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Only a severely restricted class of tensor fields can provide classical spacetime geometries, namely

those that can carry matter field equations which are predictive, interpretable, and quantizable. These three

conditions on matter translate into three corresponding algebraic conditions on the underlying tensorial

geometry: the latter must be hyperbolic, time-orientable, and energy-distinguishing. Lorentzian metrics,

on which general relativity and the standard model of particle physics are built, present just the simplest

tensorial spacetime geometry satisfying these conditions. The problem of finding gravitational dynam-

ics—for the general tensorial spacetime geometries satisfying the above minimum requirements—is

reformulated in this paper as a system of linear partial differential equations, in the sense that their

solutions yield the actions governing the corresponding spacetime geometry. Thus, the search for modified

gravitational dynamics is reduced to a clear mathematical task.
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I. INTRODUCTION

Over the past two decades, remarkable gaps in our
understanding of matter have been revealed—astrophysi-
cal observations [1] by now overwhelmingly indicate that
only about 4% of the matter and energy in the Universe can
be of standard-model origin. Indeed, one cannot attribute
the remaining 21% of dark matter or 75% of dark energy to
standard-model matter or its vacuum energy. For, on the
one hand, the bullet cluster [2] shows the existence of only
gravitationally interacting dark matter. On the other hand,
the calculation of dark energy as the vacuum energy of
standard-model fields yields a result that is infamously off
the observed value by 120 order of magnitude [3], which is
jokingly referred to as the worst prediction of elementary
particle physics. It is the consensus that these observations
thus point at something fundamental we do not understand
about matter or gravity.

Going deeper than just postulating modified
Lagrangians for either matter or gravity, however, one
quickly realizes that modifying matter and gravity dynam-
ics independently quickly becomes inconsistent. This is
because they both build on—and more importantly, are
both tightly constrained by—the common underlying
spacetime geometry.

For the Einstein equations, on the one hand, present the
unique dynamics with a well-posed initial value problem
one can give to a Lorentzian manifold [4]. Thus, modifying
gravitational dynamics necessarily comes at the cost of
deviating from Lorentzian geometry as the spacetime
structure. This is illustrated for instance by Brans-Dicke

gravity and its avatars as well as fðRÞ gravity theories,
which all feature at least an additional scalar gravitational
degree of freedom. But then one needs to couple matter
fields to the corresponding modified spacetime geometry,
and one sees that modifying gravitational dynamics com-
pels one to think about modified matter dynamics.
Vice versa, even minimal deviations from the standard

model of particle physics, on the other hand, quickly
produce matter dynamics whose causality does not coin-
cide with the causality defined by the underlying
Lorentzian manifold. Famously, this surprisingly already
happens for some fully covariant Lagrangians [5]. If one
wishes to consider such matter dynamics on a Lorentzian
manifold, let alone any even slightly more exotic matter,
one also requires modified gravity dynamics to provide
backgrounds which make the matter equations causal.
Thus, unless one entertains the claim that all matter which
could exist in nature must be made precisely in the image
of Maxwell theory—which, in the face of 96% of all matter
and energy in the Universe being of entirely unknown
origin, appears an unnecessarily restrictive and arbitrary
idea, one sees that modifying matter dynamics generically
compels one to construct a corresponding modified gravity
theory to be consistent.
Therefore, if one sets out to modify the otherwise time-

tested theory of Einstein gravity coupled to standard-model
dynamics, the intimate link between consistent matter
dynamics and gravitational field equations compels one
to be particularly careful and base any modification on a
common underlying geometry which is so constrained as to
make the combined theory work. At the very least, it is to
be physically required that the spacetime geometry render
the entirety of observed matter field dynamics coupling to*Corresponding author: fps@aei.mpg.de
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it predictive, interpretable, and quantizable [6]. The iden-
tification of all tensorial geometries complying with these
minimum criteria and the determination of their gravita-
tional dynamics is the purpose of the present paper.

Fortunately, these rather fundamental physical condi-
tions translate into three simple algebraic conditions [7]
which an otherwise arbitrary tensor field must satisfy in
order to provide a valid spacetime geometry: it must be
hyperbolic, time-orientable, and energy-distinguishing, as
wewill explain in the first technical section below. Thus, the
spectrum of tensor fields which can serve as a spacetime
structure in the presence of specific matter field dynamics
[8] is greatly restricted; so restricted, in fact, that all kine-
matical constructions familiar from the special case of
Lorentzian metrics can be made, for precisely the same
structural reasons, also for any such tensorial spacetime.

The deeper dynamical principles behind Einstein’s field
equations, which were revealed by Arnowitt, Deser, and
Misner [9] a long time ago, are fortunately not swept away
with a change from Lorentzian geometry to one of the
alternative tensorial geometries described above. From
the geometrodynamical point of view, gravitational dy-
namics is all about evolving the spatial geometry from
one suitable initial data surface to an infinitesimally neigh-
boring one, such that ultimately all spatial geometries
recombine to an admissible spacetime geometry; indeed,
applying this principle, Hojmann, Kuchar, and Teitelboim
[4,10] derived the Einstein-Hilbert action with numerically
undetermined gravitational and cosmological constants as the
unique dynamics for the special case when the tensorial
geometry is in fact a Lorentzianmetric. But this geometrody-
namic principle stands for any tensorial spacetime geometry
[11]. And it is the purpose of the present article to show that
the very same principle indeed determines the dynamics of
any hyperbolic, time-orientable, and energy-distinguishing
tensorial spacetime geometry; but indeed only of such.

The main result of this article, beyond its technical
details, is thus the observation that the search for gravita-
tional dynamics beyond general relativity can be reduced
to solving a mathematical representation problem. This is
achieved by invoking precisely the same geometrodynamic
principles as followed by Ref. [10], but applied to any
hyperbolic, time-orientable, and energy-distinguishing
tensorial spacetime geometry. As a consequence, gravita-
tional dynamics (including and beyond [12] Einstein) need
not be postulated, since they can be derived for any tenso-
rial spacetime geometry, as we will show, by solving a
system of homogeneous linear partial differential equa-
tions. Thus, the question of whether there is an alternative
to general relativity as a classical gravity theory carries
over in the formalism developed in the paper to a mathe-
matical existence problem. Now, if such solutions exist at
all, the question of whether there are other dynamics for the
same geometry translates into the mathematical question of
the uniqueness of such a solution. And finally, the problem

of constructing concrete alternative gravity dynamics
amounts to nothing less, but also nothing more, than find-
ing an actual solution of the linear system of partial dif-
ferential equations. In the philosophy of this paper,
studying modified theories of gravity therefore amounts
to studying solutions to the said equations.
The organization of this paper is as follows. In Sec. II A,

we start by giving a concise review of tensorial spacetime
geometries, culminating in the insight of how normal
covectors to initial data surfaces are mapped to normal
vectors, which is the pivotal technique in constructing the
canonical dynamics for such geometries. This is then used
in Sec. II B to derive the deformation algebra of initial data
surfaces in any tensorial spacetime geometry. Since geo-
metrodynamics must evolve geometric initial data from
one initial data hypersurface to the next, gravitational
dynamics must represent this deformation algebra on a
geometric phase space, which we explain in Sec. II C.
Sections III and IV then deal with different incarnations
of the same program; the former derives the dynamics of
dispersion relations independent of any underlying geo-
metric tensor, while the latter deals with the more funda-
mental question of deriving dynamics for the fundamental
geometric tensor. More specifically, the supermomentum
for the dispersion relation geometry is constructed in
Sec. III B, while the corresponding superhamiltonian splits
into a nonlocal part which we construct in Sec. III C and a
local part which is determined by equations which we
derive in the course of Secs. III D, III E, and III F.
Section III G then derives further insight on the structure
of the equations determining the local part of the super-
hamiltonian for dispersion relations, before we recover the
dynamics for the dispersion relation of standard general
relativity in Sec. III H, starting from nothing more than the
dispersion relation of lowest possible degree, demonstrat-
ing that the general principles underlying our study of all
spacetimes are none other than those also underlying gen-
eral relativity. The construction of the supermomentum and
superhamiltonian determining the dynamics of a funda-
mental geometric tensor field in Sec. IV proceeds very
much along the same lines, but depends heavily on the
algebraic structure of the fundamental geometric tensor
one considers. Building on some work recyclable from
Sec. III, we derive the equations whose solution yields
the dynamics for area metric manifolds as a prototypical
example in Sec. IVC after having constructed the relevant
geometric phase space in Sec. IVB.We conclude in Sec. V.

II. KINEMATICS OF TENSORIAL SPACETIMES

Whether a tensor field can provide a spacetime structure
depends on the matter one wishes to consider on it. In this
section, we will first review how three fundamental re-
quirements one needs to ask of any realistic matter
theory—predictivity, interpretability, and quantizability—
greatly restrict the tensor-field backgrounds they can
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couple to. In particular, we will see that the dispersion
relation associated with the entirety of field equations on
a spacetime plays a prominent geometric role and almost
single-handedly encodes the kinematics associated with
the underlying tensorial geometry. These insights, which
are reviewed here in Sec. II A in a brief but self-contained
manner for the benefit of the reader, are then used in
Sec. II B to study the deformation algebra of initial data
hypersurfaces in tensorial spacetimes. The basic geome-
trodynamic idea, namely, to use this deformation algebra to
derive canonical dynamics, is then laid out in Sec. II C and
presents the key to constructing gravitational dynamics for
the dispersion relation in Sec. III, or more fundamentally,
the underlying tensorial geometry in Sec. IV.

A. Primer on tensorial spacetime geometries

In this subsection, we give a concise review of tensorial
geometries which can serve as a spacetime structure. The
technical proofs underlying this summary are presented in
detail in Ref. [7] and rather pedagogical fashion in the
lecture notes [13]. To aid the reader’s intuition, we illus-
trate each abstract construction in this section immediately
for the familiar example of a standard metric geometry
before moving on to the next construction. Occasionally,
we will also contrast this to area metric geometry [14,15]
as a comparatively well-studied example for a nonmetric
tensorial geometry. Having studied the general theory and
these examples, the reader should be in a position to carry
out a similar analysis for his or her favorite tensorial
geometry.

All we know about spacetime we know from probing it
with matter [16]. So, we consider, in addition to an a priori
arbitrary tensor field G (the ‘‘geometry’’) on a smooth
manifold M also a field � (the ‘‘matter’’), which takes
values in some tensor representation space V and whose
gauge-fixed dynamics are encoded in linear field equations
which transform as a tensor. Since the only other structure
on the manifold besides the matter field � is provided by
the geometric tensor G, the coefficients Q of the matter
field equations (after removing potential gauge symmetries
and separating off the related constraint equations) must be
built entirely from the geometric tensor and its partial
derivatives [18],

XN
n¼0

Q½G�a1...anAB ðxÞ@a1 . . . @an�BðxÞ ¼ 0; (1)

with small Latin spacetime indices running from
0; . . . ; dimM� 1 and capital Latin representation space
indices ranging over 1; . . . ; dimV. It is straightforward to
establish that in such an equation, the leading-order coef-
ficient, and generically only this one, transforms as a
tensor, if the entire equation does [19]. This will render
definition (2) below covariant. For the example of the

geometry being given by an inverse metric tensor field
(Gab ¼ Gba with nonzero determinant everywhere) and a
scalar field � ( dimV ¼ 1) obeying the massless Klein-
Gordon equation Ga1a2@a1@a2�� �a1

mnGmn@a1� ¼ 0,

where � are the Christoffel symbols of the metric Gab,
we indeed find that the leading quadratic-order coefficient
transforms as a tensor, while the linear-order coefficient
does not (and could not, since it must ensure that the entire
equation transforms as a scalar).
Requiring that matter equations of the form (1) are

predictive, interpretable, and quantizable imposes neces-
sary conditions on the underlying geometry G. These con-
ditions have been derived and explained in detail in
Ref. [7]. Here, we present a practical summary of these
conditions and their implications as far as they are directly
relevant for the present article. All constructions revolve
around the totally symmetric contravariant tensor field P
defined from the leading-order coefficients of the matter
field equations (1) by

Pi1...idegPðxÞki1 . . . kidegP :¼ �det
A;B

ðQ½G�a1...aNAB ðxÞka1 . . . kaN Þ
(2)

for all points x 2 M and cotangent vectors k 2 T�
xM and a

scalar density function � constructed from the geometry G
such as to be of opposite density weight to the determinant
over the tensor representation indices. To lighten the nota-
tion, we will often use the shorthand Pðx; kÞ for the left-
hand side of Eq. (2). Furthermore, we may agree, since no
information is lost and it is technically convenient,
to remove any repeated factors into which the field P
may factorize; so, if the above construction yields
Pðx; kÞ ¼ P1ðx; kÞ�1 � � �Pfðx; kÞ�f , then we consider in-

stead the reduced tensor field P defined by Pðx; kÞ ¼
P1ðx; kÞ � � �Pfðx; kÞ. The physical meaning of the tensor

field P is revealed by the eikonal equation [20] for the
dynamics (1), which shows that

Pðx; kÞ ¼ 0 (3)

is the dispersion relation which a covector k 2 T�
xM must

satisfy in order to qualify as a massless momentum. For our
simple example of a Klein-Gordon field on a metric
geometry, the determinant in Eq. (2) is of weight zero,
and for the choice � ¼ 1, we obtain Pi1i2 ¼ Gi1i2 , and one
indeed recovers the familiar massless dispersion relation
Ga1a2ka1ka2 ¼ 0. An instructive nonmetric example is pro-

vided by Abelian gauge theory coupled to an inverse area
metric tensor geometry [15,21], which is based on a fourth-
rank contravariant tensor field G featuring the algebraic
symmetries Gabcd ¼ Gcdab ¼ �Gbacd; calculation of the
principal polynomial (after removing gauge invariance,
observing resulting constraints on initial conditions and
recovariantizing the expression) yields [14,22,23], in
dimM ¼ d dimensions, the totally symmetric tensor field
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Pi1...i2ðd�2Þ ¼ �ðGÞ�aa1...ad�1
�b1...bd�1bG

aa1b1ði1Gi2ja2b2ji3 . . .Gi2ðd�3Þjad�2bd�2ji2d�5Gi2ðd�2ÞÞad�1bd�1b (4)

of tensor rank degP ¼ 2ðd� 2Þ, with some scalar density
�ðGÞ of weight þ2 constructed from G. In four spacetime
dimensions, for example, where the area metric may be
decomposed into a cyclic part GC with Ga½bcd�

C ¼ 0 and a
totally antisymmetric part given in terms of a scalar density
� of weight�1, Gabcd ¼ Gabcd

C þ��abcd, one may chose
�ðGÞ ¼ �1=ð24�2Þ. This nontrivial example for a field P
illustrates two salient points. First, it reveals what a dra-
matic accident it is that in Lorentzian geometry, the field P,
which will be central to all further developments, is essen-
tially identical to the fundamental geometric field g; for, in
area metric geometry, one not only sees that P is a tensor
field of generically entirely different tensor rank than the
underlying fundamental geometric tensor G, but may also
feature an entirely different index symmetry structure: the
tensor P is always totally symmetric. Second, it exempli-
fies the rule that generically the fundamental geometry G
cannot be reconstructed from the field P [24]. With these
remarks on the role of the field P as a dispersion relation
and its origin in matter field equations coupled to some
tensorial geometry, we are now prepared to lay down the
three crucial algebraic conditions which the tensor field P
needs to satisfy. These conditions in turn restrict the geo-
metric tensor G that underlies P [25].

