
FRW solutions and holography from uplifted AdS/CFT systems

Xi Dong,1 Bart Horn,1 Shunji Matsuura,1,2 Eva Silverstein,1 and Gonzalo Torroba1

1Stanford Institute for Theoretical Physics, Department of Physics SLAC, Stanford, California 94305, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

(Received 31 December 2011; published 21 May 2012)

Starting from concrete AdS/CFT dual pairs, one can introduce ingredients which produce cosmological

solutions, including metastable de Sitter and its decay to nonaccelerating Friedmann-Robertson-Walker.

We present simple Friedmann-Robertson-Walker solutions sourced by magnetic flavor branes and analyze

correlation functions and particle and brane dynamics. To obtain a holographic description, we exhibit a

time-dependent warped metric on the solution and interpret the resulting redshifted region as a Lorentzian

low energy effective field theory in one fewer dimension. At finite times, this theory has a finite cutoff, a

propagating lower-dimensional graviton, and a finite covariant entropy bound, but at late times the lower-

dimensional Planck mass and entropy go off to infinity in a way that is dominated by contributions from

the low energy effective theory. This opens up the possibility of a precise dual at late times. We reproduce

the time-dependent growth of the number of degrees of freedom in the system via a count of available

microscopic states in the corresponding magnetic brane construction.
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I. INTRODUCTION: KEEPING IT REAL

At present we lack a complete theoretical framework for
cosmology. One approach to this problem is to try to
organize cosmology holographically, building on the suc-
cess of the AdS/CFT correspondence. Doing so is not
trivial for a number of reasons related to the tendency of
cosmological solutions to mix with each other and the
absence of a simple timelike boundary. Dynamical gravity,
or an integration over metrics, is part of the putative lower-
dimensional dual in various attempts so far to generalize
the AdS/CFT correspondence to cosmology and describe a
complete set of observables; this includes dS/CFT [1] at
least as it is interpreted in [2],1 dS/dS [4] and FRW/CFT
[5]. Despite the lower-dimensional gravity, the formulation
of a significant part of the system in terms of a large matter
sector is a nontrivial step, one which has recently been put
on more solid footing microscopically [6]. Nonetheless it is
important to understand whether a more precise formula-
tion might exist.

The structure of UV-complete cosmological solutions
will likely be useful in answering this question.2 In this
paper, we present and analyze concrete cosmological
solutions which are sourced by a generic ingredient—
magnetic flavor branes—used to uplift AdS/CFT systems
[7] to cosmology. With sufficiently many magnetic flavor

branes, no nonsingular static solutions exist, but time-
dependent solutions do exist which are nonsingular at
late times; these solutions are nonsingular at all times if
obtained from a bubble nucleation process. (Another inter-
esting class of dynamical F-theory solutions was studied in
the earlier work [8], which emphasized the point that no
physical restriction on the number of 7-branes exists once
the generic possibility of time dependence is included.) We
will introduce a holographic interpretation of this class of
solutions, employing the following basic strategy.
First, we find a warped metric on our spacetime and

interpret the two highly redshifted regions in terms of a
pair of low energy effective theories. This is a general-
ization of the observation in [4] that metastable
d-dimensional de Sitter spacetime is a warped compactifi-
cation with two throats and propagating (d� 1)-
dimensional gravity.3 This line of reasoning of course
goes back to the original arguments [10,11] that the highly
redshifted core region of a stack of branes should be
equivalent to a field theory, since it represents low energy
degrees of freedom decoupled from the ambient Planck
scale. We verify that particles are stable in the infrared
region, though color branes out on their approximate
Coulomb branch propagate up the throat. We call this
phenomenon ‘‘motion sickness;’’ as we will discuss later,
it is not fatal.
The next step is to compute the (d� 1)-dimensional

Newton constant: this reveals that the (d� 1)-dimensional
graviton decouples at late times, in a way analogous to a
Randall-Sundrum theory with the ‘‘Planck brane’’ taken
off to infinity. This, and the growth of the entropy at
late times [12], is consistent with the possibility of an

1For this example, there may at least be a subset of observables
which correspond to a precise nongravitational CFT as described
in [2], where the CFT computes the wave function of the
Universe. However, this wave function is a functional of the
metric which one must ultimately integrate over. See the recent
work [3] for more discussion of this question.

2In the somewhat analogous context of black hole physics,
study of concrete string theoretic examples led to microstate
counts and ultimately the AdS/CFT correspondence.

3More recently, a description in terms of two CFTs coupled to
gravity was motivated in another way by [9].
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ultimately precise holographic dual decoupled from grav-
ity. Although gravity decouples in this promising manner,
we will see that the way the field theory induces a growing
Planck mass is through a rapidly growing number of
degrees of freedom, rather than via a growing cutoff on
the effective field theory. That is, the system at late times
behaves like a theory which is holographic and nongravita-
tional, but with a finite cutoff for the dual theory. Cutoff
quantum field theory is in principle well-defined, but many
questions remain about its detailed implementation in
gauge/gravity duality.4

In fact, we find a nontrivial match between the time-
dependent number of degrees of freedom in the (d� 1)-
dimensional dual theory, computed using the gravity side
in three different ways, with an estimate of the number of
available microscopic degrees of freedom on the magnetic
flavor branes responsible for the uplift to cosmology. The
states we count are drawn from the infinite algebras dis-
cussed in [14], cut off at finite time by backreaction and
topological consistency criteria. As wewill describe below,
as currently formulated this count is consistent with basic
group-theoretic requirements, but is not fully derived. It is
subject to two assumptions about unknown quantities—the
first is a plausible conjecture made but not proven in [14],
and the second regards the number of charged matter
representations which arise. With these assumptions, our
count consistently reproduces the gravity-side result in a
general class of solutions in different dimensions in a way
that appears nontrivial, and generalizes the parametric
microscopic estimate of the dS entropy of [6] to FRW
cosmologies. These results seem rather encouraging, and
motivate further study of time-dependent field theories
with sufficiently many magnetic flavors to provide candi-
date duals for cosmological solutions.

Our formulation of the holographic dual as a Lorentzian-
signature field theory (or effective field theory) maintains
standard reality and unitarity properties; in particular, the
number of degrees of freedom in the matter sector is a
positive real number. There are other interesting ap-
proaches to de Sitter or FRW holography which define
the dual on a spacelike (Euclidean) surface, and it would
be interesting to study the relation between these different
formulations.5 It may be useful to note, however, that
because of the ultimate requirement of integrating over
metrics, the argument for defining the theory on the bound-
ary of the spacetime does not trivially generalize from AdS

to dS or FRW solutions. Microscopically, large-radius
de Sitter solutions in string theory do not arise as a simple
continuation of AdS solutions, which turns the flux imagi-
nary in the Freund-Rubin solution. The physically consis-
tent metastable dS solutions that are known arise instead by
uplifting AdS solutions with a more complicated collection
of stress-energy sources. As we will see, defining a
Lorentzian-signature dual via our warped metric does not
a priori force us to forego a complete dual description: our
warped solution decompactifies at late times, somewhat
analogously to Randall-Sundrum with the Planck brane
removed to infinity.
Another basic motivation for this work is to further

develop our understanding of the structure of time-
dependent and cosmological solutions in string theory.
We compute correlation functions of massive and massless
particles in our geometry; the latter requires a careful
treatment of pseudotachyon modes [17]. The structure of
these correlation functions should tell us much more about
holography on our solutions, the detailed analysis of which
we leave for future work. One intriguing feature is that the
two-point function of Kaluza-Klein modes is a power law,
rather than exponential.
This paper is organized as follows: In the next section

we present FRW solutions sourced by magnetic flavor
branes uplifting Freund-Rubin compactifications. We ex-
hibit a warped metric on the solution, indicating a low
energy sector corresponding to an effective field theory.
In Sec. III, we show that particles remain stably in the
throat at late times, and color branes move up the throat.
This theory is cut off and coupled to gravity at finite times,
but the Planck mass and the number of degrees of freedom
go off to infinity at late times in a manner that is dominated
by contributions of the warped region, raising the possi-
bility that the dual completes to a precise nongravitational
theory in this limit. We compute the number of field
theoretic degrees of freedom in several macroscopic
ways in Secs. II and IVB, and also present, in Sec. IVA,
a count of brane degrees of freedom which agrees with the
macroscopic predictions given certain assumptions. In
Sec. V, we study the two-point correlation functions of
scalar fields in our solutions, in the massive and massless
cases; a full derivation is relegated to the Appendix.
Finally, we conclude in Sec. VI, and outline directions
for future study.

II. FRW SOLUTION SOURCED BY MAGNETIC
FLAVOR BRANES

We would like to understand whether FRW cosmology
in d dimensions, which occurs, for example, after decays of
metastable de Sitter, admits a (d� 1)-dimensional holo-
graphic dual description. Our strategy is to look for a
warped metric on the FRW solutions derived from uplifted
AdS/CFT solutions in string theory. We then interpret the
infrared region of the warped metric—the region of strong

4There has been interesting recent progress in relating radial
slices to renormalization group scale in AdS/CFT [13], but the
detailed dictionary remains to be understood, and is subject to
various important subtleties such as the fact that different types
of gravity-side particles have different relationships between
their energy and their radial position.

5In particular, an interesting approach to a concrete example of
dS/CFT can be found in [15]. See also [16] for a formal analytic
continuation of certain cosmological computations.
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gravitational redshift—in terms of a dual effective field
theory (EFT). Finally, we analyze whether the EFT might
become a self-contained quantum field theory (QFT) in the
far future, since the entropy bound and the (d� 1)-
dimensional Planck mass go to infinity in that limit.

A. Magnetic flavor branes

The simplest AdSd=CFTd�1 dual pairs arise from
Freund-Rubin compactifications on a positively curved
Einstein manifold Y stabilized by flux. These can be under-
stood as the near-horizon backreacted solution obtained
from color branes placed at the tip of a cone C with base Y.

We will uplift to cosmological solutions by adding
heavy branes which reverse the sign of the curvature of
Y. Consider first the AdS5 � S5 solution of type IIB string
theory, with the S5 viewed as a Hopf fibration over a base
CP2 (there are many similar examples with S5 replaced by
a more general Einstein space Y). As discussed in [7], there
is a natural ingredient which competes with the internal
curvature: ðp; qÞ 7-branes at real codimension two on the
CP2, wrapping the Hopf fiber circle and extended along
AdS5. Such branes can be described using F theory [18],
which geometrizes the varying axio-dilaton, and one finds
that 36 7-branes are required to exactly cancel the curva-
ture of the CP2. Similarly, 24 7-branes are required to
exactly cancel the curvature of a CP1, which arises as
the base of the Hopf fibration in examples with a compac-
tification on S3, such as AdS3 � S3 � T4. In the latter case,
alternatively one can use ‘‘stringy cosmic 5-branes’’[19,20],
elliptic fibrations with the torus fiber coming from the T4.
See for instance [6], where SC5-branes together with other
ingredients are used to cancel the curvature of CP1.

Let us denote the elliptic fibration over the base
B ¼ CPm—the CPm with 7-branes at real codimension

two—by B̂, and the entire uplifted compactification by Ŷ.
Parametrize the number n of 7-branes or stringy cosmic
branes in all cases by defining a quantity

�n � n� nflat; (2.1)

such that �n ¼ 0 corresponds to a flat uplifted base B̂.
In the AdS case �n < 0, such configurations including

their backreaction on the geometry can be described rela-
tively simply using F theory. On the field theory side, these
systems have magnetic flavors, arising in the brane con-
struction from ðp; qÞ strings stretching between D3-branes
and the ðp; qÞ 7-branes [21,22].

Bringing 7-branes together in a time-independent man-
ner generically introduces singularities. For sufficiently
few 7-branes, it is understood how these singularities are
resolved physically, giving enhanced symmetries and/or
light matter fields. In a gauged linear sigma model (i.e.
toric) description of the geometry of the elliptic fibration,
singularities appear as additional branches in the target
space [23]. A criterion for physically resolved singularities
of these static solutions [7] is that the central charge of the

additional branch be less than that of the main target space
of the sigma model. In this case, one may formulate a brane
construction with 7-branes intersecting at the tip of a cone,
at which the color branes are placed.
This geometry and the backreacted solutions were de-

scribed in [7,24]. Its salient features are captured by the
five dimensional theory obtained by compactifying on S5

and adding the potential energy of the 7-branes. The ef-
fective potential in five-dimensional Einstein frame is

U �M5
5ðRfR

4Þ�2=3

�R2
f

R4
þ �n

R2
þ N2

c

R8R2
f

�
; (2.2)

where Rf

ffiffiffiffiffi
�0p

is the size of the fiber circle S1f, and R
ffiffiffiffiffi
�0p

is

the size of the uplifted base B̂. The first term is from the
metric flux of the S1 fiber, and the second is the net
contribution of the internal curvature and 7-branes. In
this F-theory setting there is generically no global mode
of gs. There are additional scalar fields from 7-brane
moduli, which are relatively flat as discussed in [7]. A
simple case to consider is one in which the dilaton is fixed
at an SLð2;ZÞ invariant point, via the mechanisms dis-
cussed in [24]. The third term comes from Nc units of
5-form flux corresponding to the color branes. The middle
term will concern us most in this work; it comes from the
7-brane sources.
The 7-branes wrap AdS5 � S1f times a two-cycle in the

base, and in the dimensionally reduced theory we do not
keep track of their positions in the compact directions. As
reviewed in [7], the geometrical understanding [18] of
7-branes as an elliptic fibration makes it possible to calcu-
late their leading contribution to the curvature, and hence
to the potential energy (2.2). One can study the geometry
by realizing it as the target space of a gauged linear sigma
model [23]. In this description, the beta function for the
size of the negatively curved internal space has the same
scaling but opposite sign as in the case of a CPm, by an
amount �n that depends on the number of 7-branes. The
deformations of the 7-brane configuration are superpoten-
tial terms in the sigma model and are intrinsically lighter.
We can for convenience focus on configurations where the
string coupling has been fixed at gs � 1, enforced by
appropriate combinations of 7-branes; it is also interesting
to consider the orientifold limit [25]. The static solutions
with �n < 0 are then described by minima of (2.2) [7].
Bringing �n � 0 branes together in a static configura-

tion leads to singularities which violate the above condi-
tion for allowed singularities, with the central charge of the
singular branch being larger than that of the main target
space. From the point of view of the description (2.2),
�n � 0 leads to a decompactification limit. Moreover, in
such a configuration the states that transform under the
infinite algebras realized on ðp; qÞ 7-branes [14], which are
broken for separated 7-branes, appear to come down to
zero mass. These effects hint that an infinite set of degrees
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of freedom may ultimately be involved in formulating
physics in the generic case of �n > 0, and we will return
to this point after developing a controlled gravitational
description of uplifted solutions.

