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We study the possibility of growth of the electric and magnetic fields in a force-free plasma due strictly

to the gravitational curvature of the spacetime domain where those fields lie. To this end, we identify a

total energy by analogy with the results of classical magnetohydrodynamics. After obtaining the general

evolution equation for the total energy, we apply to it to the fiducial observers in a number of classical

metrics: Schwarzschild, Boyer-Lindquist, Kerr-Schild, Robertson-Walker, and post-Newtonian approxi-

mation. As a rule the shift velocity plays the role of minus the fluid velocity in Newtonian MHD, but the

details are often highly intricate.
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I. INTRODUCTION

One of the most intuitive as well as the most relevant
phenomena in classical electrodynamics is the growth of
magnetic field in an infinitely conducting fluid, or ideal
plasma. Magnetic field lines are transported by the flow as
material points; as a result, when a large gradient of the
velocity stretches the field lines in the appropriate direc-
tion, the magnetic energy grows. When the magnetohydro-
dynamic approximation holds, this may be deduced from
the ideal magnetic induction equation

@B

@t
¼ r� ðv� BÞ ¼ �v � rBþB � rv�Br � v; (1)

where B is the magnetic field and v is the fluid velocity.
This implies that the density of magnetic energy evolves as

1

2

@B2

@t
¼ r �

�
� 1

2
B2v

�
þ B � rv �B� 1

2
B2r � v: (2)

The divergence term accounts for the transport of magnetic
field by the flow; the most important source, B � rv �B, is
the product of the transported field by the original one. The
presence of rv shows that it is the velocity gradient, the
key component on the growth of magnetic energy. In fact,
if for a finite amount of time the magnetic field points
approximately in the direction of an eigenvector of the
stress matrixrvþt rvwith positive eigenvalue, (2) shows
an exponential growth of magnetic energy. Obviously, the
induction equation should be completed with the momen-
tum equation to take account of the backreaction of the
magnetic field upon the flow through the Lorentz force.
The study of the so-called dynamo theory constitutes a vast
undertaking and it is still far from reaching a full explana-
tion of phenomena such as geomagnetism and sunspots.
When the inertial, gravitational, and thermal forces on the
plasma are small as compared to the inertia of the electro-
magnetic field, the Lorentz force will vanish and the
plasma will be unable to affect the field; this is called a

force-free state. There exists a number of important physi-
cal situations where this is valid, notably the solar corona
and black hole magnetospheres outside the accretion disk.
Another such occurrence happens when the plasma is so
tenuous that the density may be taken as zero; since there is
no fluid velocity no speak of, this cannot be a classical
dynamo. There may exist a magnetic field proceeding from
other sources, but the generation of field from empty space
does not exist. This, however, does not take into account
the source terms of the spacetime curvature, which natu-
rally vanish in a Minkowsky metric. As a result, an ob-
server may find that seed electric or magnetic fields may
grow in absence of conducting flow; the fact that this is an
observer-dependent phenomenon does not make it less
real.
The study of electromagnetism in a relativistic setting is

now a well-established discipline. Much of it is already
present in the classical monograph [1], but probably the
interest on this subject started in earnest with the paper of
Blandford and Znajek [2]. Later, McDonald and Thorne
settled the basics in [3,4]. Today relativistic MHD ad-
dresses many subjects, mainly from a numerical viewpoint;
one of the most important, black hole ideal electrodynam-
ics, is well understood in force-free magnetospheres [5,6]
and extends to the much more complex case of several
black holes [7–11]. That gravitational effect may act as a
dynamo source even in axisymmetric conditions, in con-
trast with Cowling’s theorem was shown e.g. in [12,13].
Generally speaking, numerical treatment of relativistic
MHD calls for a 3þ 1 decomposition of spacetime
[14–16] and an appropriate choice of variables to get the
equations in a computationally efficient form [17–20]; it
then may be applied to problems other than black holes
[21] and the ideal condition may be dropped, although the
expression of the resistivity may vary from rather complex
[22] to the impossibly complex [23–25].
One of our examples will consider how the motion of a

fluid may generate a dynamo source even outside of the
fluid body e.g. in a vacuum. We emphasize that we do not
deal with the eventual field created by the fluid and*mnjmhd@am.uva.es
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extending outside it, since the fluid may even be noncon-
ducting; it is only its gravitational effect that may amplify
small seed fields. While this effect is quantitatively small
for medium-sized astrophysical objects, it is conceptually
interesting. The best way to deal with it is to use a post-
Newtonian approach [26–29].

We will consider the evolution of the electromagnetic
energy as viewed from a fiducial observer in a number of
well studied instances: Schwarzschild, Boyer-Lindquist,
Kerr-Schild, Robertson-Walker, and post-Newtonian set-
ting. The starting equations for MHD are detailed in sev-
eral of the papers cited before, but probably the simplest
form occurs in [30,31], which we will take as our starting
point.