The first condition, predictivity of the matter field equa-
tions, translates into the algebraic requirement that the
tensor field P be hyperbolic [17,26]. This means that there
exists a covector field h with PðhÞ> 0, such that for all
covector fields r, there are only real functions � onM, such
that

Pðx; rðxÞ þ �ðxÞhðxÞÞ ¼ 0 (5)

everywhere. Obviously, if PðhÞ< 0, one could arrange for
PðhÞ> 0 simply by changing the overall sign of the density
� appearing in Eq. (2), and we will agree to do so for
definiteness [27]. In any case, it is useful terminology to
call a covector field h, if it indeed exists, a hyperbolic
covector field with respect to P. Only hypersurfaces whose
canonical normal covector fields (defined to annihilate any
tangent vector field to the hypersurface) are hyperbolic can
serve as initial data surfaces for equations of the type (1).
We will return to this point later. For our example of a
metric geometry, it is easy to check that Pi1i2 ¼ Gi1i2 is
hyperbolic if and only if the inverse metric has Lorentzian
signature ðþ � � � ��Þ and that the hyperbolic covectors
are exactly those covectors for which Pi1i2hi1hi2 > 0; in

other words, initial data surfaces need to be spacelike. The
reader be warned, however, that such a simple character-
ization of hyperbolic covectors and thus initial data sur-
faces merely by the sign of their conormals or tangent
vectors under P is not generic and merely a coincidence

in the metric case. The underlying general definitions,
however, work for all geometries.
The second condition, interpretability of the matter field

equations translates into a time-orientability condition for
the underlying geometry. This is simply the algebraic
requirement that also the so-called dual tensor field P# be
hyperbolic. Indeed, for any hyperbolic tensor field P, one
can show that there always exists a totally symmetric
covariant dual tensor field P# of some rank degP#, such
that

P#ðx;DPðx; kðxÞÞÞ ¼ 0 (6)

for all covector fields k with Pðx; kðxÞÞ ¼ 0 everywhere,
where DPðx; qÞ denotes the vector with components
DPðx; kÞa ¼ ðdegPÞPaf2...fdegPkf2 . . . kfp , and we used a

shorthand for the evaluation of the field P# on a vector
which is analogous to the previous one for P on a covector.
The dual tensor field P# is unique up to a real conformal
factor and can always be constructed, essentially by deter-
mining a Gröbner basis [28]. For our example of metric
geometry, a dual of Pi2i2 ¼ Gi1i2 is given by P#

i1i2
¼ Gi1i2 ,

as one easily verifies. Returning to the general case, time
orientability means that there exists a vector field H such
that for every vector field R, there are only real functions�
on M, such that

P#ðx; RðxÞ þ�ðxÞHðxÞÞ ¼ 0 (7)

everywhere. A vector field H satisfying this condition will
be called a time orientation. Once a time orientation has
been chosen, it is useful to consider, separately in each
tangent space, the connected set C#

x of all hyperbolic
vectors to which the vector Hx of the time orientation
belongs. According to a classic theorem [26], C#

x consti-
tutes an open and convex cone in the tangent space TxM,
and we will call C#

x the cone of observer tangents (to
observer worldlines through the point x). Note that in
general, hyperbolicity of P does not already imply hyper-
bolicity of P#, and thus predictivity does not imply time
orientability in general. For our metric example, however,
it trivially does; P#

i1i2
¼ Gi1i2 is hyperbolic if and only if

Pi1i2 ¼ Gi1i2 is, and the cones C# of observer tangents are
the timelike vectors X at each point which are future-
oriented with respect to some global timelike vector field
T representing the time orientation, i.e., satisfy
Ga1a2X

a1Ta2 > 0. Again, this simple sign condition to de-

cide membership of X in the cone of observer tangents
selected by T is a coincidence in the metric case and again
has to be replaced by the underlying general definition
above for other geometries.
The third condition on the matter field equations,

namely, that these are quantizable, is that the geometry
be energy-distinguishing. This simply means that all
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observers agree on the sign of the energy of a massless
momentum. More precisely, a geometry is energy-
distinguishing if for every point x 2 M and every massless
momentum k either kðXÞ> 0 or�kðXÞ> 0 for all X 2 C#

x.
In a hyperbolic, time-orientable and energy-distinguishing
geometry, one can then also meaningfully define massive
particle momenta of positive energy at some point x as
those hyperbolic covectors q 2 T�

xM for which qðXÞ> 0
for all observers X 2 C#

x. To be able to do this is of crucial
importance when performing a split of a basis of solutions
to the field equations into positive and negative frequency
solutions in a canonical quantization of the matter field.
These massive positive energy momenta constitute an open
convex cone Cx in the cotangent space at x. The mass m of
such a positive energy massive particle momentum q 2 Cx

is then defined by

Pðx; qÞ ¼ mdegP: (8)

In Lorentzian metric geometry, the above definitions of
course recover as the positive energy massive and massless
momenta precisely those timelike and null covectors whose
application to a future-directed timelike vector is positive. It
may be worth emphasizing again that for a covector to
qualify as massive, it must not only satisfy the massive
dispersion relation (8), but indeed be hyperbolic, as stipu-
lated above. Only in Lorentzian geometry does the massive
dispersion relation already imply hyperbolicity.

Only if a geometry satisfies the three conditions laid out
above can one associate worldlines with the massless and
massive dispersion relations. For, only then can one solve
for the momenta q after variation of the Hamiltonian
actions

Smassless½x; q; �� ¼
Z

d�½ _xaqa � �PðqÞ� and

Smassive½x; q; �� ¼
Z

d�

�
_xaqa � � lnP

�
q

m

��
; (9)

respectively. Defining the Legendre map Lx for all covec-
tors q in the open convex cone Cx of positive energy
massive momenta at some point x as

Laðx; qÞ ¼ PðxÞab2...bdegPqb2 . . . qbdegP
Pðx; qÞ ; (10)

which by virtue of the energy orientability of P possesses a
unique inverse L�1

x on its domain, one finds [7] that
the worldlines of free massless and massive particles are
stationary curves of the reparametrization-invariant
Lagrangian actions

Smassless½�; x� ¼
Z

d��P#ð _xÞ and

Smassive½x� ¼ m
Z

d�PðL�1ð _xÞÞ�ð1= degPÞ; (11)

respectively. The massive particle action reveals the physi-
cal meaning of the Legendre map L, since one readily

derives that the canonical momentum of a positive-energy
massive particle is related to the worldline tangent vector
as q ¼ mL�1ð _xÞ if one chooses the proper time parametri-
zation PðL�1ð _xÞÞ ¼ 1 along the worldline. Put simply, the
Legendre map raises the index on a positive-energy mas-
sive momentum, in one-to-one but nonlinear fashion. For
the example of Lorentzian geometry, we find that under the
familiar proper time parametrization Gab _x

a _xb ¼ 1, the
worldline tangent vector _x and the corresponding particle
momentum q of a particle of mass m are related through
m _xa ¼ Gabqb. The massless and massive Lagrangian
actions for the free point particle on a Lorentzian space-
time recover the standard textbook postulates.
Of central importance for the aim of this article, namely,

to derive the dynamics of hyperbolic, time-orientable, and
energy-orientable geometries, is the following insight.
Hypersurfaces which are potential carriers of initial data
and, at the same time, accessible by observers are those
whose conormal at each point lie in the cone L�1ðC#Þ. This
is because, on the one hand, the purely spatial directions
seen by an observer with tangent vector X 2 C# are pre-
cisely those vectors annihilated by the covector L�1ðXÞ.
On the other hand, the cone of these observer cotangents
can be shown to always lie within the cone C of hyperbolic
covectors for hyperbolic, time-orientable, and energy-
distinguishing geometries. In Lorentzian geometry, such
initial data surfaces accessible to observers are simply the
spacelike hypersurfaces. Incidentally, only when L�1ðC#Þ
does not only lie within C, but entirely coincides with it, is
the theory free of particles travelling faster than the speed
of some light [29].
The deformation of such observer-accessible initial data

hypersurfaces, separately in normal and tangential direc-
tions, will be the topic of the next section. While a generic
hypersurface directly gives rise to tangent directions, but
merely normal codirections, it is only the Legendre map
(and thus the spacetime geometry) which allows us to
associate a normal codirection n of a hypersurface with a
corresponding normal direction T ¼ LðnÞ if n lies
in L�1ðC#Þ. Normalizing the latter by requiring
PðL�1ðTÞÞ ¼ 1 corresponds to requiring that the normal
direction be tangent to an observer worldline with proper
time parametrization. Thus, the normal deformation of
observer-accessible initial data hypersurfaces feels the
spacetime geometry through the Legendre map. It is this
role of the Legendre map which we will see to hold the key
to the derivation of the gravitational dynamics for general
tensorial spacetimes.

B. Deformation of initial data surfaces

The aim of this paper is to find dynamics which develop
initial geometric data from one initial data hypersurface to
another, such that, sweeping out the spacetime manifold in
this way, one reconstructs a hyperbolic, time-orientable,
and energy-distinguishing dispersion relation everywhere.
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In this section, we describe initial data hypersurfaces by
their embedding maps and study how functionals of this
embedding map change under normal and tangential de-
formations of the hypersurface. The functionals of interest
later on will be the induced geometry seen by point parti-
cles in Sec. III or the induced geometry seen by fields
in Sec. IV. The change of a generic functional of the
embedding map can be expressed by a linear action of
deformation operators on such functionals, and it is the
commutation algebra of these deformation operators which
we are after [30].

More precisely, we consider a hypersurface Xð�Þ de-
fined by an embedding map X: � ,! M of a smooth
manifold � with local coordinates fy�g into the smooth
manifold M with local coordinates fxag; here and in the
remainder of this paper, Latin ‘‘spacetime’’ indices run
from 0 to dimM� 1 while Greek ‘‘hypersurface’’ indices
run from 1 to dimM� 1. Without additional structure, the
embedding defines at each point y of the hypersurface
dimM� 1 spacetime vectors

e�ðyÞ ¼ @XaðyÞ
@y�

@

@xa
(12)

tangent to the hypersurface Xð�Þ, which in turn define, up
to scale, normal spacetime covectors nðyÞ as the annihila-
tors of all tangent vectors,

nðyÞðe�ðyÞÞ ¼ 0 � ¼ 1; . . . ; dimM� 1: (13)

Only if we restrict attention to initial data hypersurfaces
whose data are accessible to observers, by requiring that
the nðyÞ lie in the respective cones L�1ðC#Þ everywhere
along the hypersurface Xð�Þ, can we impose the normal-
ization PðnðyÞÞ ¼ 1 and thus obtain a unique spacetime
vector field TðyÞ ¼ LðnðyÞÞ representing the normal direc-
tions, rather than normal codirections, away from the
hypersurface. Thus, an accessible initial data hypersurface
Xð�Þ induces a complete spacetime tangent space basis
fTðyÞ; e1ðyÞ; . . . ; edimM�1ðyÞg at every of its points, and dual
basis fnðyÞ; �1ðyÞ; . . . ; �dimM�1ðyÞg in cotangent space.

We now consider deformations of the hypersurface
Xð�Þ. Technically, this is done by prescribing a smooth
one-parameter family Xt of embedding maps such that the
original embedding map X is recovered for t ¼ 0. Then,
the connecting vector field @Xt=@t in spacetime, between
the hypersurfaces Xtð�Þ of this family, can be uniquely
decomposed along the undeformed hypersurface into a
sum of a purely spatial and a purely tangential part,

_XðyÞ ¼ NðyÞTaðyÞ þ N�ðyÞea�ðyÞ; (14)

where the hypersurface scalar field N and hypersurface
vector field components N� are given by

NðyÞ ¼ nðyÞð _XðyÞÞ and N�ðyÞ ¼ ��ðyÞð _XÞ (15)

and thus completely parametrize any small deformation of
the embedding map X into X þ dt _X.

