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Nonlinear dynamics in cosmological backgrounds has the potential to teach us immensely about our

Universe, and also to serve as prototype for nonlinear processes in generic curved spacetimes. Here we

report on dynamical evolutions of black holes in asymptotically de Sitter spacetimes. We focus on the

head-on collision of equal mass binaries and for the first time compare analytical and perturbative

methods with full blown nonlinear simulations. Our results include an accurate determination of the

merger/scatter transition (consequence of an expanding background) for small mass binaries and a test of

the cosmic censorship conjecture, for large mass binaries. We observe that, even starting from small

separations, black holes in large mass binaries eventually lose causal contact, in agreement with the

conjecture.
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I. INTRODUCTION

de Sitter spacetime is the paradigmatic and, in many
ways, the simplest accelerating universe. It is a maximally
symmetric solution of Einstein’s equations with a positive
cosmological constant, describing a Friedmann-Robertson-
Walker cosmology with a constant Hubble parameter.
Moreover, the large-scale structure of our universe appears
to be that of a de Sitter geometry, since the large body
of observational evidence for a present cosmological accel-
eration is well modeled by a positive cosmological constant
� [1].

Key questions concerning the evolution towards a
de Sitter, spatially homogeneous universe are how inho-
mogeneities develop in time and, in particular, if they
are washed away by the cosmological expansion [2].
Answering them, requires controlling the imprint of the
gravitational interaction between localized objects on the
large-scale expansion. Conversely, the cosmological dy-
namics should leave imprints in strong gravitational phe-
nomena like primordial black hole (BH) formation [3] or
the gravitational radiation emitted in a BH binary coales-
cence, which carry signatures of the cosmological accel-
eration as it travels across the Universe. Identifying these
signatures is not only of conceptual interest but also phe-
nomenologically relevant, in view of the ongoing efforts to
directly detect gravitational radiation.

Finally, dynamics in asymptotically de Sitter spacetimes
could also teach us about more fundamental questions such

as cosmic censorship: two BHs of sufficiently large mass in
de Sitter spacetime would, upon merger, give rise to too
large a BH to fit in its cosmological horizon. In this case the
end state would be a naked singularity. This possibility
begs for a time evolution of such a configuration. Does the
time evolution of nonsingular data containing two BHs
result in a naked singularity, or are potentially offending
BHs simply driven away from each other by the cosmo-
logical expansion?
Tackling all these issues starts with the study of the

coalescence process in BH binaries. Since 2005 [4–6],
extraordinary progress has been achieved in the under-
standing of BH mergers and the associated gravitational
radiation emission, using numerical methods, while the last
few years have witnessed a generalized interest in the
program of extending numerical evolution of BH space-
times to generic backgrounds [7–15]. In this paper we shall
take the first step to bring these techniques to a new
frontier: we report the first numerical evolution of BH
binaries in an asymptotically de Sitter geometry. Even
though we consider a range of values for the cosmological
constant far larger than those which are phenomenologi-
cally viable, these results provide useful insight on the
general features of dynamical BH processes in spacetimes
with a cosmological constant, which can improve our
understanding of our Universe.

II. SCHWARZSCHILD-DE SITTER

The Schwarzschild-de Sitter spacetime, written in static
coordinates reads:*mzilhao@fc.up.pt
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ds2 ¼ �fðRÞdT2 þ fðRÞ�1dR2 þ R2d�2: (1)

The solution is characterized by two parameters; the BH
mass m and the Hubble parameter H and

fðRÞ ¼ 1� 2m=R�H2R2; H �
ffiffiffiffiffiffiffiffiffi

�=3
p

: (2)

fðRÞ has two zeros, at R ¼ R�, R� <Rþ, if

0<mH <mHcrit; mHcrit �
ffiffiffiffiffiffiffiffiffiffiffi

1=27
p

: (3)

These zeros are the location of the BH event horizon (R�)
and of a cosmological horizon (Rþ). If H ¼ 0, then R� ¼
2m; if m ¼ 0, then Rþ ¼ 1=H. If H, m � 0, then R� >
2m and Rþ < 1=H. Since R is the areal radius, the area of
the spatial sections of the cosmological horizon decreases
in the presence of a BH; and the area of the spatial sections
of the BH horizon increases in the presence of a cosmo-
logical constant, as one would intuitively anticipate.

