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We have recently proposed a special class of scalar-tensor theories known as the Fab Four. These arose

from attempts to analyze the cosmological constant problem within the context of Horndeski’s most

general scalar-tensor theory. The Fab Four together give rise to a model of self-tuning, with the relevant

solutions evading Weinberg’s no-go theorem by relaxing the condition of Poincaré invariance in the scalar

sector. The Fab Four are made up of four geometric terms in the action with each term containing a free

potential function of the scalar field. In this paper we rigorously derive this model from the general model

of Horndeski, proving that the Fab Four represents the only classical scalar-tensor theory of this type that

has any hope of tackling the cosmological constant problem. We present the full equations of motion for

this theory, and give an heuristic argument to suggest that one might be able to keep radiative corrections

under control. We also give the Fab Four in terms of the potentials presented in Deffayet et al’s version of

Horndeski.
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I. INTRODUCTION

The cosmological constant problem has been described
as the most embarrassing fine-tuning problem in physics
today. According to our current understanding of particle
physics and effective quantum field theory, the vacuum
receives zero-point energy contributions from each par-
ticle species right up to the UV cutoff, which may be as
high as the Planck scale. The trouble is that in General
Relativity, any matter, including vacuum energy, gravi-
tates and the only way to make it compatible with
observation is to demand considerable fine-tuning be-
tween the vacuum energy and the bare cosmological
constant. The situation is exacerbated by phase transi-
tions in the early universe that can give rise to constant
shifts in the vacuum energy contribution. To date, parti-
cle physicists have failed to come up with a satisfactory
solution to this problem, so some recent attempts have
instead focused on gravitational physics. This alternative
approach requires a nontrivial modification of Einstein’s
theory at large distances (see [1] for a detailed review of
modified gravity).

One particularly interesting direction involves scalar-
tensor theories of gravity. It seems sensible to require
that any theory maintains second-order field equations in
order to avoid an Ostrogradski instability [2], and the most
general scalar-tensor theory satisfying that criteria in four
dimensions was written down back in 1974 by Horndeski
[3] (it has recently been rediscovered independently in [4]).
Such theories of modified gravity cover a wide range
of models, ranging from Brans-Dicke gravity [5] to the
recent models [6,7] inspired by galileon theory [8].
Galileon models are examples of higher-order scalar-
tensor Lagrangians with second-order field equations,

and, as a result, they are closely related to Kaluza-Klein
compactifications of higher-dimensional Lovelock theories
[9,10]. Of course all of these scalar-tensor models can be
considered as special cases of Horndeski’s original action.
In [11] we obtained a new class of solutions arising out

of Horndeski’s theory on FLRW backgrounds. The new
solutions gave a viable self-tuning mechanism for solving
the (old) cosmological constant problem, at least at the
classical level, by completely screening the spacetime
curvature from the net cosmological constant. This would
seem to be in violation of Weinberg’s famous no-go theo-
rem [12] that forbids precisely this kind of self-adjustment
mechanism. However, Weinberg assumes Poincaré invari-
ance to hold universally across all fields whereas we allow
it to be broken in the scalar field sector. In other words, we
continue to require Poincaré invariance at the level of
spacetime curvature, but not at the level of the self-
adjusting scalar field. A similar approach was adopted in
the context of bigalileon theory [13] where only a small
vacuum energy could be successfully screened away. In
[11], we provided a brief sketch of how the system works
for scalar-tensor theories where matter is only minimally
coupled to the metric [required to ensure compatibility
with Einstein’s Equivalence Principle (EEP)]. By demand-
ing the presence of a viable self-tuning mechanism we
were able to place powerful restrictions on the allowed
form of Horndeski’s original Lagrangian. Whereas the
original model is complicated, with many arbitrary func-
tions of both the scalar and its derivatives, we showed that
once the model is passed through our self-tuning filter (to
be defined shortly), it reduces in form to just four base
Lagrangians each depending on an arbitrary function of
the scalar only, coupled to a curvature term. We called
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these base Lagrangians the Fab Four: John, Paul, George,
and Ringo.

Together, the Fab Fourmake up the most general scalar-
tensor theory capable of self-tuning. Individually they are
given by the following:

L john ¼ ffiffiffiffiffiffiffi�g
p

Vjohnð�ÞG��r��r�� (1)

L paul ¼ ffiffiffiffiffiffiffi�g
p

Vpaulð�ÞP����r��r��r�r�� (2)

L george ¼ ffiffiffiffiffiffiffi�g
p

Vgeorgeð�ÞR (3)

L ringo ¼ ffiffiffiffiffiffiffi�g
p

Vringoð�ÞĜ; (4)

where R is the Ricci scalar, G�� is the Einstein tensor,

P���� is the double dual of the Riemann tensor [14], Ĝ ¼
R����R���� � 4R��R�� þ R2 is the Gauss-Bonnet com-

bination, and in what follows the Greek indices �, � ¼
0::3. The purpose of this paper is to rigorously derive the
conditions that lead to these four base Lagrangians, show-
ing how they naturally lead to self-tuning solutions, pro-
vided that fVjohn; Vpaul; Vgeorgeg � f0; 0; constantg. Note that
this constraint means that GR is not a Fab Four theory,
consistent with the fact that it does not have self-tuning
solutions.

To be clear as to what is meant by self-tuning, let us
define our self-tuning filter. We require that

(i) the theory should admit a Minkowski vacuum1 for
any value of the net cosmological constant.

(ii) this should remain true before and after any phase
transition where the cosmological constant jumps
instantaneously by a finite amount.

(iii) the theory should permit a nontrivial cosmology.

The last condition ensures that Minkowski space is not
the only cosmological solution available, something that
is certainly required by observation. The idea is that the
cosmological field equations should be dynamical, with
the Minkowski solution corresponding to some sort of
fixed point. In other words, once we are on a Minkowski
solution, we stay there—otherwise we evolve to it dy-
namically. This last statement would indicate that the
self-tuning vacuum is an attractive fixed point. We do
not prove this here, but in our companion paper on
cosmology [15] we will see plenty of examples where
it is indeed the case.

The first two conditions are the basic requirements of
any successful self-tuning mechanism. There are many

examples in the literature which pass the first condition,
but fall down at the second. This includes the much
explored co-dimension two braneworld models in which
the compact extra dimensions are shaped like a rugby
ball [16]. The brane tension controls the deficit angle,
while the brane geometry is completely determined by
the bulk cosmological constant and the magnetic flux.
Therefore, this passes our first condition. However, when
the brane tension changes after a phase transition it
affects the brane curvature via the backdoor, by altering
magnetic flux and the theory falls foul of our second
condition [17].
It is interesting to note that any diffeomorphism invari-

ant theory that passes both the first and second condition
will admit a Minkowski solution in the presence of any
cosmological fluid, not just a cosmological constant. The
point is that our vacuum energy density corresponds to a
piecewise constant function, with discontinuities at the
phase transitions. In principle these transitions can occur
at any given time, so a Minkowski solution can be returned
for all piecewise constant energy densities. The energy
density of an arbitrary cosmological fluid can be well
approximated by a piecewise constant function, and so it
follows that it must also admit a Minkowski solution. Like
we said, this property must hold for any diffeomorphism
invariant theory passing our first two conditions, and not
just the Fab Four. We might worry that this prevents any
hope of a sensible matter-dominated cosmology. However,
this is where the third condition comes into play, and we
once again refer the reader to our companion paper [15] for
evidence that sensible cosmologies are indeed possible
within this theory.
Even so, the main aim of this paper is not to extoll the

virtues of the Fab Four but to push a very general class of
modified gravity theories through our self-tuning filter
and to see what happens. In a sense we are testing the
scope of Weinberg’s theorem, relaxing one of his as-
sumptions and seeing how far we can go. It turns out
that our filter is very efficient—it removes most of
Horndeski’s original theory– but it is not 100% efficient.
We are left with the Fab Four.
The layout of the paper is as follows: in Sec. II we

present the original action of Horndeski [3], minimally
coupled to matter, and derive the Hamiltonian and scalar
field equations of motion for the system. In Sec. III we
demonstrate how a self-tuning solution can in principle
be obtained by relaxing Weinberg’s no-go theorem to
allow the scalar field to evolve in time. This is followed
in Sec. IV with a derivation of the self-tuned Horndeski
action, where we show how the initial complicated
Lagrangian reduces to four simple terms each one being
an arbitrary function of the scalar field alone coupled to a
curvature term. Of particular note is that any dependence
on the kinetic energy of the scalar field drops out. In
Sec. V we bring everything together and discuss further

1For simplicity throughout the introductory part of the text we
have simply written, ‘‘Minkowski vacuum’’ to stand for ‘‘a patch
of Minkowski vacuum’’. This technical issue will be made clear
later on in Sec. III.
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demands we may wish to make on our theory, over and
above our original filter, ranging from cosmological
and solar system tests, to issues of stability. We also
elucidate the elegant geometrical structure possessed
by the Fab Four and present their equations of motion
in full.

We have a number of appendixes, most of which are
technical additions to the main text. The exceptions are
Appendixes A and E. In Appendix C we present the Fab
Four in the language of the potentials of Deffayet et al’s
version of Horndeski [4]. In Appendix E we discuss the
issue of radiative corrections to the Fab Four. This is an
important question, because radiative corrections are at the
heart of the cosmological constant problem. We do not

attempt a detailed analysis—that is certainly beyond the
scope of the current paper—but we do perform some
heuristic calculations. It seems that radiative corrections
can be kept under control given some not too restrictive
conditions.

