz
mdzn; (13)

�ðxÞ ¼ �0 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

d� 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

4�

s
ln

�
x� b

xþ b

�
: (14)

Now, the constants b, p, and �0 are the parameters of the
family of solutions to this problem.2 Note that jpj � 1, and
b � 0. The range r > 0 implies that x > b.
The existence of curvature singularities can be shown

through the Ricci scalar, which reads

R ¼ �ðd� 1Þ
l2

�
d� ðd� 2Þ b

2ð1� p2Þ
ðx2 � b2Þ

�
: (15)

Assuming that b � 0 and p2 � 1, i.e. when the scalar field
is nontrivial, we see that there is a curvature singularity at
x ¼ b, which corresponds to r ¼ 0. Moreover, there are no
horizons in this spacetime. This implies the existence of a
naked singularity at the origin.

2The particular solution with p ¼ 0 and � ¼ Rd�2 was found
in [15].
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There are two special cases, p2 ¼ 1 and b ¼ 0, where
the scalar field is trivial since it becomes a constant, � ¼
�0. The line element with p ¼ �1 reads

ds2 ¼ �
��

r

l

�
2 � 2b

�
l

r

�
d�3

�
dt2 þ

��
r

l

�
2

� 2b

�
l

r

�
d�3

��1
dr2 þ r2�mndz

mdzn: (16)

In particular, the case p ¼ 1 gives the Schwarzschild-AdS
black hole with a Ricci-flat event horizon, and a mass given
by ðd� 2Þ��1Vð�Þld�3b (see Sec. V). The case p ¼ �1
describes a naked singularity.

In the other special case,b ¼ 0, the line element reduces to

ds2 ¼ � r2

l2
dt2 þ l2

r2
dr2 þ r2�mndz

mdzn; (17)

which corresponds to a nonsingular spacetimewith a vanish-
ing mass (see Sec. V). This spacetime describes a constant
curvature spacetime if � is a locally flat space. In particular,
for d ¼ 3 it corresponds to the massless BTZ black hole [29]
provided the single coordinate z is an angle covering ½0; 2�Þ.

It is interesting to note that for d ¼ 4, Eq. (13) can be
thought of as a solution for the problem with plane sym-
metry, with the metric depending only on the coordinate of
the symmetry axis. Such a problem was considered in [28],
where a particular one-parameter family of solutions was
found. Our solution (with three parameters) thus general-
izes the result of that reference in the case of �< 0.

Finally, we briefly study the causal structure of the
solution (13). The ‘‘tortoise’’ coordinate is defined by the
equation

x� ¼ l

ðd�1Þ
�
Z x dx0

ðx0 �bÞðdþðd�2ÞpÞ=ð2ðd�1ÞÞðx0 þbÞðd�ðd�2ÞpÞ=ð2ðd�1ÞÞ :

(18)

It can be seen that the coordinate x� spans a finite range of
values as x goes from b to 1, assuming that p2 < 1 and
b � 0. This implies that the global structure of the solution
is the same as in AdS spacetime, except that the surface
r ¼ 0 is now a curvature singularity. As in the case of AdS,
future null geodesics can reach infinity, while future time-
like geodesics cannot. The behavior of timelike geodesics
near the singularity depends on the parameter p, and in
fact one can show that, for p 2 ð�1;�1=ðd� 2ÞÞ, radial
timelike geodesics actually do not reach the singularity.
For the case b ¼ 0 we have a constant scalar field and the
metric reduces to (17). This is a massless spacetime (see
Sec. V) having no curvature singularity at r ¼ 0, and its
Penrose diagram is similar to that of the BTZ massless
black hole. Following [30], we represent the corresponding
global diagrams as in Fig. 1.