In general, we should allow for time-dependent back-
reacted solutions [8]. As we will explain shortly, the
7-branes need not come together anywhere at late times,
and in appropriate examples (such as [6]). An initial sin-
gularity may be avoided by matching to a Coleman-
de Luccia tunneling process in the past (as described in
the Appendix), though we will in any case focus on the
late-time physics in the present work.

B. Solution and warping

Let us now introduce our solutions for �n > 0. It is
interesting to analyze this class of solutions both from a
ten-dimensional perspective and using the d-dimensional
description obtained by compactification on the uplifted

space Ŷ. Below, we will exhibit a precise ten-dimensional
(10D) solution, but let us begin with the d-dimensional
description.

In the case d ¼ 5, we have an effective potential (2.2) for
the scalar fields R and Rf. With �n > 0, the 7-branes

overcompensate the contribution of the curvature to the
effective potential, so they turn the base CP2 into a net

negatively curved space B̂, whose curvature scales withR as
if it were a hyperbolic space. All terms in the potential (2.2)
are positive in this case, and we look for time-dependent
solutions where the radii evolve with time (along with the
FRW scale factor aðtÞ in the d-dimensional theory).

As we will see momentarily, the d-dimensional FRW
equations along with the equations of motion for the scalar
fields R and Rf admit a time-dependent solution where at

late times R and the scale factor expand with time, and the
fiber circle Rf remains constant. The dominant term in the

potential energy (2.2) in this solution is the term propor-
tional to �n=R2, since the others decay more quickly at
large R and fixed Rf. In particular, the 5-form flux corre-

sponding to the color branes is very subdominant at late
times. We will make contact with this in Sec. III, when
analyzing the dynamics of color branes in our solutions.

Specifically, we find the scale factor aðtÞ / t, while

R / t3=7 and Rf approaches a constant. The mass of a

Kaluza-Klein (KK) mode on the uplifted base is

mKK � nKK
R

� M5

ðR4RfÞ1=3
/ nKK

t
; (2.3)

where the second factor here is the conversion to Einstein
frame. This means that, as in the original examples of
AdS/CFT [10], there is no hierarchy between the internal
dimensions and the curvature scale in d dimensions. It is
likely possible to use the method developed in [7] to obtain
a hierarchy of scales, but as we will see shortly our solution
is very simple in 10 dimensions.

These scalings can be obtained self-consistently by not-
ing that in this limit the dominant contribution to the
energy is given by the 7-branes and curvature, while the
fluxes dilute faster. The FRW equations become

4
€a

a
¼ � 28

3

_R2

R2
þ 2

9
M2

5ðR4RfÞ�2=3 �n

R2

12
_a2

a2
þ 12

K

a2
¼ 28

3

_R2

R2
þ 2

3
M2

5ðR4RfÞ�2=3 �n

R2
:

(2.4)

HereK is the spatial curvature of the FRWmetric. Looking
for a solution of the form aðtÞ ¼ ct, the first equation gives

RðtÞ ¼
�
7M5

3
ffiffiffiffiffiffi
42

p �n1=2

R1=3
f

�
3=7

t3=7: (2.5)

Plugging in the second equation yields K ¼ �1 (i.e. an
open FRW solution) and c2 ¼ 7=3 with aðtÞ ¼ ct. Note
that there will also be a dynamical equation for RfðtÞ;
however, analyzing this equation of motion shows that it
is self-consistently frozen in place in the regime above.
This and other features of the solution will be very clear in
the 10D solution wewill present shortly. Numerical studies
of the equations of motion for aðtÞ, RðtÞ, and RfðtÞ show
that the solution above is an attractor for a range of initial
conditions.
Let us now analyze the 10D solution. So far we have

focused on ðp; qÞ 7-branes, but similar considerations ap-
ply more generally to FRW cosmologies sourced by other
branes realized as elliptic fibrations, such as stringy cosmic
5-branes. More generally, other types of sources may be
involved. For example, in decay from the metastable dS3
solution in [6], the uplifting contribution arises in part from
stringy cosmic 5-branes but also from other sources such as
NS5-branes. In general, it is interesting to consider the
FRW phase corresponding to the leading source at late
times. The elliptic fibrations we consider here are natural
sources which contribute to the curvature at leading order,
and we will continue to focus on this case here.
We then consider a d-dimensional FRW spacetime and

an internal space that can be described as a Hopf fibration
over a base CPm. As we argued before, as far as the
evolution of the size R of the base goes, the uplifted base

B̂ (the elliptic fibration over CPm) behaves like a hyper-
bolic space H2m of real dimension 2m. Compactifying on
this, we find the following Ricci-flat string-frame metric,
which is hence a vacuum solution of Einstein’s equation:

ds2s ¼ �dt2s þ t2s
c2

dH2
d�1 þ

t2s
ĉ2

dB̂2
2m þ dx2f; (2.6)

where c2 ¼ ðdþ 2m� 2Þ=ðd� 2Þ, ĉ2 ¼ ðdþ 2m� 2Þ=
ð2m� 1Þ, and

dH2
d�1 ¼ d�2 þ cosh2�dH2

d�2 (2.7)

is the metric on a noncompact, unit hyperboloid of dimen-

sion d� 1. dB̂2
2m is the metric on our uplifted, negatively

DONG et al. PHYSICAL REVIEW D 85, 104035 (2012)

104035-4



curved compact base space of dimension 2m. Although in
this work we are concerned with generic configurations
with �n > 0 branes uplifting AdS/CFT solutions, the so-
lution above also describes the dynamics of a compactifi-
cation on S1 �H2m=�, a circle times a compact hyperbolic
space. In that case, the dilaton is meaningful (as oppposed
to in F theory); nevertheless, since our solution is Ricci-flat
in 10D string frame, the dilaton is not sourced in this
solution.

In this solution we only included the effects of the flavor
branes. In the �n < 0 case of AdS/CFT, the flux corre-
sponding to color branes plays a leading role in the back-
reacted solution. However, in the present case at late times
the flux dilutes away and is subdominant, as we empha-
sized above. Furthermore, since the contribution from the
metric flux [first term in (2.2)] can also be neglected and the
fiber size becomes constant at late times, we have approxi-
mated the fiber direction by an S1 factor in the geometry.6 In
some cases, there may be additional transverse dimensions
(such as the T4 in models based onAdS3 � S3 � T4), which
we suppressed in the metric (2.6).

Let us now compactify down to d dimensions. The

volume of the compactification manifold Ŷ is

Vol ðŶÞ / RfR
2m / t2ms ; (2.8)

where we have not kept track of time-independent coef-
ficients and have used R� ts from (2.6). Going to the
d-dimensional Einstein frame

gðdÞ��;E ¼
�
VolðŶÞM8

10

Md�2
d

�
2=ðd�2Þ

gðdÞ��;s; (2.9)

we get an FRW metric of the form

ds2E ¼ �dt2 þ c2t2dH2
d�1; (2.10)

where

c2 ¼ dþ 2m� 2

d� 2
; t / tc

2

s : (2.11)

Cases of particular interest are uplifts of AdS5 � S5, with
c2 ¼ 7=3 (d ¼ 5, m ¼ 2) and uplifts of AdS3 � S3 � T4,
with c2 ¼ 3 (d ¼ 3, m ¼ 1). This reproduces the results

obtained using the d-dimensional theory: RðtÞ / t1=c
2
, in

agreement with (2.5).
Since c > 1, the scale factor is expanding faster than in

curvature dominated FRW (a.k.a. flat spacetime in Milne
coordinates). In general,�n > 0 corresponds to c > 1, and

we will find it very useful to contrast our results for c > 1
with the case of flat space (c ¼ 1). Our holographic inter-
pretation will apply consistently for c > 1, and will not
apply to flat spacetime.
We may change variables by setting

t ¼ ð�2 � w2Þc=2; � ¼ 1

2
log

�þ w

�� w
; (2.12)

and the metric (2.10) becomes

ds2 ¼ c2ð�2 � w2Þc�1ðdw2 � d�2 þ �2dH2
d�2Þ: (2.13)

This metric exhibits warping for c > 1, which corresponds
to �n > 0. We want to understand the spectrum and dy-
namics of degrees of freedom that are redshifted to low
energies.
It is useful to consider a closely related time coordinate

tUV ¼ �c, giving metric

ds2 ¼ c2ðt2=cUV � w2Þc�1dw2

þ
�
1� w2

t2=cUV

�
c�1ð�dt2UV þ c2t2UVdH

2
d�2Þ: (2.14)

On the UV slice w ¼ 0, we have tUV ¼ t. In this metric the
warp factor

fðw; tUVÞ �
�
1� w2

t2=cUV

�ðc�1Þ=2
(2.15)

and the metric component gww depend only weakly on the
coordinate time at late times:��������

@tUVf

@wf

���������
��������
@tUVgww
@wgww

���������t�ð1�1=cÞ
UV ! 0 as tUV ! 1;

(2.16)

where in the last equivalence we have evaluated a point at

constant warp factor, i.e. constant w=t1=cUV . This is not a
covariant quantity, but neither is the redshifted energy and
the small value of the ratio (2.16) may simplify some
calculations at late times.
There are other ways of writing the FRW spacetime as a

warped product metric: as a simple example, we may pass
to the conformal time T ¼ 1

c logðtUV=‘Þ in the (d� 1)-

dimensional theory, where ‘ is an arbitrary length scale.
We can absorb the scale factor ctUV (in d� 1 dimensions)
into the warp factor and write the warped metric as

ds2 ¼ c2ð‘2=ce2T � w2Þc�1dw2 þ c2‘2e2cT

�
�
1� w2

‘2=ce2T

�
c�1ð�dT2 þ dH2

d�2Þ: (2.17)

The dual theory now lives on a static (nonexpanding) space
R�Hd�2. This is similar to the AdS/CFT correspondence
written on global versus Poincaré slicing, or other slicings
with an expanding or static hyperboloid [26]. These vari-
ous slicings describe a dual theory living on different

6Although the metric flux is subdominant in the solution, it
does affect the topology; in particular, the fiber circle remains
contractible. This feature will play a role in our count of brane
degrees of freedom in Sec. IVB. The nontrivial fibration of the
circle is a feature of the AdS/CFT dual pair which we are
uplifting to FRW cosmology, so the metric flux may be an
important element even though its energetic contribution is
subdominant. More generally, it would be interesting to develop
a holographic duality for the solution without any metric flux.
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spacetimes. In our case, a complication is the presence of
time-dependent couplings and (in general) a time-
dependent metric for the field theory. Furthermore, since
the dual theory is not conformal, the conformal transfor-
mation that removes the factor e2cT also modifies the
running couplings, as we discuss in Sec. II E. Other,
more general slicings may lead to even more complicated
dual descriptions: for instance, using Gaussian normal
coordinates starting from a central spatial slice (hyperbolic
or otherwise) gives different w dependences in the tempo-
ral and spatial warp factors. Although we will stick to the
simpler example given above in this work, it would be
interesting to consider the existence of dual theories for
more general slicings.

Again, using the warped metric given above, we wish to
determine what light (meaning energy� bulk Planck mass
Md) degrees of freedom there are. Given a region of strong
gravitational redshift, i.e. a region of light states in our
gravity solutions, the system may have a right to a field
theory description as in the low energy regime of the usual
AdS/CFT.

The proper time interval between two events of coordi-
nate interval �tUV is

�Tðw; tUVÞ ¼ �tUV

�
1� w2

t2=cUV

�ðc�1Þ=2
: (2.18)

This redshift factor is, of course, 1 for c ¼ 1 (flat space-
time), and for c > 1 it is smaller than 1. This indicates
gravitational redshift for probes of proper energy �1=�T
(fixed in units of the d-dimensional Planck mass Md).
Energies of such probes are redshifted down by a factor
of fðw; tUVÞ defined in (2.15). As we mentioned above, this
is time-dependent as well as dependent on the ‘‘radial’’
scale w, but its w dependence is stronger (2.16). Slices of

constantw=t1=cUV are then slices of constant scale. In terms of
the coordinates given in (2.12), this corresponds simply to
slices of constant �.

This effect arises in the absence of any flux, suggesting
that the flavor branes (or more generally the geometry they
source) support dynamical degrees of freedom in the EFT
region.7

It is important to note that basic degrees of freedom such
as KK modes, oscillating closed strings, 7-7 strings and
junctions, D-branes, and so on do not have fixed masses in

units of Md. Their masses depend on t ¼ ðt2=cUV � w2Þc=2,
leading to t2=cUV � w2 dependence in �T in (2.18). This is

analogous to radially-dependent masses in AdS/CFT.8 For
KK modes on the uplifted base, KK and winding modes on
the fiber, strings, and 7-7 strings/junctions we obtain,
respectively,

mKK / 1

t
; mf / mstr / 1

t1�1=c2
; m77 / 1

t1�2=c2
:

(2.19)

We will analyze their dynamics in Sec. III. For our ex-
amples, the specific values for the exponents are, respec-
tively,�1,�4=7,�1=7 for m ¼ 2, d ¼ 5, and�1,�2=3,
�1=3 for m ¼ 1, d ¼ 3.

C. Planck mass in d� 1 dimensions and its
decoupling at late times

As in Randall-Sundrum (RS) theory [27], we can com-
pute the (d� 1)-dimensional Newton constant GN;d�1 by

dimensionally reducing on the w direction. This yields

1

GN;d�1

� Md�3
d�1 �Md�2

d

Z t1=cUV

0
dw

ffiffiffiffiffiffiffi�~g
p

~gtUVtUV (2.20)

�Md�2
d

Z t1=cUV

0
dw

�
1� w2

t2=cUV

�ððd�2Þðc�1Þ=2Þ
t1�1=c
UV �Md�2

d tUV;

(2.21)

where by ~g�� we mean the factors that appear in the

d-dimensional metric but not in the (d� 1)-dimensional
metric. Thus at finite times, we have a warped compacti-
fication with propagating (d� 1)-dimensional gravity as in
the dS/dS correspondence [4], but as tUV ! 1 gravity
decouples.
This raises the possibility of a more precise field theory

dual in the far future. A simple but nontrivial test of this
possibility is the following. In a general warped compacti-
fication [28], a diverging (d� 1)-dimensional Planck mass
can arise in (at least) two ways:
(1) A leading contribution may come from the warped

throat (the effective field theory), as in RS with a
Planck brane moving off to infinity. In this case, as
the Planck brane goes off to infinity the holographic
dual becomes a pure QFT decoupled from gravity,
i.e. the effective field theory completes to a full
QFT.