II. 3þ 1 ELECTRODYNAMICS
AND THE MHD INVARIANTS

In the presentation of relativistic electrodynamics of
[30,31], the electric D and magnetic B fields as measured
by fiducial observers (FIDOs) are used to define auxiliary
three-dimensional fields

E ¼ �Dþ ��B; (3)

H ¼ �B� ��D; (4)

where � is the lapse function and � the shift vector in the
3þ 1 split of spacetime we are dealing with. (See
Appendix A for an explanation of this and subsequent
vector identities.) Then the Maxwell equations may be
written as

r � B ¼ 0; (5)

1ffiffiffiffi
�

p @tð ffiffiffiffi
�

p
BÞ þ r� E ¼ 0; (6)

r �D ¼ �; (7)

1ffiffiffiffi
�

p @tð ffiffiffiffi
�

p
DÞ � r �H ¼ J: (8)

Here � is the charge density and J the ‘‘absolute’’ current
density. It is related to the current density j as measured by
FIDO by

J ¼ �j� ��: (9)

If we assume a force-free state, the Lorentz force vanishes.
This translates as

�Eþ J� B ¼ 0; (10)

or

�Dþ j� B ¼ 0: (11)

Jointly with (6), this implies

B � D ¼ B � E ¼ j �D ¼ 0: (12)

There are three magnitudes whose integrals in appropriate
domains remain invariant in classical MHD [32]. Provided
a domain� is closed for the flow and for the field (v � n ¼
B � n ¼ 0 at the boundary @�), those are the cross helicity

K ¼ 1

2

Z
�
v � Bd3x; (13)

and the magnetic helicity

H ¼ 1

2

Z
�
A �Bd3x; (14)

where A is a vector potential of B, r�A ¼ B, and the
total (kinetic plus magnetic) energy

E ¼ 1

2

Z
�
v2 þ B2d3x: (15)

In our case the fluid velocity does not play any role andK
has no meaning. E should become just the magnetic energy,
but in classical MHD the displacement current is taken as
zero and the electric field may be ignored, which is no
longer the case. Most of this paper is devoted to the
evolution of energy, but it is worth to study first the
magnetic helicity.

A. Magnetic helicity

Since r �B ¼ 0, provided� is simply connected, there
exists a field A in � such that r�A ¼ B, i.e.

Bi ¼ 1ffiffiffiffi
�

p �ijk@jAk: (16)

(See Appendix A.) We may add any gradient to A with the
same result. Equation (6) becomes

r� ð@tAþEÞ ¼ 0; (17)

and therefore there exists a scalar field � such that

@tA ¼ �Eþr�: (18)

Since (6) may also be written as

@tB ¼ �r� E� 1

2
ð@t log�ÞB; (19)

we obtain

@tðA �BÞ ¼ @tðAiB
iÞ ¼ ð�Ei þ @i�ÞBi þ Aið�ðr �EÞi

� 1
2ð@t log�ÞBiÞ

¼ �E �Bþr� � B�A � ðr �EÞ
� 1

2ð@t log�ÞA � B: (20)

Since E � B ¼ 0 (12), using (A12) with f ¼ 1,

r � ðA� EÞ ¼ B � E�A � ðr �EÞ; (21)

we get
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@tðA � BÞ ¼ r � ð�BþA� EÞ � 1
2ð@t log�ÞA �B: (22)

Let us consider a three-dimensional domain� invariant in
time (meaning that the xi coordinates of the points of� do
not change in time, although the metric itself may).
Assume that B is always orthogonal to the spatial normal
vector at the boundary of�,B � nj@� ¼ 0. Hodge’s theory
guarantees that we may choose a vector potential A such
that A� nj@� ¼ 0. Then, for any function h,

@

@t

Z
�
hdV ¼ @

@t

Z
�
h

ffiffiffiffi
�

p
d3x ¼

Z
�

@h

@t

ffiffiffiffi
�

p þ h
@

ffiffiffiffi
�

p
@t

d3x

¼
Z
�
@thþ 1

2
h@t log�dV:

(23)

Thus (22) implies

@H
@t

¼
Z
�
r � ð�BþA� EÞdV

¼
Z
@�

�B � nþ ðn�AÞ �Ed� ¼ 0:

(24)

The same would hold if we take any other vector potential
Aþrc , because we would simply add c to � in (24).
This guarantees the invariance of magnetic helicity even in
a curved spacetime. Since helicity is a measure of the
knottedness of the magnetic field, this confirms that in a
force-free state magnetic field lines do not tend to become
more tangled in time.

