
Dark matter, infinite statistics, and quantum gravity

Chiu Man Ho,1,* Djordje Minic,2,† and Y. Jack Ng3,‡

1Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
2Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

3Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina,
Chapel Hill, North Carolina 27599, USA

(Received 12 March 2012; published 21 May 2012)

We elaborate on our proposal regarding a connection between global physics and local galactic

dynamics via quantum gravity. This proposal calls for the concept of MONDian dark matter which

behaves like cold dark matter at cluster and cosmological scales but emulates modified Newtonian

dynamics (MOND) at the galactic scale. In the present paper, we first point out a surprising connection

between the MONDian dark matter and an effective gravitational Born-Infeld theory. We then argue that

these unconventional quanta of MONDian dark matter must obey infinite statistics, and the theory must be

fundamentally nonlocal. Finally, we provide a possible top-down approach to our proposal from the

matrix theory point of view.
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I. INTRODUCTION

The fascinating problem of ‘‘missing mass’’, or dark
matter [1], has been historically identified on the level of
galaxies. But the need for dark matter is in fact even more
urgent at larger scales. Dark matter is apparently required
to yield: (1) the correct cosmic microwave background
spectrum shapes [including the alternating peaks]; (2) the
correct large-scale structures; (3) the correct elemental
abundances from big bang nucleosynthesis; and (4) the
correct gravitational lensing. Naturally dark matter has
been accorded a prominent place in the concordant
�CDM model of cosmology [1] according to which cold
dark matter (CDM), dark energy (in the form of cosmo-
logical constant), and ordinary matter account for about
23%, 73%, and 4% of the energy and mass of the Universe,
respectively.

However, at the galactic scale, dark matter does not fare
nearly as well at the larger scales. It can explain the
observed asymptotic independence of orbital velocities
on the size of the orbit only by fitting data (usually with
two parameters) for individual galaxies. It is also not very
successful in explaining the observed baryonic Tully-
Fisher relation [2,3], i.e., the asymptotic-velocity-mass
(v4 / M) relation. Another problem with dark matter is
that it seems to possess too much power on small scales
(�1� 1000 kpc) [4].

On the other hand, there is an alternative paradigm that
goes by the name of modified Newtonian dynamics
(MOND) [5–7], due to Milgrom. MOND stipulates that
the acceleration of a test mass m due to the source M is
given by a ¼ aN for a � ac, but a ¼ ffiffiffiffiffiffiffiffiffiffiffi

aNac
p

for a � ac,

where aN ¼ GM=r2 is the magnitude of the usual

Newtonian acceleration and the critical acceleration ac is
numerically related to the speed of light c and the Hubble
scale H as ac � cH=ð2�Þ � 10�8 cm=s2. With only one
parameter MOND can explain rather successfully the ob-
served flat galactic rotation curves and the observed Tully-
Fisher relation [8]. Unfortunately there are problems with
MOND at the cluster and cosmological scales.
Thus CDM and MOND complement each other well,

each being successful where the other is less so. We found
it natural to combine their salient successful features into a
unified scheme which straddles the fields of astronomy and
high energy physics. In our previous work [9], by making
use of a novel quantum gravitational interpretation of
(dark) matter’s inertia, we introduced the new concept of
MONDian dark matter which behaves like CDM at cluster
and cosmological scales but emulates MOND at the galac-
tic scale.
In this paper, after a short review of our proposal on

MONDian dark matter, we first point out a surprising
connection between our proposal and an effective gravita-
tional Born-Infeld description of the MOND-like phe-
nomenology of our dark matter quanta. Furthermore, we
stress that these unusual quanta of dark matter must obey
the crucial property of infinite statistics. We illustrate the
properties of an essentially nonlocal theory that describes
such dark matter with infinite statistics. We naturally
expect that such noncanonical dark matter quanta should
have dramatic signatures in high energy particle
experiments.

II. FROM ENTROPIC GRAVITY TO MONDIAN
DARK MATTER

Our previous proposal [9] makes crucial use of a natural
relationship between gravity and thermodynamics [10,11].
The starting point is the recent work of Verlinde [10] in
which the canonical Newton’s laws are derived from the
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point of view of holography [12–15]. Verlinde applies the
first law of thermodynamics to propose the concept of
entropic force

Fentropic ¼ T
�S

�x
; (1)

where �x denotes an infinitesimal spatial displacement of
a particle with massm from the heat bath with temperature
T. Invoking Bekenstein’s original arguments concerning
the entropy S of black holes [16] he imposes �S ¼
2�kB

mc
ℏ �x. With the help of the famous formula for the

Unruh temperature, kBT ¼ ℏa
2�c , associated with a uni-

formly accelerating (Rindler) observer [17,18], he obtains
Newton’s second law Fentropic ¼ TrxS ¼ ma.