(2) Instead, in a more general warped compactification
the leading contribution may come from the volume
of the compactification manifold, with the warped
throat subdominant. In this case, the effective field
theory does not complete to a full QFT which cap-
tures the full system.

7In some examples of AdS/CFT obtained by color branes
probing the tip of a cone, there are closed string moduli at the
tip, for example, ones corresponding to Fayet-Iliopoulos terms.
The question was raised in those examples of whether these
modes are dynamical. There, the fact that the cone itself was
unwarped supports the conclusion that the Fayet-Iliopoulos term
is a parameter, not a field. In more general cases such as ours,
however, the answer may be different.

8For example, in AdS/CFT compactified on a circle, momen-
tum modes on the circle become radially-dependent masses for
which the redshift factor precisely cancels out, and there are
many other examples one could consider.
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Let us check which of these possibilities is realized in
our system. First, let us elaborate on the behavior (1) above
in the case of RS. This consists of an AdS5 spacetime

ds2 ¼ r2

R2
AdS

ð�dt2 þ d~x2Þ þ R2
AdS

r2
dr2 (2.22)

up to a finite radial scale rUV. The four-dimensional Planck
mass M4 is given by dimensionally reducing on the radial
direction:

M2
4 �M3

5

Z rUV

0
dr

ffiffiffiffiffiffiffi�~g
p

~gtt �M3
5

r2UV
RAdS

� ~Ndof;AdS�
2
c;RS:

(2.23)

In the last relation here, which indicates that the Planck
mass is induced by the field theory degrees of freedom, we
used that the central charge of the field theory scales like
~Ndof;AdS �M3

5R
3
AdS [29] and that the energy scale of the

cutoff is �c;RS ¼ rUV=R
2
AdS.

For our purposes, it will be useful to belabor this result in
the following way. First, let us break up the calculation
(2.23) into two pieces: the integral over r from 0 to �rUV,
and the rest of the integral from �rUV to rUV, where � is a
fixed constant between 0 and 1. This separates an IR
contribution r < �rUV (corresponding to energies below
�rUV=R

2
AdS) from a UV contribution for r > �rUV, using

an arbitrary reference scale �rUV=R
2
AdS that is fixed in

terms of the UV cutoff as we increase rUV. The ratio of
the two contributions is a constant as the Planck brane
moves off to infinity. In particular, the infrared region
continues to contribute a leading piece to the four-
dimensional Planck mass.

Let us analyze the same question in our FRW case. First,
define a scale M� dividing the UV and IR regions of our
throat via

M�
MUV

� � ) w� ¼ t1=cUV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2=ðc�1Þ

p
: (2.24)

In terms of this, we can work out the ratio of UV to IR
contributions to the Planck mass (2.21), obtaining

UV

IR
¼

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=ðc�1Þ

p
0 dyð1� y2Þðd�2Þðc�1Þ=2R
1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2=ðc�1Þ
p dyð1� y2Þðd�2Þðc�1Þ=2 ¼ constant:

(2.25)

Thus our setup behaves similarly to case (1), raising the
possibility of a pure field theory dual capturing the FRW
physics at late times.

D. Covariant entropy bound

An important quantity that characterizes a field theory is
its number of degrees of freedom. For example, if we cut
off a theory with a lattice, we require some number ~Ndof of
degrees of freedom per lattice point to define it. That is, we
denote the number of field theoretic degrees of freedom by

~Ndof . We would like to understand this quantity in our
putative holographic theory, generalizing the analysis
given in [29]. There, an infrared cutoff on the radial
coordinate in AdS was related to a UV cutoff in the
corresponding QFT. Even in ordinary AdS/CFT this UV
cutoff is not understood very precisely; however, it is not
literally a lattice cutoff since it does not break the isome-
tries of the space on which the field theory lives, and the
UV/IR relation works differently for different types of
probes on the gravity side. However, gravitational calcu-
lations of the entropy of thermal states and of the central
charges in the field theory reproduce the behavior expected
from an identification of ~Ndof with the number of degrees
of freedom per lattice point, and we may revert to that
language.
We will compute the time dependence of this quantity in

several distinct ways in the present work, including a count
of available states on the magnetic flavor branes, obtaining
the same answer. On the gravity side, a measure of the
number of degrees of freedom is given by the covariant
entropy bound [30] on the entropy passing through an
observer’s past light sheet. As emphasized in [12], for
FRW solutions (unlike the metastable de Sitter phase) the
entropy bound grows to infinity at late times.
Let us work this out explicitly in our solution. We start

by choosing a spherically symmetric set of coordinates on
(2.10)

ds2E ¼ �dt2 þ c2t2
�

dr2

1þ r2
þ r2d�2

d�2

�
: (2.26)

Consider an observer at the origin (r ¼ 0) in our space at
time t0. The past light cone of this observer is foliated by
spheres of size � ¼ rðtÞct, where rðtÞ is determined by

Z r

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ¼ �
Z t

t0

dt

ct
) rðtÞ ¼ 1

2

��
t0
t

�
1=c �

�
t

t0

�
1=c

�
:

(2.27)

For c > 1, the sphere grows to a maximal size �max / t0
and then begins to shrink (because of the contraction of the
FRW universe) as we go back in time.
The conjectured entropy bound [30] is given by the area

of this maximal sphere in Planck units. From this we
obtain, substituting the time t0 of the observer by t,

S �Md�2
d td�2: (2.28)

(For c ¼ 1, the sphere never reaches a maximal size, but
instead keeps growing, indicating a diverging entropy
bound even at finite time.) In our case, the entropy going
to infinity at late times also suggests the possibility of a
precise dual of our FRW phase when t ! 1; this jibes with
the infinite warped throat we develop at late times in our
solution.
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E. Basic relations among parameters

We are now in a position to list some basic relations
between several quantities in our system: the (d� 1)-
dimensional Planck mass, the number of field theoretic
degrees of freedom ~Ndof in the EFT, and the cutoff �c of
the EFT. These relations will enable us to solve for their
dependence on time tUV. We will derive ~Ndof indepen-
dently using the quasilocal stress tensor below in
Sec. IVB, obtaining the same result for its dynamics as
is predicted by the simple considerations of this section.

First, since the (d� 1)-dimensional Planck mass is
largely induced by the field theory (as we just found in
the previous subsection), we have the relation

~N dof�
d�3
c � 1

GN;d�1

� Md�3
d�1 �Md�2

d tUV; (2.29)

where �c is the cutoff of our effective field theory.
In our (d� 1)-dimensional theory, we expect a non-

trivial quantum energy density. If we assume that this is
an order one fraction of the source of Hubble expansion in
the dual, we obtain a second relation comes from the
Friedmann equation in the (d� 1)-dimensional theory:

H2
d�1 ¼

1

t2UV
� ~Ndof�

d�1
c GN;d�1: (2.30)

Here Hd�1 ¼ 1=tUV is Hubble in the (d� 1)-dimensional
theory obtained by dimensional reduction on w in (2.14).

Putting these together, we find

~N dof �Md�2
d td�2

UV ; �c � 1

tUV
: (2.31)

This result is consistent with the entropy discussed in the
last subsection if we assume the basic relation

S � ~Ndof�
d�2
c Vold�2; (2.32)

where Vold�2 � td�2
UV is the volume of space in the dual

theory. The result (2.31) is also consistent with the result
for ~Ndof below in (4.2).

It is also possible to define the theory on a nonexpanding
lattice using the coordinatization (2.17), where the (d� 1)-
dimensional theory lives on R�Hd�2. In this case a
calculation analogous to (2.21) gives

~N dof�
d�3
c � 1

GN;d�1

�Md�2
d ‘eðd�2ÞcT �Md�2

d td�2
UV

‘d�3
:

(2.33)

In this case, the Friedmann equation requires that

0 ¼ H2
d�1 ¼ GN;d�1�þ 1

‘2
; (2.34)

where ‘ is the curvature scale of the hyperbolic spatial
slices. One implication of this is that the energy density
must compensate the time dependence in the Newton
constant. If we assume again that the energy density is of
order ~Ndof�

d�1
c , we obtain the relation

GN;d�1
~Ndof�

d�1
c � 1

‘2
: (2.35)

In this case, we then get

~N dof �Md�2
d td�2

UV ; �c � constant: (2.36)

Again, this agrees with the covariant entropy bound and
with the independent derivation of ~Ndof we find below in
(4.2). Note that the cutoffs in (2.31) and (2.36) are related
by a conformal rescaling: to obtain the effective field
theory on R�Hd�2, we have to remove the overall factor
e2cT in (2.17) by a conformal transformation. This should
be compared with the corresponding term in (2.14) where
there is no such factor. Since our theory does not have a
conformal symmetry, this conformal transformation
changes the running coupling constants and other scale-
dependent quantities. We can see this explicitly in that the
gravitational coupling GN;d�1 is different in the two cases.

For both slicings, the final result agrees with the scaling
(2.28) from the covariant entropy bound, since at late times
t� tUV. Thus if we think of the cutoff as a lattice cutoff,
the system builds up entropy by accumulating degrees of
freedom per lattice point, rather than by increasing the
number of lattice points. In Sec. IVA we will provide an
independent count of ~Ndof using the magnetic brane con-
struction, finding that the infinite store of degrees of free-
dom on our�n > 0 set of 7-branes, cut off by backreaction
criteria, precisely reproduces this behavior. As described
above, these results are consistent with the possibility of a
complete nongravitational field theory dual at late times,
albeit one with a finite cutoff for the field theory. The
growth of ~Ndof is consistent with this interpretation: in a
field theory with time-dependent masses and couplings, the
number of degrees of freedom below a fixed cutoff scale
will generically change with time. In our case, it increases
rapidly.

III. DYNAMICS OF PARTICLES AND BRANES

So far, we have presented our d-dimensional cosmologi-
cal solution, exhibited a warped metric on it, and derived
basic properties of its (d� 1)-dimensional description, a
candidate holographic dual. In this section we study the
motion of particles and branes in our geometry. Their
motion in the highly redshifted (infrared) region is related
to the long distance dynamics of the putative holographic
dual. For simplicity we will consider the d ¼ 5 case;
general dimensionalities d can be studied in a similar
fashion.
Our goals are twofold. First, we would like to better

understand the role of the color sector in our theory, given
that the 5-form flux is subdominant in the solution and
warping arises without it. Second, we want to check
whether the infrared degrees of freedom in the highly red-
shifted (warped) throat are stable. In general, it would be
interesting to understand what additional criteria—beyond
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the presence of strong warping—might need to be satisfied
in order to obtain a holographic dual capturing the low
energy degrees of freedom (see [31] for some earlier dis-
cussion of this question). One natural physical criterion is
that the strength and variation of thewarp factor be such that
light particles remain in the warped region.

The results are as follows: color branes (D3-brane do-
main walls) are not stable in the IR region of our warped
geometry, but particles [massive (2.19) and massless] do
remain in the infrared region. These facts can be seen in a
simple way from the original metric (2.6) (they follow
equivalently from a similar analysis using the warped
metric).

In the case d ¼ 5, m ¼ 2, the ten-dimensional string-
frame metric is (2.6)

ds2 ¼ �dt2s þ t2s
c2

ðd�2 þ cosh2�dH2
3Þ þ

t2s
c2

dB̂2
4 þ dx2f;

(3.1)

where dH2
3 is the metric on a unit three-dimensional hyper-

bolic space H3 and c2 ¼ 7=3. As mentioned above, slices
of constant scale in our warped metric (2.14) translate into
slices of constant �, and the two infrared regions corre-
spond to large j�j.

The isometries of the four-dimensional hyperboloid, and
the corresponding conserved momenta, imply that particles
that start moving out in the � direction continue propagat-
ing to larger j�j as time goes on. Massless particles head
toward null infinity, traveling on null geodesics d� ¼
cdts=ts, so that

�masslessðtsÞ ¼ c logðts=t0Þ: (3.2)

Massive particles at a fixed point onH3 are governed by the
Born-Infeld action

Smassive ¼ �
Z

dtsmðtsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2t2s=c

2
q

; (3.3)

where the particle mass mðtsÞ can depend on time in our
system. In particular, the string-frame counterparts of
(2.19) are

mKK;s / 1

ts
; mstr;s / mf;s / 1; m77;s / ts: (3.4)

The conserved momentum is

p ¼ �L
� _�

¼ mðtsÞ _�t2s=c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2t2s=c

2
p : (3.5)

A particle at fixed � ¼ �0 (with _� ¼ 0 initially) stays at
�0; a particle moving toward the bottom of either throat
continues to do so as ts ! 1. We can solve for _� using
(3.5), giving

_� ¼ cp

ts
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmðtsÞ2t2s=c2

p : (3.6)

From this we see that in all cases (3.4), _� ! 0 at late times.

At this point we should note that the two-dimensional
slice of the spacetime traced out by t and � (at a fixed point
on the H3) is simply flat space, with metric �dt2 þ
c2t2d�2. In that subspace alone, the low energy region
we are defining is a version of a Rindler horizon. Since
c > 1 the spacetime is not flat overall, and the curvature
affects generic particle trajectories and quantum mechani-
cal wave packets, but a classical calculation of test particle
trajectories does not sense this effect.
We get the same result, of course, by working directly in

the d-dimensional warped metric given above. There, to
analyze particle dynamics we solve the equations of
motion for a particle with a mass of the form mð�;wÞ �
ð�2 � w2Þ	 [with 	 given by (2.19) for some of the basic
particles in our system]. In our solution, this is obtained by
varying the action

Smassive ¼ �
Z

d�mð�;wÞcð�2 � w2Þðc�1Þ=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðdw=d�Þ2

q
: (3.7)

At late �, this yields a solution of the form

w ¼ c1�þ c2
�b

(3.8)

with b ¼ 2	þ ðc� 1Þ. In the examples discussed above
(KK modes, closed strings, and 7-7 strings) b � �1, with
equality occurring for the case of KK modes. Again, this
means that such particles stay in the infrared region we just
defined if they start out there. Note that when transformed
back into regular coordinates t, �, the subleading piece is
important to allow the particles to propagate in time.
A D3-brane, on the other hand, experiences a force

pushing it up the warped throat. Its Born-Infeld action in
10D string frame is of the form

SD3 ��T3

Z
dts

�
ts
c

�
3
cosh3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2t2s=c

2
q

; (3.9)

where T3 is the D3-brane tension. The cosh3� factor
introduces a force pushing the brane to smaller values of
j�j. It is straightforward to verify, as we will do momen-
tarily, that as a result of this force the D3-branes come up
the throat. We will call this phenomenon ‘‘motion
sickness.’’9

Let us start from (3.1) in the dimensionless conformal
time ~t ¼ c logðts=‘Þ, where ‘ is an arbitrary length scale.
The equation of motion that follows from the Dirac-Born-
Infeld action is

d

d~t

�
e4~t=ccosh3�

�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02p

�
þ3e4~t=ccosh2�sinh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q

¼0; (3.10)

9This is a relative of Fermi seasickness, though the term
‘‘technicolor yawn’’ [32] most colorfully illustrates the connec-
tion between this class of phenomena and warped throats.