B. Total energy

Substituting (3) and (4) in (6) and (8), we obtain

@tB ¼ � � rB� B � r��r� ð�DÞ þ �B; (25)

@tD ¼ � � rD�D � r�þr� ð�BÞ þ �D� �j; (26)

where � ¼ r � �� @t log�=2. Since D and B are the
electric and magnetic fields as measured by FIDOs and
we want to study their growth, we will study the evolution
of ðB2 þD2Þ=2. This is not the same as the electromag-
netic energy, whose density is

e¼ 1
2ðE �DþB �HÞ¼ 1

2�ðB2þD2Þþ� � ðB�DÞ: (27)

Both e ¼ ��Tt
t and the quantity

B2 �D2 ¼ F�	F
�	; (28)

where F�	 is the Maxwell tensor and T	
� the energy-

momentum one, are covariant, whereas ðB2 þD2Þ=2 de-
pends on the observer and seems to be an odd quantity to
study. Nonetheless, we prefer it to e because the last term
in (27), measuring the component of the Poynting vector
along the shift velocity, does not occur in classical dynamo
theory and we prefer to stay as close as possible to its aims:
to study the increase in size of the fields. As for B2 �D2, it

seems an appropriate variable to study, but it has two
drawbacks: the first one is that its evolution does not yield
a clean equation and it is not easy to interpret the meaning
of its terms. The second is that it does not have to remain
even positive and thus it is hard to interpret it as a measure
of energy. In fact the condition for the magnetohydrody-
namic approximation to hold is that the electric field must
vanish in the fluid frame [30], and so in any other frame
B2 �D2 > 0. If we could guarantee e.g. that B2 �D2 �
rB2 for some positive constant r, the growth of B2 þD2

and the one of B2 �D2 would mean the same thing. This,
however, is not the case. It is shown in [30] that B2 �D2

may actually turn negative inside the ergosphere of a
rotating black hole. Thus, although our results are
observer-dependent, they are robust for as long as the
magnetohydrodynamic approximation holds true, which
is the case we wish to study. Hence we will call ðB2 þ
D2Þ=2 the density of total energy. Since in what follows we
always handleB�D, we will call this the Poynting vector,
although strictly speaking this is D�B.
A simple computation yields

@tB
2 ¼ 2ð@tBÞ �Bþ BiBj@t�ij; (29)

� � rB2 ¼ 2ð� � rBÞ �Bþ BiBjð� � r�ijÞ; (30)

and the same for D. Using (A12),

�r� ð�DÞ �Bþr� ð�BÞ �D
¼ 2r� � ðB�DÞ þ �r � ðB�DÞ: (31)

Therefore, multiplying (25) by B, (26) by D, and adding,
we obtain the main equation

1
2@tðB2þD2Þ¼r�

�
�ðB�DÞþ 1

2ðB2þD2Þ�
�

þr� � ðB�DÞ�B �r� �B�D �r� �D
þ 1

2ðr���@t log�ÞðB2þD2Þ
þ 1

2ð@t�ij�� �r�ijÞðBiBjþDiDjÞ: (32)

Let us look for similarities of (32) and (2). The term within
the divergence, as usual, represents the influx or outflux of
energy through the boundaries. That means that if we
integrate (32) in a three-dimensional domain, there is a
net input of energy if the integral of

�ðB�DÞ þ 1
2ðB2 þD2Þ�; (33)

within @� is positive, and an output if negative. The two
terms in (33) represent the Poynting vector, which classi-
cally represents the flux of electromagnetic energy, plus the
total energy density times the shift velocity. When integrat-
ing in a domain invariant by � (an axisymmetric one in
some simple cases), this term disappears.
The true source terms are the remaining ones. Of these,

the next one admits an immediate analogy:
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� B � r� � B�D � r� �D�B � rv �B: (34)

Therefore minus the shift velocity plays the same role as
the fluid velocity: whenever the transport of B (and/or D)
by �� lies roughly in the same direction as the field itself
we must expect an increase in total energy In other words,
the displacement of spatial coordinates when traveling
from one time slice to the next may cause a dynamo effect
as viewed by a fiducial observer.

The next analogy is

1
2 ðr � �� @t log�ÞðB2 þD2Þ � �B2r � v: (35)

While the right-hand term vanishes when the fluid is
incompressible, the left-hand one is more complex.
Nevertheless, if the spatial metric is time-invariant, and
� is solenoidal and points in the direction of a Killing
vector (@
 in several axisymmetric cases), then the left-

hand term of (35) also vanishes. This, however, does not
always occur, as we will see.

Finally, the remaining term

�

2
ð@t�ij � � � r�ijÞðBiBj þDiDjÞ; (36)

has no counterpart in classical MHD, as it represents the
proper time derivative of the spatial metric. It measures
how the measurement itself varies in time, and it is finite in
some simple cases.

Equation (32) shows that with reasonable metrics we
cannot expect more than exponential growth of the total
energy. That is, if we integrate the density of total energy in
a domain � and obtain

@

@t

Z
�
ðB2 þD2ÞdV � M

Z
�
ðB2 þD2ÞdV; (37)

then the total integral energy in � grows at most like
expðMtÞ. To achieve this we must assume first that the
integral of the divergence in (32) is not positive (i.e. there is
no inflow on energy). Also, let w denote the six-component
vector ðB;DÞ, and let ��ij denote the positive definite bi-

linear form obtained by duplicating �ij ( ��ijw
iwj ¼ B2 þ

D2). Then the remaining terms in (32) may be written as

cijw
iwj; (38)

for some coefficients cij depending on r�, r�, @t log�,
@t�ij � � � r�ij in a straightforward but complex form. If

the bilinear form given in (38) satisfies

jcijwiwjj � M ��ijw
iwj; (39)

for all points within � and all time, the right-hand side of
(32) may be bounded by MðB2 þD2Þ. This involves
bounding the derivatives of the metric coefficients;
although it is essentially a straightforward estimate, the
details are messy and a explicit expression is not worth the
effort. More interesting would be to show the existence of
exponential growth even in the limit of vanishing diffusiv-

ity (which is not the same as taking an ideal plasma as we
have done). This would imply the existence of a fast
dynamo [33], but this subject exceeds our objectives.
Instead we will study (32) in a number of physically
relevant examples, in order to prove that curvature of
spacetime may act as a dynamo in well-known instances.

