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A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller

mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this

computation requires knowledge of the regularized retarded field generated by the particle. A direct

calculation of this regularized field may be achieved by replacing the point particle with an effective

source and solving directly a wave equation for the regularized field. This has the advantage that all

quantities are finite and require no further regularization. In this work, we present a method for computing

an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle

in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical

and practical considerations that underlie its use in several numerical self-force calculations. We consider

as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also

the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We

provide numerical C code for computing an effective source for various orbital configurations about

Schwarzschild and Kerr black holes.
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I. INTRODUCTION

There has been much recent interest in the study of
extreme mass ratio inspiral (EMRI) systems. These sys-
tems typically involve a compact, solar mass object in-
spiraling into an approximately million solar mass black
hole. Such massive black holes are expected to exist at the
center of most galaxies [1].

EMRIs are expected to provide a strong source of gravi-
tational waves for future generations of gravitational wave
detectors [2–4]. There is also hope that parameters for
these sources can be accurately estimated, enabling studies
and measurements of the strong field region of central
supermassive black holes [5–7]. In order to achieve accu-
rate parameter estimation, it is essential that highly accu-
rate gravitational waveforms are available. This, in turn,
requires highly accurate, long-time models of the inspiral.

A leading approach to the accurate modeling of EMRI
systems arises from the fact that the mass ratio, �, is very
small. This makes it possible to treat the system within
perturbation theory, in which the smaller object is assumed
to be a point particle generating a perturbation about the
background of the larger mass. At zeroth order in �, the
smaller object merely follows a geodesic of the back-
ground. At first order, it deviates from this geodesic due
to its interaction with its self-field. This deviation may be
viewed as a force acting on the smaller object, referred to
as the self-force. The calculation of this self-force is critical
to the accurate modeling of the evolution of the system.

A naive calculation of the first-order perturbation leads
to a retarded field which diverges at the location of the
particle. The self-force, being the derivative of the field,
therefore also diverges at the location of the particle and
must be regularized. A series of derivations of the regular-
ized first-order equations of motion (now commonly re-
ferred to as the MiSaTaQuWa equations, named after
Mino, Sasaki, Tanaka [11] and Quinn and Wald [12] who
first derived them) for a point particle in curved spacetime
has been developed [8–17], culminating in a recent rigor-
ous work by Gralla and Wald [18] and Pound [19] in the
gravitational case and by Gralla, et al. [20] in the electro-
magnetic case. Several practical computational strategies
have developed from these formal derivations:
(i) Bymeasuring the flux of gravitational waves onto the

horizon of the larger black hole and out to infinity, a
time-averaged dissipative component of the self-
force—which is finite and does not require regulari-
zation—may be computed. This, however, neglects
potentially important conservative effects which may
significantly alter the orbital phase of the system.

(ii) The mode-sum approach, introduced in Refs. [21,22],
which involves the decomposition of the retarded
field into spherical harmonic modes (which are finite,
but not differentiable at the particle), solving for each
mode independently and subtracting ‘‘regularization
parameters,’’ then summing overmodes. Thismethod
has been used to compute the self-force for a variety
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of configurations in the Schwarzschild [23–38] and
Kerr [39–41] spacetimes.

(iii) The effective source approach [42–47] in which the
regularization is done before solving the wave equa-
tion. In this case, all quantities are finite throughout
the calculation and one directly solves a wave equa-
tion for the regularized field. A review of this ap-
proach can be found in [42]. Note that the effective
source proposed by Lousto and Nakano [48] differs
in that it is not derived from the Detweiler-Whiting
singular field.

(iv) The matched expansion approach [49,50] in which a
quasilocal expansion of the Green function [51–53]
(which is valid in the recent past) is matched onto a
quasinormal mode sum (valid in the distant past).1

The retarded field is then computed as the integral of
this matched retarded Green function along the world
line of the particle.

For a comprehensive review of the self-force problem, see
Refs. [55–57]. The present work focuses on the third of
these strategies, the effective source approach. In this ap-
proach, the point particle source is replaced with a finite
effective source leading to a wave equation which admits
the correct regularized field (at the particle) as a solution.

Given our motivation in studying the EMRI problem, it
is the gravitational self-force which is of the most interest.
In this paper, however, we instead study the analogous
scalar self-force. This allows us to develop insight and
techniques without being obscured by the additional com-
plexity of the gravitational case. It should be noted, how-
ever, that this extra complexity is predominantly only
calculational and comes in the form of larger expressions.
Conceptually, the calculations done here follow through
for the gravitational case with few modifications.

The purpose of this paper is to provide a comprehensive
exposition of the scalar effective source employed in a
variety of recent and ongoing self-force calculations
[43,47,58,59]. Starting with its covariant definition, we
present its coordinate construction and the various modifi-
cations that we found necessary in order to get the effective
source to its current ‘‘best’’ form. Much of the paper is
technical in nature, but we believe that all the details
provided here are essential to anyone interested in pursuing
an effective source approach to self-force calculations.

The layout of the paper is as follows. In Sec. II we
introduce the effective source approach in detail and com-
pute approximations to the singular field and effective
source in the form of covariant expansions. In Sec. III,
we develop practical methods for evaluating these
approximations in a specific spacetime in terms of

coordinate expansions. We give example calculations for
the case of a circular geodesic orbit in Schwarzschild and
Kerr spacetimes and a generic orbit in Kerr spacetime in
Sec. IV. In Sec. V we conclude with a discussion on aspects
of the calculation and on prospects for future applications.
In Appendix A, we develop covariant expansions of vari-
ous biscalars used in this paper. In Appendix B, we discuss
a modification to the covariant expansion which yields
substantial practical benefits. Finally, in Appendix C, we
discuss issues related to efficient numerical implementa-
tions for computing the singular field and effective source.
Many of the expressions developed in this work,

although useful, are too unwieldy to be given in printed
form. Instead, we have made available all expressions we
deem to be useful online [60] as MATHEMATICA code.
Furthermore, as this work is intended to provide computa-
tional tools for those interested in doing self-force calcu-
lations, we also include a library of C code for computing
the singular field and effective source for various configu-
rations in Schwarzschild and Kerr spacetimes. The inten-
tion is for this code to be a ‘‘black box’’ which can be
easily incorporated into existing numerical codes, whether
they are 3þ 1D, 2þ 1D, or 1þ 1D.
Throughout this paper, we use units in whichG ¼ c ¼ 1

and adopt the sign conventions of [61]. We denote sym-
metrization of indices using brackets (e.g. ð��Þ) and ex-
clude indices from symmetrization by surrounding them
by vertical bars (e.g. ð�j�j�Þ). Roman letters are used for
free indices and Greek letters for indices summed over all
spacetime dimensions. Roman letters starting from i are
used for indices summed only over spatial dimensions.
Capital letters are used to denote the spinorial/tensorial
indices appropriate to the field being considered. For con-
venience, we frequently make use of the shorthand nota-
tion of Ref. [27] by introducing definitions such as

Ru�u�j� � R �� �� �� ��; ��u
���

��u ��� ���
��.

II. EFFECTIVE SOURCE APPROACH

To compute the self-force, f�, acting on a point particle
with scalar charge q, knowledge of the retarded field,�ret,
generated by the particle is required. This field is a solution
of the inhomogeneous wave equation,

D�retðxÞ ¼ �4�q
Z
�

�4ðx� zð	ÞÞffiffiffiffiffiffiffi�g
p d	; (1)

where the source corresponds to a point particle on a
world-line � in some background spacetime and where

D � ðh� 
RÞ (2)

is the scalar wave operator. A naive calculation of the self-
force from this retarded field will diverge when evaluated
at the location of the particle. In order to compute a mean-
ingful self-force, one must therefore find a regularized

1In black hole spacetimes there is also a branch cut integral
which must be evaluated in the region where the quasinormal
mode sum is used. Substantial recent progress has been made
toward the calculation of this branch cut contribution [54].
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retarded field. This may be achieved by separating the field
into singular (S) and regular (R) parts,

�ret ¼ �S þ�R: (3)

The identification of a singular field which gives the cor-
rect regularized self-force is crucial. Using a Green func-
tion decomposition, Detweiler and Whiting [14] were able
to find a representation of the singular field which is valid
in a region near to the particle. It is a solution of the same
inhomogeneous wave equation (1) as the retarded field. A
brief overview of their approach is given in the next
subsection.

Given knowledge of the singular field, one must then
prescribe a method of computing the regularized field. In
the effective source approach, first proposed independently
by Barack and Golbourn [44] and by Vega and Detweiler
[45], the splitting of the self-field into regular and singular
parts is done at the level of the wave equation,

D�ret ¼ D�S þD�R; (4)

before solving for the field. One then solves directly the
equation for the regularized field,

D�R ¼ �4�q
Z
�

�4ðx� zð	ÞÞffiffiffiffiffiffiffi�g
p d	�D�S ¼ 0: (5)

The regularized self-force is then simply given by the
derivative of this regularized field,

fa ¼ qra�R: (6)

This method has several advantages:
(i) It does not rely on the separability of the field

equations. This is particularly important in the Kerr
spacetime where the perturbation equations are not
fully separable in the time domain.

(ii) There are no troublesome delta functions or singu-
larities to deal with. This is particularly advanta-
geous in numerical calculations where smoothness
is desirable.

(iii) In comparison to methods which first compute �ret

and then regularize, there is no need to cancel two
large quantities (�S and�ret) to get the self-force, so
in principle the field one solves for is inherently
more accurate. This is particularly relevant in nu-
merical calculations, where the cancellation of large
quantities may lead to considerable round-off errors.

(iv) Its applicability in the time domain means that the
orbit may be evolved, coupling the geodesic equa-
tions into the wave equation and source calculation.