FRW SOLUTIONS AND HOLOGRAPHY FROM UPLIFTED . . . PHYSICAL REVIEW D 85, 104035 (2012)

104035-9



where we took the D3-brane position to depend on time
only, and here �0 � d�=d~t represents the derivative with
respect to the conformal time.

Deep in the IR of either of our warped throats (e.g. the
one with � � 1), (3.10) can be reduced to a first order
differential equation for �0. Integrating this equation re-
veals that after some time (~t > 1) the probe D3-brane
propagates up the throat and escapes from the IR region,
reaching the UV slice � ¼ 0 within a finite time.10 It is
interesting to note that it takes longer and longer for the
branes to escape to this slice at later and later times ts: from
(3.9), we have j _�j< c=ts.

Let us remark briefly on the significance of the motion
sickness and its time dependence, which should provide
useful clues as to the nature of the dual theory. First, it is
worth recalling that motion of color sector eigenvalues up
the throat occurs in some familiar examples of AdS/CFT.
One example is the case ofN ¼ 4 supersymmetric Yang-
Mills theory on a compact negatively curved space [26,33],
where the eigenvalues are subject to a negative quadratic
potential. This theory is unitary, because the eigenvalues
take forever to get to infinity. The system is properly
treated by putting the eigenvalues in a scattering state.
Another example is Fermi seasickness [34], where finite
density effects draw color branes up the warped throat. If
one cuts off these theories by embedding them in a warped
compactification then the effect would take a finite time as
long as the Planck mass is finite.

A new element in the present case is that the magnetic
branes support some warping by themselves, and the color
sector is subdominant in the solution. As we have just seen,
particles stay down the warped throat created by the mag-
netic branes, suggesting that the holographic dual may be
built from degrees of freedom living on them.

Altogether, there are two reasons motion sickness does
not appear to be fatal in our system: (i) the fact that there is
an infrared region in the absence of the color D3-branes,
and (ii) the fact that even in familiar examples of gauge/
gravity duality where the color branes are responsible for
all the warping, unitarity is not necessarily sacrificed in the
presence of a potential which pushes color branes toward
the UV. There are two approaches one can take: (1) eject
the offending color branes (treating the color sector as
negligible, since the flavor branes provide warping any-
way), or (2) wait it out (keeping the color branes in the
game, since the instability takes longer at larger ts).

In particular, in trying to better understand the field
theory dual it may remain useful to think about starting
with a color sector in place, since the ejection of the branes
takes longer and longer as ts ! 1. As we will see in the

next section, however, the number of degrees of freedom is
well accounted for by junction states living on the 7-branes
themselves.

IV. DEGREES OF FREEDOM IN FRW
HOLOGRAPHY

In Sec. II we found that the covariant entropy bound and
the number of degrees of freedom per lattice point in the
holographic dual grow as td�2. Now we will suggest a
microscopic explanation for this time-dependent growth
in terms of states associated to 7-7 strings and string
junctions. These are natural candidates to account for the
growing ~Ndof , because bringing together �n > 0 ðp; qÞ
7-branes in a static way leads to infinite dimensional
algebras [14] that are realized on light states. We make
this counting and the assumptions which go into it precise
in Sec. IVA.
In the gravity side, the magnetic flavor branes lead to

warping and to an IR region, as we discussed in the
previous sections. In the AdS/CFT correspondence, a
warped geometry produces a nontrivial quasilocal stress
tensor that can be used to compute the CFT energy mo-
mentum tensor and the central charge. In Sec. IVB we
generalize this method to cosmological solutions. This
provides an independent calculation of ~Ndof that agrees
with the microscopic count and with the results in
Sec. II E).

A. A microscopic count of degrees of freedom
in FRW holography

In this paper we are focusing on quantities we can
calculate under control in our gravity solutions, determin-
ing from them various basic features of the putative cutoff
field theory dual. This includes several independent com-
putations showing that the number of field theoretic de-
grees of freedom grows with time as ~Ndof / td�2

UV . In this

section, we will seek a microscopic accounting of these
states. In general, such a count is not guaranteed to work in
any simple way; even in systems with a weak coupling
limit and a large number of unbroken supercharges, ~Ndof

generally suffers corrections in going from weak to strong
coupling. For example, the two are related by a factor of
3=4 in theN ¼ 4 super Yang-Mills theory, and by a more
nontrivial interpolation in other examples. Nonetheless, it
is interesting to ask whether any natural count of states
reproduces the parametric behavior of ~Ndof in a given
example.
Rather than going to weak coupling, one may trade

fluxes for branes, turning on the corresponding scalar
fields, and study the microstates which are evident in that
phase [35]. For example, in the N ¼ 4 super Yang-Mills
theory if we go out on the Coulomb branch by introducing
Nc explicit D3-brane domain walls, the N2

c degrees of
freedom of the dual gauge theory become more manifest.
In that example, of course, the D3-branes source the

10If we set up the system with some 5-form flux (rather than
starting with explicit D3-branes), it would be interesting to
determine whether, and at what rate, D3-branes are nucleated.
The analysis in this section shows that once present, color branes
do not remain in the warped region for all time.
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warping, accounting for the low energy sector that indi-
cates the existence of the field theory dual [10].

In our solutions, the 7-branes source warping in them-
selves. As with flavor branes in AdS/CFT, they do not
come together in the backreacted solution (our time-
dependent solution), but in the corresponding (singular)
static solution they intersect at a point (where the color
branes are placed in the brane construction). Since they
source some warping (like color branes normally do), there
is a possibility that there are fundamental degrees of free-
dom of the dual theory that live on their intersection. Since
they dominate at late times (and since the color branes
suffer from motion sickness), they may account for the
lion’s share of ~Ndof . We will explore this possibility in this
section, finding rather encouraging results.

Consider string and string junction states stretching
between 7-branes. For the generic case of �n > 0, there
is an infinite dimensional algebra generated by these junc-
tions [14].11 If the fiber circle were not contractible, they
could also a priori carry arbitrarily large momentum and
winding quantum numbers around that direction. However,
they ultimately back react on the geometry, the fiber circle
is ultimately contractible, and Kaluza-Klein momenta are
cut off by the giant graviton effect [37], so at any finite time
only finitely many states are available. In this section, we
will estimate the total number of degrees of freedom ~Ndof

at late times by counting junctions up to a cutoff deter-
mined by backreaction and topology. Wewill be concerned
with the t dependence of ~Ndof , and will not keep track of
time-independent factors.12 The resulting count of brane
degrees of freedom will precisely match the behavior

~N dof � td�2
UV (4.1)

found above from macroscopic considerations (2.31). As
we will describe below, this statement is based on two
assumptions we will specify.

Let us parametrize a state by the number nstr of strings it
contains stretching among the 7-branes, the winding num-
ber nf on the fiber circle, and the momentum number kf on

the fiber circle. We will ultimately analyze all cases, with
various dimensionalities for the compact and noncompact
directions. Let us start with the specific case of d ¼ 5,
m ¼ 2 (i.e. uplifted AdS5 � S5).

We can bound nstr by the requirement that the core size
of the set of nstr strings not exceed R, to avoid strong
backreaction. The core size is determined from the gravi-
tational potential, which goes like 1=rd?�2, where d? is the
codimension (e.g. 1=r for particles in 3þ 1 dimensions,

1=r4 for D3-branes in ten dimensions, and so on). In our
case, we need to take into account that the fiber circle is
much smaller than R, so the effective codimension of the
strings is 7 rather than 8. With nstr strings, the core size is
given by

nstr
r5core

� 1: (4.2)

From this, the condition that this size not exceed the size R
of the base CP2 is

rcore � n1=5str 	 R� ts � t3=7 ) nstr 	 t15=7: (4.3)

The strings can wind around the fiber circle also. If they

wind R=Rf � ts � t3=7 times, they can detect that the fiber

is contractible. So let us cut off the windings at

nf 	 t3=7: (4.4)

The string may also have momentum kf=ðRf

ffiffiffiffiffi
�0p Þ along

the fiber circle. There is not a topological cutoff on kf as

for windings; the momentum is a conserved charge.
However, the tower of momentum modes does not go up
forever. Ultimately, it was shown in [37] that Kaluza-Klein
momenta are naturally cut off in UV-complete string theo-
retic examples of AdS/CFT in exactly the right way to
mirror the operator content of the dual field theory. In the
present case, there is an important crossover at a lower
scale. We may view our states as bound states of Kaluza-
Klein gravitons and ðp; qÞ string junctions. For sufficiently
small kf, i.e. kf=Rf � R, the energy of each stretched

string is of order R=
ffiffiffiffiffi
�0p
; the gravitons are well bound to

the strings. But when kf crosses over to become much

larger than RRf, they are not strongly bound and the

system as a whole behaves like a set of relativistic

Kaluza-Klein gravitons of total momentum kf=ðRf

ffiffiffiffiffi
�0p Þ.

(Ultimately, as in [37], these gravitons grow into giants.)
Since the gravitons are not strongly bound to the stretched
strings (if bound at all), the state may no longer be funda-
mental. Because of this crossover, we will count kf only up

to RRf � t3=7:

kf 	 t3=7: (4.5)

Finally, we need to determine whether there are addi-
tional combinatorial factors which depend on nstr arising
from the algebra generated by the junctions. To start, let us
consider the configurations classified in [14]. There, one
starts from a subset S0 of the ðp; qÞ 7-branes which gen-
erates a finite Lie algebra G0. One then considers junctions
with some prongs ending on the S0 branes, transforming
under G0 according to their weight vector 
 under G0. The
rest of the prongs of these junctions form a set of nZ strings
with charge ðp; qÞ; these end on the remaining 7-branes (or
some subset of them) denoted collectively by Z. The works
[14] show that a junction with weight 
 and asymptotic
charge nZðp; qÞ satisfies a relation

11There have been similar intriguing appearances of large
algebras organizing states and/or dynamics in works such as
[36].
12In the future it might be very interesting to analyze the factors
arising from group theory to characterize the dual theory in more
detail. The present calculation suggests that this is on the right
track.
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 ¼ �J2 þ n2Zðfðp; qÞ � 1Þ: (4.6)

Here J2 � �2 is the self-intersection of the junction, and
fðp; qÞ is a specific function of the asymptotic charges
(see, for example, Eq. (2.9) of the second reference in
[14]). Since 
 
 
 � 0, fðp; qÞ � 1 in the generic cases
where the full system builds up an infinite algebra Ginf . In
particular, for fðp; qÞ> 1 the right hand side of (4.6) can
become large and positive by increasing nZ, and the equa-
tion may be satisfied with longer and longer weight vectors

 in G0. [This is in contrast to the cases with fðp; qÞ< 1,
where at most a finite number of weights can satisfy (4.6).]
It is conjectured in [14] that states with J2 ¼ �2 have the
special feature that they can be realized by ‘‘Jordan Open
Strings,’’ strings that end on two of the 7-branes (crossing
cuts emanating from the 7-branes in the process). We will
count these strings.

Given that, next we need to know if there are any multi-
plicities in the tower of available states which grow with
nstr at large nstr. As mentioned below (5.52) of the first
reference in [14], given a weight vector of length squared

 
 
, there is a degeneracy given by the dimension of its
Weyl orbit. However, this number cannot grow arbitrarily
large; it is bounded by the dimension of the Weyl group of
G0. In particular, if we consider any individual representa-
tion of G0, the number of weight vectors degenerate with
the longest weight vector is given by the Weyl group, and
does not grow with n.

There are additional degeneracies in the weight lattice
beyond those required by Weyl reflections, but these in-
volve multiple representations. As long as the number of
these representations which arise in our physical system do
not grow too fast with nstr, the count we propose here holds
up. It would be interesting to analyze this explicitly for
specific Lie groups. This question of which charged matter
representations appear in F-theory compactifications has
been studied previously in string theory for phenomeno-
logical model building, and similar techniques may be
useful in the present case.

Next, let us consider more general configurations which
build up �n > 0. One way to think about these is by
iterating the procedure just described, considering junc-
tions stretching between the entire set of 7-branes corre-
sponding to the infinite group Ginf , and an additional ðp; qÞ
7-brane. This works similarly to the above case, except
now the Cartan matrix of the Ginf set of 7-branes is of
indefinite signature. This by itself would allow for an
infinite number of weight vectors of a fixed length squared
(schematically of the form 
2þ � 
2� given the indefinite
metric). So in the Eq. (4.6) there would be an infinite
number of solutions even for finite nZ. However, this
infinite number is itself cut off by insisting that the corre-
sponding junctions be made up of at most of order nstr
strings. This limits 
þ and 
� above to be at most of order
nstr in length, and counting their degeneracy is similar to
the above count for finite groups.

Putting this all together, the number of available degrees
of freedom is obtained from the product of the maximum
values of nstr, nf, and kf:

~N dof � ðnstrnfkfÞmax � t15=7þ2�3=7 ¼ t3 ¼ td�2 (4.7)

for d ¼ 5.
Next, let us work out ~Ndof for d ¼ 3, m ¼ 1 (i.e. an

FRW uplift of AdS3 � S3 � T4). In this case, the T4 is of
fixed size, independent of t, so (4.2) becomes

nstr
rcore

� 1: (4.8)

As a result, (4.3) becomes

r� nstr 	 R� ts � t1=3 ) nstr 	 t1=3: (4.9)

Again, the strings can wind around the fiber circle as well.