II. HORNDESKI’S SCALAR-TENSOR THEORY

The action we begin with for our general second-order
scalar-tensor theory is given by

S ¼ SH½g��;�� þ Sm½g��;�n�; (5)

where the Horndeski action, SH ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

LH, is ob-

tained from equation (4.21) of [3], such that

LH ¼ �1ð�;�Þ���	
��
r�r��R�


�	 � 4

3
�1;�ð�;�Þ���	

��
r�r��r�r��r
r	�þ �3ð�;�Þ���	
��
r��r��R�


�	

� 4�3;�ð�;�Þ���	
��
r��r��r�r��r
r	�þ ½Fð�;�Þ þ 2Wð�Þ����

��R
��
�� � 4Fð�;�Þ;����

��r��r��r�r��

� 3½2Fð�;�Þ;� þ 4Wð�Þ;� þ ��8ð�;�Þ�r�r��þ 2�8�
��
��r��r��r�r��þ �9ð�;�Þ;

� ¼ r��r�� ; (6)

where �ið�;�Þ, i ¼ 1, 3, 8, 9 are 4 arbitrary functions of
the scalar field � and its kinetic term denoted as � and

F;� ¼ �1;� � �3 � 2��3;� (7)

withWð�Þ an arbitrary function of�, which means we can
set it to zero without loss of generality by absorbing it into
a redefinition of Fð�;�Þ. Note that Horndeski’s theory
is exactly equivalent to the generalized scalar-tensor
theory derived by Deffayet et al, at least in four dimensions
[4]. This was shown explicitly in [18], where a useful
dictionary relating the potentials in the two theories is
presented.

In his original work, Horndeski makes systematic use of
the antisymmetric Kronecker deltas which are defined by

�
�1...�h
�1...�h

¼

����������������

�
�1
�1

. . . �
�1
�h

..

. ..
.

�
�h
�1

. . . �
�h
�h

����������������
(8)

¼ h!�
�1

½�1
. . .�

�h

�h�: (9)

This Lagrangian was proven to be the most general four-
dimensional, single-scalar-tensor theory that gives second-
order field equations with respect to the metric g�� and

scalar field �. Horndeski’s proof is quite remarkable, not
least because he starts from a very general theory of the
form L¼Lðg��;g��;�1

;...;g��;�1...�p
;�;�;�1

;...;�;�1...�q
Þ

with p, q � 2, thereby allowing for higher than second
derivatives in the initial Lagrangian. Even if we neglect
the scalars, this approach is far more general than
Lovelock’s theorem [19] that initially allows only

up to second derivatives of the metric field in the
Lagrangian.
The matter part of the action is given by Sm½g��;�n�,

where we require that the matter fields are all minimally
coupled to the metric g��. This follows (without further

loss of generality) from assuming that there is only viola-
tion of the strong equivalence principle and not the
Einstein equivalence principle.2 Recall that this reasoning
is consistent with the original construction of Brans-Dicke
gravity [5], where the SEP is broken but we still impose
the EEP.
The field equations emanating from this action,

E��¼� 1ffiffiffiffiffi�g
p �SH

�g��
, E� ¼ � 1ffiffiffiffiffi�g

p �SH
�� , are also given by

Horndeski [3] and are of course essential in his
explicit proof, relying on similar techniques to those of
Lovelock [19]. For our purposes we will mostly make
use of the Lagrange density for what follows but the equa-
tions of motions will prove crucial when we try to identify
certain terms geometrically. The equations of motion

obtained from (6) are E�� ¼ 1
2T

��, E� ¼ 0, where T�� ¼
2ffiffiffiffiffi�g

p �Sm
�g��

is the energy-momentum tensor of matter and

2For EEP to hold in the usual way, all matter must be
minimally coupled to the same physical metric, ~g��, and this
should only be a function of g�� and �. Dependence on
derivatives is not allowed since it would result in the gravita-
tional coupling to matter being momentum dependent, leading to
violations of EEP. Given ~g�� ¼ ~g��ðg��;�Þ, we simply com-
pute g�� ¼ g��ð~g��;�Þ, and substitute back into the action (5),
before dropping the tildes. Since this procedure will not generate
any additional derivatives in the equations of motion, it simply
serves to redefine the Horndeski potentials, �ið�;�Þ.
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E�
� ¼ ¼ �4K1ð�;�ÞP��

��r�r��� 4

3
K1;�ð�;�Þ����	

���
r�r��r�r��r
r	�� 4P��
��K3ð�;�Þr��r��

� 4K3;�ð�;�Þ����	
���
r��r��r�r��r
r	�� 2½F ð�;�Þ þ 2W ð�Þ�G�

� � 2F ð�;�Þ;�����
���r�r��r�r��

� ½2F ð�;�Þ;� þ 4W ð�Þ;� þ �K8ð�;�Þ����
��r�r��þ K8�

���
���r��r��r�r��þ K9ð�;�Þ��

� � ð2F ;��

þ 4W ;�� þ �K8;� þ 2K9;�Þr��r��: (10)

The potentials appearing here are given in terms of the
action potentials by

Ki ¼ ��i;� for i ¼ 1; 3; 8;

K9 ¼ � 1

2
½�9 þ �ð2ðFþ 2WÞ;�� þ ��8;�Þ�

F þ 2W ¼ �F;� � ðFþ 2WÞ:
Note that this expression differs slightly from the corre-
sponding expression appearing in [3] as we have written it
in terms of the double dual of the Riemann tensor [14],

P��
����1

4
���	�

��R



	�

¼�R��
��þ2R

�
½��

�
���2R�

½��
�
���R�

�
½��

�
��: (11)

This object has the same symmetry properties as the
Riemann tensor, is divergence free for all indices, and
its contraction gives the Einstein tensor P��

�� ¼ G
�
� .

It is very much analogous to the Faraday tensor in
electromagnetism.

Because the theory is diffeomorphism invariant, the
scalar field equation of motion E� ¼ 0 can be derived

from the following result:

r�E�� ¼ 1

2
E�r��: (12)

The important thing to note is that E� is still a differential

equation of second order, even though it is a derivative of
the metric equation E��.

Now we want to study a cosmological setup of this
theory. In other words we consider homogeneous and
isotropic spatial geometries of the form,

ds2 ¼ �dt2 þ a2ðtÞ	ijdx
idxj; (13)

where 	ij is the metric on the unit plane (k ¼ 0), sphere

(k ¼ 1) or hyperboloid (k ¼ �1). These useful identities
then follow,

r�r�� ¼ diagð� €�;�H _�;�H _�;�H _�Þ (14)

R�
� ¼ diag

�
3
€a

a
;
€a

a
þ 2H2 þ 2

k

a2
;
€a

a
þ 2H2

þ 2
k

a2
;
€a

a
þ 2H2 þ 2

k

a2

�
(15)

r�r�� ¼ � €�� 3H _� (16)

R ¼ 6

�
€a

a
þH2 þ k

a2

�
(17)

� ¼ � _�2: (18)

Given on the one hand, the complexity of the full action
and on the other the large cosmological symmetries, we
choose to initially work with the Lagrangian density rather
than the equations of motion. This means that we are
working within an equivalence class of Lagrangians rather
than a single Lagrangian, (L, ffi ). Any two Lagrangians

are by definition within the same class,L ffi ~L if and only
if they differ by a total derivative, in particular, for cos-
mology if they differ by a total time derivative. In fact
using (13) through (18) above and performing several
integration by parts for each term in (6), we can arrive at
the following rather simplified form for the cosmological
minisuperspace Lagrangian,

L ¼
R
d3x

ffiffiffiffiffiffiffi�g
p

LHR
d3x

ffiffiffiffi
	

p ffi a3
X

i¼0::3

ZiH
i; (19)

where the dependence of theZi are as follows: (i¼0, 1, 2, 3),

Zið�; _�; aÞ ¼ Xið�; _�Þ � Yið�; _�Þ k
a2

; (20)

with

X0 ¼ � ~Q7;�
_�þ �9 (21)

X1 ¼ �12ðFþ 2WÞ;� _�þ 3ðQ7
_�� ~Q7Þ þ 6�8

_�3 (22)

X2 ¼ 12F;��� 12ðFþ 2WÞ (23)

X3 ¼ 8�1;�
_�3 (24)

Y0 ¼ ~Q1;�
_�þ 12�3

_�2 � 12ðFþ 2WÞ (25)

Y1 ¼ ~Q1 �Q1
_� (26)

Y2 ¼ 0; Y3 ¼ 0 (27)

� 12�1 ¼ Q1 :¼ @ ~Q1

@ _�
(28)

6ðFþ 2WÞ;� � 3 _�2�8 ¼ Q7 :¼ @ ~Q7

@ _�
: (29)

Here ~Q1 and ~Q7 are arbitrary functions of� and _� that, as it
turns out, do not appear in the resulting equations of motion.
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Note the absence of higher than first derivatives in the above
expressions. This is due to the properties of the Horndeski
action and will be crucial for what follows.

It is now straightforward to write down the field equa-
tions, including a source from the matter sector in the form
of a homogeneous cosmological fluid of energy density �m

and pressure p, minimally coupled to the metric,

H ¼��m; E�¼0; _�mþ3Hð�mþpÞ¼0; (30)

where the Hamiltonian density and scalar equation of
motion are, respectively, given by

H¼ 1

a3

�
@L

@ _a
_aþ @L

@ _�
_�� L

�
¼X

i¼0::3

½ði� 1ÞZi þ Zi; _�
_��Hi

(31)

and

E� ¼ � d

dt

�
@L

@ _�

�
þ @L

@�

¼ � d

dt

�
a3

X
i¼0::3

Zi; _�H
i

�
þ a3

X
i¼0::3

Zi;�H
i: (32)

This equation is linear in second derivatives, a fact that will
be important later on. Indeed, in what follows it will be
convenient to write it as

E� ¼ €�fð�; _�; a; _aÞ þ gð�; _�; a; _a; €aÞ; (33)

where the functions f and g are determined by Eq. (32).
Note that the system (30) includes the usual energy con-
servation law for the matter sector, and implies the equa-
tion of motion for the scale factor, a, derived directly from
the minisuperspace Lagrangian,

Ea ¼ � 1ffiffiffiffi
	

p �Sm
�a

¼ �3a2p; (34)

where

Ea¼� d

dt

�
@L

@ _a

�
þ@L

@a

¼� d

dt

�
a3

X
i¼1::3

iZia
�1Hi�1

�
þ X

i¼0::3

½a3�iZi�;aaiHi:

(35)

So far everything we have said is true of the full Horndeski
theory. We now specialize to the case of a self-tuning
solution for this theory, and in doing so will discover a
remarkable simplification leading to the theory being fully
determined by just four arbitrary functions of the scalar
field.