The linear change of functionals under changes of the
embedding map is conveniently studied in terms of normal
and tangential deformation operators. More precisely, we
define the normal deformation operator

H ðNÞ ¼
Z
�
dyNðyÞTaðyÞ �

�XaðyÞ ; (16)

acting on arbitrary functionals F of the embedding func-
tion. The change of such F under the deformation (14) is
then given to first order byH ðNÞF. Similarly, one obtains
for a purely tangential deformation the first-order change
DðN�@�ÞF through the tangential deformation operator

D ðN�@�Þ ¼
Z
�
dyN�ðyÞea�ðyÞ �

�XaðyÞ : (17)

A trivial check on the geometric meaning, which this
terminology attaches to these operators, is their action on
the components of the embedding map itself; with the
definitions of the delta distribution and functional deriva-
tives, one finds

H ðNÞXaðzÞ ¼ NðzÞTaðzÞ and

DðN�@�ÞXaðzÞ ¼ N�ðzÞea�ðzÞ; (18)

which indeed are precisely the normal and tangential com-
ponents of the deformation (14). Since the embedding is a
linear functional of itself, this shows that Eqs. (16) and (17)
indeed are the operators which bring about the normal and
tangential deformations of functionals to linear order, as
desired.
Finally, we may calculate their commutator algebra. The

latter will play a crucial role throughout this paper. Now,
the basis vectors T and e1; . . . ; edimM�1 are functionals of
the embedding map, and it is thus clear that multiple
application of deformation operators will require one to
know their functional derivatives with respect to the em-
bedding functions. While for the hypersurface tangent
vectors, one obtains

�ea�ðyÞ
�XbðzÞ ¼ ��a

b@��yðzÞ (19)

in straightforward fashion directly from their definition,
one needs to work somewhat harder from the definition of
T to find

�TaðyÞ
�XbðzÞ ¼ ðdegP� 1Þðea�nbP�	ÞðyÞ@	�yðzÞ

þ
�
nj2 . . . njdegP@bP

aj2...jdegP

� degP� 1

degP
Tanj1 . . . njdegP@bP

j1...jdegP

�
ðyÞ�yðzÞ;

(20)

where, in the first summand, one of the hypersurface
tensors defined in Eq. (34) appears. Note that the disper-
sion relation enters only in the variation of the normal
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vector, but not of the tangent vectors. This is because the
definition of the former employs the Legendre map defined
by the dispersion relation. This is indeed the way the
geometry enters into the deformation algebra, which is
now straightforwardly calculated to be [31]

½H ðNÞ;H ðMÞ�
¼ �DððdegP� 1ÞP�	ðM@	N � N@	MÞ@�Þ; (21)

½DðN�@�Þ;H ðMÞ� ¼ �H ðN�@�MÞ; (22)

½DðN�@�Þ;DðM	@	Þ�¼�DððN	@	M
��M	@	N

�Þ@�Þ:
(23)

The exclusive appearance of the hypersurface tensor field
components P�	 induced from the spacetime tensor P

by virtue of P�	 ¼ Pabf1...fdegP�2��a�
	
b nf1 . . . nfdegP�2

on the

right-hand side of the commutator of two normal deforma-
tion operators—the last two commutators are indeed fully
independent of the hypersurface geometry—originates en-
tirely in the use of the Legendre map when defining the
spatial fields. Thus, P�	 appears irrespective of which type
of geometry on the hypersurfaces one chooses to study
(possible choices are the pullbacks of the geometry seen by
point particles considered in Sec. III or the geometry seen
by fields considered in Sec. IV). The calculation of the P�	

on the right-hand side of the algebra above in terms of the
hypersurface geometry is just more complicated for ge-
ometries seen by fields than for geometries seen only by
point particles, but it is always the P�	 which appears
there. Finally, it is useful to observe that the tangential
deformation operators constitute a subalgebra.

C. Towards canonical dynamics for
hypersurface geometries

So far in this paper, we tacitly assumed to have knowl-
edge about the values of the geometric tensor G—and thus
also the cotangent bundle function P derived from it—at
every point of the entire spacetime manifold M. This
enabled us to derive how any functional F of a hypersur-
face embedding map X: � ,! M changes under a change
(14) of the embedding map. We are particularly interested
in the particular type of functionals of the embedding map
which arise as normal and tangential projections of a
spacetime ðr; sÞ-tensor field F to an embedded hypersur-
face. For simplicity, consider a (1, 0)-tensor field F on M,
which induces the projections

F0ðyÞ½X� :¼ FðnðyÞÞ and

F�ðyÞ½X� :¼ Fð��ðyÞÞ for � ¼ 1; . . . ; dimM� 1; (24)

which yields the collection of functionals FAðyÞ ¼
ðF0ðyÞ; F�ðyÞÞ, where we used the spacetime covector
frame fn; �1; . . . �dimM�1g along the hypersurface to project
F. One proceeds analogously for tensor fields of valence

ðr; sÞ. Knowing the value of the tensor field F throughout
spacetime, and, in particular, in a neighborhood of an
embedded hypersurface Xð�Þ, we can write the linear
change of the functionals FAðyÞ under a deformation of
the original hypersurface controlled by the lapse N and
shift N� asZ

�
dz½NðzÞH ðzÞ þ N�ðzÞD�ðzÞ�FAðyÞ½X�; (25)

where we introduced the localized operators H ðzÞ :¼
H ð�zÞ and D�ðzÞ :¼ Dð�z@�Þ.
But this omniscient view of the values of the tensor field

F and the geometry G at every point of spacetime is not
afforded by us mere mortals. What we have access to, at

best, are the values F̂AðyÞ on �, understood as mere hyper-
surface tensor fields, rather than functionals of the embed-

ding map. If we then wish to predict the values of the F̂A on
some different hypersurface through spacetime, we need to
stipulate how these fields change from the initial hypersur-
face Xð�Þ to a deformed one nearby, and we will see in a
moment that we are rather constrained in the way we can
stipulate such equations of motion. Anyway, since we are
ignorant of any of the field values of F away from the
hypersurface, we need to compensate for this lack of
knowledge by adjoining canonical momentum densities

�̂A of weight one to each configuration variable F̂A, which
is equivalent to introducing a Poisson bracket

fĈ; D̂g :¼
Z
�
dz

�
�Ĉ

�F̂A

�D̂

��̂A

� �D̂

�F̂A

�Ĉ

��̂A

�
(26)

on the space of functionals of the phase space variables

ðF̂A; �̂AÞ, which is sometimes referred to as superspace.

One can then give dynamics to the hypersurface fields F̂A

by stipulating that their values change by the amount�
F̂AðyÞ;

Z
�
dz½NðzÞĤ ðzÞ þ N�ðzÞD̂�ðzÞ�

�
(27)

when evolved to a neighboring hypersurface whose defor-
mation from the initial one is determined by the lapse N

and shift N�, where the quantities Ĥ and D̂� are some a
priori arbitrary functionals of the phase space variables

ðF̂A; �̂AÞ. For brevity, and in accordance with the standard

terminology in geometrodynamics, we will refer to Ĥ ðyÞ
as the superhamiltonian and to D̂�ðyÞ as the supermomen-
tum. The dynamics (27) are further assumed to be supple-
mented by first class constraints

Ĥ ðyÞ � 0 and D̂�ðyÞ � 0 (28)

implementing the required diffeomorphism gauge
symmetry.
It is clear that if the dynamically evolved hypersurface

field values on the deformed hypersurface are to coincide
with what the hypersurface deformation (25) yields, inde-
pendent of any particular deformation ðN;N�Þ, then, we
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must require that Eq. (25) coincides with Eq. (27), or
equivalently,

H ðyÞFAðyÞ½X� ¼ fF̂AðyÞ;Ĥ ðzÞðyÞg and

D�ðyÞFAðyÞ½X� ¼ fF̂AðyÞ; D̂�ðzÞðyÞg: (29)

We cannot extend these equations to the momentum vari-
ables, since we do not know at this stage how the latter can
be understood as functionals of the embedding map—this
is for the dynamics to determine. But using the relations
(29) in the deformation algebra (21)–(23), and the Jacobi
identity for the Poisson bracket, one finds that a sufficient
condition for our above compatibility requirement is that
the functionals

Ĥ ðNÞ :¼
Z
�
dyNðyÞĤ ðyÞ and

D̂ðN�@�Þ :¼
Z
�
dyN�ðyÞD̂�ðyÞ (30)

of the phase space variables have Poisson brackets which
represent the deformation algebra commutation relations
[32]

fĤ ðNÞ;Ĥ ðMÞg¼D̂ððdegP�1ÞP̂�	ðM@	N�N@	MÞ@�Þ;
(31)

fD̂ðN�@�Þ;Ĥ ðMÞg ¼ Ĥ ðN�@�MÞ; (32)

fD̂ðN�@�Þ; D̂ðM	@	Þg ¼ D̂ððN	@	M
� �M	@	N

�Þ@�Þ:
(33)

The extent to which this representation requirement is not
necessary to satisfy our compatibility condition, however,
precisely encodes the information concerning the func-

tional dependence of Ĥ and D̂ on F̂A, while Eq. (29)

already determines �Ĥ ðzÞ=��̂AðyÞ and �D̂�ðzÞ=��̂AðyÞ.
We will return to this point when constructing Ĥ and D̂
from the above algebra, and, indeed, the major part of the
remainder of this paper will be devoted to this construction.

At this point, the paper splits into two different projects.
While both are concerned with finding gravitational

dynamics—by way of finding the supermomentum D̂�

and Ĥ satisfying the Poisson algebra (31)–(33), according
to the program laid out in this section, they do so for
different geometric degrees of freedom. The first project,
treated in Sec. III, considers the projections of the compo-
nents of the dispersion relation P as the geometric degrees
of freedom on a hypersurface and derives the equations
which determine its superhamiltonian and supermomen-
tum. In contrast, the second project, treated in Sec. IV,
illustrates how the projections of the fundamental geomet-
ric tensor G are taken as the degrees of freedom to which
one gives dynamics. This point of view is more fundamen-
tal, but its details depend heavily on the algebraic proper-
ties of the geometric tensor.

III. DYNAMICS OF DISPERSION RELATIONS

Point particles only see those aspects of a tensorial
spacetime geometry G which are encoded in the tensor
field P underlying the massive and massless dispersion
relations. It is a mere coincidence in Lorentzian geometry
that the tensor field Pa1a2 ¼ Ga1a2 contains precisely the
same information as the fundamental geometric tensor
field Gab to which fields couple. For any other tensorial
spacetime geometry, the totally symmetric tensor field P
can be expressed in terms of the fundamental geometric
tensor field G, but not vice versa. So, if one is interested in
a full gravitational theory to which fields and point parti-
cles can couple, one needs to derive dynamics for the
fundamental geometric tensor G, and we will do so in
Sec. IV. But if one is only interested in gravitational fields
acting on, and generated by, point particles, one may alter-
natively construct gravitational dynamics directly for any
hyperbolic, time-orientable, and energy-distinguishing ten-
sor fieldP. Indeed, we obtain a rather sweeping result in this
section: we derive a system of homogenous linear partial
differential equations whose solutions yield all possible
canonical dynamics for physical dispersion relations.

A. Phase space for geometries seen by point particles

Since we wish to study the spatial geometry seen by
point particles on an initial data hypersurface Xð�Þ, we
are interested in the hypersurface tensor fields P,
P�1 ; . . . ; P�1�2...�degP which arise as functionals of the em-
bedding map through

P�1...�I ðyÞ½X� :¼ Pð��1ðyÞ; . . . ; ��I ðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

; nðyÞ; . . . ; nðyÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
degP�I

for I¼ 0; . . . ;degP; (34)

where we used the complete spacetime covector frame
fn; �1; . . . ; �degM�1g along the hypersurface to project the
spacetime tensor field Pa1...adegP onto �. The normalization
conditions PðnÞ ¼ 1 and Ta��a ¼ 0 immediately imply
that the two functionals P and P� are constant along �.
This property is conserved under hypersurface deforma-
tions, and thus the P and P� do not carry any dynamical
information and can be discarded as configuration varia-
bles. The remaining hypersurface tensor fields, however,
allow, in combination with the dual basis, the complete
reconstruction of the spacetime dispersion relation at every
point of the hypersurface and thus, in their entirety, present
the geometry on the hypersurface—as it is seen by point
particles.
As we have laid out in Sec. II C, the point of dynamics is

to generate, not assume, the values of P throughout the
spacetime manifold, starting only from initial data in the
form of totally symmetric tensor fields

P̂ �1�2 ; P̂�1�2�3 ; . . . ; P̂�1�2...�degP (35)
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on a manifold � of dimension dimM� 1. To lighten the

notation, we collect the fields (35) in a quantity P̂A carrying
a multi-index A ¼ ð�1�2;�1�2�3; . . . ;�1�2 . . .�degPÞ
consisting of totally symmetric tuples of spacetime indices.
Starting from these configuration variables, which corre-
spond to initial data on only one hypersurface X0ð�Þ, say,
the lack of knowledge about the value of the configuration
variables on neighboring hypersurfaces Xtð�Þ must be
compensated for by adjoining canonical momenta


̂ �1�2
; 
̂�1�2�3

; . . . ; 
̂�1�2...�degP
; (36)

or 
̂A for short, to the configuration variables (35) on �.
This introduction of canonical momenta is of course
equivalent to adopting a Poisson bracket,

fF̂; Ĝg¼
Z
�
dy

�
�F̂

�P̂AðyÞ
�Ĝ

�
̂AðyÞ�
�Ĝ

�P̂AðyÞ
�F̂

�
̂AðyÞ
�
; (37)

on the space of functionals of P̂A and 
̂A, whose elements

we denote with a hat. The configuration variables P̂A and
momenta 
̂A are trivially functionals of themselves, and
this is the reason why we made them carry a hat from the
beginning. In order for the integral (37) to be well-defined
under changes of chart on �, the momenta must be tensor
densities of weight one. This ultimately follows from
the definition of the functional derivative. We now set

out to determine the supermomentum D̂ and the super-

hamiltonian Ĥ which close according to Eqs. (31)–(33)

and evolve the canonical variables ðP̂A; 
̂AÞ.