If they wind R=Rf � ts � t1=3 times, they see that the fiber

is contractible. So we cut off the windings at

nf 	 t1=3 (4.10)

and also the momentum

kf 	 t1=3: (4.11)

Altogether we get

~N dof � ðnstrnfkfÞmax � t ¼ td�2 (4.12)

for d ¼ 3.
Having checked it now for two examples, let us finally

consider all cases, varying the dimensionalities of the FRW
spacetime and the uplifted internal base space. For d non-
compact FRW dimensions and a 2m-dimensional uplifted
base space, together with one fiber circle and 9� d� 2m
toroidal directions, we have

nstr 	 tdþ2m�4
s ; nf 	 ts; kf 	 ts; (4.13)

where ts is the ten-dimensional string-frame time coordi-
nate (2.6). So ~Ndof goes like tdþ2m�2

s . Recall that ts goes

like t1=c
2
in terms of the Einstein frame time coordinate

(2.10), and c2 ¼ ðdþ 2m� 2Þ=ðd� 2Þ (2.11). Therefore
for the general case, we have

~N dof � td�2; (4.14)

whose time dependence agrees precisely with the macro-
scopic calculations of ~Ndof .

B. Deriving ~Ndof from the quasilocal stress tensor

In the AdS/CFT correspondence, there are several ways
to compute the number of degrees of freedom per lattice
point of the CFT. For instance, Brown and Henneaux [38]
used the conformal structure of asymptotically AdS3 to
identify the central charge, which was rederived from dif-
ferent points of view in [39,40]. The conformal anomaly can
also be computed from the variation of the renormalized
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effective action under a conformal transformation [41,42].
Those analyses, however, depend highly on the conformal
symmetry, or on the asymptotic structure of AdS spacetime.
Since our spacetime does not have such a structure, we need
to apply other methods.

One possible method is to excite our FRW spacetime
and produce a black hole with a hyperbolic horizon in the
IR region. The horizon entropy will be identified with that
of the effective field theory, from which we could extract
~Ndof . This is analogous to the entropy computation of an
AdS black hole in [43].

Another method, which will be applied here, is to com-
pute Brown and York’s quasilocal stress tensor [44] and
identify it with the expectation value of the stress tensor in
the boundary theory. In the context of AdS/CFT, this was
used to compute the Casimir energy and ~Ndof of the
boundary theory in [40,45]. This method can be general-
ized to the dS/dS correspondence [4] and to our FRW
model. In order to see how it works, let us first review
the definition of the quasilocal stress tensor and then use it
to calculate ~Ndof of the dual theories in both dS/dS and
FRW.

1. Quasilocal stress tensor

Let us consider a spacetime manifoldMwith a timelike
boundary @M and spacetime metric g��. This boundary

could be a regularized one at some coordinate cutoff rc. Let
n� be the outward pointing normal vector to @M, normal-

ized so that n�n
� ¼ 1. The induced metric on the bound-

ary is given by

��� ¼ g�� � n�n�; (4.15)

where a pullback onto @M is understood. The Einstein
action including a boundary term is

S ¼ Md�2
d

2

Z
M

ddx
ffiffiffiffiffiffiffi�g

p ðR� 2�Þ

�Md�2
d

Z
@M

dd�1x
ffiffiffiffiffiffiffiffi��

p
�þMd�2

d Sct½�ab�; (4.16)

where � is the trace of the extrinsic curvature of the
boundary

��� ¼ ���
�r�n�; (4.17)

Sct is a suitably chosen local functional of the intrinsic
geometry �ab of the boundary, and a, b are coordinate
indices on the boundary. The quasilocal stress tensor [44] is
given by

�ab � 2ffiffiffiffiffiffiffiffi��
p �S

��ab

¼ Md�2
d

�
�ab ���ab þ 2ffiffiffiffiffiffiffiffi��

p �Sct
��ab

�
:

(4.18)

The AdS/CFT correspondence relates the expectation
value of the stress tensor hTabi in the dual field theory to
the limit of the quasilocal stress tensor �ab as the regular-
ized boundary at rc is taken to infinity:

ffiffiffiffiffiffiffi�h
p

habhTbci ¼ lim
rc!1

ffiffiffiffiffiffiffiffi��
p

�ab�bc; (4.19)

where hab, the background metric on which the dual field
theory is defined, is related to the boundary metric �ab by a
conformal transformation. The counterterms in Sct½�ab�
are chosen appropriately so as to cancel all divergences
when the limit is taken. This has a natural interpretation on
the dual field theory side: we use local counterterms to
obtain a finite, renormalized expectation value of the stress
tensor in the field theory.

2. ~Ndof in AdS/CFT and dS/dS

Let us calculate the quasilocal stress tensor in AdSd and
dSd, both sliced by dSd�1. The metric is given by

ds2ðAÞdSd ¼ R2dw2 þ fðwÞ2ds2dSd�1
;

ds2dSd�1
¼ habdx

adxb; (4.20)

where fðwÞ ¼ sinhw for AdSd and sinw for dSd. Here R is
the curvature radius of both ds2ðAÞdSd and ds2dSd�1

.

In theAdSd case, the AdS/CFT correspondence says that
the bulk is dual to a boundary conformal field theory living
on dSd�1. In the dSd case, the dS/dS correspondence [4]
conjectures that the bulk is dual to two effective field
theories living on dSd�1, both of which are cut off at an
energy scale 1=R and coupled to (d� 1)-dimensional
gravity and to each other.
Coming back to our calculation, let us choose a regular-

ized boundary at w ¼ wc. It has an induced metric �ab ¼
fðwÞ2hab, where hab is the dSd�1 metric on which the field
theory is defined. The extrinsic curvature tensor is

�ab ¼ � 1

R
fðwcÞf0ðwcÞhab; (4.21)

and before adding the counterterms the quasilocal stress
tensor is given by

�ab ¼ ðd� 2ÞMd�2
d

R
fðwcÞf0ðwcÞhab

¼
8<
:

ðd�2ÞMd�2
d

R ðsinhwc coshwcÞhab; for AdSd;

ðd�2ÞMd�2
d

R ðsinwc coswcÞhab; for dSd:
(4.22)

In the AdSd case, the stress tensor is divergent as wc goes
to infinity, and the counterterms in Sct renormalize it to

�ab �Md�2
d

R
e�ðd�3Þwchab (4.23)

for large wc, so that the limit in (4.19) becomes finite and
gives hTabi � ðMd�2

d =RÞhab.13 Matching this to the expec-

tation value of the CFT stress tensor on dSd�1 with ~Ndof

degrees of freedom per lattice point

13Strictly speaking, the limit is nonzero only for odd d. In even
(bulk) dimensions, the limit vanishes and so does the trace
anomaly of a CFT in odd (boundary) dimensions. We can still
get ~Ndof by other means.
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hTabi �
~Ndof

Rd�1
hab; (4.24)

we arrive at the correct number of degrees of freedom per
lattice point

~N dof �Md�2
d Rd�2 (4.25)

in the context of AdS/CFT. In fact we do not have to take
wc to infinity to get this parametric result. We could set wc

to be of order 1 and forget about the counterterms (because
there are no divergences to cancel if wc is fixed at order 1,
and including the counterterms would only change the
numerical coefficients which we are not keeping track
of). This gives the same parametric result for ~Ndof .

This perspective is important for the dS/dS correspon-
dence, because in this case thew coordinate is bounded and
we cannot take wc to infinity. What we can do is fix wc at
order 1, and by the same argument we get ~Ndof �
Md�2

d Rd�2. This means that the number of degrees of

freedom per lattice point for the dual theory on dSd�1 is
parametrically the same as the Gibbons-Hawking entropy
of dSd. This was confirmed by the concrete brane con-
struction for the dS/dS correspondence in [6].

It is interesting to note that the quasilocal stress tensor
(4.22) vanishes at wc ¼ =2 in the dSd case. This does not
contradict our previous result ~Ndof �Md�2

d Rd�2, because

one can reliably deduce ~Ndof of the dual field theory only
well below its cutoff. The ‘‘UV slice’’ wc ¼ =2 corre-
sponds exactly to the energy scale where the effective field
theory is cut off and coupled to gravity. The vanishing of
the quasilocal stress tensor is reminiscent of the gravita-
tional dressing effect discussed in [4]. As we shall see
in the next subsection, this also happens in our FRW
spacetime.

Before going on, we should note that the advantage of
being able to take wc to infinity in the AdSd case is that we
can calculate the exact ~Ndof including the numerical co-
efficients. To demonstrate this, let us work for simplicity in
d ¼ 3. Only one counterterm is needed in this case, which
is simply a cosmological constant on the boundary: Sct ¼
�ð1=RÞR@M

ffiffiffiffiffiffiffiffi��
p

. The quasilocal stress tensor becomes

�ab ¼ M3

R
ðsinhwc coshwc � sinh2wcÞhab; (4.26)

which gives hTabi ¼ ðM3=2RÞhab upon taking wc to infin-
ity. The stress tensor from ~Ndof free massless scalar fields
in dS2 may be calculated in a standard way,14 giving
hTabi ¼ ð ~Ndof=24R

2Þhab. This can also be obtained
from the trace anomaly hTa

a i ¼ ðc=24ÞR of a two-
dimensional CFT. Matching this result to the quasilocal
stress tensor, we arrive at

c � ~Ndof ¼ 12M3R; (4.27)

which agrees exactly with [40,42].

3. ~Ndof in the FRW dual

Let us now calculate the quasilocal stress tensor in our
FRW spacetime. We start with the warped metric

ds2d ¼ c2ð�2 � w2Þc�1ðdw2 � d�2 þ �2dH2
d�2Þ; (4.28)

and choose the regularized boundary to be a surface of
constant �where � is defined byw ¼ ��with 0<�< 1.
This is a hypersurface of constant energy scale relative to
the UV cutoff: � � 1 corresponds to the IR, while � � 1
corresponds to the UV. The exact value of � is not essential
in our analysis, as long as it is of order 1. This is because
our main interest is the parametric dependence of the
quasilocal stress tensor on � (or tUV), and this is not
affected by the exact location of the hypersurface. One
may also consider renormalization group flows in our FRW
geometry, as in AdS or dS [47–51], and relate ~Ndof in the
IR to its value in the UV. The � dependence of ~Ndof is not
affected by the energy scale.15

From the coordinate transformation � ¼ 1
2 log

�þw
��w , a

hypersurface of constant � is also a hypersurface of con-
stant � ¼ arctanh�, so it is much easier to calculate the
quasilocal stress tensor in the usual FRW coordinates

ds2d ¼ �dt2 þ c2t2ðd�2 þ cosh2�dH2
d�2Þ: (4.29)

The induced metric on the regularized boundary at � ¼ �c

is given by

�abdx
adxb ¼ �dt2 þ c2t2cosh2�dH2

d�2; (4.30)

and the extrinsic curvature can be calculated as

�tt ¼ 0; �ij ¼ � tanh�c

ct
�ij; (4.31)

where i, j are the coordinate indices on Hd�2. The quasi-
local stress tensor is given by

�tt ¼ ðd� 2ÞM
d�2
d

ct
ðtanh�cÞ�tt;

�ij ¼ ðd� 3ÞM
d�2
d

ct
ðtanh�cÞ�ij:

(4.32)

It is interesting to note that this corresponds to a perfect
fluid with equation of state w ¼ ðd� 3Þ=ðd� 2Þ. It has
vanishing pressure in d ¼ 3.
The next step is to calculate the expectation value of the

stress tensor in the dual field theory, which lives on the
background metric hab ¼ �ab and has ~Ndof degrees of
freedom per lattice point:

14For two-dimensional (and therefore conformally flat) space-
times one can use Eq. (6.136) of [46]. Note that their metric
convention is the opposite of ours.

15� ¼ 1 is a singular surface and we do not set the hypersurface
there. In a broader picture, this singular surface is replaced by the
Coleman-de Luccia instanton and connected to the parent
de Sitter space.
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hTabi �
~Ndof

td�1
hab: (4.33)

This can be obtained either on dimensional grounds or by
using Eq. (6.134) of [46], noting that �ab is conformally
flat. Let us set �c to be of order 1 as this is equivalent to
setting � to be of order 1. We match hTabi to the quasilocal
stress tensor (4.32) and obtain

~N dof �Md�2
d td�2

UV ; (4.34)

where we have replaced t with tUV because on a hypersur-

face of constant � we have t ¼ ð1� �2Þc=2tUV � tUV from
(2.13). This is in agreement with the microscopic count of
the number of degrees of freedom.

Just as in the dS/dS correspondence, the quasilocal stress
tensor (4.32) vanishes at �c ¼ 0, corresponding to the UV
slice w ¼ 0. Again this suggests renormalization from the
(d� 1)-dimensional gravitational effects.

V. CORRELATION FUNCTIONS

In this section we compute two-point functions for
massive and massless scalar fields in our solution. These
should provide detailed information about the nature of the
(d� 1)-dimensional theory. That theory lives on an FRW
geometry, has time-dependent and scale-dependent cou-
plings, and is necessarily strongly coupled in order to
reproduce a large-radius gravity solution. We will leave a
complete interpretation of our Green’s functions to future
work, but will note some of their interesting features below.

A. Massive Green’s functions

In AdS/CFT it is well understood how gravitational
scattering amplitudes behave like field theory correlators.
For example, massive propagators in the bulk (which are
exponentially suppressed in flat space) turn into power law
CFT two-point functions in the dual theory through the
effects of the warp factor, which is a strong function of the
radial distance r. Because of the warp factor, geodesics do
not go along fixed-r trajectories; they can take advantage
of the warp factor and go along a shorter path by moving in
the radial direction. This leads to the power law rather than
exponential correlators. (A simple discussion of this can be
found in [29].)