IV. ASYMPTOTIC SOLUTION WITH A NEGATIVE
COSMOLOGICAL CONSTANT

We now turn to study the asymptotic behavior of the
solutions with a negative cosmological constant and arbi-
trary �. From Eq. (6a) we see that the asymptotic behavior
is dominated by the cosmological constant and therefore
the leading term of aðrÞ goes like ðr=lÞd�1 for r 	 l, which
is also the leading behavior of the solution for � ¼ 0
[see Eq. (10)]. Having the leading term in the asymptotic
expansion for the general case, it is straightforward to find
the next terms from Eq. (6a). We find

aðrÞ ¼
�
r

l

�
d�1 þ �

�
r

l

�
d�3 ��þO

��
l

r

�
d�1

�
; (19)

where� is an arbitrary constant. In terms of the integration
constants of the exact solution (13) for the case � ¼ 0, the
constant � is equal to 2bp. With the result of Eq. (19) we
obtain the asymptotic expansion of the metric for the
general case:

ds2 ¼ �
��

r

l

�
2 þ ���

�
l

r

�
d�3 þO

��
l

r

�
2ðd�2Þ��

dt2

þ
��

r

l

�
2 þ ���

�
l

r

�
d�3 þO

��
l

r

�
2ðd�2Þ���1

dr2

þ r2�mndz
mdzn: (20)

Note that the functions in square brackets in the above
equation are equal only up to order ðl=rÞd�3, but differ to
higher orders. From (20), and from the fact that R !
�dðd� 1Þ=l2 as r ! 1, we see that the spacetime appears
to be asymptotically AdS. Strictly speaking, it is asymp-
totically AdS only for � ¼ 1 and � fixed as the ðd� 2Þ

FIG. 1. Penrose diagrams for the spacetime (13). (a) General
case b � 0. The timelike surface r ¼ 0 is a curvature singularity
and r ¼ 1 is timelike. (b) Massless case b ¼ 0. The infinity is
timelike, but the surface r ¼ 0 is null and does not contain a
curvature singularity.
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sphere. For � ¼ 0, �1, the spacetimes are asymptotically
locally AdS spacetimes only if the base manifold � is a
constant curvature space. This condition is automatically
satisfied in four and five spacetime dimensions. In these
dimensions � is locally isomorphic to the sphere Sd�2, the
hyperbolic manifold Hd�2, or the Euclidean space Rd�2,
for � ¼ 1, �1, 0, respectively.

Replacing (19) in (6c), we compute the asymptotic form
of the scalar field,

� ¼ �0 ��1

�
l

r

�
d�1 þO

��
l

r

�
dþ1

�
; (21)

where �0 and �1 are arbitrary constants. For the exact

solution (14), �1 ¼
ffiffiffiffiffiffiffi
d�2
d�1

q ffiffiffiffiffiffiffiffiffi
1�p2

�

q
b. The full family of

asymptotic solutions is thus parametrized by the three
constants �, �0, and �1.

V. MASS

Starting from the asymptotic behavior of the metric and
the scalar field, we now turn to the problem of computing
the mass of these configurations. We address this issue
following the Regge-Teitelboim approach3 [31]. In gen-
eral, for the action considered here, the variation of the
conserved charges corresponding to the asymptotic sym-
metries defined by the vector 	 ¼ ð	t; 	iÞ, is given by

�Qð	Þ ¼ �QGð	Þ þ �Q�ð	Þ; (22)

where [32]

�QGð	Þ¼ 1

2�

Z
dd�2SlG

ijklð	?�gij;k�	?
;k�gijÞ

þ
Z
dd�2Slð2	k��

klþð2	k�jl�	l�jkÞ�gjkÞ;
(23)

�Q�ð	Þ¼�
Z
dd�2Slð	?g1=2glj@j���þ	l����Þ; (24)

are, respectively, the gravitational and scalar field
contributions. Here gij denotes the components of the

ðd� 1Þ-spatial metric, �ij are their conjugate momenta,
and �� is the momentum associated with �. We have also

defined 	? ¼ 	t ffiffiffiffiffiffiffiffiffiffi�gtt
p

, and

Gijkl 
 1
2g

1=2ðgikgjl þ gilgjk � 2gijgklÞ: (25)