The basic dynamics in this spacetime may be inferred by
looking at radial timelike geodesics. They obey the equa-
tions ðdR=d�Þ2 ¼ E2 � fðRÞ, where � is the proper time
and E is the conserved quantity associated to the Killing
vector field @=@T. In the static patch (R� <R< Rþ), E
can be regarded as energy. From this equation we see that
fðRÞ is an effective potential. This potential has a maxi-
mum at

Rmax ¼ ðm=H2Þ1=3: (4)

Geodesics starting from rest (i.e. dR=d�ð� ¼ �0Þ ¼ 0) will
fall into the BH if R� < R< Rmax or move away from the
BH if Rmax <R< Rþ.

As we will discuss in the next section, the initial data for
an evolution in the de Sitter universe can be computed in a
similar manner as has been done in asymptotically flat
space as long as one chooses a foliation with extrinsic
curvature Kij having only a trace part. Such a coordinate

system is known for Schwarzschild-de Sitter: McVittie
coordinates [16]. These are obtained from static coordi-
nates by the transformation ðT; RÞ ! ðt; rÞ given by

R¼ð1þ�Þ2aðtÞr; T¼ tþH
Z RdR

fðRÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2m=R
p

; (5)

where aðtÞ ¼ expðHtÞ and � � m
2aðtÞr . One obtains

McVittie’s form for Schwarzschild-de Sitter:

ds2 ¼ �
�

1� �

1þ �

�

2
dt2 þ aðtÞ2ð1þ �Þ4ðdr2 þ r2d�2Þ: (6)

For t ¼ constant, one can show that indeed Ki
j ¼ �H�i

j.

By settingm ¼ 0 in McVittie coordinates one recovers a
Friedmann-Robertson-Walker cosmological model with
k ¼ 0 (flat spatial curvature) and an exponentially growing
scale factor. The cosmological horizon H C discussed
above, located at R ¼ 1=H, stands at rH C

¼ 1=ðHeHtÞ.
The spatial sections of H C seem to be shrinking down in
this coordinate system. What happens, in fact, is that the

exponentially fast expansion is taking any observer to the
outside of H C. This is a well known phenomenon in
studies of inflation and, as we shall see, has important
consequences for the numerical evolution.

III. NUMERICAL SETUP

The cosmological constant introduces a new term in the
Hamiltonian constraint obtained after the canonical 3þ 1
decomposition: 3R� KijK

ij þ K2 ¼ 2�, where 3R de-

notes the Ricci scalar associated with the spatial three
metric and Kij, K the extrinsic curvature and its trace;

cf. [17]. In Refs. [18,19] it was observed that imposing a
spacetime slicing obeying Ki

j ¼ �H�i
j, and a spatial met-

ric of the form dl2 ¼ c 4 ~�ijdx
idxj, the equations to be

solved in order to obtain initial data are equivalent to those
in vacuum. In particular, for a system of N BHs momen-
tarily at rest (with respect to the given spatial coordinate
patch), the conformal factor c takes the form

c ¼ 1þX

N

i¼1

mi

2jr� rðiÞj : (7)

There are N þ 1 asymptotically de Sitter regions, as jr�
rðiÞj ! 0,þ1; the total mass for observers in the common

asymptotic region (jr� rðiÞj ! þ1) is
P

imi [19].