B. Construction of the supermomentum

The strategy to determine the superhamiltonian and
supermomentum from the Poisson algebra—in accordance
with the philosophy laid out in Sec. II C—follows from the
fact that the supermomentum functionals constitute a sub-
algebra which must be solved without recourse to the
further relations. This is what we do in this section. More
precisely, using the definition (17) of the tangential defor-
mation operator, we may calculate the change of the func-
tionals (34) under tangential deformations. In order to do
that, we need to know the functional derivatives of the dual
hypersurface basis vectors fn; ��g with respect to the em-
bedding map. For the hypersurface conormal, we have

�naðyÞ
�XbðzÞ ¼ � 1

degP
ðnanj1 . . . njdegP@bPj1...jdegPÞðyÞ�yðzÞ

þ nbðyÞ��a ðyÞ@��yðzÞ; (38)

while the functional derivatives of the �� read

���a ðyÞ
�XbðzÞ ¼ ��b ðyÞ�	a ðyÞ@	�yðzÞ

� ðdegP� 1ÞnaðyÞnbðyÞP�	ðyÞ@	�yðzÞ
� ðna��j1nj2 . . . njdegP@bPj1...jdegPÞðyÞ�yðzÞ: (39)

Using these results on the left-hand side in the second
equation of Eq. (29) and the second weak equality in
Eq. (28), one calculates that

fP̂AðyÞ; D̂ðN�@�Þg ¼ ðL ~NP̂ÞAðyÞ: (40)

This is entirely plausible, since the deformation operator,
and thus its representation in the form of the supermomen-
tum, push the configuration variable along the hypersur-

face vector field ~N, and this is precisely what the Lie
derivative is defined to do. But then, it follows from the
Jacobi identity for the Poisson bracket (37), followed by a
functional integration with respect to 
̂, that

f
̂AðyÞ; D̂ðN�@�Þg ¼ ðL ~N
̂ÞAðyÞ; (41)

for the covariant tensor densities 
A. Again, this is more
than plausible, since the tangential deformation operator
merely reshuffles all the initial data. In summary, we obtain
a set of pairwise coupled functional-differential equations
for all I ¼ 2; . . . ; degP, namely,

�D̂ð ~NÞ
�P̂�1...�I ðyÞ ¼ ð�@	N

	
̂�1...�I
� N	@	
̂�1...�I

� I@ð�1
N	
̂�2...�IÞ	ÞðyÞ; (42)

�D̂ð ~NÞ
�
̂�1...�I

ðyÞ ¼ ðN	@	P̂
�1...�I � I@	N

ð�1P̂�2...�IÞ	ÞðyÞ; (43)

which are integrable since all second functional derivatives

of D̂ð ~NÞ commute. These equations are uniquely solved by

D̂ð ~NÞ ¼ XdegP
I¼2

Z
�
dyN	ðyÞ½@	P̂�1...�I 
̂�1...�I

þ I@�1
ðP̂�1...�I 
̂�2...�I	Þ�; (44)

where an a priori nonzero additive integration constant is
forced to be zero by Eq. (33). This is already the desired
supermomentum appearing in the dynamics (27). Note
that, in the case of degP ¼ 2, the supermomentum reduces

to the standard form D̂� ¼ 2P̂	�r	
̂�� known from gen-

eral relativity [33].

C. Construction of the nonlocal superhamiltonian

Now that the supermomentum, and thus the right-hand
side of the bracket (31), is known, we can start to determine
the superhamiltonian by extracting the information con-
tained in this and the other remaining bracket (32). The
latter simply tells us that the superhamiltonian must be a
scalar density of weight one. For, on the one hand, we

concluded from Eqs. (40) and (41) that f�; D̂ð ~NÞg acts like a
Lie derivative on any functional of the geometric phase
space variables, and thus on the superhamiltonian in par-
ticular. But, on the other hand, letting BðzÞ ¼ �yðzÞ in the

bracket (32), we obtain

fĤ ðyÞ; D̂ð ~NÞg ¼ @�ðĤ ðyÞN�ðyÞÞ (45)
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after an integration by parts on the right-hand side.

However, this is the Lie derivative of Ĥ only if the latter
is a scalar density of weight one, as claimed, and this is all
which follows from this second bracket.

Again, we approach the solution of the Poisson relations
starting from one of the necessary relations (29). From the
left equation, we indeed find that

�Ĥ ðNÞ
�
̂�1...�I

ðzÞ¼NðzÞ½LTPÞa1...adegP��1
a1 . . .�

�I
aI naIþ1

. . .nadegP�ðzÞ

þ@	NðzÞ
h
ðI�degPÞP̂	�1...�I

þðdegP�1ÞIP̂ð�2...�I P̂�1Þ	
i
ðzÞ;

(46)

where the first term on the right-hand side contains the
projections of the Lie derivativeLT of the spacetime tensor
field P in the hypersurface normal direction T and thus
clearly depends on the frame data. The second term, in
contrast, only contains the configuration variables, and this
will become important shortly. If the second bracket van-
ished in general (which, however, only is the case for
degP ¼ 2), the superhamiltonian would be a function,
rather than a functional, in the momenta 
̂A according to
Eq. (46). However, the simple form of the @	N term allows

one to directly determine the nonlocal contribution of the
momenta to the superhamiltonian. In fact, it is straightfor-
ward to check that one can decompose the superhamilto-
nian as

Ĥ ðyÞ½P̂; 
̂� ¼ Ĥ localðyÞ½P̂�ð
̂Þ þ Ĥ non-localðyÞðP̂; @
̂Þ;
(47)

namely, into a local part Ĥ localðyÞ, which is indeed a

functional of P̂ but only a function of 
̂ and the explicit
nonlocal part

Ĥ non-localðyÞ½P̂; 
̂�

¼ XdegP
I¼2

½ðdegP� IÞ@	ðP̂	�1...�I 
̂�1...�I
Þ

� ðdegP� 1ÞI@	ðP̂�2...�I P̂�1	
̂�1...�I
Þ�ðyÞ; (48)

which is thus a completely known functional of P̂ and 
̂
which generates the nonlocal second term in Eq. (46). Note

that the nonlocal part Ĥ non-localðyÞ of the superhamiltonian
is the divergence of a vector density of weight one and thus
a scalar density of the same weight. Hence, the decom-
position (47) turns the superhamiltonian into the sum of
two tensor densities of weight one [34]. This means that we
reduced the problem of finding the superhamiltonian as a

functional of both phase space variables P̂ and 
̂ to the
much simpler problem, as it will turn out, of determining

the local part which is a functional in P̂ but only a function
in 
̂. In particular, this will allow us to make a power series

ansatz for Ĥ local in 
̂.

D. Lagrangian reformulation

At this point, we explicitly know the supermomentum D̂

and the nonlocal part Ĥ non-local of the superhamiltonian

(47). The still undetermined local part Ĥ local of the latter
enters the only remaining Poisson bracket (31) quadrati-
cally on its left-hand side,

Z
�
dz

�
�Ĥ ðxÞlocal
�P̂AðzÞ þ �Ĥ ðxÞnon-local

�P̂AðzÞ
��

�Ĥ ðyÞlocal
�
̂AðzÞ

þ �Ĥ ðyÞnon-local
�
̂AðzÞ

�
� ðx $ yÞ; (49)

where the contributions of the nonlocal part of the
Hamiltonian are explicitly known from taking the func-
tional derivative of Eq. (48). Here and in the remainder of
this paper, repeated multi-indices indicate sums of the form

CADA ¼ XdegP
I¼2

C�1...�ID�1...�I
: (50)

The quadratic appearance of Ĥ local in Eq. (49) seriously
complicates a power series ansatz for it in the momenta 
̂.
Remarkably, a Legendre transformation [4] replacing the
momenta 
̂A by Legendre dual variables

KAðxÞ :¼ @Ĥ ðxÞlocal
@
̂AðxÞ ; (51)

from which conversely the momenta depend as a function,

̂ðxÞ½P�ðKÞ, allows us to turn the equation (49) which is

quadratic in Ĥ local into an equation which is linear in the
‘‘Lagrangian’’

LðxÞ½P̂�ðKÞ :¼ 
̂AðxÞ½P̂�ðKÞKAðxÞ � Ĥ ðxÞlocal½P̂�
� ð
̂½P̂�ðKÞÞ; (52)

since, then, one finds

�Ĥ ðxÞlocal
�P̂AðyÞ

��������
̂½P̂�ðKÞ
¼ � �LðxÞ

�P̂AðyÞ and

@LðxÞ
@KAðxÞ ¼ 
̂AðxÞ½P̂�ðKÞ: (53)

Let us further define the coefficients QA
B	 and MA� by

�Ĥ non-localðxÞ
�P̂AðzÞ

¼ QA
B	ðxÞ@	
̂BðxÞ�xðzÞ

�QA
B	ðxÞ
̂BðxÞ@	�xðzÞ; (54)

�Ĥ non-localðyÞ
�
̂AðzÞ

¼MA� ðyÞ@��yðzÞ�@�M
A� ðyÞ�yðzÞ; (55)

which yields the expressions
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Q�1...�K

	1...	I� ¼ �K
Iþ1ðdegP� IÞ��	1...	I

ð�1...�Iþ1Þ

� �K
2 IðdegP� 1ÞP̂ð	2...	I�

	1Þ�
ð�1�2Þ

� �K
I�1IðdegP� 1ÞP̂�ð	1�	2...	IÞ

�1...�I�1
; (56)

M�1...�I	 ¼ �ðdegP� IÞP̂	�1...�I

þ IðdegP� 1ÞP̂	ð�1P̂�2...�IÞ; (57)

depending only on the configuration variables P̂. Rewriting
the Poisson bracket (49) with the help of the Lagrangian
and integrating out the appearing delta distributions, its
left-hand side takes the form

� �LðxÞ
�P̂AðyÞK

AðyÞ þ @y�

�
�LðxÞ
�P̂AðyÞM

A� ðyÞ
�

þMA� ðyÞQA
B	ðxÞ@	
̂BðxÞ@��yðxÞ

� KAðyÞQA
B	ðxÞ
̂BðxÞ@	�xðyÞ

þQA
B	ðxÞ
̂BðxÞMA
ðyÞ@2	
�yðxÞ

þQA
B	ðxÞ
̂BðxÞ@
MA
ðyÞ@	�xðyÞ � ðx $ yÞ;

while the right-hand side becomes ðdegP� 1Þ times

XdegP
I¼2

½P̂	�@	P̂
�1...�I 
̂�1...�I

þ IP̂	�@�1
P̂�1...�I 
̂�2...�I

þ IP̂	�P̂�1...�I@�1

̂�2...�I	�ðyÞ@��xðyÞ � ðx $ yÞ;

where 
̂ is given by the second of the equations (53). A key
observation is now that the dependence of the terms in
square brackets on the right-hand side may be changed
from y to x while the dependence of the delta distribution
multiplying it remains unchanged; due to the exchange
term (x $ y), the resulting distributions are the same.
The same remark applies to changing the dependence of
QA

B	 and @
̂B from x to y in the third term on the left-hand
side. We may thus collect the derivative terms @
 from
both sides into an expression of the form

TA��ðxÞðP̂Þ@��xðyÞ@�
̂AðxÞ � ðx $ yÞ (58)

on the left-hand side of the original Poisson bracket rela-
tion. Crucially, one finds that TA�� ¼ TA�� by inspecting
the explicit expression for the above coefficients. It is only
due to this fact that Eq. (58) is equal to

½TA��ðxÞðP̂Þ@�@��xðyÞ � @�T
A��ðxÞðP̂Þ@��xðyÞ�
̂AðxÞ

� ðx $ yÞ (59)

as a distribution in two variables. Thus, all @
 terms can be
made into local expressions in theK by virtue of the second
relation in Eq. (53).

Combining all terms of the original Poisson bracket (31)
in this fashion, one obtains its entirely equivalent formu-
lation as a homogeneous linear functional-differential

equation in L ¼ L½P̂�ðKÞ,

0 ¼ � �LðxÞ
�P̂AðyÞK

AðyÞ þ @y�

�
�LðxÞ
�P̂AðyÞM

A� ðyÞ
�

� @LðxÞ
@KAðxÞK

BðxÞQB
A	ðxÞ@	�xðyÞ

þ @LðxÞ
@KAðxÞ ½U

A��ðxÞ@2���xðyÞ þ SA�ðxÞ@��xðyÞ�
� ðx $ yÞ; (60)

where the coefficients UA�� contain the configuration var-
iables,

U�1...�I�� ¼ �IðdegP� 1ÞP̂ð�jð�1P̂�2...�IÞj�Þ; (61)

whereas the coefficients SA� also contain their first partial
derivatives,

S�1...�I� ¼ �ðdegP� 1ÞP̂	�@	P̂
�1...�I þ IðdegP� IÞ

� ðdegP� 1ÞP̂�ð�1...@	P̂
�IÞ	

þ 2IðdegP� 1ÞP̂ð�jð�1...@	P̂
�IÞj	Þ

þ IðdegP� 1ÞðdegP� 2ÞP̂�	ð�1@	P̂
�2...�IÞ

� IðI � 1ÞðdegP� 1Þ2P̂�ð�1P̂�2...�I�1@	P̂
�IÞ	;

(62)

where in the case degP ¼ 2, the last term is to be read as

�2P̂�ð�1@	P̂
�2Þ	. Once one has solved (60) for the

Lagrangian L½P�ðKÞ, one can recover the momenta


̂ AðxÞ ¼ @LðxÞ½P̂�ðKÞ
@KAðxÞ ; (63)

conversely expressing KAðxÞ ¼ KAðxÞ½P̂�ð
̂Þ, and one also
finds the local part of the superhamiltonian as

Ĥ ðxÞlocal½P̂�ð
̂Þ ¼ 
̂AðxÞKAðxÞ½P�ð
̂Þ � LðxÞ½P̂�
� ðKAðxÞ½P̂�ð
̂ÞÞ: (64)

This then of course amounts to the full determination of the
gravitational dynamics, since the supermomentum and
nonlocal part of the superhamiltonian are already known
from previous sections. But the difficulty of solving
Eq. (60) consists in this being a distributional functional-
differential equation for L.