In the static case all the momenta vanish, and the relevant
asymptotic symmetry corresponds to the vector @t. The
mass is the conserved charge associated with this symme-
try. We then write the variation of the mass as �M ¼
�Qð@tÞ ¼ �MG þ �M�, and from Eqs. (20) and (21) we

obtain

�MG ¼ � lim
r!1

ðd� 2Þ
2�

Vð�Þ r
d�2

l
ðgrrÞ�1=2�grr

¼ ðd� 2Þ
2�

Vð�Þld�3��; (26)

�M� ¼ � lim
r!1Vð�Þ

rd�1

l
ðgrrÞ1=2�0��

¼ ðd� 1ÞVð�Þld�3�1��0; (27)

where Vð�Þ denotes the volume of the Einstein base
manifold.
The next step is to integrate Eqs. (26) and (27) in order to

obtain the value of the mass M. The gravitational contri-
bution can be directly integrated, giving the result

MG ¼ ðd� 2Þ
2�

Vð�Þld�3�: (28)

The above expression corresponds to the standard mass
formula for a spacetime with a metric of the form (20) in
vacuum.
The issue of the scalar field contribution to the mass is

more subtle, since now �M� depends on the two integra-

tion constants�0 and�1 through the combination�1��0.
In general, the integration of this variation requires a func-
tional relation between �0 and �1. Consequently, the
scalar field contribution M� will be determined by this

relation, and so will be the total mass as well. Indeed, the
same situation occurs in the case of a massive scalar field
on an asymptotically AdS spacetime. In this setup, the
Klein-Gordon equation leads to

�� �0

r��
� �1

r�þ
; (29)

for large r, where

�� ¼ ðd� 1Þ
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2m2

ðd� 1Þ2
s �

; (30)

with m being the scalar field mass. For a massless scalar
field we have �� ¼ 0 and �þ ¼ d� 1. In the most gen-
eral case, �0 and �1 are functions depending on time
and also on the d� 2 coordinates of the base manifold.
For the analysis developed here, it is enough to consider�0

and �1 as integration constants. In Ref. [32] it was shown
that the term

���0��1 þ �þ�1��0 (31)

gives a contribution to the mass and can be integrated
assuming a functional relation between �0 and �1. The
functional relation is fixed as

�0 ¼ 
���=�þ
1 ; (32)

with 
 an arbitrary constant with no variation, after one
imposes that this functional relation is preserved by the
asymptotic AdS symmetry. In fact, the 	r component of

3Using different methods, finite values for the mass were
computed in [14] for the cases of d ¼ 3, 4, 5.
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the vector 	 defining the AdS asymptotic group, which is
linear in r, fixes the relation (32). This symmetry corre-
sponds to an asymptotic scaling invariance, as we discuss
next.

Here we are considering solutions having only a
subset of the AdS symmetries at infinity. In particular,
system (5) possesses a scaling symmetry, provided that
� ¼ 0, given by

~r ¼ �r; ~fð~rÞ ¼ �fðrÞ;
e
~hð~rÞ ¼ ��ðd�1ÞehðrÞ; ~�ð~rÞ ¼ �ðrÞ;

(33)

where � is a positive constant.4 This symmetry is also an
asymptotic symmetry even when � � 0. For an infinitesi-
mal scaling � ¼ 1þ " one finds

���¼�r"�0 ¼�"ðd�1Þ�1

�
l

r

�
d�1þO

��
l

r

�
dþ1

�
: (34)

On the other hand, the functional variation at infinity goes
as

�� ¼ ��0 � ��1

�
l

r

�
d�1 þO

��
l

r

�
dþ1

�
; (35)

as follows from (21). Thus, if one restricts the functional
variations at infinity to be compatible with the variations
generated by an infinitesimal scaling, the condition