For the numerical implementation we make use of the
generalized Baumgarte, Shapiro, Shibata and Nakamura
(BSSN) formulation, e.g. [17,20]. For the case of vanishing
cosmological constant the definition of the BSSN variables

�, ~�ij, ~Aij,
~�k and their evolution in time is given by

Eqs. (1, A1–A8) in Ref. [20].1 For our simulations with
� � 0 we apply two modifications to this formalism.
(i) The evolution equation for K becomes ð@t �L�ÞK ¼
½� � �� � ��, where ½� � �� denotes the ‘‘standard’’ right-
hand side of Eq. (A6) in [20]. (ii) a new variable �� ¼
expð2HtÞ� has been evolved instead of � [2]. The reason is
that for BH evolutions it is crucial to impose a floor value
on �, typically 10�4 or 10�6, which is inconsistent with the
natural behavior of this variable in a de Sitter spacetime:
��1 � expð2HtÞ. In contrast �� ! 1 when r ! 1 for all
times. The evolution equation for �� is given by

@t �� ¼ 2 ��ð�K � @i�
iÞ=3þ �i@i ��þ 2H ��; (8)

and replaces Eq. (A6) of [20]. Boundary conditions for all
quantities are imposed by looking at the behavior of mass-
less perturbing fields in a pure de Sitter background.
Accordingly, we impose the following asymptotic behavior
for all BSSN variables

@tf� @tf0 þ 1

aðtÞ@rfþ f� f0
aðtÞr �Hðf� f0Þ ¼ 0: (9)

1We note a missing factor of � in the final term of Eq. (A6)
therein.
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We should note that we also performed evolutions using
different sets of boundary conditions, to test the indepen-
dence of the results on boundary conditions imposed in a
region with no causal contact with the interaction region.
As far as the behavior and location of the horizons and all
quantities discussed in this paper are concerned, no notice-
able difference could be found.

Our numerical simulations use the LEAN code [20]
which is based on the CACTUS computational toolkit [21]
and the CARPET mesh refinement package [22,23]. The
calculation of black hole apparent horizons (BAHs) and
cosmological apparent horizons (CAHs) is performed with
AHFINDERDIRECT [24,25]. We remark that BAHs, found as

marginally trapped surfaces, indicate in de Sitter space
(with the same legitimacy as in asymptotically flat space)
the existence of an event horizon [26]. CAHs are surfaces
of zero expansion for ingoing null geodesics. In a single
BH case, in McVittie coordinates, the BH event horizon
and cosmological horizon are indeed foliated by apparent
horizons.

The ‘‘expanding’’ behavior of the coordinate system led
us to add a new innermost refinement level at periodic time
intervals so as to keep the number of points inside the
cosmological horizon approximately unchanged. The ne-
cessity for adding extra refinement levels effectively limits
our ability to follow the evolution on very long time scales,
as the number of time steps to cover a fixed portion of
physical time grows exponentially. This feature resembles
in many ways the recently reported work by Pretorius and
Lehner on the follow-up of the black string instability [27].

IV. NUMERICAL RESULTS

As a first test on the numerical implementation, we
performed evolutions of a single BH imposing the
McVittie slicing condition; that is, we use (6) as initial
data and impose

@t� ¼ 4mrHeHt=ðmþ 2reHtÞ2; @t�
i ¼ 0; (10)

throughout the evolution. The analytical solution (6) can
be compared with the numerical results. For a single BH
evolution with m ¼ 1 and H ¼ 0:8Hcrit, the results are
displayed in Fig. 1. Using this slicing, the runs eventually
crash (at t� 12m). By contrast, the standard ‘‘1þ log’’
slicing condition

@t� ¼ �i@i�� 2�ðK � K0Þ; (11)

where K0 ¼ �3H ¼ � ffiffiffiffiffiffiffi

3�
p

, enables us to have long term
stable evolutions. As consistency checks, the areal radii at
the apparent horizons (both BH horizon and cosmological
horizon) are constants in time and have the value expected
from the analytical solution in a single BH spacetime.
Moreover, the areal radius at fixed coordinate radius
evolves with time in the way expected from the exact
solution.