In principle, the regularized field is a solution of
the homogeneous wave equation and the self-force is
determined purely from the boundary condition for
�R ¼ �ret ��S. However, in practice the singular field
identified by Detweiler and Whiting is not defined globally
(it is not even clear that a global definition exists). One

must therefore introduce a method for restricting the sin-
gular field to a region near the particle. Furthermore, in
practice an exact calculation of the singular field away
from the particle proves difficult; it is much easier to
calculate an approximation to the singular field, denoted

by ~�S, and to solve for an approximate regularized field
~�R. The construction of an approximate singular field must
ensure that its local expansion near the particle matches
that of the actual singular field sufficiently well that eval-

uating the self-force using ~�R yields the correct value at
the particle. It is important to note, however, that this
approximate regularized field becomes meaningless far
from the particle.
There are two different approaches to dealing with the

problem of the lack of a global definition for the singular
field. Vega and Detweiler [45] tackle the issue of restricting
the singular field to a region near the particle with the use
of a window function, W, and split the retarded field as

�ret ¼ W ~�S þ ~�R: (7)

The window function is chosen so that near to the particle

W ~�S remains a good approximation to the singular field,
while far away from the particle W dies away sufficiently

quickly that ~�R � �ret. Barack and Golbourn [44] take an
alternative approach. They introduce a world tube around

the particle. Inside the world tube, they solve for ~�R and
outside they solve for�ret. They then impose (3) as what is
essentially a ‘‘change of variables’’ on the world-tube
boundary.2 In this case, the lack of a global definition for

�S is no longer an issue as the only requirement on ~�S is
that it approximates the singular field sufficiently well near
the particle.
In both cases, the approximation to the singular field,

~�S, is no longer a solution of Eq. (1). The source term now
has additional structure away from the particle, extending
throughout the world tube or the region of support of the
window function. As a result, the approximate regularized
field is now a solution of the inhomogeneous wave equa-
tion with an effective source, Seff:

D ~�R ¼ �4�q
Z
�

�4ðx� zð	ÞÞffiffiffiffiffiffiffi�g
p d	�DðW ~�SÞ � Seff :

(8)

In contrast to Eq. (1), however, this source has the advan-
tage of being regular and smooth everywhere except at the
location of the particle where it is still regular, but of finite
differentiability, the level of differentiability being deter-
mined by the choice of approximation to the singular field.

2In a numerical implementation, it is common to reduce the
wave equation to a system of first-order equations. In this case, it
may be necessary to impose the conditions not only on ~�R, but
also on its derivatives.
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A. Exact expression for the singular field

In order to obtain an expression for the singular field, we
follow Detweiler and Whiting [14] in introducing the
Hadamard form [62,63] for the singular Green function,

GSðx; x0Þ ¼ 1
2½Uðx; x0Þ�ð�ðx; x0ÞÞ þ Vðx; x0Þ�ð�ðx; x0ÞÞ�;

(9)

which is obtained by adding a homogeneous solution
(in this case Vðx; x0Þ) of the wave equation to the sym-
metric Green function, Gsym ¼ 1

2 ðGret þGadvÞ [64]. Here,
�ð�ðx; x0ÞÞ is the covariant form of the Dirac delta function,
�ð�ðx; x0ÞÞ is the Heaviside step function, and Uðx; x0Þ and
Vðx; x0Þ are symmetric biscalars which are regular for
x0 ! x. The biscalar �ðx; x0Þ is the Synge [55,65] world
function, which is equal to one half of the squared geodesic
distance between x and x0.

This singular Green function is a solution of the same
wave equation as the symmetric Green function, but differs
in that it has support only on and outside the light cone.
Note that this singular Green function is not guaranteed to
exist globally. Its definition depends on the existence of the
unique function Vðx; x0Þ, which is only true provided x and
x0 are within a convex normal neighborhood.3 Fortunately,
in the effective source approach we only require that it
exists in a neighborhood of the particle, in which case it
can be given the clear definition (9). We now define the
singular field by

�S ¼
Z
�
GSðx; zð	ÞÞd	: (10)

Substituting (9) into (10) and making the change of
variables 	 ! �ðx; zð	ÞÞ, we obtain an expression for the
singular field which depends on a finite portion of the
particle’s world line:

�SðxÞ ¼ Uðx; x0Þ
2��0u�

0 � Uðx; x00Þ
2��00u�

00 þ 1

2

Z v

u
Vðx; zð	ÞÞd	: (11)

Here we have introduced the retarded and advanced points
x0 and x00 corresponding to the retarded and advanced times
u and v on the world-line � associated with the field point x
(Fig. 1).

B. Approximation to the singular field

The expression for the singular field given in Eq. (11) is
very general. It is valid for any world line in any spacetime
provided the field point x is sufficiently close to the world
line that the singular Green function can be defined. In
practice, it is only in very simple spacetimes that

Uðx; zð	ÞÞ, �ðx; zð	ÞÞ, and Vðx; zð	ÞÞ may be computed
exactly. In many curved spacetimes of interest (including
Schwarzschild and Kerr) this is not the case and one must
find an approximation to (11).
In the present work, we choose a covariant series ex-

pansion of (11) (taken to second order in the geodesic
distance from the field point to the world line) as a starting
point for our approximation to �S. In doing so, we use the
methods described in Refs. [27,55] to consolidate the
dependence of �S on the advanced and retarded points x0
and x00 into a single arbitrary point �x on the world line. This
has the additional advantage of making the dependence of
x0ðxÞ and x00ðxÞ on x explicit, so that �x is truly an arbitrary
point on the world line (sufficiently close to x0 and x00) with
no implicit dependence on x. We additionally make use of
the techniques of Ref. [52] to compute covariant expan-
sions of all required bitensors.
Given the primary motivation of studying black hole

spacetimes such as Schwarzschild and Kerr, it is reason-
able to assume that the spacetime is vacuum (i.e. Rab ¼ 0).
However, in the present work, we do not make that as-
sumption. This is motivated by the fact that some of the
leading-order terms in the covariant local expansion of the
gravitational singular field involve the Riemann tensor and
do not vanish in vacuum. In contrast, the analogous
leading-order terms for the scalar case involve only the
Ricci tensor.4 As far as the covariant local expansions are
concerned then, the scalar singular field in a nonvacuum

FIG. 1. The singular field at the point x can be expressed in
terms of the retarded and advanced distances to the world line, �.

3When considering Hadamard form Green functions such as
(9), one typically defines them within a causal domain [63]. The
singular Green function is acausal so this must be relaxed to a
definition within a convex normal neighborhood, requiring only
that �ðx; x0Þ be unique.

4More specifically, in the scalar case the first four orders in
the covariant expansion of the tail term, Vðx; x0Þ, involve only
the Ricci tensor and Ricci scalar. As a result, Vðx; x0Þ ¼ Oð�4Þ
in vacuum and the tail term could be neglected in the present
calculation. In the gravitational case, however, the tail term,
Vaa0bb0 ðx; x0Þ, has a leading-order component involving the
Riemann tensor. This means that even in vacuum
Vaa0bb0 ðx; x0Þ ¼ Oð1Þ.
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spacetime best captures the structure of the gravitational
singular field in a generic spacetime. By not assuming
vacuum, we are therefore emulating some of the extra
complexity which would otherwise only appear in the
gravitational case.

The covariant expansion of �S requires, in turn, the

expansion of the functions Uðx; x0Þ, Uðx; x00Þ, ��0u�
0
,

��00u�
00
, and Vðx; zð	ÞÞ about the point �x. We compute

these expansions in Appendix A. Substituting
(A9)–(A11) and (A16) into (11), we get

�S � ~�S ¼ q

�
1

�s
þ

��r2 � �s2

6�s3
Ru�u� þ 1

12�s
ð2�rRu� þ R�� þ Ruuð�r2 þ �s2ÞÞ þ 1

2

�

� 1

6

�
�R �s

�

þ
�

1

24�s
ð�R��j� þ ðR��ju � 2Ru�j�Þ�rþ ð2Ru�ju � Ruuj�Þð�r2 þ �s2Þ þ Ruujuð�r3 þ 3�r�s2ÞÞ

þ 1

4

�

� 1

6

�
ð �Rju�r �s� �R� �sÞ þ 1

24�s3
ðð�r2 � 3�s2Þ�rRu�u�ju � ð�r2 � �s2ÞRu�u�j�Þ

��
; (12)

where �s � ðg �� �� þ u ��u
��Þ� ��� �� (i.e. the projection of � �a

orthogonal to the world line), and �r ¼ � ��u
�� (the projection

along the world line) and we adopt the notation of Haas and
Poisson [27] in definingRu�u�j� � R �� �� �� ��; ��u

���
��u ��� ���

��.
Letting � be ameasure of the geodesic distance from x to the
world line (i.e. �x), the first term here is Oð��1Þ, the second
group of terms is Oð�1Þ, and the third group of terms is
Oð�2Þ. The difference between �S and

~�S is then Oð�3Þ.

C. Approximation to the effective source

Given the approximation (12) to the singular field,
a corresponding effective source may be computed by

applying the wave operator to ~�S. (This requires canceling

the divergent terms in ~�S, so the derivatives in the wave
operator must be computed very accurately. In particular,
straightforward numerical differentiation does not provide
sufficient accuracy close to the particle.) In this section,
we give an exact expression for the effective source and
compute an approximation which is valid near the particle.
This approximation gives insight into the properties of a
source derived from a particular order approximation to the
singular field.

Before proceeding further, we will clarify the meaning
of ‘‘order’’ as used in this context. All approximations are
considered as expansions in powers of �, which is roughly
speaking the distance between x and the world line (i.e. the
length of the bivector � �a). This means that �s, �r, and � �a are
all of order �. The order of an approximation is then
defined in terms of the order of the approximation to the
singular field. The first-order approximation is given by the
leading term (of order ��1) in the approximation to�S, i.e.
the first term in (12). The second-order approximation is
given by the first two orders (to order �0) in the expansion
of �S. As there is no term at order �0 in (12), at this stage
the second-order approximation is equivalent to the first-
order approximation. As will be discussed in Sec. III this
will not, however, always be the case. Likewise, the third-
order approximation includes terms up to order � in�S and
the fourth order includes terms up to order �2. When
referring to the effective source, the order referred to will

be determined by the order of the singular field from which
it is derived so that the first-order effective source will be
given by the wave operator acting on the first-order singu-
lar field, and so on.

1. First order

The first-order approximation to the singular field is
given by the leading term in (12),

~�
ð1Þ
S ¼ 1

�s
; (13)

which is of order ��1. Since the wave operator contains
second derivatives, one would in general expect that the
result would be of order ��3. Applying (2) to (13) we find
that this does appear to be the case:

Sð1Þeff ¼ D
�
1

�s

�
¼ 3ð�r2 þ �s2Þ

�s5
þ 3�r2 � �s2

�s5
r��rr��r

� ��
�

�s3
� �rh�r

�s3
� 
R

�s
: (14)

Noting thatra�r and��
� areOð1Þ and �r isOð�Þ, we see that

the first three terms here are Oð��3Þ and the last two are
Oð��1Þ; it would appear that the first-order effective source
isOð��3Þ. However, expandingra�r, ��

�,h�r, and R about
�x, we find that the Oð��3Þ terms cancel, leaving a source
which is Oð��1Þ:

Sð1Þeff ¼
�
3�r2 � �s2

3�s5
Ru�u� þ 1

3�s3
ð2�rRu� þ R��Þ � 
 �R

�s

�

�
�
3�r2 � s2

6�s5
Ru�u�j� � 1

12�s3
ð�rR��ju

� 6�rRu�j� � 3R��j�Þ � 
 �Rj�
�s

�
þOð�Þ: (15)

Here, the first group of terms is Oð��1Þ and the second
group is Oð1Þ. In other words, the first-order source di-
verges at the particle like 1=�, i.e. it is C�2. This is
sufficient to give a finite, but discontinuous regularized
field. As a result of the discontinuity of the field at the
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particle, it is not possible to compute the self-force from its
derivative.