III. SELF-TUNING IN SCALAR-TENSOR
THEORIES

Wewish to identify the sector of Horndeski’s theory that
exhibits self-tuning, hence we first ask what it means for

the relevant functions to self-tune, in a relatively model
independent way. To this end, we refer the reader to the
definition of the self-tuning filter given in the Introduction,
and consider it in the context of a cosmological back-
ground in vacuo. The matter sector is expected to contrib-
ute a constant vacuum energy density, which we identify
with the cosmological constant, h�mivac ¼ ��. According
to our first filter the vacuum energy should not have an
impact on the spacetime curvature, so whatever the value
of ��, we still want to have a portion of flat spacetime. By
the second filter this should remain true even when the
matter sector goes through a phase transition, changing
the overall value of �� by a constant amount over an
(effectively) infinitesimal time. In other words, we require
that the abrupt change in the matter sector is completely
absorbed by the scalar field leaving the geometry un-
changed. Hence the scalar field tunes itself to each change
in the vacuum energy �� and this has to be allowed
independently of the time (or epoch) of transition. As we
will see, these requirements place strong constraints on the
theory (6).
To be consistent with the first filter, we are looking for

cosmological solutions that are Ricci-flat, so (15) tells us
that

H2 ¼ � k

a2
; (36)

where k ¼ 0 corresponds to a flat, and k ¼ �1 a Milne
slicing, of flat spacetime. For k ¼ 1 no flat spacetime
slicing is possible. We shall also assume that the scalar

�ðtÞ is a continuous function, but that _� can be
discontinuous.
We now go on-shell-in-a at the level of the field

Eqs. (30). This means we impose the condition (36) by

inserting a ¼ akðtÞ � a0 þ
ffiffiffiffiffiffiffi�k

p
t, while leaving�ðtÞ to be

determined dynamically. We find that

H ð�; _�; a; _aÞ ! H kð�; _�; akÞ (37)

fð�; _�; a; _aÞ ! fkð�; _�; akÞ (38)

gð�; _�; a; _a; €aÞ ! gkð�; _�; akÞ: (39)

Then, the on-shell-in-a field equations read

H kð�; _�;akÞ¼���; €�fkð�; _�;akÞþgkð�; _�;akÞ¼0;

(40)

where, in accordance with the second filter, the matter
sector contributes �� to the vacuum energy, where �� is
a piecewise constant function of time. Note that there is no
explicit time dependence contained in H k, fk and gk.
Consider the Hamiltonian constraint H k ¼ ���, and

observe that the right-hand side is discontinuous at a phase
transition. Since akðtÞ and �ðtÞ are continuous it follows
that for the left-hand side to support this discontinuity, it
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must retain some nontrivial _� dependence. In other words,

H k cannot be independent of _�. This is our first
constraint.

We now study the derivative of the Hamiltonian con-
straint. Since �� jumps instantaneously at a phase transi-
tion, its time derivative (or equivalently, the pressure) is
delta-function localized at the transition time, t ¼ t?. So,
differentiating the Hamiltonian constraint in (40) in a
neighborhood of t ¼ t? we get

ffiffiffiffiffiffiffi�k
p @H k

@ak
þ _�

@H k

@�
þ €�

@H k

@ _�
/ �ðt� t?Þ: (41)

Again, since � is continuous across the transition, so it

must be €� that produces the delta-function. This is con-

sistent with � being continuous and _� being discontinu-

ous, with €� providing the junction conditions for the phase
transition at t ¼ t�.Now consider the on-shell-in-a scalar

equation of motion from (40). On the left-hand side, €� has
a delta-function at the transition, but this is not supported
on the right-hand side of the equation. Thus we immedi-
ately conclude that

fkð�; _�; akÞ ¼ 0; (42)

gkð�; _�; akÞ ¼ 0: (43)

Let us focus on the first equation fk ¼ 0, and consider it on

either side of the transition. If fk ¼ fkð�; _�; akÞ contains
nontrivial _� dependence, then the left-hand side of this
equation is discontinuous at the transition on account of the

discontinuity in _�. Since this is not supported on the right-

hand side we conclude that fk has no _� dependence, or in
other words,

fk ¼ fkð�; akÞ: (44)

Note that this argument relies on the fact that there is no
explicit time dependence contained in fk so there is noth-

ing to absorb the discontinuity in _�.
To constrain this even further, we differentiate the equa-

tion fk ¼ 0 in a neighborhood of t ¼ t?. This yields

ffiffiffiffiffiffiffi�k
p @fk

@ak
þ @fk

@�
_� ¼ 0: (45)

Again, the discontinuity in _� is not supported on the right-

hand side, so we conclude that @fk@� ¼ 0, or equivalently, that

fk ¼ fkðakÞ: (46)

An identical argument implies that gk ¼ gkðakÞ. Strictly
speaking, the above arguments only hold in a neighbor-
hood of the transition time t ¼ t�. However, the transition
(or transitions) can happen at any time, so we can extend

our result to include all times. Since ak � a0 þ
ffiffiffiffiffiffiffi�k

p
t is

fixed, it now follows that the on-shell-in-a scalar equations
of motion fk ¼ 0, gk ¼ 0 contain no dynamics—fk and gk

must vanish identically. Put another way, the scalar equa-
tion E� vanishes identically on-shell-in-a and places no

further constraints on the evolution of �. This kind of
degeneracy at the level of the field equations might have
been expected. We are asking our theory to admit the same
solution (a patch of Minkowski) for a one parameter class
of energy densities. Weinberg recognizes the need for some
degeneracy enroute to his no-go theorem [12], but his
approach differs in that we have allowed � ¼ �ðtÞ.
This impacts on the on-shell-in-a Lagrangian which we

denote as Lk ¼ Lkð�; _�; akÞ. Indeed the scalar equations
of motion (32) are

� d

dt

�
@Lk

@ _�

�
þ @Lk

@�
¼ 0; (47)

) ½�Lk; _� _�� €�þ ½� ffiffiffiffiffiffiffi�k
p

Lk; _�ak
� _�Lk; _�� þ Lk;�� ¼ 0

(48)

)fk¼�Lk; _� _�; gk¼� ffiffiffiffiffiffiffi�k
p

Lk; _�ak
� _�Lk; _��þLk;�:

(49)

For self-tuning we now know that fk has to vanish, giving

Lk ¼ �k;�ð�; akÞ _�þ �kð�; akÞ; (50)

where the form of �k;�ð�; tÞ has been chosen for later

convenience, but is still general. The vanishing of gk now
yields,

�k ¼
ffiffiffiffiffiffiffi�k

p
�k;akð�; akÞ þ �kðakÞ: (51)

By expanding (50), we find that the on-shell-in-a
Lagrangian is simply,

Lk ¼ _�k þ �kðakÞ ffi �kðakÞ; (52)

since the first term is a total derivative.
We are almost done. However, we have yet to apply our

third filter. This requires our self-tuning theory to admit a
nontrivial cosmology. To appreciate what this means, we
need to return to the scalar equation of motion before we
went on-shell-in-a. Recall that this equation vanishes iden-
tically when we impose the Ricci-flat condition (36). There
are two ways in which this can happen: either (i) E� ¼ 0 is

an algebraic equation in H �
ffiffiffiffiffi�k

p
a , or (ii) E� ¼ 0 is an

dynamic equation inH �
ffiffiffiffiffi�k

p
a . If it is the former, option (i),

then we immediately see that the scalar equation of motion
forces Minkowski space at all times, or else we are on a
completely different branch of non-self-tuning solutions.
Clearly this would not pass through our third filter, so we
embrace the latter, option (ii). This means the scalar equa-

tion of motion contains derivatives of H � ffiffiffiffiffiffiffi�k
p

=a, or
equivalently, that it is not independent of €a. This is our
final constraint.
To sum up then, our filters imply the following con-

straints:
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(a) the on-shell-in-a minisuperspace Lagrangian should

be independent of � and _�, up to a total derivative.
(b) the on-shell-in-a Hamiltonian density should not be

independent of _�.
(c) the full scalar equation of motion should not be

independent of €a. We are now ready to apply these
directly to Horndeski’s theory.

IV. APPLYING THE SELF-TUNING FILTER TO
THE HORNDESKI ACTION

Let us return to the full minisuperspace Lagrangian (19)
in Horndeski’s theory. We would like to push this theory
through our self-tuning filter, now defined by the con-
straints IIIa–IIIc. As a result, we infer the following con-
ditions, respectively,

(a)
P

i¼0::3Ziðak;�; _�Þð
ffiffiffiffiffi�k

p
ak

Þi ¼ cðakÞ þ 1
a3
k

d�
dt , where

� ¼ �ð�; akÞ
(b)

P
i¼1::3iZi; _�ðak;�; _�Þð

ffiffiffiffiffi�k
p
ak

Þi � 0.

(c) Cannot have Zi; _�ða;�; _�Þ ¼ 0 for each i ¼ 1, 2, 3.

Note that condition IVa implies thatP
i¼0::3Zi; _�ðak;�; _�Þð

ffiffiffiffiffi�k
p
ak

Þi ¼ 0, and that this has been

used to simplify condition IVb. We also see that condition
IVb rules out k ¼ 0. This is our first important result. Self-
tuning is not possible within this class of scalar-tensor
theories for a homogeneous scalar and a spatially flat
cosmology. There is, however, no obvious obstruction to
self-tuning with a homogeneous scalar and a spatially
hyperbolic cosmology (k ¼ �1). When this is the case, it
is also easy to see that condition IVb implies condition IVc.