Let us ask the analogous question in our case. Our dual
theory is formulated on an FRW spacetime and has a time
and scale-dependent coupling corresponding to the radius

R of B̂, which depends on t ¼ ðt2=cUV � w2Þc=2. [As noted

above (2.16), this quantity depends more strongly on the
radial scale coordinate w than on time tUV.] As we saw in
Sec. II E and IV our theory is cut off at a finite scale, but
accumulates additional field theoretic degrees of freedom
as time evolves forward. As a result, the theory is not
conformally invariant. Nonetheless we will see that there

is one sector of massive bulk fields—KK modes on the

base B̂—which have power law correlators.
Wewill now compute the leading behavior of the 2-point

Green’s functions for particles of mass mðtÞ / t�� in our
geometry. To find the dominant trajectory, we must solve
the equations obtained by varying the action

S ¼ �
Z

d
mðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 � c2t2ð _�2 þ cosh2� _~�2 þ . . .Þ

q
;

(5.1)

where ‘‘dot’’ represents a derivative with respect to
the worldline coordinate 
 and dH2

d�1 ¼ d�2 þ
cosh2�ðd~�2 þ sinh2 ~�d�2

d�3Þ. We are interested in com-

puting the propagator between the points ðt; �; ~�Þ and (t, �,
~�þ�~�). Note that because of the time-dependent mass,
the calculation of the dominant trajectory is not equivalent
to a calculation of the geodesic distance between the two
points in our spacetime.
Our result can only depend on time t and on the geodesic

distance L between two points in Hd�1 because of the
isometries of Hd�1. For two points on the same � surface,
the geodesic distance L in Hd�1 is given by16

coshL ¼ cosh2� cosh�~�� sinh2�: (5.2)

The central (UV) slice of our warped geometry is at � ¼ 0.
We will be interested both in Green’s functions formulated
deep in the IR at � � 1, and also in Green’s functions
formulated at the UV slice � ¼ 0.
Since the propagator can only depend on t and on the

geodesic distance L, it is actually easier to do the calcu-
lation at constant ~� and varying �, and at the end replace
this by L. Consider a particle with mass

mðtÞ ¼ n�
t�

; (5.3)

where n� is a constant of dimension 1� �. In the d ¼ 5
case, � ¼ 1, 4=7, and 1=7 for KK modes, closed strings,
and 7-7 strings, respectively. Define the new coordinates

� ¼ t1��

1� �
; y ¼ ð1� �Þc�; ð� � 1Þ; (5.4)

and

� ¼ logðt=‘Þ; y ¼ c�; ð� ¼ 1Þ: (5.5)

Let us first address the KK modes. Setting n1 � nKK we
see that the action (5.1) at constant ~� reduces to

S ¼ �nKK
Z

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2 � _y2

q
ð� ¼ 1Þ: (5.6)

16This is the hyperbolic law of cosines, and it can be obtained
by analytic continuation from a similar formula on a sphere, or
simply from the dot product in the embedding space.
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This is equivalent to the action for a particle with a constant
mass in flat spacetime. The resulting two-point function is
e�nKK�y, exponentially suppressed in �y ¼ c�� ¼ cL.

However, this is a power law suppression in the geodesic
distance �X in the (d� 1)-dimensional spacetime
�dt2UV þ c2t2UVdH

2
d�2 on which the d� 1 theory lives.

Working at � ¼ 0, we have the geodesic distance L ¼
�~� according to (5.2). We can see the power law behavior
by making a coordinate transformation

X ¼ tUV sinhðc~�Þ; T ¼ tUV coshðc~�Þ; (5.7)

where the metric is Minkowskian on the plane spanned by
X and T. Taking our two points at the same T, i.e. taking
~�1 ¼ �~�2 ¼ �~�=2, we obtain the geodesic distance (for
�~� � 1)

�X ¼ 2tUV sinhðc�~�=2Þ � tUVe
c�~�=2; (5.8)

and hence our exponential result in �~� becomes a power
law in �X. The Green’s function is of the form

Gð�xÞ � e�nKKcL � e�nKKc�~� � 1

ð�xÞ2nKK ; (5.9)

where �x � �X=ctUV is the comoving geodesic distance.
This result is quite intriguing, as we obtain power law

correlators from a massive KK mode propagator, which is
reminiscent of what happens in ordinary AdS/CFT.
However, here the mechanism for this involves the time
dependence of the mass. The propagator deep in the IR
(large �) and for large �~�, has an additional exponential
suppression as a function of �,

Gð�;�xÞ � e�nKKcL � e�nKKcð2�þ�~�Þ � e�2cnKK�
1

ð�xÞ2nKK ;
(5.10)

where we used L � 2�þ�~� from the large �, �~� limit

of (5.2). Recalling that � ¼ 1
2 log

�þw
��w (2.12), we find that

the propagator has a power law scaling with w=�. This
energy scaling of the correlator is again characteristic of a
CFT, where power law wave function renormalization is
produced by nontrivial anomalous dimensions. Note that
these formulas only apply in the c > 1 case, since for
c ¼ 1 the KK masses are constant, and we do not get
warping or this power law behavior.

Next, let us analyze the correlation functions for other
massive scalar fields, those for which � � 1:

S ¼ �n�
Z

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2 � �2 _y2

q
ð� � 1Þ: (5.11)

This action is equivalent to the action for a particle with
constant mass n� in the Milne universe, and the dominant
trajectory is obtained by analytic continuation from flat
space:

Scl ¼ 2in�� sinh
�y

2
; (5.12)

where the sign can be determined by the �i� prescription
implicit in the square root. Approximating the propagator
by eiScl and rewriting the action in terms of the geodesic
distance L obtains

Gðt;LÞ � exp

�
�2n�

t1��

1� �
sinh

ð1� �ÞcL
2

�
: (5.13)

Let us consider the massive fields with �< 1 (closed
strings and 7-7 strings) at large �~� � 1, in which case we
have L � �~�þ 2 logcosh� from (5.2). Note that this ex-
pression is valid for both small and large �. In terms of the
geodesic distance �X (5.8) in the ðd� 1Þ-dimensional
FRW spacetime, the massive Green’s function (5.13) has
(for large �~� � 1) an exponential suppression

Gðt; �XÞ � exp

�
�n�

t1��

1� �

�
�X

tUV

�
1��ðcosh�Þcð1��Þ

�

� exp

�
�n�

ð�XÞ1��

1� �

�
; (5.14)

where we have used tUV ¼ tðcosh�Þc from the coordinate
transformation (2.12). It is interesting to note that the
�< 1 Green’s function in this form is independent of �
(although there could be �-dependent prefactors that we
have not kept track of).
These �< 1 fields become parametrically heavy at late

times, dying away at long distances as compared to the KK
modes with their power law correlators. But they remain
part of the theory: as we have seen in Sec. IVA, the set of
7-7 strings and junctions which do not strongly backreact
on the geometry make a leading contribution to the count
of degrees of freedom. This is somewhat reminiscent of
off-diagonal matrix elements in the N ¼ 4 SYM theory
out on its Coulomb branch: these are parametrically heavy
at large AdS radius as compared to KK modes, but they
cannot be decoupled from the system.

B. Massless Green’s functions

One can potentially learn about the field theory dual of a
warped gravity solution such as ours by studying the
massless correlation functions. In this section, we give
the correlation function of a massless scalar field in our
open FRW spacetime, considering the case where it comes
from a Coleman-de Luccia (CdL) decay [52]. Details on
deriving correlation functions in a general d-dimensional
CdL geometry, including an explicitly Lorentzian prescrip-
tion without the need to analytically continue the eigen-
mode expansion, are presented in the Appendix.
The calculation is of interest more generally, as it re-

quires developing tools to treat pseudotachyon modes [17]
which arise from Hubble expansion. These are infrared
modes which do not oscillate with time, but also do not
grow large enough to significantly affect the background
solution. Such modes arise for c > 1, as explained in the
Appendix. In general, these may be treated by putting them
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in a scattering state and computing correlation functions as
expectation values in this state. The method we use here
involves choosing a particular state, the Hartle-Hawking
vacuum that one obtains from the analytic continuation of
the Euclidean CdL geometry.

We consider a minimally coupled massless scalar field�
in our FRW background

ds2d ¼ �dt2 þ c2t2dH2
d�1;

dH2
d�1 ¼ d�2 þ cosh2�dH2

d�2;
(5.15)

where the scale factor aðtÞ ¼ ct is correct at late times. If
this FRW spacetime comes from a CdL decay, the scale
factor has to behave like aðtÞ ¼ tþOðt3Þ for small t, so
that the big bang t ¼ 0 is just a coordinate singularity.

We are interested in the large t behavior of the equal-
time correlator

Gðt; �;�~�Þ � h�ðt; �;�~�Þ�ðt; �; 0Þi; (5.16)

where we have put the two points on a hypersurface of
constant �, corresponding to a given energy scale as dis-
cussed in Sec. IVB3. In particular, � ¼ 0 corresponds to
the UV and � � 1 corresponds to the IR of the dual field
theory. We use �~� to denote the geodesic separation of the
two points in the Hd�2 directions. In the Appendix we
organize the correlation function into an expansion in the
large t and large �~� limit. The first two leading terms turn
out to be

Gleadingðt; �;�~�Þ � �~�þ 2 logcosh�; (5.17)

Gsubleadingðt; �;�~�Þ � tðd�2Þð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�1=c2

p
�1Þ

coshd�2�
e�ðd�2Þ�~�=2

� ð�~�þ 2 logcosh�Þ; (5.18)

up to terms that are ‘‘pure gauge.’’17 The same leading term
was obtained in [5].

We rewrite the correlation function in terms of the
geodesic distance �X in d� 1 dimensions, which was

derived in Sec. VA to be �X � tUVe
c�~�=2. From the

coordinate transformation (2.12), tUV and t are related by

tUV ¼ tðcosh�Þc: (5.19)

The leading contribution (5.17) to the correlation function
becomes

Gleadingðt;�;�XÞ� log
�X

tUV
þc logcosh�¼ log

�X

t
; (5.20)

where we have used (5.19) in the last equality. We note that
this leading term is present for both c > 1 and c ¼ 1, and it
is independent of the dimension d. This suggests an

interpretation of it as the contribution from the zero
mode of � localized on the UV slice.
The subleading contribution to the correlation function

in terms of �X is

Gsubleadingðt; �;�XÞ � tðd�2Þð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�1=c2

p
�1Þ

coshd�2�

�
tUV
�X

�ðd�2Þ=c

�
�
log

�X

tUV
þ c logcosh�

�
(5.21)

¼ tðd�2Þð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�1=c2

p
�1þ1=cÞ

ð�XÞðd�2Þ=c log
�X

t
; (5.22)

where we have used (5.19) in the second line. This term is
dominated by contributions from the pseudotachyonic
modes, and is present only for c > 1. This is the case we
have focused on in this paper, which has a warped geome-
try with a consistent description in terms of a low energy
(d� 1)-dimensional dual.
In order to holographically interpret these results for

c > 1 in detail, it is necessary to understand better the
behavior of a strongly coupled field theory with time and
scale-dependent couplings on a (d� 1)-dimensional FRW
background. The strong coupling will limit our ability to
compute, but it will be interesting to see if one can deter-
mine enough about this theory to make detailed compari-
sons with results such as (5.21). We will leave an in-depth
study of this for future work.

VI. FUTURE DIRECTIONS: MAGNETIC FLAVORS
AND TIME-DEPENDENT QFT

This work raises many interesting questions, which we
have only begun to explore. In this section we describe a
few of them.
On the gravity side, we have seen that in the presence

of sufficiently many magnetic flavor branes to uplift
AdS/CFT to cosmology, one has simple time-dependent
solutions, whereas the would-be static solutions are singu-
lar (as observed before in [8] via another class of time-
dependent F-theory solutions). We have exhibited a
warped metric on these solutions, and have obtained results
consistent with the interpretation of the corresponding low
energy region as a (d� 1)-dimensional holographic dual.
It would be very interesting to understand directly from

a field theoretic point of view where the distinction be-
tween �n < 0 and �n � 0 comes from. If there is a
condition on the number of magnetic flavors (holding fixed
other quantities) which corresponds to �n < 0, the above
results may suggest that time-dependent effects in field
theory could change this condition. Time-dependent cou-
plings affect the scaling dimensions of the corresponding
operators in the effective Lagrangian.18 On sufficiently

17This is because the massless correlator on a compact space
such as the Euclidean CdL geometry is only well-defined up to
arbitrary constants and linear functions of the coordinates. See a
more detailed discussion in the Appendix.

18One interesting new effect of time-dependent couplings in
quantum field theory was discussed in [53].
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short timescales, of course, the system becomes insensitive
to the time-dependent couplings. Perhaps this is related to
the finite cutoff we are left with in our late-time non-
gravitational field theories.

Even at finite times, the holographic description of our
system will be very interesting to develop further. The dual
theory has time-dependent running couplings and (depend-
ing on our choice of conformal frame) in general lives on
its own FRW geometry. These features render it somewhat
complicated to match in detail the correlation functions
computed in Sec. V and the Appendix to quantities in the
holographic dual, a task we therefore leave to (near-)future
work.

A crucial step in a holographic formulation of cosmol-
ogy is the identification of the correct microscopic degrees
of freedom. In the solutions presented in this work, such
states are predominantly given by string junctions extended
between the magnetic flavor branes. We computed the
number of degrees of freedom ~Ndof in several ways, and
found agreement between the gravity and field theory
sides. This generalizes the microscopic calculation of the
de Sitter entropy of [6] to a time-dependent cosmology.
While some of our results are specific to the class of
solutions presented in Sec. II, our methods suggest a con-
crete framework for holographic cosmology, which may
have wider applications. Yet another method would be to
put the system at finite temperature by adding a black brane
and computing its entropy—we hope to pursue this calcu-
lation further.

Finally, we expect our results here to translate into a
clearer understanding of appropriate observables in cos-
mological spacetimes. There have been a number of inter-
esting attempts to find a consistent framework in which to
define probabilities in cosmology. In our view, this pro-
gram will likely benefit from concrete study of the struc-
ture of UV-complete time-dependent backgrounds, in the
same way as occurred in black hole physics. There, ana-
lyzing the dynamics of brane solutions in string theory led
to black hole entropy counts and ultimately to the AdS/
CFT correspondence. The details of particular examples
may not be of central importance in the end, but can
provide much needed checks and may lead us toward the
right principles.