��0 ¼ 0 (36)

must hold. This condition is satisfied provided that �0 is a
constant without variation. The same conclusion can be
obtained from (32) with �� ¼ 0. In this way, under the
condition (36) we have �M� ¼ 0, and then the total mass

is justM ¼ MG. In summary, if the functional variations at
infinity are restricted to be compatible with those coming
from the scaling invariance, we can conclude that the scalar
field does not contribute to the mass. On the contrary, for a
generic variation of the scalar field at infinity one should
expect a nonzero contribution. We remark that the condi-
tion ��0 ¼ 0 amounts to fixing Dirichlet boundary con-
ditions, and it is interesting to note that, even with a
different choice of boundary conditions, the mass of the
spacetime will still be finite.

The above results allow us to calculate the mass of the
exact solution (13) and (14). In this case we have� ¼ 2bp
and considering �0 fixed (i.e. ��0 ¼ 0), Eq. (28) gives

M ¼ MG ¼ ðd� 2Þ
�

Vð�Þld�3bp: (37)

VI. FINAL REMARKS

In this paper we have studied static configurations in
Einstein gravity minimally coupled to a massless scalar

field, focusing our attention mainly on solutions with a
Ricci-flat base manifold in the presence of a negative
cosmological constant. However, the case of a positive
cosmological constant, in arbitrary dimensions and with
� ¼ 0, can be treated using the same method we used for
the decoupling of the system of Eqs. (5). These exact
solutions with �> 0 may have a cosmological interpreta-
tion as occurs in the � ¼ 0 four-dimensional case [22],
where the existence of the so-called ‘‘Fisher universes’’
can be established.
The power of having a procedure for decoupling the

system of differential equations can be clearly seen in the
case of � ¼ 0 ¼ �. The equation for the variable a is just
a0 ¼ 0, yielding the line element

ds2¼�
�
r

r0

�
q�ðd�3Þ

dt2þ
�
r

r0

�
qþðd�3Þ

dr2þr2�mndz
mdzn;

(38)

and the scalar field

�ðrÞ ¼ �0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 2Þq

�

s
ln

�
r

r0

�
; (39)

where r0, q � 0, and �0 are integration constants. This
solution reduces in three dimensions to the result found in
[24], and it contains a naked singularity located at r ¼ 0.
The previous simple case reveals again a relevant aspect

of the solutions we present, namely, the presence of a
naked singularity at the origin. This is a well-known result
for the aymptotically flat case [17], and it seems to be a
generic property of scalar field spacetimes. Thus, in the
light of the cosmic censorship conjecture, this class of
solutions would be ruled out on physical grounds. The
validity of this conjecture, however, is an open problem
[34], and a number of counterexamples exist in which
plausible models of gravitational collapse lead to a naked
singularity (see e.g. [35]).
The mass of the asymptotically locally anti–de Sitter

solutions (as well as those with a base manifold with non-
constant curvature) has, in general, a nontrivial contribu-
tion coming from the scalar field M�. The precise form of

this contribution depends on the relation between the lead-
ing terms of the asymptotic expansion of the scalar field.
However, if one restricts the variations at infinity to those
preserving the scaling invariance [Eqs. (33)], then one finds
that M� ¼ 0, since compatibility with the scaling symme-

try forces the integration constant�0 to be a fixed parame-
ter (Dirichlet boundary conditions) of the family of
solutions considered.
Whatever the case may be, the fact that these spacetimes

containing naked singularities always have finite energy
may imply that they are physically acceptable [14]. This
interesting property also gives rise to the possibility of a
semiclassical phase transition from a black hole to a naked
singularity. In fact, it was shown that this transition occurs

4This can be also extended to rotating and charged configura-
tions in d ¼ 3 [33].

SÁENZ AND MARTÍNEZ PHYSICAL REVIEW D 85, 104047 (2012)

104047-6



in three spacetime dimensions [36], and it would be of
interest to study the existence of such transition in higher
dimensions.
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