Now, consider a Horndeski-like theory of the form

~L ¼ a3
X

i¼0::3

~Ziða;�; _�ÞHi

¼ a3
�
cðaÞ þ X

i¼1::3

~Ziða;�; _�Þ
�
Hi �

� ffiffiffiffiffiffiffi�k
p
a

�
i
��
; (53)

where

X
i¼1::3

i ~Zi; _�ða;�; _�Þ
� ffiffiffiffiffiffiffi�k
p
a

�
i
� 0: (54)

Such a theory will certainly squeeze through our self-
tuning filter defined by the constraints IVa–IVc. In a sense,
the Lagrangian ~L is sufficient for self-tuning, but to what
extent is it necessary? Are there equivalent Horndeski-like
Lagrangians, with Zi ¼ ~Zi þ �Zi, that admit the same set
of self-tuning solutions? To establish this we need to
demand that the tilded and untilded systems each have
equations of motion that give the same dynamics. In other
words,

H ¼��m; E�¼0 , ~H ¼��m; ~E�¼0: (55)

In general we would not be able to say much, as the
statement (55) does not necessarily imply that, say,

E� � ~E�, nor even E� / ~E�, as there could well be a

nonlinear relation between all the relevant equations.
Actually, owing to the special properties of the
Horndeski Lagrangian in the self-tuning limit, it turns out
that this is not the case, and that in actual fact, we are
forced to have

H ¼ ~H ; E� ¼ ~E� (56)

from which we infer the following relations,

�Z0¼ _�
�;�

a3
; �Z1¼�;a

a2
; �Z2¼�Z3¼0; (57)

where � ¼ �ða;�Þ is some arbitrary function. These
results are explicitly proven in Appendix A. Note
that a3ð�Z0 þ�Z1HÞ ¼ _�, so a general self-tuning
Lagrangian is equivalent to (53) up to the total derivative
d
dt �ða;�Þ.
We are now in a position to fix the X’s and the Y’s as

defined by Eq. (20) for the general self-tuning Lagrangian
we have just derived. Restricting attention to k � 0, we
show in Appendix B that

X0ð�; _�Þ ¼ V0
0ð�Þ _�� �bare

� (58)

X1ð�; _�Þ ¼ V0
1ð�Þ _�þ 3V0ð�Þ (59)

X2ð�; _�Þ þ Y0ð�; _�Þ ¼ V 0
2ð�Þ _�þ 2V1ð�Þ (60)

X3ð�; _�Þ þ Y1ð�; _�Þ ¼ V 0
3ð�Þ _�þ V1ð�Þ; (61)

where V0ð�Þ, V1ð�Þ, V2ð�Þ, and V3ð�Þ are all arbitrary
functions. From these relations we may then evaluate the
functions appearing in Horndeski’s action using (21)–(29)
to get

�1 ¼ 1

8
V0
3ð�Þ

�
1þ 1

2
lnj�j

�
þ 1

4
Að�Þ�� 1

12
Bð�Þ (62)

�3 ¼ 1

16
V 00
3 ð�Þ lnj�j þ 1

12
A0ð�Þ�� 1

12
B0ð�Þ

þ pð�Þ � 1

2
qð�Þð1� lnj�jÞ (63)

�8 ¼ 2p0ð�Þ þ q0ð�Þ lnj�j � ð�Þ (64)

�9 ¼ ��bare
� þ 1

2
V00
1 ð�Þ�þ 0ð�Þ�2 (65)

Fþ 2W ¼ � 1

12
V1ð�Þ � pð�Þ�� 1

2
qð�Þ� lnj�j; (66)

where now V1ð�Þ, V3ð�Þ, Að�Þ, Bð�Þ, pð�Þ, qð�Þ, and
ð�Þ are all arbitrary functions. Again, this is shown in
detail in Appendix B. One might wonder why it is that any
dependence on V0 and V2 has dropped out. This is because
one always has the freedom to shift X0 and Y0 by a total
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derivative without altering the dynamics. By letting X0 !
X0 � _V0 and Y0 ! Y0 � _V2 it is easy to see that the con-
tributions of V0 and V2 drop out of Eqs. (58) and (60).

Having pushed Horndeski’s theory through our self-
tuning filter, we are led towards a subset of Horndeski’s
theory for which the potentials are given by these values.
What is quite remarkable is that the self-tuning conditions
have revealed the full dependence on the kinetic term �.
Initially the Horndeski functions �i, i ¼ 1, 3, 8, 9 were
arbitrary functions of � and �, but now the self-tuning
filter has reduced this to just seven functions of the scalar
�. However, it turns out that ð�Þ, Bð�Þ, and pð�Þ all
contribute total derivatives to the Lagrangian or equiva-
lently do not appear in the equations of motion.3 They can
therefore be put to zero as physically irrelevant.

The arbitrary constant �bare
� is nothing but the bare

cosmological constant term. Actually, the presence of
this term serves as a good consistency check. The point
is that any successful self-tuning theory must admit an
arbitrary term of this form. This is because the vacuum
energy renormalizes this term, so if we had been led to
conclude that such a term were not present, that it should
vanish, then we would have effectively fine-tuned the bare
cosmological constant against the vacuum energy. In fact,
this is precisely how Weinberg’s no-go theorem [12]
works—he finds that his generic self-tuning theory cannot
admit an arbitrary term of the form �bare

�

ffiffiffiffiffiffiffi�g
p

, so self-

tuning is actually fine-tuning. In contrast, here we are
finding that this arbitrary cosmological constant term is
allowed, so we have a genuinely self-tuning theory.

Finally we are left with four functions of� for which we
now seek their geometric origin. This is not clear in the
Horndeski action or equations of motion due to the pres-
ence of Kronecker deltas which are useful for writing out
the general Lagrangian but not physically intuitive for the
filtered theory in question. Let us begin by rescaling the
four remaining functions as follows:

qð�Þ ¼ 1

2
Vjohnð�Þ; Að�Þ ¼ � 3

2
Vpaulð�Þ;

V1ð�Þ ¼ �6Vgeorgeð�Þ; V3ð�Þ ¼ 16Vringoð�Þ (67)

Further setting ð�Þ, Bð�Þ and pð�Þ to zero, we arrive at
the following form for the Horndeski potentials,

�1 ¼ 2V 0
ringoð�Þ

�
1þ 1

2
lnðj�jÞ

�
� 3

8
Vpaulð�Þ� (68)

�3¼V 00
ringoð�Þlnðj�jÞ�1

8
V 0
paulð�Þ��1

4
Vjohnð�Þ½1� lnðj�jÞ�

(69)

�8 ¼ 1

2
V 0
johnð�Þ lnðj�jÞ; (70)

�9 ¼ ��bare
� � 3V 00

georgeð�Þ� (71)

Fþ 2W ¼ 1

2
Vgeorgeð�Þ � 1

4
Vjohnð�Þ� lnðj�jÞ: (72)

We give the corresponding potentials in the alternative
form of Horndeski’s theory derived by Deffayet et al [4]
in Appendix C. Meanwhile, in Appendix D, we demon-
strate that, after some integration by parts, these particular
Horndeski potentials result in a self-tuning theory of the
form

SFabFour ¼
Z

d4x½Ljohn þLpaul þLgeorge þLringo

� ffiffiffiffiffiffiffi�g
p

�bare
� � þ Sm½g��;�n�; (73)

where the Lagrangians are given by Eqs. (1) to (4). We
have called this theory the Fab Four because it is composed
of four relatively simple and elegant geometric terms,
despite the fact that it originated from Horndeski’s theory,
which is certainly not simple, nor particularly elegant.
To complete our analysis, let us present the cosmologi-

cal equations resulting from this theory. We find that
H ¼ ��m, where the Hamiltonian density,

H ¼H johnþH paulþH georgeþH ringoþ�bare
� (74)

and

H john ¼ 3Vjohnð�Þ _�2

�
3H2 þ k

a2

�

H paul ¼ �3Vpaulð�Þ _�3H

�
5H2 þ 3

k

a2

�

H george ¼ �6Vgeorgeð�Þ
��

H2 þ k

a2

�
þH _�

V0
george

Vgeorge

�

H ringo ¼ �24V0
ringoð�Þ _�H

�
H2 þ k

a2

�
:

Recall that one of our filters, IIIb, requires that the on-
shell-in-a Hamiltonian density should not be independent

of _�. Plugging H2 ¼ �k=a2 into (74), we immediately
infer that

fVjohn; Vpaul; Vgeorgeg � f0; 0; constantg: (75)

This immediately rules out General Relativity which cor-
responds precisely to this forbidden combination. This
makes sense, because as is well known, GR is not a self-
tuning theory. It also rules out the possibility of a self-
tuning theory supported entirely by Ringo. The point is that
Ringo cannot give rise to a self-tuning theory without a
little help from his friends John, Paul, and George. When
this is the case Ringo does have a nontrivial effect on the
cosmological dynamics, but does not spoil self-tuning.
Now consider the scalar equation of motion. This is

given by E� ¼ 0, where

3For example, if we only switch on ð�Þ, we have �8 ¼�ð�Þ, and �9ð�Þ ¼ 0ð�Þ�2, so that L ¼ �0ð�Þ�2 þ
3ð�Þ�h�� 2ð�Þ���

��r��r��r�r�� ¼ r�ð�r��Þ ffi
0. One can similarly show that B and p also contribute total
derivatives to the overall Lagrangian.
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E� ¼ Ejohn þ Epaul þ Egeorge þ Eringo (76)

and

Ejohn ¼ 6
d

dt
½a3Vjohnð�Þ _��2� � 3a3V 0

johnð�Þ _�2�2

Epaul ¼ �9
d

dt
½a3Vpaulð�Þ _�2H�2� þ 3a3V 0

paulð�Þ _�3H�2

Egeorge ¼ �6
d

dt
½a3V 0

georgeð�Þ�1� þ 6a3V 00
georgeð�Þ _��1

þ 6a3V 0
georgeð�Þ�2

1

Eringo ¼ �24V 0
ringoð�Þ d

dt

�
a3
�
�

a2
�1 þ 1

3
�3

��
:

Here we have defined the quantity

�n ¼ Hn �
� ffiffiffiffiffiffiffi�k
p
a

�
n

(77)

which vanishes on-shell-in-a for n > 0. As a result, it is
easy to see that E� also vanishes automatically on-shell-in-

a, confirming what we had expected. However, we should
note that the third filter, given by IIIc, requires that the full
scalar equation of motion should not be independent of €a.
This ensures that the self-tuning solution can be evolved to
dynamically, and allows for a nontrivial cosmology. From
Eq. (76), we see that it means that

fVjohn;Vpaul;Vgeorge;Vringog� f0;0;constant;constantg: (78)

This possibility has already been ruled out by the previous
condition (75). A detailed study of the cosmological dy-
namics will be presented in our companion paper [15].