On this note, it would be extremely interesting to deter-
mine to what extent the magnetic flavor branes which play
a key role here (and in other landscape constructions which
use F theory [54]) are generic in cosmological solutions
with holographic duals. In general there is a longer list of
‘‘uplifting’’ possibilities, including starting from a larger
total dimensionalityD> 10 (the more generic case) and/or
compactifying on more general curved manifolds [55].
Magnetic flavors bring in a new source of strong cou-
pling—in addition to the strong ’t Hooft coupling required
to formulate large-radius gravity—and it would be inter-
esting to further understand their role in the theory.
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APPENDIX: CORRELATION FUNCTIONS IN
GENERAL CDL GEOMETRY

In this appendix we develop an exact formalism for
calculating correlation functions in a general CdL geome-
try. One of our main goals is an explicitly Lorentzian
formula (A32) for the real-time correlator in the FRW
region of the CdL geometry, so that one can apply it
without having to analytically continue the Euclidean
modes into Lorentzian signature. This is very desirable in
any calculation away from the thin-wall limit, because in
general the exact eigenmodes are not analytically tractable.
One can certainly make approximations or compute them
numerically, but these are not useful for analytic continu-
ation because one cannot reliably continue an approximate
solution.19 Instead, we can derive an exact Lorentzian
formula (A32), and if necessary make approximations
from there. This is the approach of this appendix.
In Sec. A1 we deveop a Euclidean prescription (A17) for

the correlation function. This is a relatively straightforward
generalization of the discussion in Appendix A of [5] to
arbitrary dimensions and arbitrary scale factors.20 In Sec. A2
weanalytically continue (A17) to an exact, Lorentzian formula
(A32), with extra care given to the choice of integration con-
tours. Section A3 applies the Lorentzian prescription to our
FRW spacetime. Finally, in Sec. A4 we briefly outline how to
generalize this to a massive correlation function.

19A toy example is the tanhx function, which is well approxi-
mated by 1 for large, real x, but we certainly cannot continue this
approximate result to the imaginary axis. A class of exact CdL
solutions showing this explicitly will appear in [56].
20Correlation functions in general dimensions were also calcu-
lated in [57] in the thin-wall limit. In this appendix we work
more generally, partly because our FRW spacetime with c > 1 is
not in the thin-wall limit.
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1. Euclidean prescription

The Euclidean CdL instanton in d dimensions is char-
acterized by the isometries of a (d� 1)-dimensional
sphere. It is the Euclidean version of a closed FRW uni-
verse. Let us work in the conformal coordinates:

ds2d ¼ aðXÞ2ðdX2 þ d�2
d�1Þ;

d�2
d�1 ¼ d�2 þ sin2�d�2

d�2;
(A1)

where X varies from �1 to þ1. The smoothness of the
instanton requires that the scale factor vanish as �þOð�3Þ
at the two tips, where � is the proper coordinate in the X
direction. In the conformal coordinates this means aðXÞ
approaches (up to constant factors) eX as X ! �1, and
approaches e�X as X ! þ1.

We calculate the two-point function of a minimally
coupled massless scalar field�. It is convenient to consider
the rescaled field

�̂ ¼ aðXÞk0�; where k0 � d� 2

2
; (A2)

which has a canonical kinetic term. Note that k0 is the
momentum gap for the normalizable eigenmodes of the
Laplacian on the unit (d� 1)-dimensional hyperboloid.

We let G and Ĝ denote the correlator of � and �̂, respec-
tively. The rotational symmetry of the d� 1 sphere may be
used to bring one of the two points to � ¼ 0, so that the

correlator ĜðX; X0; �Þ depends on no other angular coor-
dinates and satisfies the Laplace equation with a delta
function source:

½�@2X �r2
Sd�1 þUðXÞ�ĜðX; X0; �Þ ¼ �ðX � X0Þ�ð�Þ

Sd�2sin
d�2�

;

(A3)

where Sn ¼ 2ðnþ1Þ=2=�ððnþ 1Þ=2Þ is the volume of the
unit n sphere, and the potential UðXÞ is defined as

UðXÞ ¼ b00ðXÞ
bðXÞ ¼ k20 �

k0�
02 þ daðXÞ2Vð�Þ
2ðd� 1Þ ;

where bðXÞ � aðXÞk0 :
(A4)

Here � is the scalar field sourcing the metric and has a
canonical kinetic term. Its potential21 Vð�Þ between the
two tunneling points �ðX ¼ 1Þ is nonnegative for de-
cays from de Sitter to de Sitter or to FRW with a zero
cosmological constant (if one assumes the null energy
condition), so UðXÞ is bounded from above by k20 and

asymptotes to this bound as X ! 1.

The correlator ĜðX; X0; �Þ can be obtained as an expan-
sion in the eigenmodes of the ‘‘Schrödinger operator’’
[� @2X þUðXÞ]. The result is

ĜðX; X0; �Þ ¼
Z þ1

�1
dk

2
ukðXÞu�kðX0ÞGkð�Þ

þX
	

ui	ðXÞu�i	ðX0ÞGi	ð�Þ; (A5)

where the first term is an integral over the orthonormal
continuum modes satisfying the ‘‘Schrödinger equation’’

½�@2X þUðXÞ�ukðXÞ ¼ ðk2 þ k20ÞukðXÞ; (A6)

with the boundary conditions

ukðXÞ ! eikX þ RðkÞe�ikXðX ! �1Þ;
ukðXÞ ! TðkÞeikXðX ! þ1Þ; (A7)

u�kðXÞ ! TrðkÞe�ikXðX ! �1Þ;
u�kðXÞ ! e�ikX þ RrðkÞeikXðX ! þ1Þ; (A8)

where k > 0 is understood. One can show that these co-
efficients are related by

TðkÞ¼TrðkÞ; RðkÞ
R�
rðkÞ¼� TðkÞ

T�
r ðkÞ ; jRðkÞj2þjTðkÞj2¼1:

(A9)

The second term in (A5) is a discrete sum over the
normalized bound states. They satisfy the Schrödinger
Eq. (A6) with k ¼ i	. There is always at least one bound
state for a compact Euclidean CdL: the zero mode
uik0ðXÞ / aðXÞk0 . For d 	 4 one can show that this is the

only bound state using a technique of supersymmetric
quantum mechanics [5]. For d > 4 there may be additional
bound states.
The Gkð�Þ that appears in (A5) is the Green’s function

on Sd�1 with an appropriate mass:

½�r2
Sd�1 þ ðk2 þ k20Þ�Gkð�Þ ¼ �ð�Þ

Sd�2sin
d�2�

: (A10)

The solution may be written in terms of the hypergeometric
function:

Gkð�Þ ¼ ð2 ffiffiffiffi


p Þ1�d

�ðd�1
2 Þ �ðk0 þ ikÞ�ðk0 � ikÞ

� 2F1

�
k0 þ ik; k0 � ik;

d� 1

2
; cos2

�

2

�
; (A11)

which is a meromorphic function in k. It has simple poles
located at

k ¼ iðk0 þ nÞ; n ¼ 0; 1; 2; 
 
 
 (A12)

due to the Gamma functions in (A11). In even dimensions
the hypergeometric function simplifies to an elementary
function. For example, in d ¼ 4 (A11) as a function of
complex � becomes

21It is important not to confuse the ‘‘Schrödinger potential’’
UðXÞ with the potential Vð�Þ which sources the geometry. It is
also important to distinguish the two scalar fields � and �.
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Gkð�Þ ¼ sinh½kð� �Þ�
4 sinhðkÞ sin� ; for 0< Reð�Þ< 2:

(A13)

The Green’s function Gi	ð�Þ for the bound states is also
given by (A11). The only subtlety appears when we con-
sider the zero energy bound state aðXÞk0 with k ¼ ik0, for
which Gkð�Þ hits a pole and diverges. This reflects the fact
that the massless correlator on a compact space is ill-
defined because we cannot put a single source there with-
out violating Gauss’s law.22 The two-point function for the
derivative of a massless field is well-defined and physical,
so one may say that the massless correlator is well-defined
up to arbitrary constant and/or linear terms in the coordi-
nates. These terms are called ‘‘pure gauge.’’ Therefore we
may get a finite massless Green’s function by subtracting
an infinite constant from Gik0ð�Þ. For example, in d ¼ 4

one prescription is

Gik0ð�Þ ¼ lim
k!ik0

�
Gkð�Þ � 1

22ðk2 þ 1Þ
�
þ 1

82

¼ cot�

4

�
1� �



�
: (A14)

Before we analytically continue to the Lorentzian sig-
nature, let us rewrite the expansion (A5) in a simpler form.
Instead of using ukðXÞ we might want to write the corre-
lator in terms of eigenmodes that have simpler asymptotic
behavior as X ! �1, as this is where we cross to the FRW
region. Let us call this new set of eigenmodes vkðXÞ,
defined with the boundary condition vkðXÞ ! eikX as
X ! �1 for both positive and negative k. We may write
them in terms of the old eigenmodes:

vkðXÞ ¼ u��kðXÞ
T�
r ðkÞ ; v�kðXÞ ¼ u�kðXÞ

TrðkÞ ; k > 0:

(A15)

After some algebra, one finds that in terms of the new
eigenmodes the continuum contribution in (A5) becomes

Ĝ cðX; X0; �Þ ¼
Z þ1

�1
dk

2
½vkðXÞv�kðX0Þ

þ RðkÞv�kðXÞv�kðX0Þ�Gkð�Þ; (A16)

where the reflection coefficient RðkÞ is extended from k > 0
to a meromorphic function on the complex k plane. For
k < 0 one can show RðkÞ ¼ R�ð�kÞ. One may ask what we
have achieved by rewriting (A5) as (A16). It turns out23

that the bound-state contribution in (A5) can be accounted
for, up to pure gauge, by simply deforming the integration
contour for the second term in (A16). Specifically, the
massless correlator (A5) simplifies to

ĜðX; X0; �Þ ¼
Z þ1

�1
dk

2
vkðXÞv�kðX0ÞGkð�Þ

þ
Z
C

dk

2
RðkÞv�kðXÞv�kðX0ÞGkð�Þ; (A17)

where C is a contour that goes from k ¼ �1 above the
double pole k ¼ ik0 to k ¼ þ1, as shown in Fig. 1. In the
limit X, X0 ! �1, the second integrand in (A17) asymp-

totes to e�ikðXþX0Þ, so we may push the contour C up to Ca,
picking up the simple poles at k ¼ iðk0 þ nÞ, n ¼
1; 2; 3; 
 
 
 . This is shown in Fig. 2(a).
Note that RðkÞ has a simple pole at k ¼ ik0 (correspond-

ing to the zero mode) and a zero at k ¼ �ik0, so the second
integrand in (A17) has a double pole at ik0 and is regular at
�ik0. It is precisely the residue at the double pole that
cancels with the zero energy bound-state contribution up to
pure gauge. For d > 4 there may be additional bound

k

Ca

a
k

Cb

b

FIG. 2. (a) Contour Ca surrounding simple poles at k¼
iðk0þnÞ, n ¼ 1; 2; 3; 
 
 
 . (b) Coutour Cb surrounding a double
pole at k ¼ ik0 and simple poles below ik0. In general there
could also be resonance poles away from the imaginary axis in
the lower half plane, in which case the contour Cb needs to
enclose them as well.

k

C

FIG. 1. Contour C going from k ¼ �1 above the double pole
k ¼ ik0 to k ¼ þ1. Remember k0 � ðd� 2Þ=2. The simple
poles above the double pole are located at k ¼ iðk0 þ nÞ, n ¼
1; 2; 3; 
 
 
 . The locations of the simple poles below the double
pole are for illustration purposes only and should not be taken
too seriously. They depend on the reflection coefficient RðkÞ, and
also on whether we are considering the second integrand in
(A17) or in (A32). The pair of poles away from the imaginary
axis are resonance poles.

22The left-hand side of (A10) integrates to zero, but the right
hand side does not. This may be solved by subtracting an
inhomogeneous term proportional to the inverse of the volume
of the compact space.
23This may be shown by expanding the Green’s function in
terms of eigenmodes of the Laplacian on Sd�1 (discarding the
zero mode). This expansion exactly matches the sum of contri-
butions from the simple poles enclosed by Ca as shown in
Fig. 2(a).
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states, corresponding to additional simple poles between
k ¼ 0 and k ¼ ik0. There could also be resonance poles, all
of which must lie in the lower half plane. As we will see in
the next two subsections, these additional poles need to be
taken into account when calculating the exact correlation
function, but at the order we work, they do not contribute to
our final result.

2. Lorentzian prescription

Now that we have (A17) for the massless correlator in
the Euclidean CdL geometry, we can analytically continue
it to the FRW geometry

ds2d ¼ aðTÞ2ð�dT2 þ dH2
d�1Þ;

dH2
d�1 ¼ dr2 þ sinh2rd�2

d�2:
(A18)

The prescription for the analytic continuation in our con-
formal coordinates is given by

X ! T þ i

2
; � ! ir;

aðXÞ ! iaðTÞ; vkðXÞ ! vkðTÞe�k=2;

(A19)

so that vkðTÞ similarly satisfies a ‘‘Schrödinger equation’’

½�@2T þUðTÞ�vkðTÞ ¼ ðk2 þ k20ÞvkðTÞ;

UðTÞ �
€bðTÞ
bðTÞ ; bðTÞ � aðTÞk0 ; (A20)

with the simple boundary condition vkðTÞ ! eikT as
T ! �1.

The Lorentzian correlator ĜðT; T0; rÞ satisfies

½�@2T þr2
Hd�1

þUðTÞ�ĜðT; T0; rÞ ¼ i�ðT � T0Þ�ðrÞ
Sd�2sinh

d�2r
;

(A21)

and is therefore given (for sufficiently negative T þ T0) by
analytically continuing the Euclidean correlator (A17):

ĜðT; T0; rÞ ¼ idĜðX ! T þ i

2
; X0 ! T0 þ i

2
; � ! irÞ

� Ĝ1 þ Ĝ2 (A22)

¼
Z þ1

�1
dk

2
vkðTÞv�kðT0ÞGkðrÞ

þ
Z
Ca

dk

2
RðkÞv�kðTÞv�kðT0Þ ~GkðrÞ; (A23)

where GkðrÞ and ~GkðrÞ are defined as

GkðrÞ ¼ idGkð� ! irÞ; ~GkðrÞ ¼ idekGkð� ! irÞ
(A24)

except for the subtlety mentioned below for ~GkðrÞ. Let us
call the two integrals in (A23) Ĝ1 and Ĝ2 respectively.