Note that the second-order source will be the same as the
first-order source and will therefore have the same proper-
ties, with one caveat: by decomposing into m-modes,
Barack et al. [66] were able to extract a self-force from a
second-order source. This may be understood as a result of
the ‘‘averaging’’ effect the Fourier transform used in the
m-mode decomposition has on the smoothness of the
source.

2. Third order

The third-order approximation to the singular field is
given by the two leading terms in (12):

�ð3Þ
S ¼ �ð1Þ

S þ
��r2 � �s2

6�s3
Ru�u� þ 1

12�s
ð2�rRu� þ R��

þ Ruuð�r2 þ �s2ÞÞ þ 1

2

�

� 1

6

�
�R �s

�
: (16)

Applying (2) gives the third-order effective source:

Sð3Þeff ¼ Sð1Þeff þ
1

12�s7
f�r�s4½�s2ð �rh �rþh�Þ � ð�r2 þ �s2Þ � ð�r2 � �s2Þr��rr��r�½�1þ 6
� � R�� �s

2½�r�s2h�rþ �s2h�

� ð1þr��rr��rÞð3�r2 � �s2Þ� þ 2R� �� �s
4½�s2� ���

� � 2�r� ��
�r��r� þ 2Ru� �s

2ð�s2ð�s2 � �r2Þh�r

þ �rð3�r2 � �s2 � �s2h�þ 3ð�r2 � �s2ÞÞr��rr��rÞ þ Ruu �s
2½�r�s2ð3�s2 � �r2Þh�r

þ ð�r2 � �s2Þð3�r2 þ �s2 � �s2h�þ 3ð�r2 � �s2Þr��rr��rÞ� þ 2�s4Ru ��½�r�s2� ���
�

þ 2ð�s2 � �r2Þ� ��
�r��r� þ 2R �� �� �s

6�
��
��

��� þ 2Ru�u�½15�r4 � 12�r2 �s2 þ �s4

� 3�r�s2ð�r2 � �s2Þh�r� �s2ð3�r2 � �s2Þh�þ 3ð5�r4 � 6�r2 �s2 þ �s4Þr��rr��r�
þ 4Ru�u �� �s

2½�s2� ���
� � 6�r� ��

�r��r�½�r2 � �s2� þ 4Ru ��u �� �s
4� ��

��
���½�r2 � �s2�g; (17)

which appears to have an additional contribution at Oð��1Þ compared to the first-order case. However, as before,
reexpanding higher derivatives of � about �x, we find that this exactly cancels the Oð��1Þ contribution from the first-
order source, leaving a source which has a directional dependence at Oð1Þ:

Sð3Þeff ¼ Sð1Þeff �
�
3�r2 � �s2

3�s5
Ru�u� þ 1

3�s3
ð2�rRu� þ R��Þ � 
 �R

�s

�
þOð�Þ

¼ �
�
3�r2 � �s2

6�s5
Ru�u�j� � 1

12�s3
ð�rR��ju � 6�rRu�j� � 3R��j�Þ � 
 �Rj�

�s

�
þOð�Þ: (18)

In this way, we see that including the third-order contribu-
tion to the singular field gives a source which is C�1. This is
now sufficient to calculate both the regularized field and its
derivative (i.e. the self-force).

3. Fourth order

Following the procedure once more, by including the
fourth-order contribution to �S, computing the associated
effective source, and reexpanding higher derivatives of �
about �x, we find that it has a contribution at Oð1Þ which
exactly cancels that from the third-order source, leaving a
source which has a directional dependence at Oð�Þ:

Sð4Þeff ¼ Sð3Þeff þ
�
3�r2 � �s2

6�s5
Ru�u�j�

� 1

12�s3
ð�rR��ju � 6�rRu�j� � 3R��j�Þ

� 
 �Rj�
�s

�
þOð�Þ ¼ Oð�Þ: (19)

Therefore, including the fourth-order contribution to the
singular field we obtain a source which is C0. This is not

only sufficient to give the self-force, but gives reasonably
good convergence in numerical calculations.

4. Higher orders

We can clearly continue in this way (Fig. 2), producing a
smoother source at each step. Taking this expansion to its
logical conclusion, if we can calculate�S exactly, then we
find that

Sð1Þ
eff ¼ 0 (20)

FIG. 2 (color online). Relation between order of approxima-
tion to the singular field and smoothness of the corresponding
effective source. Also shown is the relation to the coefficients
A�; B�; C�;D�; � � � in the large-l expansion of the singular field
used in the mode-sum regularization method [21].
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and the self-force comes purely from the boundary con-
ditions. In practice, this would only require the computa-
tion of the expansion of �S to sufficiently high order to
give an accurate numerical value in the region of interest.
This may be difficult to impose in the window function
approach, but in the world-tube approach the world tube
may be arbitrarily small and it may be possible. In that
case, one would place a world tube around the particle and
then solve the system

D�1 ¼ 0; D�2 ¼ 0; (21)

where �1 is the field inside the tube and �2 is the full
retarded field outside the tube. The self-force then comes
from applying the change of variables (i.e., boundary
condition)

�2jW ¼ �1jW þ�SjW (22)

across the world-tube boundary W. In this way, one may
view the effective source as a correction for the fact that the
singular field is not known exactly.

III. COORDINATE EXPRESSIONS AND SOME
PRACTICAL CONSIDERATIONS

The previous section described the calculation of the
singular field and effective source in a fully covariant
manner. In practical applications, one needs to compute
the singular field and effective source as a function of
coordinate positions in a particular spacetime. A practical
approach to doing so is to compute coordinate expansions
of the singular field and corresponding effective source. In
this section, we develop such expansions and give example
implementations in Schwarzschild and Kerr spacetimes.
In doing so, we exploit insight from the covariant approach
to simplify the calculations as much as possible.

A. Coordinate expansion of singular field

All terms in Eq. (12) may be written in terms of � �a and
local quantities at �x. In order to compute an explicit
expression for a specific spacetime, it is convenient to
expand � �a in the coordinate separation between x and �x
as follows [51]:

(1) Write �ðx; �xÞ as a formal coordinate series expan-
sion about �x:

� ¼ 1
2g �� ���x

���x
�� þ A �� �� ���x

���x
���x ��

þ B �� �� �� ���x
���x

���x ���x
��

þ C �� �� �� �� ���x
���x

���x ���x
���x �� þ � � � ; (23)

where �x �a � xa � �x �a and where each of the coef-
ficients is a function of �x only and is symmetric in all
indices.

(2) Differentiate this expression at �x to get

� ��¼g �� ���x
��þðg �� ��; ��þ3A �� �� ��Þ�x ���x ��

þðA �� �� ��; ��þ4B �� �� �� ��Þ�x ���x ���x
��

þðB �� �� ���; ��þ5C �� �� �� �� ��Þ�x ���x ���x
���x ��þ���:

(24)

(3) Use the identity 2� ¼ � ���
�� to recursively deter-

mine the coefficients A �� �� ��, B �� �� �� ��.

The result is a coordinate expansion of � �a which may be
substituted into (12). For the fourth-order (i.e. Oð�2Þ)
approximation to the singular field, the coordinate expan-
sion (23) must be computed to O½ð�x �aÞ5� (i.e. the coef-
ficients up to C �� �� �� �� �� must be determined). Since the

coefficients are just functions of the metric and its partial
derivatives at �x, this calculation is easily achieved using a
tensor software package such as GRTENSORII [67] or XCOBA
[68,69]. Rather than giving the full lengthy expressions, we
present here only the leading two orders in the expansion in
Schwarzschild spacetime to illustrate the structure:

�ðx; �xÞ ¼ �r

2ð �r� 2MÞ�r
2 þ �r2

2
��2 þ �r2

2
��2

þ 2M� �r

2�r
�t2 � M

2ð �r� 2MÞ2 �r
3

þ �r

2
�r��2 þ �r

2
�r��2 � M

2�r2
�r�t2; (25)

where the point �x is assumed to lie in the equatorial plane
(the spherical symmetry of Schwarzschild means that it is
always possible to ensure this is the case). We provide a
higher-order expression for Kerr spacetime online [60].
Next, we contract � �a with the metric, Riemann tensor,

and four-velocity (all evaluated at �x) to get �r, �s, and
Riemann terms such as Ru�u�. We then substitute these

into Eq. (12) to obtain the coordinate expansion of ~�S. In
doing so, we only keep terms that contribute up to Oð�2Þ.
The first term in Eq. (12) is Oð��1Þ and so requires the
coordinate expansion of �s to order O½ð�x �aÞ4� (equiva-
lently, the expansion of �s2 to orderO½ð�x �aÞ5�). The second
term is Oð�Þ and requires �r2, �s2, and Ru�u� to O½ð�x �aÞ3�.
The third term is Oð�2Þ and requires �r2, �s2, and Ru�u�ju
to O½ð�x �aÞ2� (the leading order) and Ru�u�j� to

OðO½ð�x �aÞ3�Þ (again, the leading order). This results in
an expression for the singular field which is valid to
O½ð�x �aÞ2� and has the general form

~� S ¼
að2Þ þ að3Þ þ að4Þ þ að5Þ

ðbð2Þ þ bð3Þ þ bð4Þ þ bð5ÞÞ3=2
; (26)

where we use the notation aðnÞ ¼ a�1����n
�x�1 � � ��x�n .

Although there is a clearly defined ‘‘true’’ singular field,

in the effective source approach we may still view ~�S as
merely a computational tool with a certain degree of
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flexibility in choosing its particular form. Indeed, this
coordinate approximation to the singular field is not
unique—the only requirement it must satisfy is that it
matches the ‘‘true’’ singular field to a prescribed order—
and it may therefore be replaced with any other expression
which agrees with it to the desired order.