The self-tuning filter we applied to the full Horndeski
Lagrangian (6) is a well-posed mathematical construct
with a special physical motivation. It is remarkable that it
picks out such a beautifully geometric form that the
Lagrangian needs to take. We will discuss some of their
enchanting properties in more detail in our concluding
section.

V. THE FAB FOUR: SUMMARYAND OUTLOOK

As we have seen, given some well-motivated assump-
tions, the Fab Four represents the most general single-
scalar tensor theory capable of self-tuning. It is described
by a remarkably simple and elegant action of the form,

SFabFour½g��;�;�n� ¼
Z

d4x½Ljohn þLpaul þLgeorge

þLringo � ffiffiffiffiffiffiffi�g
p

�bare
� �

þ Sm½g��;�n�; (79)

where

Ljohn ¼ ffiffiffiffiffiffiffi�g
p

Vjohnð�ÞG��r��r�� (80)

Lpaul ¼ ffiffiffiffiffiffiffi�g
p

Vpaulð�ÞP����r��r��r�r�� (81)

Lgeorge ¼ ffiffiffiffiffiffiffi�g
p

Vgeorgeð�ÞR (82)

Lringo ¼ ffiffiffiffiffiffiffi�g
p

Vringoð�ÞĜ (83)

and the matter fields, �n couple only to the metric and not
the scalar. In order for self-tuning to be possible, we
remind the reader that we must have

fVjohn; Vpaul; Vgeorgeg � f0; 0; constantg: (84)

Note that this rules out the GR limit, as of course it must,
since that would not be a self-tuning theory. We also
emphasize the presence of an arbitrary bare cosmological
constant term. This serves as a good check of the validity of
our analysis since any self-tuning theory must include such
a term.
The cosmological field equations for an FRW universe

and a homogeneous scalar were presented in Eqs. (74) and
(76). For a generic choice of potentials satisfying the
constraint (84), a quick glance at these equations reveals
that a Ricci-flat universe and an explicitly time-dependent
scalar is a dynamical fixed point for any vacuum energy.
This remains true even as we pass through a phase tran-
sition upon which the cosmological constant jumps by
some finite amount. Strictly speaking, self-tuning is only
possible in this instance when the spatial curvature is
negative, and we evolve towards a Milne rather than a
Minkowski geometry. However, this is really just a state-
ment about our self-tuning ansatz and choice of coordi-
nates. If we take our self-tuning Milne solution, we can
change to hyperbolic coordinates such that the geometry is
now (a portion of) Minkowski, with the scalar rendered
inhomogeneous, � ¼ �ðjxj2 � t2Þ.
Beyond cosmology, the full Fab Four equations of mo-

tion are given by

E ��
john þ E��

paul þ E��
george þ E��

ringo ¼
1

2
T�� (85)

E �
john þ E�

paul þ E�
george þ E�

ringo ¼ 0; (86)

where the contribution of each term from variation of the
metric is given by

E��
john¼Vjohnð�G���2P����r��r��Þ

þ1

2
g������

���r�ð
ffiffiffiffiffiffiffiffiffiffi
Vjohn

q
r��Þr�ð

ffiffiffiffiffiffiffiffiffiffi
Vjohn

q
r��Þ (87)

E��
paul ¼

3

2
P�����V2=3

paulr�ðV1=3
paulr��Þ

þ 1

2
g���

���	
���
r�ðV1=3

paulr��Þr�ðV1=3
paulr��Þ

� r
ðV1=3
paulr	�Þ (88)
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E ��
george ¼ VgeorgeG

�� � ðr�r� � g��hÞVgeorge (89)

E ��
ringo ¼ �4P����r�r�Vringo (90)

and from variation of the scalar by

E �
john ¼ 2

ffiffiffiffiffiffiffiffiffiffi
Vjohn

q
r�ð

ffiffiffiffiffiffiffiffiffiffi
Vjohn

q
r��ÞG�� (91)

E�
paul¼3V1=3

paulr�ðV1=3
paulr��Þr�ðV1=3

paulr��ÞP����

�3

8
Vpaul�Ĝ (92)

E �
george ¼ �V0

georgeR (93)

E �
ringo ¼ �V 0

ringoĜ: (94)

Note that we have absorbed �bare
� into a renormalization of

the energy-momentum tensor T��. Again, we emphasize
the fact that the scalar equation of motion vanishes trivially
on (a portion of) Minkowski space.

The Fab Four should generally be considered in combi-
nation, and not as individuals. We have already seen how
the constraint (84) suggests that Ringo should not be
considered in isolation. The point is that on a would-be
self-tuning solution, the geometry is Minkowski space and
so E��

ringo ! 0. This means that Ringo in isolation cannot

support a nonvanishing vacuum energy and so self-tuning
is destroyed. George is another term that should not be
considered in isolation, but for more phenomenological
reasons. This is because it corresponds to Brans-Dicke
gravity with Brans-Dicke parameter w ¼ 0. Such a theory
would never pass solar system gravity tests for which one
typically needs w> 40 000.

It is natural to wonder whether or not there is a phenom-
enologically viable version of the Fab Four. The case of
George in isolation might give us cause for concern.
Indeed, whatever Fab Four terms we include it is clear
that our theory contains a light scalar that is giving rise to a
considerable modification of GR. Is it possible to suppress
this modification at the relevant scales in order to pass solar
system constraints? To this end, we are cautiously opti-
mistic as we will now explain. We see that George already
contains a GR-like contribution if we write its potential as

Vgeorge ¼ 1

16�GN

þ �Vgeorge:

Thus a general Fab Four theory can bewritten as SFabFour ¼
SGR þ�S, where SGR is the action for GR, and �S enc-
odes the modification, including contributions from the
potentially troublesome light scalar. However, we now
note that John and Paul contain nontrivial derivative inter-
actions and if they are present in �S, then we have all the
necessary ingredients in order to invoke the Vainshtein
mechanism [20]. This is a process by which an additional

light degree of freedom is screened at short distances
around a heavy source. It was originally studied in the
context of massive gravity [20] but has since been widely
explored in DGP gravity [21] and galileon theories [8]. The
presence of derivative interactions of the additional mode
causes linearized perturbation theory to break down at
larger than expected scales—the Vainshtein scale. Below
the Vainshtein scale the field lines associated with the
additional mode are diluted and one is able to recover
GR to good approximation [22]. The Vainshtein scale
depends on the mass of the source, so typically for the
Sun one would like this to exceed the size of the solar
system. For these reasons we expect any phenomenologi-
cally viable theory of the Fab Four to contain at least one of
either John or Paul. Vainshtein effects in some subclasses
of Horndeski’s theory have been studied recently [23].
We also need the Fab Four to recover a sensible cosmo-

logical evolution. Vainshtein effects are typically absent in
background cosmology owing to the large amount of sym-
metry, so we cannot appeal to the above arguments in this
instance. However, in our companion paper we have been
able to show explicitly that sensible cosmological solutions
are possible [15]. Here one assumes a large vacuum energy
that completely dominates the energy density of the
Universe. For certain choices of potential we can show
that this vacuum energy can actually mimic a matter-
dominated expansion. On the subject of cosmology, it is
worth noting that recently John has been used in some
models of Higgs inflation [24], while John, Paul, and
George have been used as a proxy theory for studying
cosmological solutions of massive gravity [25].
Given an interesting solution to a Fab Four theory (ie.

one that has a sensible cosmology and passes solar system
tests), we need to check if it is perturbatively stable. In
particular, does the spectrum of perturbations contain ghost
or gradient instabilities, and if so, how bad are they? It is
difficult to make any generic statements, mainly because
the spectrum of solutions is potentially so vast given the
fact that we have four arbitrary potentials. What we can say
is that instabilities are not necessarily automatic in the Fab
Four. Although not phenomenologically viable, the case
of Brans-Dicke gravity with w ¼ 0 discussed earlier is
certainly free of ghosts and tachyons. Perhaps the most
sensible approach is to find the phenomenologically viable
solutions first, and then test their stability.
Of course, the classical Fab Four Lagrangian will inevi-

tably receive radiative corrections frommatter and/or grav-
ity loops. If these corrections are large then it is clear that
the classical self-tuning solutions should not be trusted.
Again, this is a difficult question to address properly
without a better understanding of the preferred background
solutions, and preferred potentials. The reason is that such
corrections are sensitive to the cutoff which itself is sensi-
tive to the background, which in turn is sensitive to the
potentials. Therefore a detailed analysis of this should
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probably be postponed until after we have exhausted other
issues such as cosmology, solar system tests, and stability.
In other words we first obtain a class of sensible cosmo-
logical solutions and potentials and investigate the radia-
tive corrections about these in detail. Having said that, a
heuristic analysis of radiative corrections about the self-
tuning vacuum solution reveals that it might well be pos-
sible to render some Fab Four theories safe from large
quantum corrections. This is discussed in detail in
Appendix E. There we show that radiative corrections on
the self-tuning background can be suppressed provided the
cutoff of the effective theory �UV satisfies the inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Geff��

p
<�UV < �1=4

� ;

where Geff is the (possibly time dependent) strength of the
gravitational coupling to matter, in the linearized regime.

Typically we might expect �1=4
� � TeV and Geff �M�2

pl ,

so this condition is far from restrictive. Note that a more
detailed analysis of radiative corrections might well be
sensitive to the elegant geometrical structure of the Fab
Four terms,

Let us now discuss that elegant structure. The first thing
to note is that each member of the Fab Four vanishes for
vanishing curvature. This stems from the self-tuning nature
of the theory. As we saw from the scalar equations of
motion, each term imposes a constraint that is satisfied
automatically in Minkowski space. Another feature of the
Fab Four terms is that they only give rise to second-order
field equations. This had to be the case, of course, since
they represent a special case of Horndeski’s theory. We
also note that each of the Fab Four appear in the Kaluza-
Klein reduction of Lovelock theory [9], from which they
inherit the second-order equations of motion. This is ob-
vious for John, George, and Ringo [9] but also turns out to
be true of Paul which originates from the third-order
Lovelock curvature invariant [10].