E. Reduction to differential equations

In this section we will reduce the Eq. (60) to a countable
set of linear partial differential equations for the functional
L that determines the still missing local part of the super-
hamiltonian. This reduction takes place in two steps:

distributional functional differential equation

#
distributional differential equations

#
differential equations.
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The first step to achieve this exploits the linear homoge-
neous structure of the equation (60) by making a power
series ansatz

LðxÞ½P̂�ðKÞ ¼ X1
i¼0

CðxÞ½P̂�A1...Ai
KA1ðxÞ . . .KAiðxÞ (65)

with coefficients which are so far undetermined functionals
of, and this is the essential point, only the configuration
variables. A power series expansion is justified since we
took care in constructing L as a mere function ofK, while it

remains a functional of P̂. Since the velocities KA are
defined as the partial derivatives of the weight-one scalar
density Hlocal with respect to the tensor densities 
̂A of the
same weight, the velocities themselves are tensors. The
coefficient functionals C½P�A1...AN

are thus tensor densities

of weight one just as the Lagrangian L½P�ðKÞ.
Insertion of Eq. (65) into Eq. (60) replaces the latter, a

distributional differential equation for L½P�ðKÞ, by a count-
able set of such equations for the coefficient functionals
C½P�A1...AN

; one equation for each order N in K. Extracting

the Nth-order equation by application of the functional
derivative operator

�N

�KB1ðx1Þ . . .�KBN ðxNÞ
(66)

to the equation (60) and evaluating the result at K ¼ 0, we
will now see that one obtains at Nth order a distributional
equation in N þ 2 variables x; y; x1; . . . ; xN . Indeed, the
zeroth-order contribution is

0 ¼ @y�

�
MA� ðyÞ �CðxÞ

�PAðyÞ
�
þ CðxÞA½UA��ðxÞ@�@��xðyÞ

þ SA�ðxÞ@��xðyÞ� � ðx $ yÞ; (67)

while the contribution at order N � 1 is

0¼ fðNþ1Þ!GðxÞAB1...BN
ðUA��ðxÞ@�@��xðyÞ

þSA�ðxÞ@��xðyÞÞþN!@y�

�
MA� ðyÞ�CðxÞB1...BN

�PAðyÞ
�

�NN!QðB1

M	ðxÞCðxÞB2...BNÞM@	�xðyÞg�xðx1Þ . . .�xðxNÞ

� ðN�1Þ!XN
j¼1

�CðxÞB1... ~Bj...BN

�PBjðyÞ
��yðxjÞ�xðx1Þ . . . g�xðxjÞ . . .�xðxNÞ; (68)

where � instructs to omit a term. As usual, these distribu-
tional equations are to be understood by first applying them
to test functions fðx; y; x1; . . . ; xNÞ and then integrating
over all variables. In order to convert the thus constructed
functional-differential equations into regular differential

equations, we restrict attention to coefficients CðxÞA1...Ai
�

½P̂� which are determined by the value of P̂ and all its
derivatives at x, so that

CðxÞ½P̂�A1...Ai
¼ CA1...Ai

ðP̂ðxÞ; @P̂ðxÞ; @@P̂ðxÞ; . . .Þ: (69)

This allows us, in particular, to write

�CðxÞ½P̂�B1...Bi

�PAðyÞ ¼ X1
j¼0

ð�1Þj @CðxÞB1...Bi
ðP̂; @P̂; . . .Þ

@@j�1...�j
P̂AðxÞ

� @j�1...�j
�xðyÞ (70)

in the functional-differential equations (67) and (68). This
completes the first step of the reduction process of Eq. (60),
to a countable set of distributional differential equations.
The strategy to convert these into regular differential

equations now begins with eliminating all � distributions,
which requires us to shovel derivatives over to the test
function. For the zeroth-order equation (67), we obtain

0 ¼
Z

dx

�
CAU

A��ðxÞð@22��fÞðx; xÞ � CAðxÞSA�ðxÞð@2�fÞ

� ðx; xÞ �X1
j¼0

Xj
s¼0

j

s

 !
@CðxÞ

@@j�1...�j
P̂AðxÞ ð@

sþ1
2�ð�1...�s

fÞ

� ðx; xÞð@j�s
�sþ1...�jÞM

A� ÞðxÞ
�
� ð@2 ! @1Þ (71)

for any test function fðx; yÞ with compact support.
Unfortunately, one cannot directly read off from this equa-
tion that the coefficient functions of the various derivatives
of f all vanish. This is because the derivatives @1f and @2f
of the test function are evaluated at ðx; xÞ rather than ðx; yÞ,
and thus are not independent of each other. Indeed, we have
@�fðx; xÞ ¼ ð@1�fÞðx; xÞ þ ð@2�fÞðx; xÞ, so thatZ

dxfAðxÞfðx;xÞþB�ðxÞð@1�fÞðx;xÞþC�ðxÞð@2�fÞðx;xÞg

¼
Z
dxf½AðxÞ�@�C

�ðxÞ�fðx;xÞþ½B�ðxÞ�C�ðxÞ�
�ð@1�fÞðx;xÞg: (72)

In particular, the vanishing of the first integral for any
arbitrary test function f only implies that A� @�C

� ¼ 0

and B� � C� ¼ 0, but not that the coefficient functions A,
B�, and C� would vanish individually. This applies simi-
larly if higher-order derivatives are involved, since with

ð@n2�1...�n
fÞðx; xÞ ¼ Xn

t¼0

n
t

� �
ð�1Þtð@n�t

ð�1...�t
@t1�tþ1...�nÞfÞðx; xÞ;

(73)

we can always express derivatives acting on the second
entry of f by those acting on the first entry and total
derivatives, and then read off the independent equations.
Using Eq. (73) and reordering multiple sums, the zeroth-
order equation (71) can be brought to the form

0 ¼
Z

dx

�
fðx; xÞAðxÞ þ X1

w¼1

ð@w1	1...	w
fÞðx; xÞB	1...	wðxÞ

�
;

(74)
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where the vanishing of the coefficient A amounts to the differential equation

N ¼ 0
w ¼ 0

� �
0 ¼ @2��ðCAU

A��Þ þ @�ðCAS
A�Þ �X1

j¼0

Xj
s¼0

ð�1Þs j
s

� �
@sþ1
��1...�s

�
@C

@@j�1...�j
P̂A

@j�s
�sþ1...�j

MA�

�
;

the vanishing of the coefficient B	1 to the differential equation

N ¼ 0

w ¼ 1

 !
0 ¼ 2@�ðCAR

A	�Þ þ 2CAS
A	1 þX1

j¼0

@j�1...�j
MA	 @C

@@j�1...�j
P̂A

þX1
j¼0

Xj
s¼0

ð�1Þs j

s

 !
ðsþ 1Þ@s�1...�s

�
@j�s
�1...�j�s

MAð	j @C

@@jj�1...�sÞ�1...�j�s
P̂A

�
;

and the vanishing of all further coefficients B	1	2... to the differential equations

N ¼ 0

w � 2

 !
0 ¼ X1

j¼w�1

j

w� 1

 !
@jþ1�w
�w...�j

MAð	1j @C

@@jj	2...	wÞ�w...�j
P̂A

þ X1
j¼w�1

Xj
s¼w�1

ð�1Þs j

s

 !
sþ 1

w

 !
@sþ1�w
�1...�sþ1�w

�
@j�s
�1...�j�s

MAð�sþ1�wj @C

@@jj	1...	w�1...�s�wÞ�1...�j�s
P̂A

�
:

This countable set of partial differential equations for the coefficients C and CA is equivalent to the information contained
in the one functional-differential equation (67) arising at order N ¼ 0 in K.

Similarly, one obtains for each order N � 1 from Eq. (68) first the distributional differential equation

0¼
Z

dx

�
ðNþ 1Þ!CAB1...BN

ðUA��@22��f� SA�@2�fÞ þNN!QB1

M	CB2...BNÞM@2	

�N!
X1
s¼0

X1
j¼s

j

s

 !
@CB1...BN

@@j�1...�j
P̂A

ð@sþ1
2�ð�1...�s�1

f@j�s
�sþ1...�jÞM

A� Þ � ðN� 1Þ!X1
s¼1

X1
j¼s

XN�1

i¼1

@CB1... ~Bi...BN

@@j�1...�j
P̂Bi

@s2ð�1...�s
@j�s
ðiþ2Þ�sþ1...�jÞf

þ ðN� 1Þ!X1
t¼1

X1
k¼0

X1
j¼kþt

ð�1Þj j!

t!k!ðj� t� kÞ!@
j�t�k
�1...�j�t�k

@CB1...BN�1

@@j�1...�j
P̂BN

� @t2�j�t�k...�j�kþ1
@kð3;...;Nþ1Þ�j�kþ2...�j

fg � f@2 ! @1g;

(75)

where @ð3;...;Nþ1Þf denotes a derivative acting only on entries three to N þ 1 of the test function. The last multiple sum
arises from an elimination of the partial derivatives acting on entry numberN þ 2 of the test function by way of the identity

@jð2;Nþ2Þ�1...�j
f ¼ Xj

s¼0

j
s

� �
@sð�1...�s

ð�1Þj�s@j�s
ð1;3;...;Nþ1Þ�sþ1...�j

f; (76)

which renders the distributional differential equations (75) for each N free of derivatives @Nþ2f and thus removes
ambiguities due to surface terms, so that one can now write Eq. (75) in the form

0 ¼
Z

dx
X1
s¼1

X1
j¼0

X
PartmðjÞ

ðs;jÞB	1...	sþj

B1...BN
ð@s2@m3

3 . . . @mNþ1

Nþ1 Þð	1...	sþjÞf� ð@2 ! @1Þ; (77)

where the third sum is meant as the sum over partitions j ¼ m3 þ . . .mNþ1. Employing various multinomial distributions
of higher derivatives and reordering sums, one obtains the following equations forN � 1. At level j ¼ 0, one obtains from
the vanishing of the coefficient ð1;0ÞB the equation

N � 1

s ¼ 1; j ¼ 0þ . . .þ 0

 !
0 ¼ ðN þ 1Þ!CAB1...BN

SA	 � NN!QðB1

M	CB2...BNÞM þ N!
X1
j¼0

@CB1...BN

@@j�1...�j
P̂A

@j�1...�j
MA	

þ ðN � 1Þ! XN�1

i¼1

@CB1... ~Bi...BN

@@	P̂
Bi

� ðN � 1Þ!X1
j¼1

ð�1Þjj@j�1
�2...�j

@CB1...BN�1

@@j	�2...�j
P̂BN

;

from the vanishing of the coefficient ð2;0ÞB the equation
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N � 1

s ¼ 2; j ¼ 0þ . . .þ 0

 !
0 ¼ ðN þ 1Þ!CAB1...BN

UA	1	2 � N!
X1
j¼1

j
@CB1...BN

@@jð	1j�2...�j
P̂A

@j�1
�2...�j

MAj	2Þ

� ðN � 1Þ! XN�1

i¼1

@CB1... ~Bi...BN

@@2	1	2
P̂Bi

þ ðN � 1Þ!X1
j¼2

ð�1Þj j

2

 !
@j�2
�3...�j

@CB1...BN�1

@@j	1	2�3...�j
P̂BN

;

and from the vanishing of the coefficients ðs�3;0ÞB the equations

N � 1

s � 3; j ¼ 0þ . . .þ 0

 !
0 ¼ N!

X1
j¼s�1

j

s� 1

 !
@CB1...BN

@@jð	1...	s�1j�s...�j
P̂A

@j�sþ1
�s...�j

MAj	sÞ þ ðN � 1Þ! XN�1

i¼1

@CB1... ~Bi...BN

@@s	1...	s
P̂Bi

� ðN � 1Þ!X1
j¼s

ð�1Þj j

s

 !
@j�s
�sþ1...�j

@CB1...BN�1

@@j	1...	s�sþ1...�j
P̂BN

:

At level j > 0, there are two more types of coefficients which lead to equations. The first type is ðs�1;j¼maþ2ÞB, where the
ath member of the partition maþ2 ¼ j, and their vanishing leads to the equations

N � 1

s � 1; j ¼ 0þ . . .þ jþ . . .þ 0

 !
0 ¼ ðN � 1Þ! sþ j

s

 !
@CB1... ~Ba...BN

@@sþj
	1...	sþj

P̂Ba

� ðN � 1Þ! X1
q¼sþj

ð�1Þq q!

s!j!ðq� j� sÞ!@
q�j�s
�sþjþ1...�q

@CB1...BN�1

@@q	1...	sþj�sþjþ1...�q
P̂BN

;

and the second type ðs�1;j¼PartmðjÞÞB covers all remaining partitions of j � 2, which have at least two nonvanishing
members, and their vanishing leads to the equations

N � 1
s � 1; j ¼ m3 þ . . .þmNþ1

� �
0 ¼ � ðN � 1Þ!

m3! . . .mNþ1!