The expression in the denominator of Eq. (26) is un-
desirable because it leads to long calculations, particularly
when computing the derivatives required for the effective
source corresponding to this choice of singular field. More
importantly, the roots of this denominator are singularities

in ~�S and, potentially, in Seff . Since it is a power of a fifth-
order polynomial, the denominator will have roots differ-
ent from the trivial one, �x� ¼ 0, which represents the
world line of the particle. As a result, the effective source
will have undesirable divergences at certain coordinate
locations. (Note that it is C0 at the location of the particle).
Moreover, on any given time slice, the precise location of
these singularities will depend sensitively on the position
and four-velocity of the particle (on which the coefficients
b�1�2...�n

depend). The presence of these extra singularities

is purely an artifact of using a truncated series expansion to
approximate �s; the exact �s increases monotonically away
from the particle. This becomes problematic for any nu-
merical application.

For these reasons, it is advantageous to modify the
singular field produced from the above described proce-
dure. Noting that�xa ¼ Oð�Þ, we reexpand the coordinate
expansion of�S about � ¼ 0. In practice this is most easily
achieved by introducing an explicit factor of � into the
coordinate distances, �xa ! ��xa, expanding about � ¼
0 (to Oð�2Þ for the fourth-order singular field) and reading
off the coefficient of each power of �. The result is an
approximation to the singular field of the form

~� S ¼
cð6Þ þ cð7Þ þ cð8Þ þ cð9Þ

ðbð2ÞÞ7=2
; (27)

with a new denominator whose roots are much more
manageable. In particular, the reexpansion leaves only
the Oð�x2Þ terms, or those that are quadratic in the coor-
dinate displacements, of the original denominator. From
Eq. (12), we see that only �s appears in the denominator,
whose quadratic dependence on the coordinate displace-
ment is simply

�s 2 ¼ g �� ���x
���x

�� þ ðu ���x
��Þ2 þOð�x3Þ: (28)

The second term is manifestly positive except at the loca-
tion of the particle where it vanishes. The first term is not
necessarily positive and may still potentially result in a
vanishing denominator, in general. However, if in some
coordinate system one chooses to associate the field point,
�x, with the particle position, x, so that they always share a
common time coordinate (that is, t ¼ �t), then we have
�s2ðt ¼ �tÞ ¼ g�i �j�x

�i�x
�j þ ðu ���x

��Þ2. Now, since g�i �j is a

purely spatial metric, its eigenvalues are all positive, so that

the first term is unconditionally positive-definite and only
vanishes at the location of the particle. (See Appendix B
for an explicit demonstration in the case of Schwarzschild
coordinates). Thus, with a reexpansion of the denominator
we achieve a simplification and, more importantly, we are
also able to avoid the non-world-line singularities in the
Haas-Poisson expression for the singular field given in
Eq. (26). The latter feature is essential for, say, a robust
(3þ 1) application of the effective source approach. It is
important to remember that to guarantee this, x and �x must
be on the same t-hypersurface, where t is the time coordi-

nate in the specific coordinate system chosen to express ~�S.

B. Periodicity of the singular field

Although not strictly necessary, in spacetimes with axial
symmetry it may be desirable to have an approximation to
the singular field which is periodic in the azimuthal coor-
dinate. There is no guarantee that that will be the case for
the expansions (26) and (27); in fact there is not even any

guarantee that ~�Sð�� ¼ �Þ ¼ ~�Sð�� ¼ ��Þ, i.e. that it
is continuous across �� ¼ ��.
Barack and Golbourn [44] explicitly enforce periodicity

by making the substitution ��2 ¼ 2ð1� cos��Þ þ
Oð��4Þ. This was extended to higher order in Ref. [58]
by making use of expressions involving cosð��Þ and
cosð2��Þ. However, both of these previous works only
required replacements for even powers of ��. In general
odd powers of �� can (and do) also appear.
Among the infinitely many ways in which periodicity

may be enforced for both odd and even powers, not all
approaches are equal. For example, using replacements
involving sinn�� proves to be a poor choice; since
sinn�� ¼ 0 at �� ¼ �� for any integer n such replace-
ments may lead to the denominator of (26) or (27) vanish-
ing if�� ¼ �� lies within the world tube (Sec. III C 1) or
the window function’s region of support (Sec. III C 2).
Unfortunately, it is easy to see that no alternative choice
for the functions used to replace odd powers of �� can
avoid such extra zeros. That is, denoting the replacement
for ��n by fnð��Þ, for any odd n the function fn must
have at least one zero somewhere in �� 2 ð0; 2�Þ.5

5To see this, suppose that n is a (positive) odd integer. fn must
clearly satisfy the following properties (among others):

(1) fn is continuous;
(2) fnðxÞ � xn for small jxj (indeed, fðxÞ ¼ xn þOðxmÞ,

where m is the highest power of x appearing in the
expansion of the singular field); and

(3) fnðxþ 2k�Þ ¼ fnðxÞ for any integer k.

Property 2 implies that if n is odd, fn > 0 for small positive ��,

and fn < 0 for small negative ��. Property 3 then implies that

fn < 0 for �� slightly less than 2�. Property 1 and the inter-

mediate value theorem then imply that fn must have a zero

somewhere between �� ¼ 0 and �� ¼ 2�.
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Given the two criteria: (i) ~�Sð�� ¼ �Þ ¼
~�Sð�� ¼ ��Þ and (ii) ~�Sð�� ¼ �Þ is finite, we there-
fore propose a particular choice which satisfies both re-
quirements and which has other practical advantages. We
introduce the angular variables

Q ¼ sin12��; R ¼ sin�� (29)

and rewrite even powers of �� in terms of Q and odd
powers in terms of Q and R. This is easily achieved by
expanding �� ¼ 2 arcsinQ and �� ¼ arcsinR for small
Q and R, and making use of the identity R2 ¼ 4Q2ð1�
Q2Þ to give

���R

�
1þ 2

3Q
4þ 8

15Q
5

�
; ��2�4Q2þ 4

3Q
4;

��3�4RQ2ð1þQ2Þ; ��4�16Q4; ��5�R5; (30)

where terms of Oð��6Þ and higher have been neglected.
Not only does this replacement satisfy both criteria men-
tioned above, it also leads to relatively compact formulas
for the partial derivatives

@� ¼ R

4Q
@Q þ ð1� 2Q2Þ@R;

@�� ¼ 1

4
ð1�Q2Þ@QQ � 1

4
Q@Q þ R

2Q
ð1� 2Q2Þ@QR

� R@R þ ð1� 2Q2Þ2@RR; (31)

which appear in the wave operator (used when calculating
the effective source). Moreover, this choice of variables has
the subtle advantage of lending itself to minimal sensitivity
to round-off effects close to the particle (see Sec. III C 3 for
an explanation of why this is important). For small��, the
substitutions of Refs. [44,58] are sensitive to numerical
round-off, whereas this is not the case for our ðQ;RÞ
scheme.

C. Calculation of the effective source

With an approximation to the singular field at hand, we
must now calculate a corresponding effective source.
Before proceeding with the calculation, we will briefly
mention some issues which one must be cognizant of.

In general, the calculation of an effective source requires
the computation of derivatives of�SðxÞ. When calculating
these derivatives, one generally needs to be careful to take
account of the fact that x0 and x00 vary with x since they
must remain linked by a null geodesic [55]. Fortunately, in

the approximation ~�S of Eq. (12), by writing everything in
terms of � �a, this dependence is made explicit in terms of
the arbitrary point �x which does not depend on x. However,
since this dependence is only given as an expansion in �, it
is an approximation which is only strictly valid in the limit
� ! 0. For example, it is possible (and likely) that (12)
differs from the ‘‘true’’ singular field at Oð�3Þ, yet in the
limit � ! 0 they agree. Similarly, the corresponding

effective source has the correct value (i.e. 0) at � ¼ 0,
but contains differences from the ‘‘true’’ effective source
at Oð�Þ. One must be careful to account for this when
computing an effective source.
In computing a covariant approximation to the effective

source in Sec. II C, we made use of identities such as
� ��� �� ¼ 2� and ���� ¼ 2�. Furthermore, we reex-
pressed higher derivatives of � in terms of their covariant
expansion about �x. However, once coordinate expansions
are introduced, these identities and expansions are no
longer exact—they are only valid up to the order of the
coordinate expansion. In computing the singular field, this
is not an issue since we are only interested in computing
the value of the self-force at the particle, in which case the
errors vanish. Unfortunately, the effective source is re-
quired not just at the particle, but also in a region surround-
ing the particle where the errors are no longer zero. It is
therefore not possible to make use of these simplifications
when calculating a coordinate effective source (at least not
without taking care that �S and its derivative evaluated at
the particle are unchanged).
With these issues in mind, there are now two choices on

how to proceed with computing Seff ¼ �h ~�S. We will
investigate both of these in turn in the following sections.

1. World-tube method

Barack and Golbourn [44] propose a precise method for
computing an effective source. They introduce a world
tube around the particle. Inside the world tube one solves

for ~�R and outside one solves for �ret, which is now a
solution of the homogeneous wave equation in this region.

By imposing the boundary condition�ret ¼ ~�R þ ~�S one
can ensure that the system as a whole is consistent.
They look for a ‘‘puncture’’ field—an approximation to

the singular field which depends only on the spatial posi-
tion of the field point, with all time dependence encapsu-
lated in the particle motion,

�Pðxi; x �jðtÞ; u �aðtÞÞ: (32)

In doing so, they effectively fix �t ¼ t, i.e. fixing �x to depend
on x in the sense that their time coordinates are equal.
Recall that �x is arbitrary and does not have any required
dependence on x. Their choice is therefore valid and con-
sistent with the singular field computed in Sec. III A. In
particular, their choice of puncture function,

�P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgij þ uiujÞ�xi�xj

q ; (33)

corresponds exactly to the first-order singular field given
here (with �t ¼ t). In Ref. [66], Barack, Golbourn, and Sago
proposed an improved puncture function, which again is
equivalent to the second-order singular field given here.
Computing higher-order puncture functions is straightfor-
ward: one takes the expansions of (26) or (27) at the
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desired order and sets �t ¼ 0. For example, a fourth-order
puncture function for a particle in circular equatorial geo-
desic motion around a Kerr black hole is given explicitly in
Sec. IVB. Dolan and Barack [47] have recently made use
of a similar fourth-order puncture computed in this way to
calculate the self-force on a particle in a circular geodesic
orbit about a Schwarzschild black hole and Dolan, Barack,
and Wardell [58] extended this to the Kerr case.

Given this puncture field, the computation of an associ-
ated effective source is straightforward. One simply calcu-
lates an expression for the wave operator in the coordinates
in which�P is given and applies this wave operator to�P,
noting that spatial derivatives act only on xi, while time

derivatives act only on x
�jðtÞ and u �aðtÞ.