Next, Verlinde considers an imaginary quasilocal
(spherical) holographic screen of area A ¼ 4�r2 with tem-
perature T. Assuming the equipartition of energy E ¼
1
2NkBT with N being the total number of degrees of free-

dom (bits) on the screen given by N ¼ Ac3=ðGℏÞ, and
employing the Unruh temperature formula and the fact
that E ¼ Mc2, he obtains 2�kBT ¼ GM=r2 and recovers
exactly the nonrelativistic Newton’s law of gravity, namely
a ¼ GM=r2.

But we live in an accelerating Universe (in accordance
with the�CDMmodel). Thus we need a generalization [9]
of Verlinde’s proposal [10] to de Sitter space with a posi-
tive cosmological constant (which is related to the Hubble
parameter H by �� 3H2 after setting c ¼ 1). Since the
Unruh-Hawking temperature as measured by a noninertial
observer with acceleration a in the de Sitter space is given

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
=ð2�kBÞ [19,20], where a0 ¼

ffiffiffiffiffiffiffiffiffi
�=3

p
[12], it is

natural to define the net temperature measured by the
noninertial observer (relative to the inertial observer) to be

~T ¼ 1

2�kB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
� a0

�
: (2)

In fact, Milgrom has suggested in [21] that the differ-
ence between the Unruh temperatures measured by non-
inertial and inertial observers in de Sitter space, namely

2�kB�T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
� a0, can give the correct behaviors

of the interpolating function between the usual Newtonian
acceleration and his suggested MOND for very small
accelerations. However, he was not able to justify why
the force should be related to the difference between the
Unruh temperatures measured by noninertial and inertial
observers in de Sitter space. Or, in his own words: ‘‘it is not
really clear why�T should be a measure of inertia’’. As we
will see in the following, adopting Verlinde’s entropic
force point of view allows us to justify Milgrom’s sugges-
tion naturally.

Following Verlinde’s approach, the entropic force, act-
ing on the test mass m with acceleration a in de Sitter
space, is obtained by replacing the T in Verlinde’s argu-
ment by ~T for the Unruh temperature:

Fentropic ¼ ~TrxS ¼ mð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
� a0Þ: (3)

For a � a0, the entropic force is given by Fentropic � ma,

which gives a ¼ aN for a test mass m due to the sourceM.
But for a � a0, we have Fentropic � ma2=ð2a0Þ; and so the
terminal velocity v of the test mass m should be deter-
mined from ma2=ð2a0Þ ¼ mv2=r.
The observed flat galactic rotation curves (i.e., at large r,

v is independent of r) and the observed Tully-Fisher
relation (the speed of stars being correlated with the
galaxies’ brightness, i.e., v4 / M) now require that

a � ð2aNa30=�Þð1=4Þ.1 But that means

Fentropic � m
a2

2a0
¼ FMilgrom � m

ffiffiffiffiffiffiffiffiffiffiffi
aNac

p
; (4)

for the small acceleration a � a0 regime. Thus we have
recovered MOND—provided we identify a0 � 2�ac, with

the (observed) critical galactic acceleration ac �
ffiffiffiffiffiffiffiffiffi
�=3

p �
H� 10�8 cm=s2. Thus, from our perspective, MOND is a
phenomenological consequence of quantum gravity. To
recapitulate, we have successfully predicted the correct
magnitude of the critical galactic acceleration, and further-
more have found that global physics (in the form of a
cosmological constant) can affect local galactic motion!
Finally, to see how dark matter can behave like MOND

at the galactic scale, we continue to follow Verlinde’s

holographic approach to write 2�kB ~T ¼ G ~M
r2

, by replacing

the T and M in Verlinde’s argument by ~T and ~M res-
pectively. Here ~M represents the total mass enclosed
within the volume V ¼ 4�r3=3. Now it is natural to

write the entropic force Fentropic ¼ m½ða2 þ a20Þ1=2 � a0�
as Fentropic ¼ maN½1þ ða0=aÞ2=�� since the latter ex-