It is instructive to see how exactly second-order field
equations are achieved given the form of each individual
member of the Fab Four. For George and Ringo, the

presence of the Euler Densities,
ffiffiffiffiffiffiffi�g

p
R and

ffiffiffiffiffiffiffi�g
p

Ĝ are

crucial in this respect. Indeed, both terms take the form

Vð�ÞðEulerdensityÞ:
These are the only possibilities of the form

ffiffiffiffiffiffiffi�g
p

Vð�ÞQ,

where Q is a nontrivial scalar constructed out of the
curvature, because any other choice would have led to
higher-order field equations.

For John and Paul, the fact that there are curvature terms
contracted with derivatives of the scalar is potentially
worrying, since generically this would also lead to
higher-order field equations. However the key point is
that both terms take the form

Vð�Þr��r��
�W

�g��

;

where W ¼ W½g��;�� is some diffeomorphism invariant

superpotential, with second-order Euler-Lagrange equa-
tions. The diffeomorphism invariance of W ensures that
@�ð �W

�g��
Þ � 0, and this helps to protect us from developing

higher-order terms in the equations of motion. The super-
potentials themselves are given by

Wjohn ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
R; Wpaul ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p

�Ĝ:

(95)

Here we see the Euler densities appearing again. In fact, we
can go a little further and identify a certain hierarchy
within the structure of the Fab Four. In particular, we
note that John’s superpotential is a George type term, and
that Paul’s superpotential is a Ringo type term. In other
words, John is a derivative of George while Paul is a
derivative of Ringo. This geometric structure certainly
lends itself to generalizing the Fab Four to multiple scalar
fields.
We end our discussion by emphasizing the true purpose

of this work. Rather than presenting a solution to the
cosmological constant problem, we are more interested
in learning about the nature of the problem and the tools
we might need to tackle it. In this respect our work is in the
same spirit as Weinberg’s no-go theorem [12]. Through
this theorem, Weinberg presented a carefully chosen setup,
and then discovered that one was inevitably faced with an
impenetrable barrier to solving the problem. By relaxing
the condition of Poincaré invariance at the level of the self-
adjusting fields, we have changed the rules of the game
slightly. We have used Horndeski’s very general theory as
the arena in which we intend to study the problem, and
having changed the rules, we have been able to pass
through Weinberg’s barrier. Of course, only a tiny fraction
of Horndeski’s theory made it through. This is the Fab
Four. How much further can they go? Clearly there are a
number of extra barriers to overcome, including solar
system tests, cosmological tests, and questions about
stability and naturalness, as we have just discussed. Each
of these barriers will reduce the size of the arena by ruling
out certain choices of Fab Four potentials and the corre-
sponding solutions. Will there be anything left once we
have taken on all of the barriers? This is impossible to say
at this early stage, but one thing we can say is that whatever
happens we will learn something important about the
cosmological constant problem and how to tackle it.
Should the Fab Four ultimately fail in tackling �, then
we will essentially have a new no-go theorem. This is
because our starting point was a very general class of
models—all second-order scalar-tensor theories—so the
Fab Four’s failure would also be the failure of all theories
within this very general class. As with Weinberg’s theo-
rem, we could then ask how exactly this failure came
about, in the hope that it might point towards new direc-
tions and new approaches. The other possibility, of course,
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is that some particular Fab Four Lagrangians do make it
through every barrier, in which case we are left with an
extremely interesting resolution of the cosmological con-
stant problem.
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APPENDIX A: PROOF THAT H¼ ~H AND
E� ¼ ~E�, AND CALCULATION OF �Zi

Our starting point is two Horndeski theories, defined
by (19) and (53), satisfying the criteria for equivalence
given by (55). We begin with the Hamiltonian constraints.

In principle these differ by a function �H ¼
�H ða; _a;�; _�Þ, as follows,

H þ �m � ~H þ �m þ �H : (A1)

The functional dependence of �H is on account of the
fact that matter couples in the same way in both our
theories (by assumption). From (55) we require that �H
should vanish on-shell whenever ~H ¼ ��m, ~E� ¼ 0.

However, since �H is independent of �m it cannot vanish

by virtue of the equation ~H ¼ ��m. Similarly, since it is
independent of €a, nor can it vanish by virtue of ~E� ¼ 0,

which is necessarily dependent on €a by condition IIIc

above. If �H does not vanish by virtue of ~H ¼ ��m

or ~E� ¼ 0we must conclude that it vanishes identically. In

other words

H � ~H : (A2)

This is a rather strong constraint with useful implications.
Given that �Zi ¼ Zi � ~Zi we see that it implies

�H ¼ X
i¼0::3

�
ði� 1Þ�Zi þ �Zi; _�

_�

�
Hi � 0: (A3)

Equating powers of H gives

ði� 1Þ�Zi þ�Zi; _�
_� � 0 i ¼ 0 . . . 3: (A4)

and, so we integrate to find that

�Zi ¼ 
iða;�Þ _�1�i: (A5)

We now turn our attention to the scalar equation of motion.

These differ by a function�E� ¼ �E�ða; _a; €a�; _�; €�Þ, as
follows,

E� � ~E� þ �E�: (A6)

As above, since �E� is independent of �m it cannot vanish

by virtue of the equation ~H ¼ ��m. At best it vanishes by
virtue of the equation ~E� ¼ 0. To proceed a little further

we note that Eq. (32) suggests that E� can be written in the

form

E� ¼ €a�þ €��þ 	; (A7)

where

�ða; _a;�; _�Þ ¼ �a2
X

i¼0::3

iZi; _�H
i�1 (A8)

�ða; _a;�; _�Þ ¼ �a3
X

i¼0::3

Zi; _� _�H
i (A9)

	ða; _a;�; _�Þ ¼ �a3
X

i¼0::3

½ððiþ 3ÞZi; _� þ aZi; _�aÞH

þ _�Zi;� _� � Zi;��Hi (A10)

with similar expressions for ~E�, ~�, ~�, and ~	, and by

association, for �E�, ��, ��, and �	. Now, since

€a ¼ 1

~�
ð ~E� � €� ~��~	Þ (A11)

we see that we can write

�E�¼��

~�
~E�þ €�

~���� ~���

~�
þ ~��	� ~	��

~�
: (A12)

Note that ~� � 0 on account of condition IIIc. Because
�E� ought to vanish by virtue of ~E� ¼ 0, we immediately

infer that

�E�¼��

~�
~E�; ~���¼ ~���; ~��	¼ ~	��: (A13)

However, we know from Eq. (A5) that

�� ¼ �a2
X

i¼0::3

ið1� iÞ
i

Hi�1

_�i
(A14)

�� ¼ �a3
X

i¼0::3

iði� 1Þ
i

Hi

_�iþ1
(A15)

�	 ¼ �a3
X

i¼0::3

½ððiþ 3Þ
i þ a
i;aÞHð1� iÞ � i
i;�
_��H

i

_�i
:

(A16)

It follows from the condition ~��� ¼ ~��� that unless
�E� vanishes identically, we must have

aH ~� ¼ � _� ~�

			! P
i¼0::3

i ~Zi; _�H
i ¼ � P

i¼0::3

~Zi; _� _�
_�Hi

			! i~Zi; _� ¼ �~Zi; _� _�
_�

			! ~Zi ¼ uiða;�ÞI ið _�Þ þ viða;�Þ

;

(A17)
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where

I ið _�Þ ¼
� _�1�i for i � 1

ln _� for i ¼ 1
:

Now from Eq. (A17) and the definition of ~L given by
Eq. (53), we have that

cðaÞ ¼ X
i¼0::3

~Zi

� ffiffiffiffiffiffiffi�k
p
a

�
i

¼ X
i¼0::3

ðuiða;�ÞI ið _�Þ þ viða;�ÞÞ
� ffiffiffiffiffiffiffi�k
p
a

�
i
: (A18)

Equating powers of _�, we see that ui ¼ 0 for all i, and
so it immediately follows that ~Zi; _� ¼ 0 for all i, which

contradicts the condition (54). We are therefore forced to
accept the alternative possibility that �E� vanishes iden-

tically. Thus we have proven Eq. (56).
It remains to prove (57). We now know that �� � 0,

where �� is given by (A14). Equating powers of H we
immediately see that 
2 � 
3 � 0. Furthermore, �	 � 0
where �	 is given by (A16), yielding the relation


1;�¼3
0þa
0;a 			! a3
0¼�;�; a2
1¼�;a ;

(A19)

where � ¼ �ða;�Þ. Equation (57) follows automatically.

APPENDIX B: DERIVATION OF THE HORNDESKI
POTENTIALS IN THE SELF-TUNING THEORY.