III. EXAMPLES OF GRAVITATIONAL DYNAMOS

In a number of cases the metric coefficients do not
depend on time. This may occur because the perturbation
of the energy-momentum tensor caused by our time-
varying electromagnetic fields is so small as to be safely
ignored. Also the shift vector may be directed along a
Killing vector, i.e. � � r represents the derivative with
respect to which all the metric terms are invariant. If in
addition r � � ¼ 0, (32) reduces to

1
2@tðB2 þD2Þ ¼ r �

�
�ðB�DÞ þ 1

2ðB2 þD2Þ�
�

�B � r� �B�D � r� �D: (40)

This is the case of several metrics describing spacetime
near a stationary black hole.

A. Schwarzschild metric

It is well-known that the spacetime metric outside a
spherical, stationary, uncharged object of mass m is given
by

ds2 ¼ �
�
1� 2m

r

�
dt2 þ

�
1� 2m

r

��1
dr2

þ r2ðd�2 þ sin2�d
2Þ: (41)

Hence

� ¼ 1� 2m

r
; � ¼ 0; �rr ¼

�
1� 2m

r

��1
;

��� ¼ r2; �

 ¼ r2sin2�: (42)

The remaining coefficients vanish. Then (32) becomes�
1� 2m

r

�
1

2
@tðB2 þD2Þ ¼ r �

��
1� 2m

r

�
2ðB�DÞ

�
;

(43)

i.e.

1

2
@tðB2 þD2Þ ¼ r �

��
1� 2m

r

�
B�D

�
þ 2m

r2
ðB�DÞr:

(44)

Thus the variation of total energy within a set� is given by
the flux of the Poynting vector times � through its bound-
ary, plus the integral of the radial component of the same
vector times 2m=r2. No singularity occurs at the horizon
r ¼ 2m, even if this is set outside the object. Moreover, if
one of the boundaries of the domain is set there, it contrib-
utes nothing to the boundary integral. This is reasonable
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given that from the viewpoint of the FIDO observer time
tends to slow there to zero.

B. Kerr metric in Boyer-Lindquist coordinates

When the object is rotating with specific angular mo-
mentum a, the easiest coordinates describing the geometry
outside the event horizon are those of Boyer-Lindquist. In
this case the FIDO is also a zero angular momentum
observer, i.e. it rotates azimuthally with the same constant
angular velocity. Taking for simplicity m ¼ 1, the metric
may be written as

ds2 ¼ ðz� 1Þdt2 þ �2

�
dr2 þ �2d�2 þ�2sin2�

�2
d
2

� 2azsin2�dtd
; (45)

where

�2 ¼ r2 þ a2cos2�; z ¼ 2r

�2
;

�2 ¼ ðr2 þ a2Þ2 � a2�sin2�; � ¼ r2 þ a2 � 2r:

(46)

Therefore

� ¼ �

�

ffiffiffiffi
�

p
; (47)

�
 ¼ � 2ar

�2
: (48)

The remaining components are zero. Thus

r � � ¼ @t�ij ¼ � � r�ij ¼ 0: (49)

Let e
 denote the unit azimuthal vector. After some

manipulation, (32) may be written as

1

2
@tðB2 þD2Þ ¼ r �

�
�

�

ffiffiffiffi
�

p
ðB�DÞ � ar

�2
ðB2 þD2Þe


�

þ
�
@r

�
�

�

ffiffiffiffi
�

p ��
ðB�DÞr

þ ðBrB
 þDrD
Þ@r
�
2ar

�2

�

þ ðB�B
 þD�D
Þ@�
�
2ar

�2

�
: (50)

While this expression is not so easy to interpret, some
things are clear. There is no singularity either at the event
horizon (� ¼ 0) nor at the simultaneity horizon (z ¼ 1).
Also the source terms vanish for purely toroidal (Br ¼
B� ¼ 0) or poloidal (B
 ¼ 0) fields, which are commonly
used in modelling; only ðB�DÞr acts as a forcing, so at
least one of these fields must have an azimuthal component
and the other a poloidal one if some dynamo effect occurs.