pression is arguably the simplest interpolating formula

for Fentropic that satisfies the two requirements: a �
ð2aNa30=�Þ1=4 in the small acceleration a � a0 regime,

and a ¼ aN in the a � a0 regime. But we can also write
F in another, yet equivalent, form: Fentropic ¼ G ~Mm=r2 ¼
GðMþM0Þm=r2, where M0 is some unknown mass—that
is, dark matter. These two forms of F illustrate the idea of
CDM-MOND duality [9]. The first form can be interpreted
to mean that there is no dark matter, but that the law of
gravity is modified, while the second form means that there
is dark matter (which, by construction, is consistent with
MOND) but that the law of gravity is not modified.
Dark matter of this kind can behave as if there is no dark

matter but MOND. Therefore, we call it ‘‘MONDian dark
matter’’ [9]. Solving for M0 as a function of r in the two
acceleration regimes, we obtain M0 � 0 for a � a0, and

(with a0 �
ffiffiffiffi
�

p
)

1One can check this by carrying out a simple dimensional
analysis and recalling that there are two accelerations in the
problem: viz, aN and a0.
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M0 � ð
ffiffiffiffi
�

p
=GÞ1=2M1=2r; (5)

for a � a0. This intriguing dark matter profile relates, at
the galactic scale, dark matter (M0), dark energy (�) and
ordinary matter (M) to one another. At the moment, it
seems prohibitive to check this prediction in astronomical
observations. As a remark, this dark matter profile has been
derived assuming nonrelativistic sources and so it is only
valid within the galactic scale. When we enter the cluster or
cosmic scale, we need to take into account of the fully
relativistic sources. This may explain whyMONDworks at
the galactic scale, but not at the cluster or cosmic scale.
One of reasons is that, for the larger scales, one has to use
Einstein’s equations with non-negligible contributions
from the pressure and explicitly the cosmological constant,
which have not been taken into account in the MOND
scheme [9].

In the above proposal for the dark matter profile, we have
assumed spherical symmetry and so it is solely dependent
on r. Since both schemes of AQUAL [22] and QUMOND
[23] reduce to the MOND theory in the spherically sym-
metric limit, our proposal should presumably be consistent
with AQUAL and QUMOND in that limit. In principle, we
could generalize our derivation to accommodate the general
case without spherical symmetry and predict a dark matter
disk to compare with AQUAL and QUMOND, but this is
certainly beyond the scope of the present paper.

III. GRAVITATIONAL BORN-INFELD THEORY

As we have reviewed in the last section, our proposal
combines the MONDian phenomenology with the concept
of dark matter. Since the thermodynamic argument we
provided is highly constrained (as in the formulae for the
effective acceleration and hence the force law), we would
like to use the same constraint to likewise elucidate the
concept of MONDian dark matter. One way to do this is to
look for various reformulations of MONDian phenome-
nology. Given the specific form for the MONDian force
law (3), our choices are limited. One particularly useful
reformulation is via an effective gravitational dielectric
medium, motivated by the analogy between Coulomb’s
law in a dielectric medium and Milgrom’s law for
MOND [7,24]. As we will show below, the form of the
Born-Infeld Hamiltonian density for electrodynamics re-
sembles that of the MONDian force law (3). Interestingly,
Milgrom has also noted a similar connection between the
nonlinear Born-Infeld electrostatics and MOND theory
[25]. Thus the effective gravitational medium for our
case is precisely that of the Born-Infeld type.

Now, we proceed to construct an effective gravitational
Born-Infeld theory and point out its remarkable connection
to the MONDian phenomenology. First of all, the original
Born-Infeld (BI) theory [26] is defined with the following

Lagrangian density (where ~E and ~B are the respective
electric and magnetic fields)

LBI ¼ b2
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2 � B2

b2
� ð ~E � ~BÞ2

b4

s �
; (6)

where b is a dimensionful parameter. In fact, if we set
~B ¼ 0, it follows that b represents the maximal field
strength allowed. The corresponding Hamiltonian density
is given by [26]

HBI ¼ b2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2 þ B2

b2
þ ð ~D� ~BÞ2

b4

s
� 1

1
A: (7)

Next, we explore a gravitational analog of the Born-Infeld
theory, in which the relevant field strength is of a gravita-

tional type. In particular, we set ~B ¼ 0. Then, the corre-
sponding gravitational Lagrangian and Hamiltonian
densities read as

Lg ¼ b2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

g

b2

s 1
A; (8)