2. Window-function method

In a numerical 3þ 1 evolution code, it is most straight-
forward to solve for �R everywhere, requiring Seff every-
where on a three-dimensional spatial slice. This would be
problematic wherever �S is either not defined or where its
series expansion diverges. Vega and Detweiler [45] pro-
pose a solution which involves the introduction of a win-
dow function, WðrÞ, which smoothly transitions from a
value of 1 at the source to 0 far away. In effect, one is
then solving for �R near the particle and for �ret far from
the particle. For this to provide a consistent C0 source, we
must impose a restriction onW: at the particle it must be 1
and at least its first three derivatives must be 0. Having
introduced this window function, the effective source is
then given by

Seff ¼ DðW ~�SÞ: (34)

In [46], Vega et al. use an expression for Seff which is C0

(i.e. continuous but not differentiable), limiting the con-
vergence of their finite differencing scheme despite their
use of eighth-order spatial differencing. A smoother source
would be advantageous in that it would give a higher
convergence order without the need to construct a more
complicated finite differencing scheme to deal with the
nonsmoothness of the source. In [59] this work was ex-
tended to include the backreaction from the self-force into
the evolution. This latter calculation made use of the
reexpanded singular field described above, evaluated in
Kerr-Schild coordinates with the choice �tKS ¼ tKS.

3. Evaluation of the effective
source very close to the particle

Severe round-off errors may be incurred when evaluat-
ing the effective source very close to the particle. Applying
the wave operator to the singular field results in many
terms that scale as Oð��3Þ, which evaluate to large quan-
tities as � ! 0. However, we show in the analysis of
Sec. II C that, at the order of our present approximation
to the singular field, all of these terms cancel to leave an
overall effective source that scales asOð�Þ. As was already

pointed out in [42], this is a prototypical example of
catastrophic cancellation that is often encountered in nu-
merical work. There are two solutions to this problem
which have been found to work well. We describe each
approach in detail below and note that the choice of which
scheme to use is dependent on the problem at hand. For
simpler configurations (with more manageable expres-
sions) a series approximation may be appropriate, whereas
in cases where more unwieldy expressions appear it may
be more straightforward to use numerical interpolation.
Series approximation close to the particle.—Given that

cancellation is only an issue for points very close to the
particle (typically at a distance of & 0:05M), it is reason-
able to replace the full effective source in this region with
an approximation which is valid for points a small distance
from the particle. In particular, by replacing the full effec-
tive source with its series expansion,6 one obtains an ex-
pression for the effective source of the form

~S eff ¼
dð12Þ þ dð13Þ þ dð14Þ

ðbð2ÞÞ11=2
þOð�4Þ: (35)

This expression is manifestly Oð�Þ, with all divergent
terms having been canceled analytically. For the small
region where catastrophic cancellation arises, it is suffi-

cient to take only the first term,
dð12Þ

ðb2Þ11=2 , which is Oð�Þ. The
inclusion of subsequent terms would only be necessary if
an approximation was needed in a much larger region (see
Fig. 3). There is a potential disadvantage to this scheme,
however, in that it involves the evaluation of the twelfth-
order polynomial, dð12Þ, which may be quite computation-

ally expensive. Fortunately, since this is to be implemented
only in a very small region around the particle, the overall
computational burden this adds is likely to be minimal.
Interpolation close to the particle.—Another solution to

the catastrophic cancellation problem is to compute the
effective source via interpolation. We take advantage of
two important facts: (1) Seff ¼ 0 on the world-line �, and
(2) Seff is smooth everywhere except on �, where it is just
C0. The first fact gives us an exact data point for the
effective source, while the second justifies an assumption
that interpolation might be sufficient. We identify a small
regionR around the particle location outside of which the
effective source is computed reasonably well. If the effec-
tive source is required inside R, say at yi, then it is first
evaluated at selected points along a ‘‘coordinate ray’’ out-
side this region. Using these values and Seffðxi ¼ �xiÞ ¼ 0,
where �xi are the spatial coordinates of the location of the

6Although our approximation to the singular field is already
written as a truncated series expansion, the effective source
which is computed by applying the wave operator to it is not.
For example, as can be seen from Eqs. (45) and (53) there are
several terms which depend on the location where the source is
being evaluated and which are not written explicitly as series
expansions.
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particle, we then interpolate to yi. (All coordinates here are
purely spatial in compliance with the restriction mentioned
in Sec. III A: when evaluating the effective source, all field
points must be on the same t-hypersurface as the particle.)

More concretely, consider Sð
Þ :¼ Seffðxið
ÞÞ as a func-
tion of 
, along the coordinate ray given by xið
Þ ¼ �xi þ

ðyi � �xiÞ. If yi 2 R, then to compute SeffðyiÞ ¼ Sð
 ¼
1Þ, we interpolate using a few evaluations of Sð
jÞ [such
that xið
jÞ =2 R] and Sð
 ¼ 0Þ ¼ 0.

Obviously, there is considerable freedom in how to
implement a specific interpolation scheme and in what to
choose for the size of the interpolation region R. The
results reported in [43] appear to be very robust with
respect to the various choices we have tried.

D. Specific schemes

There are three commonly applied approaches which
may be used for solving the wave equation for the regu-
larized field. These methods solve for the regularized field
in 1þ 1, 2þ 1, and 3þ 1 dimensions, eliminating the
other dimensions through a decomposition in suitable basis
functions. In the 1þ 1D approach, the spherical harmonic
basis is chosen and the decomposition is done into l and m
modes, while in 2þ 1 dimensions the decomposition is
only done into m modes. There is a trade off between
having to evolve a field in higher dimension (and all the
difficulties of poor scaling with resolution that goes with it)
and requiring the calculation of a large number of modes. It
remains to be seen which is the better choice; the conclu-
sion will most likely depend on the particular configuration
under consideration. Nevertheless, the calculation of the
singular field and effective source proceeds in the same
way. Both are calculated as 3þ 1-dimensional quantities
using the methods described in the previous sections. In the
2þ 1Dm-mode scheme, they are then decomposed intom
modes by performing an integration over the azimuthal
coordinate, �:

~� SðmÞ ¼
Z �

��

~�Sð�r;��;��;�tÞe�im�d�

SeffðmÞ ¼
Z �

��
Seffð�r;��;��;�tÞe�im�d�:

(36)

For the 1þ 1D l, m-mode scheme, a second integration is
performed over the inclination angle �:

~�Sðl;mÞ ¼
Z �

��

Z �

0

~�Sð�r;��;��;�tÞY�
l;mð�;�Þd�d�

Seffðl;mÞ ¼
Z �

��

Z �

0
Seffð�r;��;��;�tÞY�

l;mð�;�Þd�d�:

(37)

In practice it may be most straightforward to do the inte-
gration numerically. As a result, the calculation of the
singular field and effective source may dominate the run-
time of a 1þ 1D or 2þ 1D code.

IV. EXAMPLES

In this section, we give examples of the singular field and
effective source in some specific scenarios. We consider in
detail the case of a scalar charge undergoing circular, equa-
torial, geodesic motion in both Schwarzschild and Kerr
spacetimes. Note, however, that the methods developed
here do not depend on the symmetries present in these
configurations. They are equally effective in other space-
times and for generic geodesic motion. For these more
generic configurations, the results are most easily given in
electronic form. For this reason, we provide expressions for
more generic configurations online [60] and give here only
explicit examples for simple configurations alongwith plots
for more generic configurations.

A. Circular geodesic in Schwarzschild spacetime

Given the Schwarzschild metric in standard coordinates,

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2 þ r2d�2

þ r2sin2�d�2; (38)

we follow the prescription of Sec. III to obtain a fourth-
order approximation to the singular field of the kind given
in (27). In general, this will be a function of the field point,
x ¼ ðr; �;�; tÞ, the world-line point �x ¼ ð �r; ��; ��; �tÞ, and
the particle four-velocity ua ¼ ður; u�; u�; utÞ. We may
use the spherical symmetry of the spacetime to enforce
that the motion lies in the equatorial plane, i.e. �� ¼ �=2,
u� ¼ 0. In order to obtain sufficiently compact expressions
to be given here, we make the further assumption that the
motion is circular, i.e. [70]
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FIG. 3 (color online). Coordinate series expansion approxima-
tion to the effective source close to the particle. The exact
effective source (solid blue line) is well approximated in the
region �r & 0:05M by the first term in its series expansion
(dashed purple line). Including the second (dashed gold line)
and third (dashed green line) terms further improves the agree-
ment for points farther from the particle, with the curves being
almost indistinguishable from the exact curve.
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�r ¼ constant; ur ¼ 0;

u� ¼ 1

�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

�r� 3M

s
; ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r

�r� 3M

r
: (39)

Finally, we use the freedom in the choice of �t to set the field
point and world-line point to be at the same coordinate
time, i.e.

�t ¼ t; �� ¼ �t; (40)

where

� ¼
ffiffiffiffiffi
M

�r3

s
(41)

is the orbital frequency. Combining everything, we obtain
a fourth-order approximation to the singular field of a
scalar charge on a circular, equatorial orbit around a
Schwarszchild black hole:

~�
ð4Þ
S ðr; �;Q; tÞ ¼

Piþjþk�9
i;j;k¼0 aijk�r

i��jQk

ðPiþjþk�2
i;j;k¼0 bijk�r

i��jQkÞ7=2 ; (42)

where �r ¼ r� �r, �� ¼ �� �=2, Q ¼ sinð12 ð���tÞÞ,
and where the nonzero coefficients, aijk and bijk are func-

tions of the orbital radius, �r, and are given by

a006 ¼�64�r6ð2M� �rÞ3
ð�r�3MÞ3 ; a024 ¼ 48�r6ð�r�2MÞ2

ð�r�3MÞ2 ; a042 ¼ 12�r6ð �r�2MÞ
�r�3M

; a060 ¼ �r6; a204 ¼ 48�r5ð�r�2MÞ
ð�r�3MÞ2 ;

a222 ¼� 24�r5

3M� �r
; a240 ¼� 3�r5

2M� �r
; a402 ¼ 12�r4

6M2�5M �rþ �r2
; a420 ¼ 3�r4

ð�r�2MÞ2 ;

a600 ¼ �r3

ð�r�2MÞ3 ; a106 ¼�32�r5ðM� �rÞð�r�2MÞ2
ð3M� �rÞ3 ; a124 ¼�8�r5ð8M2�10M �rþ3�r2Þ

ð �r�3MÞ2 ; a142 ¼ 2�r5ð3�r�5MÞ
3M� �r

;

a160 ¼� �r5

2
; a304 ¼ 8�r4ð3M�2�rÞ

ð�r�3MÞ2 ; a322 ¼ 8�r4

3M� �r
; a340 ¼ �r4ð5M�2�rÞ

2ð �r�2MÞ2 ; a502 ¼� 2�r3

ð �r�2MÞ2 ;

a520 ¼� �r3ð �r�4MÞ
2ð�r�2MÞ3 ; a700 ¼ M �r2

2ð �r�2MÞ4 ; a008 ¼�32M �r5ð2M� �rÞ3
ð3M� �rÞ3 ; a026 ¼�16�r5ð�r�2MÞ2ð5M2�4M �rþ �r2Þ