For binary BH initial data, we start by reproducing the
results of Nakao et al. [19], where the critical distance
between two BHs for the existence of a common BAH
already at t ¼ 0 was studied. We thus prepare initial data
(7) withm1 ¼ m2 and take all quantities in units of the total
mass m ¼ m1 þm2. The two punctures are set initially at
symmetric positions along the z axis. The critical value for
the cosmological constant, for which the BH and cosmo-

logical horizon coincide is now mHcrit ¼ 1=
ffiffiffiffiffiffi

27
p

. We call
small (large) mass binaries those, for which H <Hcrit

(H >Hcrit). Our results for the critical separation in small
mass binaries, at t ¼ 0, as function of the Hubble parame-
ter are shown in Fig. 2. The line (diamond symbols) agrees,
after a necessary normalization, with Fig. 14 of [19].
We now consider head-on collisions of two BHs with no

initial momentum, i.e. the time evolution of these data. We
have monitored the Hamiltonian constraint violation level
for cases with and without cosmological constant. We
observe that the constraint violations are comparable in
the two cases and plot in Fig. 3 a snapshot of the
Hamiltonian constraint violation at t ¼ 48m for parame-
ters H ¼ 0:9Hcrit and d ¼ 0:8m, a typical case with non-
zero cosmological constant. We have used two resolutions,
m=160 and m=192 (on the innermost refinement level) and
have rescaled the dashed curve by Q2 ¼ ð192=160Þ2 as
expected for second-order convergence.

For subcritical Hubble constant H <Hcrit ¼ 1=ð ffiffiffiffiffiffi

27
p

mÞ,
we monitor the evolution of the areal radius of the BAHs
and that of the CAH of an observer at z ¼ 0. For instance,
for H ¼ 0:9Hcrit and proper (initial) separation 3:69m we
find that the areal radii of the BAH and CAH are approxi-
mately constant and equal to RBAH ’ 2:36m and RCAH ’
4:16m, respectively. As expected the two initial BAHs, as

FIG. 1 (color online). Conformal factor � for a single BH
evolution with H ¼ 0:8Hcrit using the McVittie slicing condi-
tion, Eq. (10). The obtained numerical results are plotted, along
the z coordinate (symmetry �ð�zÞ ¼ �ðzÞ imposed at z ¼ 0),
against the expected analytical solutions (solid lines).
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well as the final horizon, are inside the CAH. As a com-
parison, a Schwarzschild-de Sitter spacetime with the same
H has RBAH ’ 2:43m and RCAH ’ 4:16m. This suggests
that the interaction effects (binding energy and emission
of gravitational radiation) are of the order of a few per cent
for this configuration.

As the initial separation grows, so does the total time for
merger. For separations larger than a critical value, the two
BHs do not merge, but scatter to infinity. For such scatter-
ing configurations, the simulations eventually exhibit a

regime of exponentially increasing proper distance be-
tween the BAH. Just as in scatters of high energy BHs
[28], here we find that the immediate merger/scatter re-
gimes are separated by a blurred region, where the holes sit
at an almost fixed proper distance for some time; cf. Fig. 4.
By performing a large set of simulations for various cos-
mological parameters H and initial distance d, we have
bracketed the critical distance for the merger/scatter region
as a function of the Hubble parameter H for the ‘‘dynami-
cal’’ case, i.e., the initial coordinate distance between the
BHs such that no common BAH forms. The results are
displayed in Fig. 2 (circles and � symbols).
As expected the critical distance becomes larger as

compared to the initial data value (‘‘t ¼ 0’’ line): there
are configurations for which a common BAH is absent in
the initial data but appears during the evolution (just as in
asymptotically flat spacetime). The numerical results can
be qualitatively well approximated by a point particle
prediction—from Eq. (4). To do such comparison a trans-
formation to McVittie coordinates needs to be done; we
have performed such transformation at McVittie time t ¼
0. Intriguingly, for a particular value of m ’ 0:7, the point
particle approximation matches quantitatively very well
the numerical result; the curve obtained from the geodesic
prediction in Fig. 2 is barely distinguishable from the
numerical results.
A further interesting feature concerns the approach to

the critical line. For an initially static binary close to the
critical initial separation, the coordinate distance d scales
as d ¼ d0 þ at2. In general the acceleration parameter
scales as loga ¼ Cþ � logðd� d0Þ, where � ¼ 1 in the
geodesic approximation. A fit to our numerical results for
H ¼ 0:6Hcrit (dashed curve in the inset of Fig. 2), for