Hg ¼ b2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2

g

b2

s
� 1

1
A: (9)

For our reasoning, the Hamiltonian density is more rele-
vant, and for a normalization purpose (which will become
clear in a moment), we start from the following normalized
Hamiltonian density which has an extra overall factor
of 1

4� :

Hg ¼ b2

4�

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2

g

b2

s
� 1

1
A ¼ 1

4�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ b2D2

g

q
� b2

�
:

(10)

Let A0 	 b2 and A 	 bDg, then the Hamiltonian density

becomes

Hg ¼ 1

4�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ A2

0

q
� A0Þ: (11)

Assuming there exists energy equipartition, then the effec-
tive gravitational Hamiltonian density, which correspond
to the energy, is equal to

Hg ¼ 1
2kBTeff ; (12)

where Teff is an effective temperature associated with the
energy through the equipartition of energy.2 But the Unruh
temperature formula implies that

2Note that this energy density is energy per unit volume. But
we can regard it as energy per degree of freedom by recalling
that volume, which usually scales as entropy S, scales as the
number of degrees of freedom N in a holographic setting.
Interestingly S� N is one of the features of infinite statistics
[27].
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Teff ¼ ℏ
2�kB

aeff ; (13)

where aeff is the effective acceleration. As a result, we
obtain (after setting ℏ ¼ 1)

aeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ A2

0

q
� A0: (14)

For a given test massm, the Born-Infeld inspired force law
is then given by

FBI ¼ mð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ A2

0

q
� A0Þ: (15)

Quite remarkably, FBI is of exactly the same form as the
force law (3) derived in our previous paper [9] as reviewed
in section II. In what follows, we give a physical interpre-
tation of this somewhat formal result and use it to illumi-
nate the properties of the proposed MONDian dark matter
quanta.

IV. MONDIAN DARK MATTER
AND INFINITE STATISTICS

In this section, we argue that the surprising connection
between an effective gravitational Born-Infeld and the
force law (3) points to the concept of infinite statistics for
our MONDian dark matter quanta. We argue that this is
implied by the equivalence principle. Then we discuss a
toy model of a neutral scalar field obeying infinite statistics
as a first step towards a phenomenologically realistic
model of MONDian dark matter.

First, let us use the equivalence principle within the logic
of our argument. In the previous section, the local gravita-

tional fields ~A and ~A0 appeared in the surprising formal
connection between an effective gravitational Born-Infeld
theory and our MONDian force law (3). The validity of the
equivalence principle suggests that we should identify (at
least locally) the local accelerations ~a and ~a0 with the local

gravitational fields ~A and ~A0 respectively. Namely,

~a 	 ~A; ~a0 	 ~A0: (16)

In other words, the validity of the equivalence principle
suggests that the temperature Teff should be identified as

Teff 	 ℏ
2�kB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
� a0

�
; (17)

which, in turn, implies that the Born-Infeld inspired force
law takes the form

FBI ¼ m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
� a0

�
; (18)

which is precisely the MONDian force law derived in (3).
(For consistency, we check that a0, the counterpart of the
constant b in (10), is itself a constant, being proportional toffiffiffiffi
�

p
.) We thus conclude that the successful phenomenology

of MONDian dark matter may actually be described in
terms of an effective gravitational Born-Infeld theory.3

The gravitational Born-Infeld Hamiltonian Hg is cru-

cially related to the temperature Teff via the energy equi-
partition Hg ¼ 1

2 kBTeff . Now, this temperature Teff is

obviously very low, because of the factor of ℏ [see
Eq. (13)]. As an example, let us consider a typical accel-
eration of order 10 ms�2. The corresponding effective
temperature is of order Teff � 10�20 K and the effective
characteristic energy scale is of order kBTeff � 10�24 eV.
Obviously, kBTeff is much smaller than even the tiny
neutrino masses of order 10�3 eV or the mass of any viable
cold dark matter candidate which has to be much heavier
than 1 eV.
Recall that the equipartition theorem in general states

that the average of the Hamiltonian is given by

hHi ¼ �@ logZð�Þ
@�

; (19)

where ��1 ¼ kBT and Z denotes the partition function. To
obtain hHi ¼ 1

2 kBT per degree of freedom, we require the

partition function to be of the Boltzmann form

Z ¼ expð��HÞ: (20)