C. Kerr metric in Kerr-Schild coordinates

The Kerr-Schild FIDO rotates with the same angular
velocity as the Boyer-Lindquist one but also moves radi-
ally towards the center. This avoids the coordinate singu-
larity at the event horizon, but one must pay the price of a
complication of the metric. Those coefficients which do
not vanish are

gtt ¼ z� 1; gt
 ¼ �zasin2�; gtr ¼ z;

grr ¼ 1þ z; gr
 ¼ �að1þ zÞsin2�; g�� ¼ �2;

g

 ¼ �2sin2�

�2
: (51)

The terms z, �, � have the same meaning as before. Then

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2r

p ; (52)

�r ¼ z

1þ z
¼ 2r

�2 þ 2r
: (53)

The expression of (32) in these coordinates is messy
and adds little insight. Some things are worth noticing:
although the coefficients are axisymmetric, � is radial, not
azimuthal as before. Hence in �B � r� �B the term

� BrBr

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2r

p @r

�
2r

r2 þ 2rþ a2cos2�

�
(54)

occurs, which shows when the magnetic or electric field
have a radial component, this influences the dynamo. This
agrees well with the motion of the Kerr-Schild FIDO. Also
r � � � 0, � � r�ij � 0, so that most of the terms in (32)

are finite.

D. Robertson-Walker type metrics

We will consider metrics of the type

ds2 ¼ �dt2 þ aðtÞ2gijdxidxj; (55)

where gij does not depend on t. The specific Robertson-

Walker metric describes a homogeneous and isotropic
medium and has the form

ds2 ¼ �dt2 þ aðtÞ2
�

1

1� kr2
dr2 þ r2d�2 þ r2sin2�d
2

�
:

(56)

There is no particular advantage in taking this form, so we
consider general metrics like (55). For all of them � ¼ 1,
� ¼ 0. In cosmology aðtÞ is usually known as the radius of
the Universe, as it measures the time evolution of the
spatial metric. Thus, if we take as usual

�ijðtÞ ¼ aðtÞgij; (57)

and denote by _a the time derivative of a, by _�ij the one of

�ij, (32) reduces to
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1
2@tðB2 þD2Þ ¼ r � ðB�DÞ � 1

2ð@t log�ÞðB2 þD2Þ
þ 1

2
_�ijðBiBj þDiDjÞ: (58)

Since _�ij ¼ 2ð _a=aÞ�ij and � ¼ a6g, we are left with

@tðB2 þD2Þ ¼ 2r � ðB�DÞ � 2
_a

a
ðB2 þD2Þ: (59)

Consider now a domain�ðtÞ whose spatial coordinates are
invariant in time, i.e. it increases or decreases at the same
rate as the Universe. Let �0 be the three-dimensional
domain where these coordinates lie, and assume there is
no flux of the Poynting vector through @�. Then

@t
Z
�ðtÞ

ðB2 þD2ÞdV ¼ @t
Z
�0

ðB2 þD2Þa3 ffiffiffi
g

p
d3x

¼
Z
�0

@tðB2 þD2Þa3 ffiffiffi
g

p
d3x

þ 3a2 _a
Z
�0

ðB2 þD2Þ ffiffiffi
g

p
d3x

¼ _a

a

Z
�ðtÞ

ðB2 þD2ÞdV: (60)

Hence

Z
�ðtÞ

ðB2 þD2ÞdV ¼ aðtÞ
að0Þ

Z
�ð0Þ

ðB2 þD2ÞdV: (61)

Thus the total energy within� grows like the radius of the
Universe, although the volume of � grows like a3. This is
probably linked to the fact that the length of the magnetic
and electric field lines grows like a. Obviously one cannot
expect to have force-free plasma in a significant portion of
the Universe, but in a region where this holds the very
expansion of the Universe has a dynamo effect.

E. Dynamos in the post-Newtonian approximation

We will consider in greater detail the dynamo effect
generated by a fluid motion outside the fluid domain.
This could be extended to the motion of a number of point
masses instead of a continuous fluid. When the mass is not
concentrated enough to generate a black hole, the post-
Newtonian approximation is often very precise, and as
such it has been used to compare general relativity with
alternative theories [26]. Naturally the effects e.g. in the
Solar System are in the limits of measurability, so we
should not expect a large growth of the magnetic field in
the vicinity of any astrophysical object due to its gravita-
tional pull; nonetheless the very possibility is interesting,
no matter how marginal is the quantitative result. A brief
account of the post-Newtonian general relativitistic metric
may be found in Appendix B, to which we refer for
notation; also a number of cumbersome calculations are

there. We will repeat some definitions for convenience. For
x outside �, let

wiðxÞ¼�7

2

Z
�

�ðx0Þviðx0Þ
jx�x0j d3x0

�1

2

Z
�

�ðx0Þðvðx0Þ � ðx�x0ÞÞðxi�x0iÞ
jx�x0j3 d3x0: (62)

� is the density of the fluid and v its velocity. Then

ð�B � r� � B� 1
2B

iBjð� � r�ijÞ þ 1
2ðr � �ÞBiBiÞðxÞ

¼ ð�BiBj@iwj þ 1
2jBj2DivwÞðxÞ þOð�ðxÞ�3Þ þOð�2Þ;