ð3M� �rÞ3 ;

a044 ¼ 2�r5ð222M4�459M3 �rþ346M2 �r2�112M �r3þ13�r4Þ
3ð�r�3MÞ3 ; a062 ¼ �r5ð�30M3þ57M2 �r�29M �r2þ4�r3Þ

3ð�r�3MÞ2 ;

FIG. 4 (color online). Singular field (top) and effective source (bottom) along the equatorial plane for a particle in a circular orbit
around a Schwarzschild black hole. From left to right: first-, second-, third-, and fourth-order cases are shown. Note that in the third-
and fourth-order cases, we used the method described in Sec. III B to ensure periodicity in �.
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a080¼� �r5ð6M2�9M �rþ �r2Þ
72M�24�r

; a206¼8�r4ð�30M3þ35M2 �r�16M �r2þ3�r3Þ
ð�r�3MÞ3 ; a224¼2�r4ð37M2�40M �rþ13�r2Þ

ð �r�3MÞ2 ;

a242¼ �r4ð294M3�498M2 �rþ259M �r2�41�r3Þ
6ð2M� �rÞð�r�3MÞ2 ; a260¼ �r4ð48M2�57M �rþ11�r2Þ

24ð6M2�5M �rþ �r2Þ ;

a404¼2�r3ð�65M3þ74M2 �r�26M �r2þ3�r3Þ
ð2M� �rÞð3M� �rÞ3 ; a422¼�50M3 �r3þ72M2 �r4�30M �r5þ4�r6

ð6M2�5M �rþ �r2Þ2 ;

a440¼5�r3ð9M2�10M �rþ2�r2Þ
24ð�r�2MÞ3 ; a602¼M �r2ð31M2�37M �rþ8�r2Þ

2ð2M� �rÞ3ð �r�3MÞ2 ; a620¼M �r2ð19M2�21M �rþ4�r2Þ
8ð3M� �rÞð�r�2MÞ4 ;

a800¼ M2 �rð �r�MÞ
4ð2M� �rÞ5ð3M� �rÞ ; a108¼16M �r4ð �r�2MÞ2ð29M3�25M2 �rþ3M �r2þ �r3Þ

ð3M� �rÞ5 ;

a126¼4�r4ð2M� �rÞð97M4�86M3 �rþ27M2 �r2�8M �r3þ2�r4Þ
ð �r�3MÞ4 ; a144¼� �r4ð312M4�351M3 �rþ193M2 �r2�73M �r3þ13�r4Þ

3ð�r�3MÞ3 ;

a162¼ �r4ð54M3�51M2 �rþ31M �r2�8�r3Þ
12ð �r�3MÞ2 ; a180¼ �r5ð3Mþ �rÞ

48ð3M� �rÞ ;

a306¼�4�r3ð139M4�163M3 �rþ78M2 �r2�27M �r3þ5�r4Þ
ð�r�3MÞ4 ; a324¼ �r3ð�357M4þ434M3 �r�230M2 �r2þ78M �r3�13�r4Þ

ð2M� �rÞð3M� �rÞ3 ;

a342¼� �r3ð732M4�1074M3 �rþ677M2 �r2�239M �r3þ38�r4Þ
12ð6M2�5M �rþ �r2Þ2 ; a360¼ �r3ð�66M3þ69M2 �r�43M �r2þ14�r3Þ

48ð3M� �rÞð�r�2MÞ2 ;

a504¼M �r2ð195M3�207M2 �rþ83M �r2�9�r3Þ
ð3M� �rÞ3ð �r�2MÞ2 ; a522¼ �r2ð�279M4þ307M3 �r�86M2 �r2�12M �r3þ4�r4Þ

4ð �r�3MÞ2ð�r�2MÞ3 ;

a540¼ �r2ð132M4�75M3 �r�41M2 �r2þ32M �r3�2�r4Þ
48ð3M� �rÞð�r�2MÞ4 ; a702¼�M �rð89M3�73M2 �rþ10M �r2þ4�r3Þ

4ð �r�3MÞ2ð�r�2MÞ4 ;

a720¼M �rð�19M3þ7M2 �rþ6M �r2�4�r3Þ
16ð2M� �rÞ5ð3M� �rÞ ; a900¼M2ð2M2�2M �rþ �r2Þ

8ð3M� �rÞð�r�2MÞ6 ; (43)

and

b002¼4�r2ð�r�2MÞ
�r�3M

; b020¼ �r2; b200¼ �r

�r�2M
: (44)

Next, we compute the effective source corresponding to
this singular field. The wave operator in Schwarzschild
coordinates is given by

hSchw ¼ �
�

r

r� 2M

�
@2

@t2
þ

�
r� 2M

r

�
@2

@r2
þ 2ðr�MÞ

r2
@

@r

þ 1

r2
@2

@�2
þ 1

r2 tanð�Þ
@

@�
þ 1

r2sin2ð�Þ
@

@�
: (45)

Applying this to (42), we obtain an effective source of the
form

Sð4Þeff ¼
fð�r;��;QÞ

ðPiþjþk�2
i;j;k¼0 bijk�r

i��j�QkÞ11=2 ; (46)

where fð�r;��;QÞ is a polynomial in �r, ��, Q (and
contains terms involving tan�� and sec��) and the bijk are

the same as those in the singular field.
In Fig. 4 we plot the first-, second-, third-, and fourth-

order singular field and corresponding effective source for
the case of a particle in a circular orbit at �r ¼ 10M in

Schwarzschild spacetime. All four cases have a visually
similar singular field. This is not surprising given they
share the same singular behavior and only differ in
higher-order corrections. The corresponding effective
source, however, is very different. As expected from the
discussion of Sec. II C, at first and second order the effec-
tive source diverges at the particle, while at third and fourth
order it is finite. Figure 5 shows a zoomed-in view of the
effective source in each case, along with a slice along the
radial direction, passing through the particle. From this we
see more clearly the behavior of the effective source near
the particle: at first order it isC�3, at second order it isC�2,
at third order it is C�1, and at fourth order it is C0.

B. Circular geodesic in Kerr spacetime

To compute the singular field and effective source in
Kerr spacetime, we consider its metric in Boyer-Lindquist
coordinates,

ds2 ¼ �
�
1� 2Mr

�

�
dt2 � 4aMrsin2�

�
dtd�þ�

�
dr2

þ�d�2 þ
�
�þ 2Mrðr2 þ a2Þ

�

�
sin2�d�2; (47)
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where

� ¼ r2 þ a2cos2�; � ¼ r2 � 2Mrþ a2: (48)

As in the Schwarzschild case, in order to obtain sufficiently
compact expressions to be given here, we assume that the
motion follows a circular, prograde equatorial geodesic,
i.e. [70]

�r ¼ constant; �� ¼ �

2
; ur ¼ 0; u� ¼ 0;

u� ¼
ffiffiffiffiffiffiffi
Mr

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 3Mrþ 2a

ffiffiffiffiffiffiffi
Mr

pp ;

ut ¼ aMþ
ffiffiffiffiffiffiffiffiffi
Mr3

p
ffiffiffiffiffiffiffi
Mr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � 3Mrþ 2a

ffiffiffiffiffiffiffi
Mr

p Þ
q :

(49)

We also use the freedom in the choice of t to set the field
point and world-line point to be at the same coordinate
time, i.e.

�t ¼ t; �� ¼ �t; (50)

where

� ¼ M

aMþ
ffiffiffiffiffiffiffiffiffi
M �r3

p (51)

is the orbital frequency. Combining everything, we obtain a
fourth-order approximation to the singular field of a scalar
charge on a circular equatorial orbit around a Kerr black
hole:

~�
ð4Þ
S ðr; �; �; tÞ ¼

Piþjþk�9
i;j;k¼0 aijk�r

i��jQk

ðPiþjþk�2
i;j;k¼0 bijk�r

i��jQkÞ7=2 ; (52)

where �r ¼ r� �r, �� ¼ �� �=2, Q ¼ sinð12 ð���tÞÞ,
and where the nonzero coefficients, aijk and bijk are func-

tions of the orbital radius, �r, and the spin parameter, a, and
are given by taking the expressions in Ref. [58], making the

change of variables �� ! Q, and reexpanding as de-
scribed in Sec. III A.
Next, we compute the effective source corresponding to

this singular field. The wave operator in Kerr (Boyer-
Lindquist) coordinates is given by

hBL ¼ �
�
1þ 2Mrða2 þ r2Þ

ða2 þ r2 � 2MrÞðr2 þ a2cos2�Þ
�
@2

@t2

þ ða2 þ r2 � 2MrÞ
r2 þ a2cos2�

@2

@r2
þ 2ðr�MÞ

r2 þ a2cos2�

@

@r

þ 1

r2 þ a2cos2�

@2

@�2
þ cot�

r2 þ a2cos2�

@

@�

þ ðr2 � 2Mrþ a2cos2�Þcsc2�
ða2 þ r2 � 2MrÞðr2 þ a2cos2�Þ

@2

@�2

� 4aMr

ða2 þ r2 � 2MrÞðr2 þ a2cos2�Þ
@2

@�@t
: (53)

Applying this to (52), we obtain an effective source of the
form

Sð4Þeff ¼
fð�r;��;QÞ

ðPiþjþk�2
i;j;k¼0 bijk�r

i��jQkÞ11=2 ; (54)

where fð�r;��;QÞ is a polynomial in �r, ��, Q (and
contains terms involving tan�� and sec��), and the bijk
are the same as those in the singular field.
In Fig. 6 we plot the fourth-order singular field and

corresponding effective source for the case of a particle
in a circular orbit at �r ¼ 10M around a Kerr black hole
with spin a ¼ 0:99M. As expected from the discussion of
Sec. II C, the fourth-order effective source is finite and
continuous, i.e. C0. In the right-most figure, we compare
against the equivalent case in Schwarzschild. Both cases
are qualitatively remarkably similar, only differing signifi-
cantly in magnitude close to the black hole.
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FIG. 5 (color online). Close-up view of the effective source along the equatorial plane (top) and along a radial slice through the
particle (bottom) for a particle in a r ¼ 10M circular orbit around a Schwarzschild black hole. From left to right: first-, second-, third-,
and fourth-order cases are shown.
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C. Generic geodesic in Kerr spacetime

To illustrate the power of the method developed here, we
now consider a more generic configuration. We choose an
arbitrary timelike geodesic of the Kerr spacetime and
compute the singular field and effective source at a point
along that geodesic. In particular, we make the choice

�r ¼ 10M; �� ¼ �

2
; a ¼ 0:99M; M ¼ 1;

u� ¼
ffiffiffiffiffiffiffi
Mr

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 3Mrþ 2a

ffiffiffiffiffiffiffi
Mr

pp ; u� ¼ 1

2
u�;

ur ¼ Mu�

(55)

with ut being determined by the normalization of the four-
velocity, u�u

� ¼ �1. The computation of the singular
field and effective source proceeds exactly as in the circular
orbit case, the only difference being that the resulting
expressions are larger. In fact, they are too large to be
useful in printed form. Since they are relatively manage-
able with computer algebra, however, we have made them
available as MATHEMATICA code [60].