X1
q¼sþj

ð�1Þq q!

s!ðq� j� sÞ!@
q�j�s
�sþjþ1...�q

@CB1...BN�1

@@q	1...	sþj�sþjþ1...�q
P̂BN

:

Fortunately, these equations encoding the first Poisson
bracket relation (31) considerably simplify upon further
inspection, as we will show in the following section, where
they will also be supplemented by equations equivalent to
the remaining second Poisson bracket relation (32).

F. Construction of the local superhamiltonian

The differential equations for the coefficients CB1B2...

imply that the latter only depend on, at most, second-order
derivatives of thePA. For, one first observes that insertion of
equations (N � 1, s � 2, m3 þ . . .þmNþ1 � 2) into the
equations (N � 1, s � 1, j ¼ 0þ . . .þ jþ . . . 0 � 2)
yield

@CB1... ~Ba...BN

@@sþj
�1...�sþj

P̂Ba
¼ 0; (78)

first apparently restricted toN � 1, but then insertion of this
result into the difference of equations (N � 1, s ¼ 2, j ¼ 1)
and (N � 1, s ¼ 3, j ¼ 1) shows that Eq. (78) holds in fact
for all N � 0. The only other conclusion one may draw
from the last two sets of equations of the previous section is
that for a ¼ 1; . . . ; N, we have the symmetry condition

@CB1... ~Ba...BN

@@2�1�2
P̂Ba

¼ @CB1......BN�1

@@2�1�2
P̂BN

for all N � 1: (79)

Insertion of these strong results into the remaining three sets
of equations forN � 1 collapses the latter to two equations
coupling coefficients of orders N þ 1, N, and N � 1,

0¼ ðNþ1Þ!CAB1...BN
UA�	�N!

@CB1...BN

@@ð	jP̂A
MAj�Þ

�2N!
@CB1...BN

@@2ð	j�P̂
A
@�M

Aj�Þ � ðN�2ÞðN�1Þ!@CB1...BN�1

@@2�	P̂
BN

;

(80)

and

0 ¼ ðN þ 1Þ!CAB1...BN
SA� þ ðN � 1Þ!XN

a¼1

@CB1... ~Ba...BN

@@�P̂
Ba

� 2ðN � 1Þ!@�
@CB1...BN�1

@@2��P̂
BN

þ N!
CB1...BN

@P̂A
MA�

þ N!
@CB1...BN

@@�P̂
A

@�M
A� þ N!

@CB1...BN

@@2��P̂
A
@2��M

A�

� NN!QðB1

M�CB2...BNÞM; (81)

as well as a further symmetry condition

0 ¼ @CB1...BN

@@2ð�	jP̂
A
MAj�Þ for all N � 0; (82)
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where the N ¼ 0 case is provided by the equation (N ¼ 0,
w ¼ 3). The only other independent equation is the one for
(N ¼ 0, w ¼ 1), coupling C to CA,

0 ¼ 2@�ðCAU
A	�Þ þ 2CAS

A	 � 2@�

�
@C

@@ð�jP̂A
MAj	Þ

�
� 4@�

�
@C

@@2ð�j�P̂
A
@�M

Aj	Þ
�
þ 2MA	 @C

@P̂A

þ 2@�M
A	 @C

@@�P̂
A
þ 2@2��M

A	 @C

@@2��P̂
A
; (83)

since the equation (N ¼ 0,w ¼ 0) is simply the divergence
of this, and all equations (N ¼ 0, w � 4) are identically
satisfied. Thus, only the five sets of equations (79)–(83)

must be solved for the coefficients CA1...AN
ðP̂; @P̂; @2P̂Þ.

But in addition to these equations, the weight-one den-

sities CB1...BN
ðP̂; @P̂; @2P̂Þmust also satisfy three additional

conditions [35] imposed by their transformation properties
under changes of coordinates on the hypersurface �
(equivalently, these follow from the Poisson bracket of
the supermomentum and the superhamiltonian). Under an
arbitrary change of coordinates �x� ¼ �x�ðxÞ, the fields

P̂�1...�I transform as

�P	1...	I ¼ P̂�1...�I ðA�1Þ	1
�1

. . . ðA�1Þ	I
�I
; (84)

where ðA�1Þ	� ¼ @x	=@ �x� is the inverse of the Jacobian
A�
	 ¼ @ �x�=@x	 of the transformation. Since the coeffi-

cients CB1...BN
½P̂� are all tensor densities of weight one,

they transform as

�CC1...CN
ð �P; �@ �P; �@2 �PÞ¼detðAÞAB1

C1
.. .A

BN

CN
CB1...BN

ðP̂;@P̂;@2P̂Þ;
(85)

where AB
C ¼ Að	1

�1
. . .A	IÞ

�I
denotes the transformation of the

capital multi-indices. Taking the derivative of Eq. (85) with
respect to ðA�1Þ��;�� ¼ @3x�=ð@ �x�@ �x�@ �x�Þ, noting that its
right-hand side is independent of these quantities, we
obtain quite generally

0 ¼ XdegP
I¼2

IP̂�2...�Ið� @CB1...BN

@@2��ÞP̂
�2...�I�

: (86)

This is the first invariance identity for the coefficients
CA1...AN

which also follows directly from the constraint

algebra. Taking the derivative of Eq. (85) with respect to
ðA�1Þ��;� ¼ @2x�=ð@ �x�@ �x�Þ and using the first invariance
identity (86), we obtain a second invariance identity:

0 ¼ XdegP
I¼2

�
IP̂�2...�Ið� @CB1...BN

@@�ÞP̂�2...�I�
� @�P̂

�1...�I
@CB1...BN

@@2��P̂
�1...�I

þ 2I@�P̂
�2...�Ið� @CB1...BN

@@2�Þ�P̂
�2...�I�

�
: (87)

The last invariance identity is obtained by taking the
derivative of Eq. (85) with respect to ðA�1Þ�� ¼ @x�=@ �x�

which results in

� �
�
�CB1...BN

� n1�
�

ð	ð1Þ
1

C
	ð1Þ
2
...	ð1Þ

n1
Þ�B2...BN

� � � � � nNCB1...BN�1�ð	ðNÞ
2

...	ðNÞ
nN

�
�

	ðNÞ
1

Þ

¼ XdegP
I¼2

�
IP̂�	2...	I

@CB1...BN

@P̂	2...	I�
þ I@�P̂

�	2...	I
@CB1...BN

@@�P̂
	2...	I�

� @�P̂
	1...	I

@CB1...BN

@@�P̂
	1...	I

þ I@��P̂
�	2...	I

@CB1...BN

@@��P̂
	2...	I�

� 2@��P̂
	1...	I

@CB1...BN

@@��P̂
	1...	I

�
; (88)

where ni is the number of small indices contained in the
capital index Bi and Bi ¼ 	ðiÞ

1 . . .	ðiÞ
ni . If we contract the

indices ��, we get the simpler identity

� ðdim�þ nÞCB1...BN

¼ XdegP
I¼2

�
IP̂	1...	I

@CB1...BN

@P̂	1...	I
þ ðI� 1Þ@�P̂	1...	I

@CB1...BN

@@�P̂
	1...	I

þ ðI� 2Þ@��P̂	1...	I
@CB1...BN

@@��P̂
	1...	I

�
; (89)

with n being the total number of lower-case indices con-
tained in all capital indices B1 to BN . Equations (86)–(88),
together with the Eqs. (79)–(83), must now completely de-
termine the coefficients CB1...BN

. These then yield the local
part of the superhamiltonian, so that togetherwith the already
explicitly known nonlocal part and supermomentum, this
determines thegravitational dynamics. Thephysical problem

of finding dynamics for modified dispersion relations is thus
reduced to the mere technical problem to solve this set of
homogeneous linear partial differential equations.

G. Reduction to first derivative order

We remark that the linear partial differential equations
determining the local part of the superhamiltonian can in
fact be reduced to linear partial differential equations for

quantities which depend, at most, on the P̂A and their first
partial derivatives. This follows essentially from the ob-
servation that the coefficients CB1B2... depend first of all

only polynomially on the second partial derivatives of the

P̂A, and indeed, at most, to order dimM� 1.
Due to the fact that the coefficients CB1...BN

do not depend

on derivatives of P̂A higher than the second, we can first
extract a further set of equations from Eq. (81). Writing out
the total divergence of the third term, we then conclude that
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@CB1...BN

@@2ð��P̂
C@@2�Þ�P̂

D ¼ 0; N � 0: (90)

For transparency, we restrict the following technical dis-
cussion to the case where � is a three-dimensional mani-
fold. However, the argument holds in a generalized form in
any dimension. Since the coefficients CB1...BN

are tensor

densities, it can be checked that for all N � 0,

�B1...BNQRST
�	������ :¼ @4CB1...BN

@@2�	P̂
Q@@2��P̂

R@@2��P̂
S@@2��P̂

T

(91)

are also components of a tensor density. According to Eq.
(90), the quantities � vanish whenever we symmetrize
over three adjacent Greek indices, which also implies
that the � are totally symmetric under the exchange of
the pairs �	, ��, ��, and ��. Moreover, the �’s are also
totally symmetric under the exchange of Q, R, S, T. Let us
now investigate all the above components. In three dimen-
sions, it is clear that at least three of the eight Greek indices
in Eq. (91) take the same value. Using all the described
symmetries, we can always arrange for these equal indices
to appear right next to each other, which immediately
implies that

�B1...BNQRST
�	������ ¼ 0: (92)

Put another way, in three dimensions, the coefficients
CB1...BN

can depend on the second derivatives of PA only

up to the third power. We may thus expand

CB1...BN
¼ ð3Þ�B1...BNQRS

�	����P̂Q
;�	P̂

R
;��P̂

S
;��

þ ð2Þ�B1...BNQR
�	��P̂Q

;�	P̂
R
;�� (93)

þ ð1Þ�B1...BNQ
�	P̂Q

;�	 þ ð0Þ�B1...BN
; (94)

where the coefficients ðiÞ� can depend on the PA and their
first derivatives only, and only the highest-order coefficient
ð3Þ� must transform as a tensor density. In this way, the
dependence of the coefficients CB1...BN

on the second de-

rivatives of P̂A can be completely eliminated from our
differential equations. If � is of higher dimension, we
simply have to add more derivatives in Eq. (91). Thus, in
general, the coefficients CB1...BN

depend polynomially on

the second derivatives of P̂A, at most, to order dim�. The
coefficients now have to be determined from the remaining
equations.

H. Example: Canonical dynamics of second-degree
dispersion relations

We now illustrate how to solve the linear partial differ-
ential equations we identified in Sec. III F in order to obtain
gravitational dynamics, for the simplest case degP ¼ 2.
On a four-dimensional manifold, this directly yields

Einstein-Hilbert gravitational dynamics with undeter-
mined gravitational and cosmological constants (which
appear as integration constants and must be fixed by
experiment) as was first shown in Ref. [10] a long time
ago. The point here is of course that we have the relevant
equations for any admissible dispersion relation, not only
those of second degree, and only wish to illustrate that one
can indeed proceed from these equations without further
assumptions in order to obtain the gravitational dynamics
of the specific spacetime geometry at hand. In particular,
due to our foregoing comprehensive analysis which
extracted all information from the constraint algebra, we
do not need to draw on any results beyond our equations.
In the case of a second rank tensor field P, which we

consider here, all capital indices contain symmetric pairs
of lower case Greek indices running from 1 to 3. First, we
observe that the coefficients MA	 and QB

A	 vanish since
the nonlocal part of the Hamiltonian is equal to zero.
Moreover, the coefficients UA�	 and SA	 reduce to

U�1�2	� ¼ �2P̂	ð�1P̂�2Þ� and

S�1�2	 ¼ �P̂	�@�P̂
�1�2 þ 2P̂�ð�12@�P̂

�2Þ	: (95)

Thus, Eq. (80) for N ¼ 2 reads

0 ¼ CAB1B2
UA	� ; (96)

which can be directly solved yielding CAB1B2
¼ 0.