Note that our choice of the contour Ca in Ĝ2 is correct only

for sufficiently negative24 T þ T0. On the other hand, we
are most interested in the massless correlator at late times.
If we naı̈vely increase T þ T0 without deforming the con-
tour Ca, at some point the integral would diverge. A
standard way of solving this problem is to pull the contour
down toCwhich goes from k ¼ �1 above the double pole
k ¼ ik0 to k ¼ þ1, as shown in Fig. 1. Once this is done
and the new integral on C agrees with the old one on Ca for
sufficiently negative T þ T0, we simply use the new inte-
gral as the definition for any values of T þ T0. To evaluate
this new integral for large T þ T0, one can legally deform
the contour from C to Cb as shown in Fig. 2(b) (at least for
some of the terms in the integrand), picking up the double
and simple poles below the contour. This last step will be
done on a case-by-case basis in the next subsection. Here
we first obtain the correct expression for the new integral
on C that is valid for any T and T0.
It turns out that we cannot naı̈vely deform the contour

from Ca to C in Ĝ2. If we do that, the integral on C would
diverge, as we will show shortly. This is different from the
situation before the analytic continuation, where it does not
matter whether we choose C or Ca, as long as Xþ X0 is
sufficiently negative. The main difference is the additional

ek factor inside ~GkðrÞ, which comes from analytically

continuing v�kðXÞv�kðX0Þ to v�kðTÞv�kðT0Þ in Ĝ2.
A hint that something subtle is going on is that we could

multiply the integrand of Ĝ2 by any number of e2ðk�ik0Þ
factors without changing the integral on Ca. The reason is
simply that the integral on Ca is equal to the sum of
residues at the simple poles k ¼ iðk0 þ nÞ, n ¼
1; 2; 3; 
 
 
 , and e2ðk�ik0Þ is simply 1 at all these poles,
so none of the residues are changed. On the other hand,

factors such as e2ðk�ik0Þ definitely matter when the integral
is performed on C. In fact, there is a unique prescription for
this factor for which the integral on C is actually conver-
gent. This is the correct prescription, which we will find in
exact form below.
Let us use the connection formula for the hypergeomet-

ric function

2F1ða;b;c;zÞ¼
�ðcÞ�ðb�aÞ
�ðbÞ�ðc�aÞð�zÞ�a

� 2F1

�
a;1þa�c;1þa�b;

1

z

�

þ�ðcÞ�ða�bÞ
�ðaÞ�ðc�bÞð�zÞ�b

� 2F1

�
b;1þb�c;1þb�a;

1

z

�
(A25)

to decompose the ~GkðrÞ into two terms:

24One can see from (A29) that ‘‘sufficiently negative’’ here
means T þ T0 � �r.
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~GkðrÞ ¼ idek
ð2 ffiffiffiffi


p Þ1�d

�ðd�1
2 Þ �ðk0 þ ikÞ�ðk0 � ikÞ

� 2F1

�
k0 þ ik; k0 � ik;

d� 1

2
; cosh2

r

2

�
(A26)

¼� 1

4d=2ð4zÞk0
�
e2kð4zÞ�ik�ðk0þ ikÞ�ð�ikÞ

� 2F1

�
k0þ ik;

1

2
þ ik;1þ2ik;

1

z

�

þð4zÞik�ðk0� ikÞ�ðikÞ
� 2F1

�
k0� ik;

1

2
� ik;1�2ik;

1

z

��
; (A27)

where z is defined as cosh2ðr=2Þ. For d ¼ 4 this decom-
position looks very simple:

~G kðrÞ ¼ ek sinh½kð� irÞ�
4i sinhðkÞ sinhr ¼ e2k�ikr � eikr

8i sinhðkÞ sinhr :
(A28)

In general dimensions this decomposition may look com-
plicated, but each term has a simple asymptotic behavior at
large r. Specifically as r ! 1, z goes to er=4, both hyper-
geometric functions in (A27) goes to 1, and we have

~GkðrÞ � � 1

4d=2ek0r
½e2ke�ikr�ðk0 þ ikÞ�ð�ikÞ

þ eikr�ðk0 � ikÞ�ðikÞ�: (A29)

As k ! 1 along the real axis, the absolute value of the
products of Gamma functions in (A29) becomes

j�ðk0 þ ikÞ�ð�ikÞj ¼ j�ðk0 � ikÞ�ðikÞj
� 2jkjðd�4Þ=2e�jkj: (A30)

Clearly the first term in (A29) diverges as k ! þ1, while
the second term goes to zero as k ! 1. As we argued
earlier, we treat this divergence by multiplying the first

term by a factor of e�2ðk�ik0Þ ¼ ð�1Þde�2k, changing the

exact form (A27) of ~GkðrÞ into

~GkðrÞ¼� 1

4d=2ð4zÞk0
�
ð�1Þdð4zÞ�ik�ðk0þ ikÞ�ð�ikÞ

� 2F1

�
k0þ ik;

1

2
þ ik;1þ2ik;

1

z

�
þð4zÞik�ðk0� ikÞ

��ðikÞ2F1

�
k0� ik;

1

2
� ik;1�2ik;

1

z

��
; (A31)

where again z ¼ cosh2ðr=2Þ. This does not change the
integral on Ca, but enables us to legally deform the contour
from Ca to C for sufficiently negative T þ T0. In terms of

this improved ~GkðrÞ the Lorentzian correlator is

ĜðT; T0; rÞ ¼ Ĝ1 þ Ĝ2

¼
Z þ1

�1
dk

2
vkðTÞv�kðT0ÞGkðrÞ

þ
Z
C

dk

2
RðkÞv�kðTÞv�kðT0Þ ~GkðrÞ; (A32)

which looks the same as (A23) except for the contour C.
This is our final, exact expression for the massless corre-
lator in any open FRW spacetime resulting from a CdL
decay, valid for any T, T0, and r. Here GkðrÞ is given by
(A24) as

GkðrÞ ¼ id
ð2 ffiffiffiffi


p Þ1�d

�ðd�1
2 Þ �ðk0 þ ikÞ�ðk0 � ikÞ

� 2F1

�
k0 þ ik; k0 � ik;

d� 1

2
; cosh2

r

2

�
: (A33)

Before concluding this section, let us comment on the
structure of (A32). In order to calculate the Lorentzian
correlator, we only need the eigenmodes vkðTÞ and the
reflection coefficient RðkÞ. For vkðTÞ we solve the
‘‘Lorentzian Schrödinger equation’’ (A20) with the bound-
ary condition vkðTÞ ! eikT as T ! �1. For RðkÞ we in
principle need to solve the ‘‘Euclidean Schrödinger equa-
tion’’ (A6). We cannot in general hope to calculate the
complete Lorentzian correlator by knowing only aðTÞ but
not aðXÞ (or vice versa); an example is provided by the
thin-wall limit discussed in [5], where the Lorentzian scale
factor aðTÞ ¼ eT is exactly the same as that of flat space in
Milne coordinates, but the massless correlator still has a
nontrivial term due to the specific vacuum chosen by the
CdL geometry. From the perspective of (A32), the choice
of vacuum is encoded in the reflection coefficient RðkÞ
which must in general be calculated from the Euclidean
scale factor aðXÞ. Usually RðkÞ is not analytically tractable
away from the thin-wall limit, but fortunately all we need

to know in order to calculate the leading behavior of Ĝ2 is
the fact that RðkÞ always has a simple pole at k ¼ ik0, and
all other poles lie below it.

3. Our FRW spacetime

Let us now apply (A32) to our FRW model

ds2d ¼ �dt2 þ aðtÞ2dH2
d�1; (A34)

where the scale factor aðtÞ asymptotes to ct at late times.
Near the big bang singularity t ¼ 0 the scale factor aðtÞ ¼
tþOðt3Þ as required by the smoothness of the CdL
instanton. Going to the conformal coordinates T ¼R
dt=aðtÞ, the scale factor aðTÞ approaches (up to constant

factors) eT as T ! �1, and approaches ecT as T ! þ1.
Therefore the ‘‘Schrödinger potential’’UðTÞ asymptotes to
k20 as T ! �1 and c2k20 as T ! þ1. This means that the

eigenmodes vkðTÞ have the following asymptotic behavior:

vkðTÞ ! eikT ðT ! �1Þ; (A35)
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vkðTÞ!�ke
iT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðc2�1Þk2

0

p

þ�ke
�iT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðc2�1Þk2

0

p
ðT!þ1Þ; (A36)

where �k and �k are analogous to reflection and trans-

mission coefficients. For k > k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
the eigenmodes

are oscillatory at large T; for smaller k they are exponen-
tially decaying or growing. These are pseudotachyonic
modes.

The exact eigenmodes vkðTÞ are difficult to solve ana-
lytically except for perhaps unrealistically simple UðTÞ
such as a step potential. Fortunately, we are most interested
in the equal-time massless correlator at large T and large r,

for which both vkðTÞ and ~GkðrÞ simplify. Specifically in the

large T limit v�kðTÞv�kðTÞ in Ĝ2 becomes

v�kðTÞ2 � �2
�ke

�2iT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðc2�1Þk20

p
þ �2

�ke
2iT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðc2�1Þk20

p

þ 2��k��k

� v� þ vþ þ v0; (A37)

where we have changed the sign of the exponent in v�kðTÞ
because we choose the square root to have a branch cut

between k ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
. In the large r limit (A31) sim-

plifies to

~GkðrÞ � � 1

4d=2ek0r
½ð�1Þde�ikr�ðk0 þ ikÞ�ð�ikÞ

þ eikr�ðk0 � ikÞ�ðikÞ�
� ~G� þ ~Gþ: (A38)

Therefore the integrand of Ĝ2 in (A32) can be decomposed
into six terms:

Ĝ 2ðT; T; rÞ �
Z
C

dk

2
RðkÞðv� þ vþ þ v0Þð ~G� þ ~GþÞ;

(A39)

where for large jkj we have v � ei2kT and ~G �
eikr= sinhðkÞ up to powers of k.

In the large T, large fixed r limit that we are interested in
(i.e. T � r � 1) we may deform the contour from C to Ca

for the three terms vþð ~G� þ ~GþÞ þ v0
~Gþ, and deform the

contour to Cb for the other three: v�ð ~G� þ ~GþÞ þ v0
~G�.

If we are interested in the large r, large fixed T limit (i.e.
r � T � 1) instead, we simply switch the contours for

vþ ~G� and v� ~Gþ. In both cases (or more generally, in any

large T, r limit), the leading behavior of Ĝ2 can be shown

to come from the residue of the v� ~G� term at the double
pole k ¼ ik0. This can be evaluated up to numerical fac-
tors:

Ĝ2ðT; T; rÞ � e2ck0Tð2T þ rÞ;

G2ðT; T; rÞ ¼ Ĝ2ðT; T; rÞ
aðTÞk0aðTÞk0 � 2T þ r; (A40)

where G2 is the corresponding piece of the original corre-
lator for �. The first term 2T is a pure gauge because it is
linear in the coordinates. The second term r is not, because
it is actually the geodesic distance on Hd�1 between the
two points of the correlation function.
To study the holographic dual of our FRW model, we

rewrite the metric in hyperbolic slicing

ds2d ¼ �dt2 þ aðtÞ2ðd�2 þ cosh2�dH2
d�2Þ;

dH2
d�2 ¼ d~�2 þ sinh2 ~�d�2

d�3: (A41)

Let us put both points of the correlator on a hypersurface of
constant �, with a separation of �~� in the ~� direction.
Their geodesic distance on Hd�1 is therefore

r ¼ arccoshðcosh�~�cosh2�� sinh2�Þ
� �~�þ 2 logcosh�; (A42)

where the approximation holds for large�~� and any�. For
large � the second term on the right-hand side of (A42)
simply becomes 2�, but let us not commit ourselves to that
limit. In terms of � and �~� the leading behavior of G2

from (A40) becomes

G2ðt; �;�~�Þ � �~�þ 2 logcosh�: (A43)

This term is present for both c > 1 and c ¼ 1, and it is
independent of the dimension d. This suggests an interpre-
tation as the contribution from the zero mode of � local-
ized on the UV slice.
The leading behavior of the other term in the correlator,

namely Ĝ1, is dominated by the contributions of the pseu-
dotachyonic modes. The most pseudotachyonic mode is
the one with k ¼ 0, given by

v0ðTÞ � ek0T
ffiffiffiffiffiffiffiffi
c2�1

p
: (A44)

In the large r limit G0ðrÞ as defined in (A33) goes like
re�k0r, so the first term in the correlator (A32) becomes

Ĝ1ðT; T; rÞ � re2k0T
ffiffiffiffiffiffiffiffi
c2�1

p
�k0r;

G1ðT; T; rÞ � re2k0Tð
ffiffiffiffiffiffiffiffi
c2�1

p
�cÞ�k0r; (A45)

which we rewrite in terms of t, �, and �~� as

G1ðt; �;�~�Þ � tðd�2Þð
ffiffiffiffiffiffiffiffiffiffiffiffi
1�1=c2

p
�1Þ

coshd�2�
e�ðd�2Þ�~�=2

� ð�~�þ 2 logcosh�Þ: (A46)

This term is present only for c > 1, in which case there is a
warped geometry with a consistent description in terms of
a low energy (d� 1)-dimensional dual.

4. Massive correlation functions

We have hitherto focused on massless correlation func-
tions, but it is rather straightforward to generalize it to
massive correlation functions, as we outline below. This
provides an alternative way of calculating the massive
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Green’s functions for the KK modes, closed strings, and
7-7 strings in Sec. VA.

Let us consider a scalar field�with massmðtÞwhich we
allow to be time-dependent. We can use the techniques
developed in the first two sections of this Appendix to
calculate its correlation function. The only difference is
that we need to add a corresponding mass term aðXÞ2mðXÞ2
to the ‘‘Schrödinger potential’’ UðXÞ, and similarly add
�aðTÞ2mðTÞ2 to UðTÞ. This makes the potential UðXÞ
shallower, and the bound states either have larger eigen-
values (for small masses) or simply disappear (for large
masses). This means that the reflection coefficient RðkÞ no

longer has a pole at k ¼ ik0. The pole is moved down to
between k ¼ ik0 and k ¼ 0 if there is still a bound state.
Therefore, the formulas for both the Euclidean correlator
(A17) and the Lorentzian correlator (A32) are fully correct,
as long as we define the contour C to go from k ¼ �1 to
k ¼ þ1, in a way that goes just below k ¼ ik0 but always
above any possible poles corresponding to bound states.
The pseudotachyonic modes disappear for sufficiently

large masses due to the additional term �aðTÞ2mðTÞ2 in
the ‘‘Schrödinger potential’’ UðTÞ. One can show that in
this case the leading term in the correlation function agrees
with the estimates in Sec. VA.
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