In Fig. 7, we illustrate the behavior of the singular field
and effective source for this configuration. The left-most
plot shows the geodesic over several orbits, indicating that
it is both inclined and eccentric. The black dot on this plot
indicates the point �r ¼ 10M, �� ¼ �=2, �� ¼ 0 at which the
singular field and effective source in the subsequent plots is
computed. The second plot shows the singular field along
the equatorial plane. The third and fourth plots show the
effective source along the equatorial plane. As expected,

this fourth-order effective source is continuous, but not
differentiable at the particle.

V. DISCUSSION AND SUMMARY

In this paper, we have developed an approximation to the
singular field of a point scalar charge to quadratic order in the
distance from the charge. This is sufficient to give second-
order convergence in the grid spacing for 3þ 1D numerical
calculations and to give m�4 and l�4 convergence in the
m-mode and l, m-mode schemes, respectively. To go to
higher order (for better convergence) one would need to:
(1) Calculate the higher-order terms in the coordinate

expansions of � �a. This is a recursive calculation and
the expressions get more unwieldy as the order
increases. However, the calculation method is gen-
eral and only limited by computational power.

(2) Calculate higher-order corrections to ��0u�
0
and

��00u�
00
. This is straightforward using higher-order

covariant expansions of � and its derivatives [27],
which are easily obtained to much higher order than
is needed here using nonrecursive methods [71].

(3) Calculate higher-order terms in the series expan-
sions of Uðx; x0Þ, Uðx; x00Þ, and Vðx; zð	ÞÞ. These
are also easily obtained from the semirecursive
methods of Ref. [71].

The calculation of a higher-order singular field and effec-
tive source is therefore a straightforward (if somewhat
tedious) process. With the expressions becoming more
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FIG. 6 (color online). Particle following a circular equatorial geodesic around a Kerr black hole with spin a ¼ 0:99M. Left to right:
(a) fourth-order singular field, (b) fourth-order effective source, (c) close-up view of the effective source, and (d) effective source along
a radial slice through the particle. In (d), we also show the Schwarzschild result as a dashed red line for comparison. Note that we used
the method described in Sec. III B to ensure periodicity in �.

FIG. 7 (color online). Particle following generic geodesic around a Kerr black hole with spin a ¼ 0:99M. Left to right: (a) particle’s
world line (solid line) with position at which the singular field and effective source are computed indicated by a black dot, (b) fourth-
order singular field, (c) fourth-order effective source, and (d) close-up view of the effective source. Note that we used the method
described in Sec. III B to ensure periodicity in �.
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unwieldy at each order, one must balance the calculation
effort against the benefits of doing so. It seems likely that
the fourth-order approximation presented here is the sweet
spot, giving reasonably good convergence with modest
computational difficulty.

As shown in Sec. IVC, this method works for very
general motion in the Kerr spacetime. Furthermore,
although no explicit calculations have been done here for
other spacetimes, it is clear that Eq. (12) is valid in any
spacetime. It would therefore be straightforward to apply
this method to any (not necessarily Ricci-flat) spacetime.
As the primary motivation of this work has been to study
rotating black holes, however, we have chosen to only
consider Kerr and Schwarzschild spacetimes in detail in
this work.

The methods presented here are useful for computing
expressions for the singular field and effective source for
generic configurations. The actual evolution of a wave
equation with this source, along with the calculation of
the self-force should be explored separately. Here, we
simply note that we have implemented two separate nu-
merical evolution codes using the singular field and effec-
tive source presented here: one uses the window-function
approach with a 3þ 1D numerical evolution; the other
uses the world-tube approach followed by an m-mode
decomposition and a separate 2þ 1D numerical evolution
for each m. We have verified that both codes give correct
results (as determined by comparison with frequency-
domain calculations). Further details of these codes will
be presented elsewhere, with some results already having
been published. Using a separate numerical code, Dolan
and Barack [47] evolved the 2þ 1D scalar wave equation
(with the singular field and effective source as given in
Sec. IVA7) for a particle in a circular orbit around a
Schwarzschild black hole. This calculation was subse-
quently extended to the case of circular orbits in Kerr
spacetime in [58,72] with further progress toward generic
configurations in Kerr spacetime under way. In a recent
work [43], the effective source presented here was used to
self-consistently evolve the orbit of a point scalar charge in
the Schwarzschild spacetime, incorporating the backreac-
tion from the self-force into the evolution.

One major issue remaining in the effective source ap-
proach is the computational efficiency of the source calcu-
lation. For the approach to be of practical use, its
calculation must be sufficiently fast that it does not have
a prohibitive impact on the run time of a numerical code.
This is a serious concern—the expression for the fourth-
order effective source may be dramatically larger than a
finite difference representation of the wave equation, for
example. Some steps have been taken in this paper to

improve the efficiency of the source calculation. In
Appendix C, we discuss some specific methods for evalu-
ating the effective source as efficiently as possible. As
mentioned in Sec. III A, we have also made use of specific
choices for the singular field in an effort to minimize the
size of the resulting expressions. Despite these efforts, the
reality is that the calculation of the effective source will
considerably affect the run time of a numerical code.
Fortunately, there remain several possibilities for further

optimization. The advent of graphics processing unit
(GPU) computing has allowed for dramatic performance
improvements in certain applications. It seems likely that
the embarrassingly parallel nature of the effective source
calculation on a grid of points is an ideal candidate for
implementation in a GPU programming framework such as
CUDA or OPENCL. Given other applications have seen

speed-ups by 1 to 2 orders of magnitude [73], it is not
unreasonable to expect similar performance gains for ef-
fective source calculations.
There is yet another intriguing prospect for improving

calculations involving an effective source. As discussed in
Sec. II C 4, the effective source may be viewed as merely a
correction for the fact that the singular field is not known
exactly. This begs the question of whether the singular field
could be calculated exactly on a world-tube boundary. Not
only would this improve convergence in a numerical code
(arbitrarily high convergence in grid spacing, exponential
convergence in l ormmode sums), but it would also negate
the need to calculate an effective source at all. The entire
computational cost of implementing the effective source
approach would be in the computation of the value of the
singular field on the boundary. While an exact calculation
of the singular field may not be realistic, one should recall
that from a numerical perspective a value which is correct
in the first 16 digits of a double precision number is
effectively ‘‘exact’’ in that further refinements do not
change the result. Given the availability of high-order
expansions of the Green function [53,71,74–78] along
with the fact that multidomain spectral methods [29,30]
or adaptive mesh refinement [41,79] allow the world-tube
boundary to be placed very close to the particle, it seems
like this may be a plausible approach, although further
investigation is required to determine whether this is truly
the case.
Yet another potential optimization arises from the

covariant treatment of Sec. II C. Near the particle, the
covariantly reexpanded effective source is a reasonable
approximation to the ‘‘correct’’ effective source.
However, given that it only requires a first-order coordinate
expansion, it is dramatically more efficient to evaluate
numerically. Furthermore, as the divergences are canceled
analytically, it effectively avoids any need for concern
about delicate numerical cancellations. Lastly, as the
singular field is constructed in such a way that it and its
derivative (i.e. the self-force) evaluated at the particle are

7In fact, the singular field used by Dolan and Barack differs
slightly from that of Sec. IVA. Nonetheless, it was computed
using the same methods and differs only at higher order than the
order of the approximation.
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insensitive to these covariant reexpansions, it is plausible
that using the covariant reexpansion throughout the world
tube may be possible. This may lead to an ‘‘incorrect’’
regularized field away from the particle, but with sufficient
care could potentially still give the ‘‘correct’’ value for the
field and its derivative at the particle.

This work focused on the case of a scalar charge
moving in a background spacetime. Of arguably much
more interest are the cases of gravitational or electromag-
netic charges. Fortunately, the calculation strategy remains
largely unchanged. One can make use of an analogous
Detweiler-Whiting gravitational or electromagnetic Green
function which has the same Hadamard-type structure. It
will still include functions Uðx; x0ÞAB0 and Vðx; x0ÞAB0 ,

which are analogous to their scalar variants and may be
calculated in the exact same way [71]. Furthermore, the
world function, �, and its derivatives will remain un-
changed from the scalar case. The full details of this
calculation will be developed in a future work.
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APPENDIX A: COVARIANT EXPANSIONS

In this appendix, we develop covariant expansion ex-
pressions for the biscalars Uðx; x0Þ, Uðx; x00Þ, �a0 ðx; x0Þ,
�a00 ðx; x0Þ, and

R
v
u Vðx; zð	ÞÞd	 appearing in Eq. (11). We

eventually seek expansions about the point �x. In doing so,
we follow the strategy of Haas and Poisson [27,55]:

(i) For the generic biscalar Aðx; zð	ÞÞ, write it as Að	Þ �
Aðx; zð	ÞÞ.

(ii) Compute the expansion about 	 ¼ �	. This takes the
form

Að	Þ ¼ Að �	Þ þ _Að �	Þð	� �	Þ þ 1
2
€Að �	Þð	� �	Þ2

þ � � � ; (A1)

where _Að �	Þ ¼ A; ��u
��, €Að �	Þ ¼ A; �� ��u

��u
��, � � � .

(iii) Compute the covariant expansions of the coefficients
_Að �	Þ; €Að �	Þ; � � � about �	.

(iv) Evaluate the expansion at the desired point, e.g.
Aðx0Þ ¼ Aðx; x0Þ.

(v) The resulting expansion depends on 	 through the
powers of 	� �	. Replace these by their expansion in
� (about �x), the distance between x and the world line.