(63)

where jBj2 ¼ BiBi, Divw ¼ @iwi, �ðxÞ represents the dis-
tance of x to� and � is the order of magnitude of the main
variables with respect to the speed of light. The main term
in (63) is expected to behave like �ðxÞ�2. An identical
formula holds for D.
Let U be the Newtonian potential generated by �,� the

internal energy, p the pressure. Since the formulas are
already complex enough, we will assume that the fluid
motion is stationary; all of these magnitudes are indepen-
dent of t. For all points in �, let

G ¼ 2�þ 4�v2 þ 4�Uþ 2��þ 6p: (64)

Then, for points outside �,

r�ðxÞ¼1

2

Z
�

Gðx0Þ
jx�x0j3 ðx�x0Þd3x0 þOð�ðxÞ�3ÞþOð�2Þ:

(65)

After some calculations on (64), one finds

�
�BiBj@iwjþ1

2
jBj2Divw

�
ðxÞ

¼
Z
�

�ðx0Þ
jx�x0j3

�
�3ðvðx0Þ �BðxÞÞððx�x0Þ �BðxÞÞ

þ3

2
vðx0Þ � ðx�x0ÞjBðxÞj2

�1

2

ðvðx0Þ � ðx�x0ÞÞððx�x0Þ �BðxÞÞ2Þ
jx�x0j2

�
d3x0: (66)

This may be written in a simpler form. Let

e ðx;x0Þ ¼ x� x0

jx� x0j ; (67)

yk the component of the vector y parallel to e, y? the

component orthogonal to it. Then
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�
�BiBj@iwj þ 1

2
jBj2Divw

�
ðxÞ ¼

Z
�
�ðx0Þvkðx0Þð�2BkðxÞ2 þ ð3=2ÞB?ðxÞ2Þ � 3v?ðx0ÞB?ðxÞBkðxÞ

k x� x0j2 d3x0: (68)

The same formula holds for D instead of B. Let us denote
the integral in (68) by CðB;xÞ. We see that it depends in a
complex way of the components of B (respectfully D)
parallel or orthogonal to the directional vector e. For the
remaining source term, using (65),

r�ðxÞ � ðB�DÞðxÞ¼1

2

Z
�
Gðx0Þðx�x0Þ � ðB�DÞðxÞ

jx�x0j3 d3x0

¼1

2

Z
�
Gðx0Þðeðx;x

0Þ;BðxÞ;DðxÞÞ
jx�x0j2 d3x0:

(69)

The contribution of this term is positive if the Poynting
vector B�D points in the same direction as the outward
directional vector e;G plays the role of a density of energy
in �. Let EðB�DÞ denote the integral in (69). For a
volume V outside the fluid, far enough from it so that
�ðxÞ2 � �ðxÞ3 for all points in V, and ignoring terms of
order Oð�2Þ, (32) yields the approximation

d

dt

1

2

Z
V
ðB2 þD2ÞdV �

Z
V
EðB�DÞðxÞ þ CðB;xÞ

þ CðD;xÞd3xþ boundary terms:

(70)

The expression of E is intuitive enough: every point x0 in�
adds to the dynamo at a point xwhen the directional vector e
is aligned with the Poynting vector. The contribution de-
pends on the densityG of energy of the fluid at x0. However,
C is more difficult to interpret, depending as it does on the
parallel and perpendicular components of the fields in a
complex manner. For a simple case, such a magnetic (or
electric) field parallel to e, we are left with�2vkB2

k; hence,
the fluidmust go away from x in order to add to the dynamo.
By contrast, if the field is perpendicular to e, we have
ð3=2ÞvkB2

?, so the fluid should approach x. It does not
seem easy to visualize the actions involved in such an effect.

IV. CONCLUSIONS

While the study of magnetohydrodynamics in a relativ-
istic context is a vast and well-established discipline, the
growth of the magnetic field due to matter motion (the
dynamo effect) does not command the same interest.
There is little doubt that the main cause which generates
dynamos in a classical setting, i.e. the motion of a charged
fluid which stretches magnetic field lines, remains valid in
any circumstance. However, when the gravitational field is
strong enough to modify the curvature of spacetime in a
significant way, additional terms acts as sources (or sinks)
for the magnetic and electric fields. (The electric field

cannot be ignored as it is in classical MHD.) We start
from the general relativistic Maxwell equations, which in
the formgiven byKomissarov are simple enough to allowus
to use well-known vector identities. Allowing the presence
of a conducting fluid would add too many parameters to the
problem, so we have restricted ourselves to force-free plas-
mas. In a sense this is welcome, because it emphasizes the
absence of charged fluid motion as the main cause of field
growth. We consider the part of electromagnetic energy
density due strictly to the size of electric and magnetic
fields, and obtain an evolution equation for it. While this
quantity is observer-dependent, it agrees better with the
spirit of classical MHD and is a robust measure of energy
for as long as the magnetohydrodynamic approximation
remains valid. It involves in an essential way the lapse
function and the shift velocity of the 3þ 1 metric, as well
as the time derivatives of the metric coefficients. In a sense,
minus the shift velocity plays an analogous role to the fluid
velocity in classical MHD. To understand better the evolu-
tion of these quantities, we study several well-known met-
rics to seewhen their fiducial observerswould conclude that
a dynamo is acting. Those are the Schwarzschild, Boyer-
Lindquist, and Kerr-Schild metrics, which are useful to
study force-free fields in the vicinity of a black hole, a group
of metric including Robertson-Walker’s to see if cosmo-
logical growth acts a dynamo, and finally the dynamos
generated by a moving (uncharged) fluid outside the body
of the fluid. This last example involves the post-Newtonian
approximation, and in all probability its real effects would
be extremely small; nonetheless, it possesses a theoretical
interest. In all these cases, gravitation may act as a dynamo
source, although often in a rather involved way.
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APPENDIX A: VECTOR IDENTITIES