Inserting this result into Eq. (80), starting with N ¼ 4
and iterating on all even N, we find that all coefficients
CB1...BN

with an odd number of capital indices greater or

equal to three already vanish. For calculational conve-

nience only, we perform a change of variables from P̂�	

to g�	 with P̂��g�	 ¼ ��
	 and substitute the first and

second partial derivatives of P̂�	 by those of g�	, accord-

ingly. After this change of variables, Eqs. (86) and (90)
become

@CB1...BN

@g�ð	;��Þ
¼ 0 and

@2CB1...BN

@g�	;ð��j@g��;�j�Þ
¼ 0: (97)

Using a similar argument as in the previous section, we can
now show that we even have

@2CB1...BN

@g�	;��@g��;��

¼ 0; (98)

because, in three dimensions, either one of the indices, 1, 2,
3, appears at least 3 times, so that all components of these
tensor densities of weight one vanish according to the
above symmetry conditions. Thus, all remaining coeffi-
cients can depend, at most, linearly on the second deriva-
tives of g�	. This has the direct consequence that

according to Eq. (80) with N ¼ 1, the coefficient CAB

cannot contain second derivatives of g�	. But then,

Eq. (80) implies CB1...BN
¼ 0 for all even N � 4. Hence,

it remains to determine CAB, CA, and C to find the
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gravitational dynamics. We start with the discussion of the
coefficientC. We already know that it has to be linear in the
second derivatives of g�	 so that

C ¼ C0ðg; @gÞ þ��	��
1 g�	;��; (99)

where �1 is a tensor density of weight one and contains no
second or higher partial derivatives of g�	. However,

Eq. (87) implies that �1, being a tensor density, cannot
even depend on the first partial derivatives of g�	. Thus,

Eq. (89) for N ¼ 0 can be rewritten into

C ¼ 2
3R�	���

�	��
1 þ�0ðgÞ; (100)

where R�	�� is the Riemann-Christoffel tensor of the

metric g�	 and �0 a tensor density of weight one which

is solely constructed from g�	. In three dimensions, the

Riemann tensor can of course be expressed in terms of the

Ricci tensor R�	 ¼ P̂��R���	. Now,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg

p
R, where

R ¼ R�	P̂
�	 denotes the Ricci scalar, is the only weight-

one scalar density linear in the second derivatives of g�	
which one may construct from the Ricci tensor and g�	,

and the only scalar density of weight one one can construct
from g�	 alone is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p

. The minus sign under the

square root accounts for the fact that with our normaliza-
tion condition, the metric on the hypersurface is negative
definite. Thus, we finally arrive at

C ¼ �ð2�Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg

p ðR� 2�Þ; (101)

with two real integration constants � and �. It is then
simple to determine CAB from Eq. (80) for N ¼ 1, and
we find

C�	��¼ð16�Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�detg

p ½g��g	�þg	�g���2g�	g���:
(102)

Finally, we calculate the coefficient CA, which depends at
most on the second derivatives of g�	 and is at most linear

in those. Equation (83) reduces to

0 ¼ P̂�	P̂��r�C	�; (103)

where we use the torsion-free covariant derivative r�

compatible with g�	 only for notational convenience.

Using Eqs. (86)–(88) and following a similar argument
[36] as for the coefficient C immediately yields

C�	 ¼ 	1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p ðR�	 � 1=2g�	RÞ þ 	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p

g�	

(104)

for some constants 	1 and 	2. The remaining equations
(79) with N ¼ 2 and (81) with N ¼ 2 involving C�	 are

then identically satisfied. We note that the coefficient C�	

can be written as the functional gradient �S=�P̂�	 of the
scalar density S ¼ 	1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p

R� 2	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p

, and
finally make the transition from the full Lagrangian (65)
to the superhamiltonian by means of the Legendre trans-

formation (51)–(53). For the canonical momenta 
̂�	, one

then has


̂ �	 ¼ @L

@K�	
¼ 2C�	��K

�� þ �S

�P̂�	
: (105)

However, the canonical momenta (36) are only determined
up to an additive functional derivative of some scalar

density of weight one with respect to P̂�	. One can thus
drop the second term on the right-hand side of Eq. (105) by

redefining 
̂�	 ! 
̂�	 � �S=�P̂�	 without changing the

dynamics of the theory. Then, the superhamiltonian reads

H ¼ C�	��
̂�	
̂�� � 2C�	��C�	
̂�� þ ð2�Þ�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p ðR� 2�Þ; (106)

with

C�	�� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p ðP̂��P̂	� þ P̂	�P̂�� � P̂�	P̂��Þ:

(107)

The second term in the superhamiltonian can be shown to
be dynamically irrelevant [4], due to the special form of
the coefficient C�	. With the superhamiltonian (106) and

the supermomentumD� ¼ 2P̂	�r	
̂�� from Eq. (44), we

have finally found (as Ref. [10] did for a construction
which only works for degP ¼ 2) the gravitational dynam-
ics in the case of a three-dimensional hypersurface � for a
hyperbolic polynomial of degree two, also known as gen-
eral relativity. The task to find canonical dynamics for
dispersion relations beyond second degree is now of course
to find solutions of our equations for degP> 2, which
appears a much harder task. But this is precisely what it
takes if one wishes to consider modified dispersion rela-
tions in earnest.

IV. DYNAMICS OF TENSORIAL SPACETIMES

We finally address the master problem of deriving the
equations determining the gravitational dynamics of a
fundamental geometric tensor field G, under the assump-
tion that the latter gives rise to a hyperbolic, time-
orientable, and energy-distinguishing tensor field P by
virtue of specific matter field equations. This gravitational
theory for G is more fundamental than the phenomeno-
logical gravity dynamics derived for P in the previous
section, since fields couple directly to G, and so do point
particles via P constructed from G. But this greater gen-
erality comes at the price of a less sweeping construction
scheme. While the always totally symmetric, even rank
tensor fields P can be treated in precisely the same way for
any rank, the fundamental geometric tensors G come in all
possible ranks and symmetries (as long as one can couple
matter fields to them), and the construction of their geo-
metric phase space must proceed in fashion of a case-by-
case analysis. But apart from these technical details, the
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overall construction is as simple and inevitable as in the
previous chapter, and one obtains also a system of homo-
geneous linear partial differential equations whose solu-
tions determine the gravitational dynamics of the geometry
ðM;GÞ.

A. Construction of tensorial spacetime geometries
and their dynamics

The construction of gravitational dynamics for a funda-
mental geometric tensor field G proceeds logically exactly
along the same lines as that for dispersion relations. The
only relevant difference consists in the choice of canonical
variables for the dynamics, and all the technical modifica-
tions this entails. To separate the essential steps from their
technical details, we therefore quickly prescribe the gen-
eral recipe one has to follow to make any candidate ge-
ometry ðM;GÞ into a spacetime structure and to derive the
equations determining their canonical dynamics. We will
then see this recipe in action in the next two sections.

(1) Decide on a tensor fieldG of arbitrary valence as the
geometry on a smooth manifoldM. More generally,
one may also choose a collection of tensor fields
G ¼ ðG1; G2; . . .Þ, each possibly of different va-
lence, to provide the geometry. This would be the
case, for instance, if one aimed to study a bosonic
string background featuring a metric g, a twoform
field B, and a scalar �, say, using the philosophy of
this paper.

(2) Decide on matter dynamics to define the causal
structure impressed on the geometry. These matter
equations may well be of phenomenological nature,
as were the Maxwell equations before 1905. This is
where the theory gets its vital injection from real-
istic physics.

(3) Calculate the totally symmetric covariant tensor
field PG associated with the linear(ized) matter field
equations in terms of the geometry G. This is
straightforward in principle, but may in practice
require one to first remove gauge ambiguities. If
several matter field equations are present in the
theory, one needs to consider their entirety to cal-
culate P.

(4) Restrict attention to geometries ðM;GÞ for which
PG is hyperbolic, time-orientable, and energy-
distinguishing. Only these deserve to be called
spacetimes. In order to get an overview over which
algebraic classes of the geometry G present space-
times, it is often useful to figure out the algebraic
classification of the geometric tensor G under
GLðdimMÞ transformations and associated normal
forms.

(5) Construct the configuration variables describing the
spatial geometry on an accessible initial data hyper-
surface by normal and tangential projections, elimi-
nate the degrees of freedom fixed by PG ¼ 1 and

P�
G ¼ 0, and associate canonically conjugate

momenta to all remaining degrees of freedom.
(6) Construct the supermomentum and superhamilto-

nian exactly along the same lines as done in
Sec. III, but with the spatial point particle geometry
replaced by that for fields, as we will illustrate for
area metric spacetimes in four dimensions in the
following two sections. The precise form of the
coefficients will depend heavily on the geometry
G chosen. But once a concrete geometric tensor G
is chosen, and its independent degrees of freedom
have been identified, the calculation goes through
also in this case without complications.

(7) Solve the resulting system of linear partial differen-
tial equations to determine the local part of the
superhamiltonian. How difficult this is now very
much varies with the geometry G which has been
chosen.

For the simple case of metric geometry carrying Maxwell
theory, execution of this program leads to the condition that
the metric must have Lorentzian signature, and the system
of homogeneous linear partial differential equations has a
unique family of solutions, giving rise to the standard
Einstein-Hilbert gravitational action with undetermined
gravitational and cosmological constants (which appear
as constants of integration). Essentially, this has been
shown a long time ago [10], and is of course recovered
as a very special case of our general construction.
Any other tensorial geometry requires a separate case-

by-case analysis for virtually all of the above steps. We
therefore choose to illustrate the procedure for area metric
geometry, which accompanied us throughout this paper as
a particularly interesting example for the workings of our
general theory.

B. Phase space for area metric geometry seen
by electromagnetic fields

To illustrate the procedure of finding canonical dynam-
ics directly for a fundamental geometric tensor field G
underlying a chosen field theory, we will concentrate,
for definiteness, on the particular example of a four-
dimensional area metric geometry coupled to electromag-
netic fields. We assume that the inverse area metricGabcd is
everywhere noncyclic such that with (4) the totally sym-
metric geometric tensor Pabcd

G takes the form

Pabcd
G ¼ � 24

ðGijkl�ijklÞ2
�mnpq�rstuG

mnrðaGbjpsjcGdÞqtu:

(108)

Using the complete spacetime covector frame
fn; �1; �2; �3g constructed from P along a hypersurfaces
Xð�Þ given in terms of the embedding map XðyÞ, we then
define the functionals
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G�	ðyÞ½X� ¼ GðnðyÞ; ��ðyÞ; nðyÞ; �	Þ; (109)

G�
	ðyÞ½X� ¼ 1

2!G	��GðnðyÞ; ��ðyÞ; ��ðyÞ; ��ðyÞÞ; (110)

G�	ðyÞ½X� ¼ 1
4!G���!G	��Gð��ðyÞ; ��ðyÞ; ��ðyÞ; ��ðyÞÞ;

(111)

where we used the volume form !G�	� ¼
ð� detG�	Þ�1=2��	� induced by the symmetric hypersur-

face tensor field G�	 to construct the hypersurface tensor
fields G�

	 and G�	 from the other possible projections of

the inverse area metric onto the hypersurface Xð�Þ. Note
that the index positions really distinguish unrelated tensor
fields, which together encode the degrees of freedom
of the inverse area metric on the hypersurface. From
the normalization conditions PGðn; n; n; nÞ ¼ 1 and
PGðn; n; n; ��Þ ¼ 0, it follows that G�

	 can be assumed

to be trace-free and symmetric with respect to G�	.
The phase space of a four-dimensional area metric

spacetime is then spanned by tensor fields

Ĝ �	; Ĝ�
	; Ĝ�	 (112)

on the three-dimensional manifold � and their respective
canonical momenta

�̂ �	; �̂�
	; �̂�	; (113)

which are taken to be tensor densities of weight one.
Adjoining canonical momenta again is then equivalent to
adopting a Poisson bracket

fÊ; F̂g ¼
Z

dy

�
�Ê

�ĜA

�F̂

��A

� �F̂

�ĜA

�Ê

��A

�
(114)

on the space of functionals of the canonical variables ĜA

and �̂A, where the capital index A collectively denotes the
different Greek indices with their respective positions: A ¼
ð �	; �

	; �	Þ.
Again, we will look for dynamics in terms of a

Hamiltonian as it appears in Eq. (27) which evolves the

phase space variables ðĜA; �̂AÞ with an evolution parame-
ter t, such that the embedding of the data at time t by virtue
of a foliation Xt: � ! M produce an inverse area metric
Gabcd on M whose dispersion relation is hyperbolic, time-
orientable, and energy-distinguishing. The 21 components
of the inverse area metric can then be reconstructed from
the 17 independent components of the symmetric tensor

field Ĝ�	, the trace-free hypersurface tensor field Ĝ�
	

which is symmetric with respect to Ĝ�	, the symmetric

hypersurface tensor field Ĝ�	, and the spacetime vector

frame fTt; et�g by
Gabcd½XtðyÞ� ¼ 4Ĝ	�

t T½a
t eb�t	T

½c
t e

d�
t� þ Ĝt��ð!�1

G Þ��	
� ð!�1

G Þ���eat�ebt	ect�edt� þ 2ðĜ	
t � þ �	

�Þ
� ð!�1

G Þ���T½a
t eb�t	e

c
t�e

d
t�: (115)

The conceptual steps in the construction of the supermo-

mentum D̂ and the superhamiltonian Ĥ on the phase
space given by Eqs. (112) and (113) are precisely the
same as for the pure point particle geometry in Sec. III.
We will quickly go through these steps in the next section.