A key ingredient of this calculation is the expansion of
� � 	� �	 in �. This expansion was developed by Haas
and Poisson [27] to sufficient order for the present calcu-
lation for the particular choices �þ � v� �	 and �� �
u� �	. They found

��¼ð�r� �sÞ	ð�r� �sÞ2
6�s

Ru�u�

	ð�r� �sÞ2
24�s

½ð�r� �sÞRu�u�ju�Ru�u�j��þOð�5Þ: (A2)

1. Expansion of Uðx; x0Þ and Uðx; x00Þ
We now compute expansions of Uðx; x0Þ and Uðx; x00Þ

about �x. Both calculations proceed in the same way and
require the expansion of Uðx; �xÞ about �x, which is given
by [52]:

Uðx; �xÞ ¼ �1=2ðx; �xÞ ¼ 1þ 1
12R�� � 1

24R��j� þOð�4Þ:
(A3)

Writing Uð	Þ � Uðx; zð	ÞÞ, where 	 stands for either u
or v, we compute its expansion about 	 ¼ �	:

Uð	Þ ¼ Uð �	Þ þ _Uð �	Þð	� �	Þ þ 1
2
€Uð �	Þð	� �	Þ2

þ 1
6U
:::ð �	Þð	� �	Þ3 þOð�4Þ; (A4)

where

Uð �	Þ ¼ 1þ 1
12R�� � 1

24R��j� þOð�4Þ; (A5)

_Uð �	Þ ¼ U; ��u
�� ¼ 1

6Ru� � 1
12Ru�j� þ 1

24
R��ju þOð�3Þ;

(A6)

€Uð �	Þ ¼ U; �� ��u
��u

�� ¼ 1
6Ruu � 1

12Ruuj� þ 1
6Ru�ju þOð�2Þ;

(A7)

U
:::ð �	Þ ¼ U; �� �� ��u

��u
��u �� ¼ 1

4Ruuju þOð�Þ: (A8)

Substituting Eqs. (A2) and (A5)–(A8) into (A4) and eval-
uating at 	 ¼ fu; vg, we get our final expression for the
expansion of U� � Uðx; x0Þ and Uþ � Uðx; x00Þ about �x:
U� ¼ 1þ 1

12½R�� þ 2ð�r� �sÞRu� þ ð�r� �sÞ2Ruu�
þ 1

24½�R��j� þ ðR��ju � 2Ru�j�Þð�r� �sÞ
þ ð2Ru�ju � Ruuj�Þð�r� �sÞ2 þ Ruujuð�r� �sÞ3�
þOð�4Þ: (A9)

The first term here is Oð1Þ, the second term is Oð�2Þ, and
the third term is Oð�3Þ. Note that for vacuum spacetimes,
these become Uðx; x0Þ ¼ 1þOð�4Þ ¼ Uðx; x00Þ, as is to be
expected. Additionally, note that the difference between
Uðx; x0Þ and Uðx; x00Þ first becomes apparent at Oð�2Þ.
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2. Expansion of ��0u�
0
and ��00u�

00

Haas and Poisson give expansions for ��0u�
0
and

��00u�
00
. They are:

��0u�
0 ¼ �s� �r2� �s2

6�s
Ru�u��

�r� �s

24�s
½ð�r� �sÞð�rþ2�sÞRu�u�ju

�ð�rþ �sÞRu�u�j��þOð�5Þ; (A10)

���00u�
00 ¼ �s��r2� �s2

6�s
Ru�u��

�rþ �s

24�s
½ð�rþ �sÞð�r�2�sÞRu�u�ju

�ð�r� �sÞRu�u�j��þOð�5Þ: (A11)

In these expressions, the first term is Oð�Þ, the second is
Oð�3Þ, and the third isOð�4Þ. Note that difference between
��0u�

0
and ��00u�

00
only becomes apparent at Oð�4Þ.

3. Expansion of
R
v
u Vðx; zð�ÞÞd�

The expansion of the tail term in Eq. (11) poses an
additional potential difficulty because of the integration
over a portion of the world line. However, expanding
Vðx; zð	ÞÞ about �x, the integration becomes a trivial inte-
gration of powers of 	.

In the following, we make use of the expansion of
Vðx; �xÞ about �x,

Vðx; �xÞ ¼ 1
2

�

� 1

6

�
�R� 1

4

�

� 1

6

�
�Rj� þOð�2Þ: (A12)

We now proceed, as before, by defining Vð	Þ � Vðx; zð	Þ,
where 	 lies between u and v, and computing the expan-
sion about 	 ¼ �	:

Vð	Þ ¼ Vð �	Þ þ _Vð �	Þð	� �	Þ; (A13)

where

Vð �	Þ ¼ 1
2

�

� 1

6

�
�R� 1

4

�

� 1

6

�
�Rj� þOð�2Þ; (A14)

_Vð �	Þ ¼ V;�u
� ¼ 1

4

�

� 1

6

�
�Rju þOð�Þ: (A15)

The integration along the world line is now straightforward
since the only dependence of the integrand on 	 comes
through the factor 	� �	. Performing the integration and
substituting Eqs. (A2), (A14), and (A15) into the result, we
get our final expression for the expansion ofR
v
u Vðx; zð	ÞÞd	 about �x:

Z v

u
Vðx;zð	ÞÞd	

�
�

�1

6

�
�R �sþ1

2

�

�1

6

�
ð �Rju�r �s� �Rj� �sÞþOð�3Þ: (A16)

The first term here is Oð�Þ and the second term is Oð�2Þ.
Note that for vacuum spacetimes, Vðx; zð	ÞÞ ¼ Oð�4Þ and

this term does not contribute to the singular field until
Oð�5Þ.

APPENDIX B: LEADING-ORDER PIECE OF THE
COORDINATE EXPRESSION FOR �s2

As we discuss in Sec. III A, it is highly desirable for a
coordinate representation of the effective source to not
diverge anywhere. Unfortunately, a common feature of
series expansions is that they have a finite region of validity
(for Taylor series, this is denoted by their radius of con-
vergence). Outside this region, spurious singularities tend
to appear. As already indicated, a reexpansion of the de-
nominator of the singular field (leaving only its quadratic
leading-order dependence on the coordinate separation and
bringing all higher-order terms up to the numerator) allows
one to avoid most potential singularities away from the
position of the particle. Here we demonstrate this explicitly
for the case of Schwarzschild coordinates.
In these coordinates, the leading-order dependence of

the denominator (essentially given by �s2 � ðg �� �� þ
u ��u

��Þ� ��� ��) on the coordinate separations is

�s2¼�Fð1�FðutÞ2Þð�tÞ2�2uturð�tÞð�rÞ

�2FR2utu�ð�tÞð��ÞþR2ð��Þ2þFþðurÞ2
F2

ð�rÞ2

þ2R2

F
uru�ð�rÞð��ÞþR2ð1þR2ðu�Þ2Þð��Þ2; (B1)

where �t ¼ t� �t, �r ¼ r� R, etc. (recalling that barred
coordinates refer to the position of the particle), R is the
radial position of the particle in Schwarzschild coordi-
nates, and F :¼ 1� 2M=R.
If we take �t ¼ 0, this reduces to

�s2ð�t ¼ 0Þ ¼ R2ð��Þ2 þ
�
Fþ ðurÞ2

F2
ð�rÞ2

þ 2R2

F
uru�ð�rÞð��Þ

þ R2ð1þ R2ðu�Þ2Þð��Þ2
�
: (B2)

The condition �t ¼ 0 imposes that the position and four-
velocity of the particle are evaluated at the same coordinate
time as where the effective source is evaluated, or in other
words, the particle location and field point need to be at the
same t-hypersurface.
All except the cross term / ð�rÞð��Þ are manifestly

positive-definite. The combination of terms in the square
brackets, however, can also be shown to be positive-
definite; it is a quadratic form in f�r;��g:

Að�rÞ2 þ Bð�rÞð��Þ þ Cð��Þ2; (B3)

where
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A ¼ ðFþ ðurÞ2Þ
F2

; B ¼ 2R2

F
uru�;

C ¼ R2ð1þ R2ðu�Þ2Þ: (B4)

This will be positive-definite if B2 � 4AC< 0. The con-
dition is easily verified to reduce to

0< Fþ ðurÞ2 þ FR2ðu�Þ2; (B5)

which is true for F > 0. Thus, s2ð�t ¼ 0Þ is positive every-
where except that it vanishes at the position of the particle.
This implies that the reexpanded singular field, which
keeps only the quadratic dependence on the coordinate
separation in its denominator, diverges only at the location
of the particle, and consequently that the corresponding
effective source is regular everywhere else.

APPENDIX C: EFFICIENT NUMERICAL
COMPUTATION OF THE SINGULAR FIELD AND

EFFECTIVE SOURCE

The calculation of numerical values for ~�S and Seff
requires the numerical evaluation of their coordinate ex-
pansion. This amounts to numerically evaluating a multi-
variate polynomial (in ð�r;��;��Þ) with coefficients
which are potentially complicated functions of the
particle’s location and four-velocity. Furthermore, in a
numerical code this must be done at every point on a
three-dimensional grid!8 Clearly, it is crucial to make this
evaluation as efficient as possible, so that the computa-
tional cost of the effective source does not prohibit its use
in a numerical code.

Fortunately, there are a two points which enable signifi-
cant improvements:

(i) Since the expansions are all about �x, the coefficients
of the polynomial do not change from grid point to
grid point. They may change from one iteration to
the next, however.

(ii) In some cases such as with circular orbits in
Schwarzschild and Kerr spacetimes, this change
between iterations is trivial and does not necessarily
require recalculation of the effective source.

This suggests an obvious optimization. The coefficients are
only computed once at the start of an iteration and then
their numerical values are stored. The evaluation at each
grid point then becomes simple multiplication by powers
of ð�r;��;��Þ, a relatively fast and computationally
efficient operation. A further optimization can be found
by computing powers of ð�r;��;��Þ only once at the
start of the simulation, providing the grid structure does not
change. Altogether, this yields an enormous speed im-
provement—a factor of 50–100 in many cases. Similar
tricks may also be employed with other parameters
(mass, spin, etc.) which do not change through the lifetime
of the simulation. Furthermore, if accuracy is important
and delicate numerical cancellations are causing problems,
this approach allows for the use of highly accurate methods
such as Kahan [80] summation to minimize problems
arising from numerical round-off.
In addition to the numerical algorithm, it also important

to consider the method for generating the code. Given the
length of the expressions, it is impractical to manually type
them in. Instead, we have directly generated C code from
the MATHEMATICA expressions and have made both avail-
able online [60].
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