Having identified the general form for the minisuper-
space Lagrangian for the self-tuning Horndeski theory, we
would like to derive the form of the corresponding
Horndeski potentials. To this end, we first need to calculate
the X’s and the Y’s as defined by Eq. (20). Comparing
this with the general form of the self-tuning Lagrangian,
L ¼ ~Lþ d

dt �ða;�Þ, where ~L is given by Eq. (53), we find

that

cðaÞ� X
i¼1::3

~Zi

� ffiffiffiffiffiffiffi�k
p
a

�
iþa�3 _��;�¼X0ð�; _�Þ� k

a2
Y0ð�; _�Þ

(B1)

~Z 1 þ a�2�;a ¼ X1ð�; _�Þ � k

a2
Y1ð�; _�Þ (B2)

~Z i ¼ Xið�; _�Þ; i ¼ 2; 3: (B3)

Substituting (B2) and (B3) into (B1) gives the relation,

cðaÞ �
ffiffiffiffiffiffiffi�k

p
a

�
X1 � k

a2
Y1 � a�2�;a

�
� X

i¼2;3

Xi

� ffiffiffiffiffiffiffi�k
p
a

�
i

þ a�3�;�
_� ¼ X0ð�; _�Þ � k

a2
Y0ð�; _�Þ: (B4)

We now restrict attention to k � 0, and solve this equation

by expanding c and � as power series in
ffiffiffiffiffiffiffi�k

p
=a

cðaÞ¼ X
i¼�1::1

ci

� ffiffiffiffiffiffiffi�k
p
a

�
i
; a�3�¼ X

i¼�1::1
hið�Þ

� ffiffiffiffiffiffiffi�k
p
a

�
i
:

(B5)

Plugging this into (B4), and equating powers of
ffiffiffiffiffiffiffi�k

p
=a,

we find that

X0 ¼ c0 þ _h0 þ 4h�1 (B6)

X1 ¼ c1 þ _h1 þ 3h0 (B7)

X2 þ Y0 ¼ c2 þ _h2 þ 2h1 (B8)

X3 þ Y1 ¼ c3 þ _h3 þ h2 (B9)

along with the relation

ciþ _hiþð4� iÞhi�1¼0 i	�1 or i�4: (B10)

This last equation is readily solved by defining

Vi ¼ hi þ ciþ1

3� i
i � 3; V3 ¼ h3 (B11)

so that we have

V 0
ið�Þ _�þ ð4� iÞVi�1 ¼ 0 i 	 �1 or i � 4: (B12)

Since Vi does not depend on _� it follows that

V�1¼ const; V�2¼V�3¼ . . .¼0; V4¼V5¼ . . .¼0:

(B13)

Plugging everything back into Eqs. (B6)–(B9) we obtain

X0 ¼ V 0
0
_�þ 4V�1 ¼ 4ðconstÞ þ V 0

0
_� (B14)

X1 ¼ V0
1
_�þ 3V0 (B15)

X2 þ Y0 ¼ V0
2
_�þ 2V1 (B16)

X3 þ Y1 ¼ V0
3
_�þ V2: (B17)

Identifying const ¼ � 1
4�

bare
� , we arrive at Eqs. (58) to (61).

To calculate the precise form of the Horndeski poten-
tials, we make use of the basic relations (21) to (29), (7)
and (18) along with our newly derived formulas (58) to
(61). We shall begin by deriving �9. First combine (22) and
(29) to get the relation

X1 ¼ ~Q7;�
_�� 3 ~Q7 ¼ _�4ð ~Q7= _�3Þ; _� : (B18)

Using Eq. (59), one can straightforwardly integrate (B18)
to obtain

~Q 7 ¼ �V0 � 1

2
V0
1
_�þ ð�Þ _�3; (B19)

where ð�Þ is an arbitrary function of integration. Given

that � ¼ � _�2, we can use this result, along with Eqs. (58)
and (21) to derive the formula (65) for �9.
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Next we derive �1. From (24) and (26), we have that

X3þY1¼8�1;�
_�3� ~Q1; _�

_�þ ~Q1¼
_�4

3
½ð ~Q1= _�Þ; _�= _��; _� ;

(B20)

where in the second relation we have used (28) and the fact
that @� ¼ � 1

2 _�
@ _�. Using Eq. (61), this yields

~Q 1 ¼ V2 � 3

2
_�V 0

3 ln
_�þ Að�Þ _�3 þ Bð�Þ _�; (B21)

where Að�Þ and Bð�Þ are arbitrary functions of integra-

tion. We then use �1 ¼ � 1
12

~Q1; _� and � ¼ � _�2, to arrive

at Eq. (62).
We shall now derive Fþ 2W. From (23), (25), and (28),

we have that

X2 þ Y0 ¼ _� ~Q1;� � 12 _�2F;� � 24ðFþ 2WÞ þ 12 _�2�3

(B22)

and using Eq. (60) we obtain

~Q 1;� þ 12½�3
_�� F;�

_�� 2ðFþ 2WÞ= _�� ¼ 2V1

_�
þ V0

2:

(B23)

Differentiating this with respect to _�, and making use (28)
and (7) we arrive at the following differential equation for
Fþ 2W,

� V1

12
¼ �2F;�� � �F;� þ ðFþ 2WÞ: (B24)

This is easily integrated to give the formula (66) for Fþ
2W, where pð�Þ and qð�Þ are arbitrary functions of
integration.

Moving on to �3. The formula (63) now follows imme-
diately from Eq. (B23), once we plug in our solutions (66)

and (B21) for Fþ 2W and ~Q1, respectively. Similarly the
solution for �8 given by (64) also follows immediately

from the solutions (66) and (B19) for Fþ 2W and ~Q7

respectively.

APPENDIX C: DGSZ POTENTIALS FOR
THE FAB FOUR

It was shown in [18] that in four dimensions Horndeski’s
theory is equivalent to the generalized galileon theory
derived independently by Deffayet et al [4]. This latter
theory is given by the Lagrangian density

LDGSZ ¼ Kð�;XÞ �G3ð�;XÞh�þG4ð�;XÞR
þG4;X½ðh�Þ2 � ðr�r��Þ2�
þG5ð�;XÞG��r�r���G5;X

6
½ðh�Þ3

� 3h�ðr�r��Þ2 þ 2ðr�r��Þ3� (C1)

and X ¼ � 1
2r��r�� ¼ � 1

2�. The dictionary relating

the potentials in the two theories is also presented in [18],

K ¼ �9 þ �
Z �

d�0ð�8;� � 2�3;��Þ (C2)

G3¼6ðFþ2WÞ;�þ��8þ4��3;��
Z �

d�0ð�8�2�3;�Þ
(C3)

G4 ¼ 2ðFþ 2WÞ þ 2��3 (C4)

G5 ¼ �4�1: (C5)

Substituting (68)–(72) into these formulas, and neglecting
terms that contribute an overall total derivative, we obtain
the following DGSZ potentials for the Fab Four,

K ¼ ��bare
� þ 2V00

johnð�ÞX2 � V 000
paulð�ÞX3 þ 6V00

georgeð�ÞX
þ 8V 0000

ringoð�ÞX2ð3� lnðjXjÞÞ (C6)

G3 ¼ 3V 0
johnð�ÞX � 5

2
V 00
paulð�ÞX2 þ 3V 0

georgeð�Þ
þ 4V 000

ringoXð7� 3 lnðjXjÞÞ (C7)

G4 ¼ Vjohnð�ÞX � V0
paulð�ÞX2 þ Vgeorgeð�Þ

þ 4V00
ringoð�ÞXð2� lnðjXjÞÞ (C8)

G5 ¼ �3Vpaulð�ÞX � 4V0
ringoð�Þ lnðjXjÞ: (C9)

APPENDIX D: FROM HORNDESKI’S
POTENTIALS TO THE FAB FOUR:
METRIC EQUATIONS OF MOTION

We now show how the Horndeski potentials for the Fab
Four do indeed give rise to a theory of the form (73). To
this end, it is sufficient to show the equivalence of the
equations of motion. We begin with John’s contribution.
The nonzero Horndeski potentials are

�3 ¼ � 1

4
Vjohnð�Þð1� lnj�jÞ (D1)

�8 ¼ 1

2
V 0
johnð�Þ lnj�j (D2)

Fþ 2W ¼ � 1

4
Vjohnð�Þ� lnj�j (D3)

which translate to the following nonzero potentials appear-
ing in the equations of motion,

K3¼1

4
Vjohn; K8¼1

2
V 0
john; F þ2W ¼�1

4
Vjohn�:

(D4)
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Using the expression (10), we see that

E ��
john ¼

1

2
Vjohnð�G�� � 2P����r��r��Þ

þ 1

2
g���

���
���r�r��ðVjohnr�r��

þ V 0
johnr��r��Þ: (D5)

After the tedious expansion of the final Kronecker
delta the equations of motion are recognized as those
derived upon varying

R
d4xLjohn, where Ljohn ¼ffiffiffiffiffiffiffi�g

p
Vjohnð�ÞG��r��r�� (see, for example, [26]).

Note that this equation can be more succinctly written as

E ��
john ¼ Vjohnð�G�� � 2P����r��r��Þ

þ 1

2
g������

���r�ð
ffiffiffiffiffiffiffiffiffiffi
Vjohn

q
r��Þr�ð

ffiffiffiffiffiffiffiffiffiffi
Vjohn

q
r��Þ:

(D6)

We now turn to Paul. The nonzero Horndeski potentials are
now given by

�1 ¼ � 3

8
Vpaulð�Þ� (D7)

�3 ¼ � 1

8
V0
paulð�Þ� (D8)

which give

K1 ¼ � 3

8
Vpaulð�Þ�; K3 ¼ � 1

8
V 0
paulð�Þ: (D9)

Again, using the expression (10), we find

E
��
paul ¼

3

2
P�����ðVpaulr�r��þ 1

3
V

0
paulr��r��Þ

þ 1

2
g���

���	
���
 ðVpaulr�r��r�r��r
r	�

þ V
0
paulr��r��r�r��r
r	�Þ: (D10)

One can check by direct, albeit nontrivial, computation that
these are the equations of motion obtained by variation
of

R
d4xLpaul, where Lpaul¼ ffiffiffiffiffiffiffi�g

p
Vpaulð�ÞP����r���

r��r�r��. Note that Eq. (D10) may also be written

more succinctly,

E��
paul ¼

3

2
P�����V2=3

paulr�ðV1=3
paulr��Þ

þ 1

2
g���

���	
���
r�ðV1=3

paulr��Þr�ðV1=3
paulr��Þ

� r
ðV1=3
paulr	�Þ: (D11)

Moving on to George, we find that the nonvanishing
Horndeski’s potentials are

�9 ¼ �3V 00
george�; Fþ 2W ¼ 1

2
Vgeorge (D12)

which gives

K9 ¼ V 00
george�; F þ 2W ¼ � 1

2
Vgeorge: (D13)

The resulting equation of motion is

E ��
george ¼ VgeorgeG

�� þ g���
��
��ðV 0

georger�r��

þ V 00
georger��r��Þ: (D14)

This is readily identified with the equations of motion
obtained upon variation of

R
d4xLgeorge where Lgeorge ¼ffiffiffiffiffiffiffi�g

p
Vgeorgeð�ÞR. It may be written more succintly as

E ��
george ¼ VgeorgeG

�� � ðr�r� � g��hÞVgeorge: (D15)

Finally, we turn to Ringo. The nonzero potentials are given
by

�1¼2V 0
ringoð�Þ

�
1þ1

2
lnj�j

�
; �3¼V 00

ringoð�Þlnj�j: (D16)