FIG. 2 (color online). Critical coordinate distance for small
mass binaries, from both initial data and dynamical evolutions,
as well as a point particle estimate, as a function of H=Hcrit. We
obtain this estimate from the coordinate distance to the horizon,
Eq. (4), for a particular value of m. The t ¼ 0 line refers to the
critical separation between having or not having a common
BAH in the initial data. The inset shows details of the approach
to the critical line for H ¼ 0:6Hcrit, where a is an acceleration
parameter.

FIG. 4 (color online). Proper distance between the BH hori-
zons as a function of time for the H ¼ 0:9Hcrit, and initial
(coordinate) distance d ’ 0:9m. The two holes stay at approxi-
mately constant distance up to t � 8m after which cosmological
expansion starts dominating.
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FIG. 3 (color online). Hamiltonian constraint violation along
the z-axis at time t ¼ 48m for a simulation with H ¼ 0:9Hcrit

and initial distance d ¼ 0:8m.
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example, yields C ¼ �3:1, � ¼ 0:9 in rough agreement
with this expectation. Details of this regime are given in the
inset of Fig. 2.

Finally, we have performed evolutions with H >Hcrit.
On the assumption of weak gravitational wave release,
such evolutions can test the Cosmic Censorship conjec-
ture since the observation of a merger in such case
would reveal a violation of the conjecture [29]. From
general arguments and from the simulations with H <
Hcrit, we know the cosmological repulsion will dominate
for sufficiently large initial distance and in that case we
can even expect that a CAH for the observer at z ¼ 0
will not encompass the BAHs. This indicates the BHs
are no longer in causal contact and therefore can never
merge. Our numerical results confirm this overall picture.
To test the potentially dangerous configurations, we fo-
cus on the regime in which the BHs are initially very
close. A typical example is depicted in Fig. 5, for a
supercritical cosmological constant H ¼ 1:05Hcrit, and
an initial coordinate distance d=m ¼ 1:5002. Even
though the initial separation is very small, we find that
the holes move away from each other, with a proper
separation increasing as the simulation progresses. In
fact, further into the evolution, a distorted CAH appears,
and remains for as long as the simulation lasts. At late
times, this CAH is spherically symmetric, and has an
areal radius which agrees, to within 10�5, with that of an
empty de Sitter spacetime with the same cosmological
constant. The evolution therefore indicates that the
spacetime becomes, to an excellent approximation,
empty de Sitter space for the observer at z ¼ 0 and
that the BHs are not in causal contact. Observe that
qualitatively similar evolutions can be found in small
mass binaries when the initial distance is larger than
the critical value.

V. FINAL REMARKS

We have presented evidence that the numerical evolu-
tion of BH spacetimes in de Sitter universes is under
control. Our results open the door to new studies of strong
field gravity in cosmologically interesting scenarios. In
closing, we would like to mention that our results are
compatible with Cosmic Censorship in cosmological back-
grounds. However, an analytic solution with multiple
(charged and extremal) BHs in asymptotically de Sitter
spacetime is known, and has been used to study Cosmic
Censorship violations [30]. In collapsing universes a po-
tential violation of the conjecture has been reported,
although the conclusion relied on singular initial data. To
clarify this issue, it would be of great interest to perform
numerical evolution of large mass BH binaries, analogous
to those performed herein, but in collapsing universes. This
will require adaptations of our setup, since the expanding
behavior discussed of the coordinate system will turn into a
‘‘collapsing’’ one, which raises new numerical challenges.
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