In the 3þ 1 split the spacetime is foliated by spacelike
hypersurfaces parameterized by the time coordinate t. The
metric is written as

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (A1)

i.e.

ds2 ¼ ð�2 � �2Þdt2 þ 2�idx
idtþ �ijdx

idxj; (A2)

where �i ¼ �ij�j, �2 ¼ �ij�
i�j. � is the so-called

lapse function and � the shift vector. The local FIDO has
four-velocity
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1

�

�
@

@t
� �i @

@xi

�
; (A3)

and its proper time 
 is related to the universal time t by
d
 ¼ �dt. Thus, for any evolving magnitude,

@f

@

¼ 1

�

�
@f

@t
� � � rf

�
; (A4)

which shows that minus the shift velocity �� acts as a
classical velocity in the lagrangian derivative. This is the
source of several dynamo effects.

Classical vector operator act on the spatial coordinates.
We will use the following ones:

�ijk is the Levi-Civita pseudotensor. Its value is 1 when
fi; j; kg is a positive permutation of f1; 2; 3g,�1 if negative,
0 if some index repeats. �ijk ¼ �ijk is not a tensor. Also

� ¼ detð�ijÞ; �ijk ¼ 1ffiffiffiffi
�

p �ijk; �ijk ¼ ffiffiffiffi
�

p
�ijk:

(A5)

The cross product (also called the vector product) is

ðu� vÞi ¼ �ijku
jvk ¼ ffiffiffiffi

�
p

�ijku
jvk;

ðu� vÞi ¼ �ijkujvk ¼ 1ffiffiffiffi
�

p �ijkujvk:
(A6)

Thus

ðu� vÞ � w ¼ wiðu� vÞi ¼ wiðu� vÞi ¼ 1ffiffiffiffi
�

p �ijkwiujvk

¼ ffiffiffiffi
�

p
�ijkw

iujvk: (A7)

The divergence of v is denied by

r � v ¼ 1ffiffiffiffi
�

p @ið ffiffiffiffi
�

p
viÞ: (A8)

The curl of v is denied by

ðr � vÞi ¼ �ijk@kvj ¼ 1ffiffiffiffi
�

p �ijk@kvj: (A9)

Thus

r � ðu� vÞ ¼ 1ffiffiffiffi
�

p @ið�ijkujvkÞ; (A10)

r� ðfvÞ ¼ rf� vþ fðr � vÞ: (A11)

Therefore

� ðr� ðfuÞÞ � vþ ðr� ðfvÞÞ � u
¼ 2rf � ðv� uÞ þ fr � ðv� uÞ; (A12)

which mimics the Euclidean formula. Finally

ð� � rvÞ � v ¼ 1
2�

i@ið�jkv
jvkÞ þ vjvk�i@i�jk

¼ 1
2� � rv2 þ vjvkð� � r�jkÞ: (A13)

APPENDIX B: POST-NEWTONIAN
APPROXIMATION

Consider a fluid of density � and velocity v evolving
in a subset � of the three-dimensional Euclidean space.
Assume that the Newtonian potential U, v2, internal en-
ergy �, and ratio pressure/density p=� are of an order �
small as compared with the speed of light 1. A second-
order approximation, the first one being the Newtonian
mechanics, to the metric generated is as follows:

g00¼�1þ2U�2U2þ4�1þ4�2þ2�3þ6�4þOð�3Þ;
(B1)

g0i ¼ � 7

2
Vi � 1

2
Wi þOð�5=2Þ; (B2)

gij ¼ ð1þ 2UÞ�ij þOð�2Þ; (B3)

where

UðxÞ ¼
Z
�

�ðx0Þ
jx� x0j d

3x0; (B4)

�1ðxÞ ¼
Z
�

�ðx0Þvðx0Þ2
jx� x0j d3x0; (B5)

�2ðxÞ ¼
Z
�

�ðx0ÞUðx0Þ
jx� x0j d3x0; (B6)

�3ðxÞ ¼
Z
�

�ðx0Þ�ðx0Þ
jx� x0j d3x0; (B7)

�4ðxÞ ¼
Z
�

pðx0Þ
jx� x0jd

3x0; (B8)

ViðxÞ ¼
Z
�

�ðx0Þviðx0Þ
jx� x0j d3x0; (B9)