At the level of the field Eqs. (10) this means that

K1 ¼ V 0
ringo; K3 ¼ V00

ringo: (D17)

The equations of motion now give

E ��
ringo¼�4P����ðV0

ringor�r��þV00
ringor��r��Þ:

(D18)

The equations of motion are recognized as those obtained
in [26] under metric variation of

R
d4xLringo, where

Lringo ¼ ffiffiffiffiffiffiffi�g
p

Vringoð�ÞĜ. Again, we may write it more

succinctly as

E ��
ringo ¼ �4P����r�r�Vringo: (D19)

APPENDIX E: RADIATIVE CORRECTIONS
ABOUT SELF-TUNING VACUA

To analyze the issue of radiative corrections to the Fab
Four, we first need to choose a classical solution and
identify the effective theory describing graviton and scalar
fluctuations. Since we do not have a preferred cosmologi-
cal solution at this stage, we shall restrict our attention to
an heuristic analysis about a generic self-tuning vacuum,
without specifying the form of the potentials. Our approach
will be somewhat schematic since the full system has a
complicated tensor structure, and a more thorough analysis
would represent an entire project of its own. Nevertheless,
we can still obtain an order of magnitude estimate for the
radiative corrections without paying too much attention to
the particular tensor structure, signs, or the exact value of
order one coefficients. To this end, we write the Fab Four
Lagrangian schematically as follows:
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LFabFour� ffiffiffiffiffiffiffi�g
p ½Vjohnð�Þr�r�ðEinsteinÞ
þVpaulð�Þr�r�rr�ðP� tensorÞ
þVgeorgeð�ÞRþVringoð�ÞĜþ��þ �c ð6@þmÞc �;

(E1)

where �� is the vacuum energy density. The matter cou-
pling is represented by c , a fermion of mass, m. We
neglect any subtleties involving the vierbein and coupling
the spinor in curved space. Now let us expand the metric
about the self-tuning Minkowski solution, g�� ¼ ��� þ
h��. Schematically, we note that,

Einstein;P� tensor;R�X1
n¼1

ð@Þ2hn; Ĝ�@ 
X1
n¼2

ð@Þ3hn;

ffiffiffiffiffiffiffi�g
p �1þX1

n¼1

hn: (E2)

Although we are obviously suppressing tensor structure,
we are explicitly emphasizing the fact that in four dimen-
sions, the Gauss-Bonnet combination is a total derivative,

Ĝ � @ 
 ðtermsinvolvinghÞ. Thus our action can be written
in the form,

LFabFour � Að�; @�; @@�Þ X1
n¼1

ð@Þ2hn þ Bð�; @�Þ X1
n¼2

ð@Þ3hn

þ ��

�
1þ X1

n¼1

hn
�
þ �c ð6@þmÞc

�
1þ X1

n¼1

hn
�
;

(E3)

where A � Vjohnð�Þ@�@� þ Vpaulð�Þ@�@�@@� þ
Vgeorgeð�Þ, and B� V 0

ringoð�Þ@�. Now suppose that the

background solution for the scalar is � ¼ ��ðxÞ. From the
h equation of motion we conclude that, @@ �A� ��, where
‘‘bar’’ denotes ‘‘evaluated on the background.’’4 It follows
that �A� ��x

2.
We now consider fluctuations in � of the form � ¼

��þ �. Working to lowest order in derivatives, we make
the following low-energy approximations,

A� �AþX1
n¼1

@nA

@�n j�¼ ���
n; B� �BþX1

n¼1

@nB

@�n j�¼ ���
n: (E4)

This amounts to neglecting terms such as, pa1þ


þaN�
½ð @NX
@ð@a1�


@aN�ÞÞ=ð@

NX
@�NÞ��¼ ��, where X ¼ A or B, and p is

momentum. Further assuming that p � ½@nA@�n = @nB
@�n��¼ ��,

we find that up to cubic order in the fields, the effective
Lagrangian has the following form in momentum space,

Leff ¼ Kijqip
2qj þMijqiqj þ �c ð6pþmÞc þ ijkqiqjqk

þ niqi �c ðp 6pþmÞc ; (E5)

where we define q1 �
ffiffiffiffi
�A

p
h; q2 � 1ffiffiffi

�A
p @A

@� j�¼ ���. The non-

zero terms above are given by

K11�1; K12�1; M11��2;

n1� 1ffiffiffiffi
�A

p 111� 1ffiffiffiffi
�A

p ðp2þ�2Þ; 112� 1ffiffiffiffi
�A

p p2;

122�
�@2A
@�2

ffiffiffiffi
�A

p

ð@A@�Þ2
�
�¼ ��

p2; (E6)

where we define�2 � ��
�A
� 1=x2, the latter relation follow-

ing on from the fact that �A� ��x
2.

From now on, we will assume for simplicity that

½
@2A

@�2

ffiffiffi
�A

p

ð@A@�Þ2
��¼ �� � 1ffiffiffi

�A
p in order that all the nontrivial three-point

interactions involving q1 and q2 are of similar strength.
Such behavior is consistent with, say, exponential poten-
tials. The theory defined by Eq. (E5) is only valid up to
some momentum cutoff, �UV (not to be confused with the
cosmological constant). The form of (E5) suggests that the

classical interactions become strong at the scale
ffiffiffiffi
�A

p
, and so

we must at least have �UV &
ffiffiffiffi
�A

p
. In any event, we can

only make sense of the background on scales x >��1
UV . It

follows that the mass scale �<�UV , and if we further

assume that �UV <
ffiffiffiffi
�A

p
then we can ensure that the quan-

tum interactions remain weakly coupled.5

Let us now compute the one-loop correction to the bare
Lagrangian (E5). At tree level, the proper 2-vertices are
given by

�ij � Kijp
2 þMij; �c �c � 6pþm

and the proper 3-vertices by

�ijk � ijk; �ic �c � nið6pþmÞ:
The tree-level propagators are just given by the inverse of
the proper 2-vertices,

Gij ¼ �ij; Gc �c � 1

6pþm
;

where we denote the inverse with indices raised, ð��1Þij ¼
�ij. We immediately note that G11 ¼ 0, while G12 �
G22 � 1. This means that we have no h-h propagator at
tree level.
To compute the one-loop correction to the propagator,

Gij, we will need knowledge of the self energy, �ij at one-

loop. Let us postpone this until later. For the moment, let us
concentrate on summing up the relevant 1PI graphs. The
renormalized propagator is given by

4For example, �A ¼ Að ��; @ ��; @@ ��Þ

5Placing�UV strictly below
ffiffiffiffi
�A

p
amounts to saying that the UV

completion of the Fab Four theory kicks in sooner than expected,
and that these include irrelevant operators that already become
important at energies of the order �UV when the classical
interactions are still small.
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Gren
ij ¼GijþGik�klGljþGik�klGlm�mnGnjþ . . . (E7)

			! Gren ¼ Gð1� �GÞ�1: (E8)

It follows that the renormalized proper 2-vertex is given by
�ren
ij ¼ ðGrenÞ�1

ij ¼ �ij ��ij.

We now compute �ij. The relevant graphs are shown in

Fig. 1. We find that

�ij � irsj~r ~s

Z
d4kGr~rðkÞGs~sð6p� kÞ þ ninjðpþmÞ2

�
Z

d4kGc �c ðkÞG �c c ðp� kÞ: (E9)

Now, since �<�UV , we find that
R
d4kGr~rðkÞGs~sðp�kÞ�

Kr~rKs~s logð�UV=�Þ, while
Z

d4kGc �c ðkÞG �c c ðp� kÞ ¼ Ið�UVÞ

¼
8<
:
�2

UV m <�UV

�2
UV

m2 m>�UV

: (E10)

Note that Ið�UVÞ & �2
UV and Ið�UVÞ & �4

UV=m
2. After

some calculation, we can further show that

�ij � p4

�A
logð�UV=�Þ

þ �1i�1j

�
p2�2

�A
logð�UV=�Þ þ ð6pþmÞ2

�A
Ið�UVÞ

�
:

(E11)

Let us use this to compute the one-loop corrections to Kij

and Mij. For p >m, we have �Mij � 0 and

�Kij � p2

�
p2

�A
logð�UV=�Þ þ �1i�1j

�
�2

�A
logð�UV=�Þ

þ�2
UV

�A

Ið�UVÞ
�2

UV

��
: (E12)

Since p2, �2, Ið�UVÞ & �2
UV , it is clear that �Kij < Kij

whenever �A >�2
UV .

For p <m the situation is slightly different. Then we
find that

�Mij��1i�1j

m2Ið�UVÞ
�A

;

�Kij�p2

�
p2

�A
logð�UV=�Þþ�1i�1j

�
�2

�A
logð�UV=�Þ

��
:

(E13)

As before, it is sufficient to take �A >�2
UV to ensure that

�Kij < Kij. We now compare �Mij with Mij, noting that

m2Ið�UVÞ
�2 �A

�m2Ið�UVÞ
��

&
�4

UV

��

; (E14)

where we have used the fact that Ið�UVÞ & �4
UV=m

2 and
�2 � ��= �A. It now follows that �Mij <Mij if we take

�UV < �1=4
� .

We therefore conclude that one-loop corrections to Kij

andMij are suppressed provided we take �UV <
ffiffiffiffi
�A

p
; �1=4

� .

Indeed, we have also checked that these conditions also
ensure that one-loop corrections to the 3 vertices, ijk are

also suppressed. We are almost done. However, it is im-
portant to realize that our analysis also implies a lower

bound on�UV . This is because
ffiffiffiffi
�A

p
� x

ffiffiffiffiffiffiffi
��

p
>

ffiffiffiffiffiffiffi
��

p
=�UV ,

and so we have �UV >
ffiffiffiffiffiffiffiffiffiffiffiffi
��= �A

q
. All necessary conditions

may be encapsulated in the following statement,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Geff��

p
<�UV < �1=4

� : (E15)

Here we have identified Geff � 1= �A, as the (time depen-
dent) strength of the gravitational coupling to matter, in
the linearized regime (that is, neglecting any possible
Vainshtein effects, etc.).
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