C. Canonical dynamics for area metric spacetime

We already saw in the previous section that the canoni-
cal phase space in the case of a four-dimensional area

metric spacetime consists of the tensor fields Ĝ�	 (sym-

metric), Ĝ�
	 (trace-free, symmetric with respect to Ĝ�	),

and Ĝ�	 (symmetric), as well as their conjugate momenta

�̂�	, �̂�
	, and �̂�	 with the same respective algebraic

properties. The superhamiltonian Ĥ ðNÞ and the super-

momentum D̂ðN�@�Þ satisfy the Poisson algebra relations
(31)–(33), but now the symbol P̂�	

G on the right-hand side

of Eq. (31) is not a canonical variable itself, but the
particular phase space function

P̂�	
G ¼ 1

6ðĜ�	Ĝ��Ĝ�� � Ĝ��Ĝ�	Ĝ�� � 2Ĝ�	Ĝ�
�Ĝ

�
�

þ 3Ĝ��Ĝ�
�Ĝ

	
�Þ: (116)

The construction of the supermomentum follows the same
steps as in the case of the point particle geometry. One
readily finds

D̂ðN�@�Þ ¼
Z

dyN�ðyÞ½ð@�Ĝ�	Þ�̂�	 þ 2@�ðĜ�	�̂	�Þ
þ ð@�Ĝ�	Þ�̂�	 � 2@�ð�̂�	Ĝ	�Þ (117)

þ ð@�Ĝ�
	Þ�̂�

	 þ @�ðĜ�
	�̂�

	Þ � @�ðĜ	
��̂	

�Þ�:
(118)

The nonlocal part Ĥ non-local of the superhamiltonian can
be found using the first of the necessary relations (29). One
calculates

Ĥ ðNÞ
�̂�	ðzÞ

¼NðzÞ½. . .�þ@�NðzÞ½�2ð!�1
Ĝ
Þ��ð�Ĝ	Þ

��; (119)

Ĥ ðNÞ
�̂�

	ðzÞ
¼ NðzÞ½. . .� þ @�NðzÞ½�3!Ĝ	��Ĝ

��P̂��
G

� ð!�1
Ĝ
Þ���Ĝ�	�; (120)

Ĥ ðNÞ
�̂�	ðzÞ

¼ NðzÞ½. . .� þ @�NðzÞ½�6!Ĝ��ð	Ĝ
�
�ÞP̂

��
G �;

(121)

which may be integrated to yield the nonlocal part of the
superhamiltonian
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Ĥ non-local ¼ 2@�½ð!�1
Ĝ
Þ��ð�Ĝ	Þ

��̂�	�ðyÞ
þ 3@�½!Ĝ	��Ĝ

��P̂��
G �̂	

��ðyÞ (122)

þ @�½ð!�1
Ĝ
Þ���Ĝ�	�̂

	
��ðyÞ

þ 6@�½!Ĝ��ð	Ĝ
�
�ÞP̂

��
G �̂�	�ðyÞ: (123)

It remains to evaluate the Poisson bracket of two super-
hamiltonians to determine its local part. The analysis pro-
ceeds along precisely the same lines as in the case of the
pure point particle geometry. We perform a Legendre

transformation of the local part Ĥ local of the superhamil-

tonian with respect to the momenta �̂A. The resulting

Lagrangian L½ĜA�ðKAÞ then satisfies the linear
functional-differential equation

0 ¼ � �LðxÞ
�ĜAðyÞK

AðyÞ þ @y�

�
�LðxÞ
�ĜAðyÞM

A� ðyÞ
�

� @LðxÞ
@KAðxÞK

BðxÞQA	
B ðxÞ@	�xðyÞ þ @LðxÞ

@KAðxÞ
� ½UA��ðxÞ@2���xðyÞ þ SA�ðxÞ@��xðyÞ� � ðx $ yÞ:

(124)

The coefficients MA	 and QB
A	 can be read off from the

functional derivatives of the nonlocal part of the super-
hamiltonian with respect to the canonical variables. The
coefficients UA�� read

U�	�� ¼ �6P̂ð�jð�Ĝ	Þj�Þ; (125)

U�
	
�� ¼ �3P̂�ð�Ĝ�Þ

	 þ 3P̂�ð���Þ
	 Ĝ

�
�; (126)

U�	
�� ¼ 6Ĝ�ð��

ð�
	ÞP̂

�Þ�: (127)

The coefficients SA� can be calculated from

SA� ¼ @	QB
Að	jMBj�Þ �QB

A½	j@	MBj�� � @	U
A	�

� 3P̂�	@	Ĝ
A � 3VA�; (128)

with V�	� ¼ 2P̂�ð�@�Ĝ	Þ�, V�
	
� ¼ P̂��@�Ĝ

�
	�

P̂��@	Ĝ
�
�, and V�	

�¼�2P��@ð�Ĝ	Þ�. Expanding the

Lagrangian L½ĜA�ðKAÞ into a power series in the velocities
KA,

LðxÞ½ĜA�ðKAÞ ¼ X1
i¼0

CðxÞ½ĜA�B1...Bi
KB1 . . .KBi ; (129)

one derives exactly the same equations (79)–(83) for the
coefficients CB1...BN

as in the point particle case. The co-

efficients CB1...BN
are again tensor densities of weight one

and, as a result of the algebra equations, depend, at most,

on the second partial derivatives of the fields ĜA. Since the
hypersurface � is of dimension three, it again follows that
the coefficients depend on the second partial derivatives
only up to the third power.
The invariance equations following from the transfor-

mation properties of the weight-one densities CB1...BN
(or,

fully equivalently, from the Poisson bracket of the super-
momentum with the superhamiltonian) can be derived in
straightforward fashion. The first invariance identity takes
the form

0 ¼ 2Ĝ�ð� @CB1...BN

@@2	�ÞĜ
��

þ Ĝð�
�

@CB1...BN

@@2	�ÞĜ
�
�

� Ĝ�
�

@CB1...BN

@@2ð�	Ĝ
�
�Þ
� 2Ĝ��

@CB1...BN

@@2ð�	Ĝ�Þ�
: (130)

The second invariance equation reads

0 ¼ 2Ĝ�ð� @CB1...BN

@@	ÞĜ��
þ 4@�Ĝ

�ð� @CB1...BN

@@2	Þ�Ĝ
��

� @�Ĝ
�� @CB1...BN

@@2�	Ĝ
��

þ Ĝð�
�

@CB1...BN

@@	ÞĜ�
�

� Ĝ�
�

@CB1...BN

@@ð�Ĝ�
	Þ

þ 2@�Ĝ
ð�

�

@CB1...BN

@@2	Þ�Ĝ
�
�

� 2@�Ĝ
�
�

@CB1...BN

@@2�ð�Ĝ
�
	Þ
� @�Ĝ

�
�

@CB1...BN

@@2�	Ĝ
�
�

� 2Ĝ��

@CB1...BN

@@ð�Ĝ	Þ�
� 4@�Ĝ��

@CB1...BN

@@2�ð�Ĝ	Þ�

� @�Ĝ��

@CB1...BN

@@2�	Ĝ��

: (131)

The last invariance identity is even more complicated and we only display its contracted form:

�ð3þ nÞCB1...BN
¼ 2Ĝ�� @CB1...BN

@Ĝ��
� 2Ĝ��

@CB1...BN

@Ĝ��

þ @�Ĝ
�� @CB1...BN

@@�Ĝ
��

� @�Ĝ
�
�

@CB1...BN

@@�Ĝ
�
�

� 3@�Ĝ��

@CB1...BN

@@�Ĝ��

� 2@2��Ĝ
�
�

@CB1...BN

@@2��Ĝ
�
�

� 4@2��Ĝ
�� @CB1...BN

@@2��Ĝ��

; (132)

where n is the difference of the total number of subscript indices and the total number of superscript indices in the
coefficients CB1...BN

.
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V. CONCLUSIONS

In this paper, we addressed the question of how to
construct canonical gravitational dynamics for spacetime
geometries beyond the Lorentzian manifolds featuring in
Einstein’s general relativity.

The first step consisted of an analysis of what kind of
tensor fields G on a smooth manifold M can serve as a
spacetime geometry in the first place, dependent on the
presence of specific matter field dynamics. Indeed, the
geometry must be such that all matter field equations are
predictive, interpretable, and quantizable. These condi-
tions on the matter field dynamics impose three corre-
sponding algebraic conditions on a totally symmetric
tensor field P, which is defined in terms of the fundamental
geometric tensor field G and whose precise form arises
from the matter field dynamics: P needs to be hyperbolic,
time-orientable, and energy-distinguishing, as reviewed in
Sec. II A. So, in order to start the whole machinery pre-
sented here, we first need to know which matter couples in
which way to the tensorial geometry. We do not see this as
a weakness of the formalism, but rather as an insight; it
was Maxwell theory that justified Einstein to promote
Lorentzian manifolds to the status of a spacetime geome-
try, and experimental observation of any matter that does
not mimic the structure of Maxwell theory (non-half-
integer spin or superluminal matter, for instance) will force
us to choose another tensorial geometry—but, certainly,
one that is hyperbolic, time-orientable, and energy-
distinguishing. Fortunately, with the results of Sec. II, we
have all these geometries under excellent technical control.

Directly from these purely kinematical insights, one can
calculate the deformation algebra of hypersurfaces in any
hyperbolic, time-orientable, and energy-distinguishing ge-
ometry. This is the algebra of linear operators which de-
scribe how the geometry induced on a hypersurface
changes when the hypersurface is deformed in normal
and tangential directions. And gravitational dynamics is
precisely about understanding these changes in the geome-
try on initial data surfaces, as has been clarified in seminal
work of Hojmann, Kuchar, and Teitelboim for the special
case of Lorentzian manifolds, building on the canonical
formalism introduced by Arnowitt, Deser, and Misner. The
most important result of Sec. II, from a practical point of
view, is therefore that one can calculate the deformation
algebra of hypersurfaces in any hyperbolic, time-
orientable, and energy-distinguishing tensorial geometry.
This is by no means trivial, since the existence and unique-
ness of the way to associate normal directions along a
hypersurface with its canonical normal codirections by
means of a Legendre map requires all three algebraic
properties: the hyperbolicity, time-orientability, and
energy-distinguishing property. Despite appearances, this
also applies to metric geometry (where any one of these
conditions is equivalent to the requirement of a Lorentzian
signature), since, although, purely formally, one can still

construct normal directions from normal codirections for
other signatures, they lose their physical meaning.
Canonical gravitational dynamics for the spatial geome-

try which are ultimately invariant under spacetime diffeo-
morphisms must be given by a pure constraint Hamiltonian
(which is of course a functional of the geometric degrees of
freedom and associated conjugate momenta on an initial
data hypersurface) composed of two separate first-class
constraints—corresponding to spatial diffeomorphism in-
variance within the hypersurface on the one hand, and
invariance under diffeomorphisms away from the hypersur-
face on the other hand. The role of the deformation algebra,
in this geometrodynamic language, is that these constraints
must satisfy canonical Poisson bracket relations of the same
form as the commutator algebra of the normal and tangen-
tial deformation operators on functionals of the hypersur-
face embedding map. The task is thus to determine the
constraint functionals from this Poisson algebra.
This would be a mere representation theory problem if

the Poisson algebra were a Lie algebra. But only two of the
three bracket relations feature structure constants, and their
impact on the form of the constraint functionals is thus
readily established. The third Poisson bracket relation,
however, features a structure function that captures the
impact of the particular hyperbolic, time-orientable, and
energy-distinguishing tensorial geometry to which one
wishes to give dynamics. Determining the implications of
this bracket amounts, at first sight, to the truly daunting
task of solving a system of nonlinear functional-
differential equations. The better part of Secs. III and IV
is thus devoted to reducing this to the equivalent, and
principally manageable, problem of solving a system of
homogeneous linear partial differential equations. And this
set of equations already contains, by construction, all
possible classical gravitational dynamics one can give to
a tensorial spacetime geometry which can carry predictive,
interpretable, and quantizable matter fields. In the philoso-
phy of this paper, the physical problem of finding
diffeomorphism-invariant gravity theories alternative to
Einstein’s general relativity is shown to be equivalent to
the mere mathematical task of solving these linear partial
differential equations.
This casts important physical questions into precise

mathematical form. The question of whether there are
any alternatives to general relativity turns into the problem
of existence of solutions; the question of whether there is a
choice between various dynamics for a given tensorial
spacetime geometry translates into the question of their
uniqueness; and finally, the actual construction of all con-
crete gravitational dynamics amounts to nothing more, but
also nothing less, than explicitly finding the exact solutions
of these linear partial differential equations.
The difference between the treatments in Secs. III and

IV is that only in the latter dowe construct dynamics for the
fundamental tensorial spacetime geometry G to which also
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fields can couple, while in the former, we give dynamics
only to the totally symmetric tensor field P seen by point
particles. In the special case of Lorentzian geometry, the
two points of view accidentally coincide, since the tensor
field P encodes precisely the same degrees of freedom as
the fundamental Lorentzian metric g to which fields can
couple. The key result of Sec. III is that there is, at most, a
one-integer family of essentially different gravity theories
which differ in their prediction of particle trajectories, and
we wrote down the complete set of equations for all these
theories. So, if one is interested in the motion of massive
and massless point matter only, one can ignore which
particular fundamental geometric structure underlies a
hyperbolic, time-orientable, and energy-distinguishing dis-
persion relation and compare observational data with these
phenomenological theories. In contrast, if one wishes to
consider a full gravitational theory to which both point
particles and fields can couple, one needs to construct these
along the lines laid out in Sec. IV. The resulting theories are
more fundamental, but this comes at the price that the
equations yielding their dynamics depend more heavily
on the specific type of tensor field G and require the
explicit specification of the predictive, interpretable, and
quantizable matter coupling to it. Our derivation of the
relevant equations for four-dimensional area metric
geometry carrying general linear electrodynamics at the
end of Sec. IV, however, shows that also this more funda-
mental program can be executed.

The main open question is how to find solutions to the
system of homogeneous linear partial differential equa-
tions in either case. But this will well be worth the effort,
since solving these equations immediately allows us to
answer a string of pertinent physical questions in gravity
theory. Four questions of high relevance for a number of
current research programs are how to

(i) settle the issue of which modified dispersion rela-
tions are admissible, and how they are determined

dynamically, in order to conduct a focused search for
experimental signatures.

(ii) provide canonical dynamics to one’s favorite candi-
date of a tensorial geometry without further assump-
tions, starting frommatter dynamics coupling to this
geometry [37].

(iii) free the evaluation of observational raw data from
the confines of Lorentzian geometry and Einstein
dynamics, in favor of the wider framework
which includes all hyperbolic, time-orientable,
and energy-distinguishing tensorial geometries,
which one is led to consider in light of matter
dynamics which would qualify as noncausal in
Lorentzian spacetime.

(iv) reveal all possible classical limits of quantum grav-
ity theories where the fundamental geometric struc-
ture can be expressed in terms of tensor fields [38].

Our future progress on these questions thus hinges on
solving the equations derived in this work.
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