WiðxÞ ¼
Z
�

�ðx0Þðvðx0Þ � ðx� x0ÞÞðxi � x0iÞ
jx� x0j3 d3x0: (B10)

Recall that these are integrals with respect to the Euclidean
measure, and that all scalar products have Euclidean mean-
ings. To emphasize this point wewill write e.g. jBj2 instead
of B2 for any vector field.
In the 3þ 1 presentation of the metric,

�ij ¼ gij; �j ¼ gjig0i; �2 ¼ gij�
i�j;

�2 ¼ gijg0ig0j � g00:
(B11)

All the integrals above converge if �, �v2, ��, p, and �vi

are Lebesgue integrable in�, except for �2, for which we
need an additional condition, since U occurs in the inte-
grand. If � is also square integrable, it is enough. In
particular this holds if � is bounded and all the previous
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magnitudes are also bounded in�. In this case we may add
that they are differentiable, and their derivatives are as
follows: if

FðxÞ ¼
Z
�

fðx0Þ
jx� x0j d

3x0; (B12)

then

@iFðxÞ ¼
Z
�

fðx0Þ
jx� x0j3 ðxi � x0iÞd3x0; (B13)

and this integral is also convergent. This covers all the
functions in (B4)–(B9), even (B6), sinceU is bounded. For
(B10), we have

@iWjðxÞ ¼
Z
�
��ðx0Þðvðx0Þ � ðx� x0ÞÞðxi � x0iÞðxj � x0jÞ

jx� x0j5

þ �ðx0Þviðx0Þðxj � x0jÞ
jx� x0j3

þ �ðx0Þvðx0Þ � ðx� x0Þ
jx� x0j3 �ijd

3x0: (B14)

We see that the functions are divided by terms of the
form jx� x0j, whereas their derivatives are divided by
jx� x0j2, which yields an easy estimate of the decay of
these magnitudes for points away from�. If we denote by
�ðxÞ the distance of a point x to �, then there exists a
constantM such that for any of the functions F occurring in
(B4)–(10),

jFðxÞj � M

�ðxÞ ; jrFðxÞj � M

�ðxÞ2 : (B15)

Notice that although this bound becomes singular when x
approaches �, neither the functions F nor rF do.

For our calculations we will ignore the remainders of
order Oð�2Þ, although later we will add them to the final
expressions. Let h ¼ 1þ 2U, wj ¼ g0j. Then

�ij ¼ 1

h
�ij; � ¼ 1

h
w: (B16)

Therefore

@i�
j ¼ � @ih

h2
wj þ 1

h
@iwj; (B17)

� � r�ij ¼ �k@kðh�ijÞ ¼ w � rh
h

�ij; (B18)

r � � ¼ 1ffiffiffi
g

p @ið ffiffiffi
g

p
�iÞ ¼ 1

h3=2
@i

�
h3=2

wi

h

�

¼ w � rh

2h2
þ Divw

h
: (B19)

We write Divw instead of r � w to emphasize that this is
the Euclidean divergence @iwi. Therefore, for any vector
field B, the sum

� B � r� � B� 1
2B

iBjð� � r�ijÞ þ 1
2ðr � �ÞBiBi;

(B20)

occurring in (32), equals

B � rh

h
w �B� BiBj@iwj � w � rh

4h
jBj2 þ 1

2
jBj2Divw:

(B21)

Since as stated the terms in wðxÞ decrease as �ðxÞ�1, those
in rh, rw like �ðxÞ�2, and 1=hðxÞ ¼ 1þOð�ðxÞ�1Þ, we
may write the term in (B20) in a point x outside of � as�
�BiBj@iwj þ 1

2jBj2Divw
�
ðxÞ þOð�ðxÞ�3Þ þOð�2Þ:

(B22)

The first two terms should decay as �ðxÞ�2. If we consider
points at some distance from �, we may ignore the re-
mainders as inferior by an order of magnitude.
As for �2, from (B11) we find

�2 ¼ jwj2
h

� g00: (B23)

g00 is defined in (B1). �2 may be evaluated as follows: let
G be the function defined in �,

G ¼ 2�þ 4�v2 þ 4�Uþ 2��þ 6p: (B24)

Then, with a minor abuse of notation,

�2 ¼ jwj2
h

þ 1þ 2U2 �
Z
�

Gðx0Þ
jx� x0jd

3x0: (B25)

Thus

r�2 ¼ �jwj2rh
h2

þ 2w � rw
h

þ 2UrU

þ
Z
�

Gðx0Þ
jx� x0j3 ðx� x0Þd3x0: (B26)

As before, the first three terms decrease like �ðxÞ�3, while
the fourth one behaves like �ðxÞ�2. Since

1

2�ðxÞ ¼ 1

2
þOð�ðxÞ�2Þ; (B27)

we may write

r�ðxÞ ¼ 1

2

Z
�

Gðx0Þ
jx� x0j3 ðx� x0Þd3x0 þOð�ðxÞ�3Þ

þOð�2Þ: (B28)

(B22) and (B28) are our main estimates for analyzing the
dynamo effect of the body in �.
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