To be a viable cold dark matter candidate, the quanta of
our MONDian dark matter are expected to be much
heavier than kBTeff . One may think that it suffices to use
the conventional quantum-mechanical Bose-Einstein or
Fermi-Dirac statistics, but they would not lead to hHi ¼
1
2 kBT per degree of freedom. As a result, the validity of

Hg ¼ 1
2 kBTeff for very low temperature Teff somehow re-

quires a unique quantum statistics with a Boltzmann par-
tition function. But this is precisely what is called the
infinite statistics [28] as described by the Cuntz algebra
(a curious average of the bosonic and fermionic algebras
[28])

aia
y
j ¼ �ij: (21)

Thus, by invoking infinite statistics, the assumption of
energy equipartition Hg ¼ 1

2 kBTeff , even for very low tem-

perature Teff , is justified.
One may reason that the above arguments for infinite

statistics also apply to Verlinde’s original proposal [10]
which invokes energy equipartition, and accordingly he
should need introducing infinite statistics as well. This
would be true if he assumed that the typical mass scale
of the quanta of microscopic degrees of freedom (or bits in
his terminology) on the holographic screen is much heavier
than kBTeff . However, it is not necessary for him to make
such an assumption, thereby the requirement for infinite

3We note that, by using the gravitational Born-Infeld and
effective acceleration, we have no need to invoke the gravita-
tional ‘‘bits’’ in Verlinde’s scheme. Thus, in some sense, we have
bypassed that scheme.
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statistics is evaded. It could well be that the typical mass
scale of the quanta of his bits is much lighter than kBTeff . In
that case, it is in the high temperature limit, and then he can
safely use the Boltzmann partition function to obtain the
energy equipartition formula. As a result, whether Verlinde
requires infinite statistics or not would not change any of
his results.4 On the contrary, to be a viable cold dark matter
candidate, the quanta of our MONDian dark matter must
be much heavier than kBTeff . This means that infinite
statistics is an essential ingredient to our proposal.

Therefore, we have two rather striking observations:
(i) the relation between our force law that leads to
MONDian phenomenology and an effective gravitational
Born-Infeld theory; (ii) the need for infinite statistics of
some microscopic quanta which underlie the thermody-
namic description of gravity implying such a MONDian
force law.

It is natural to ask: How would infinite statistics mesh
with an effective gravitational Born-Infeld theory and what
would such a connection imply for the physical properties
of MONDian dark matter? Here we recall some facts from
string theory as a theory of quantum gravity. It is well
known that in the open string sector, one naturally induces
Born-Infeld theories [30], in general of a non-Abelian kind
[31]. Furthermore, in the case of a nonperturbative formu-
lation of string theory via matrix theory [32] (a light-cone
version of M theory), it has been argued that infinite
statistics arises naturally [27,33]. This matrix theory is
non-Abelian, but is of the Yang-Mills and not Born-
Infeld kind. However, non-Abelian Born-Infeld like exten-
sions of matrix theory exist in various backgrounds [31],
and thus infinite statistics should naturally emerge in that
context as well. Thus, from the matrix theory point of view,
we should expect that infinite statistics and an effective
theory of the gravitational Born-Infeld type are closely
related. This may serve as a top-down justification for the
assumption of the energy equipartition Hg ¼ 1

2 kBTeff

which requires the imposition of infinite statistics.
As we have argued earlier, with the validity of energy

equipartition and the equivalence principle, the successful
phenomenology of MONDian dark matter could be de-

scribed in terms of an effective gravitational Born-Infeld
theory which leads to the correct MONDian force law. But
we just showed that the validity of this energy equipartition
requires some nonstandard degrees of freedom to obey
infinite statistics. It is these nonstandard degrees of free-
dom in the effective gravitational Born-Infeld theory that
generates the gravitational fields and leads to the correct
MONDian force law. As is well known, any modifications
to general relativity must either introduce new local de-
grees of freedom or violate the principle of general covari-
ance (and hence the equivalence principle) [34]. Since we
keep the equivalence principle intact in our arguments and
do not introduce any new local gravitational degrees of
freedom, we do not modify general relativity. Thus these
nonstandard degrees of freedom in the effective gravita-
tional Born-Infeld theory will essentially manifest as new
particle degrees of freedom. Since these new particle de-
grees of freedom when quantized with infinite statistics
leads to the correct MONDian force law, we identify them
as our MONDian dark matter quanta quantized with infi-
nite statistics.
In order to discuss the particle phenomenology of

MONDian dark matter, we need a relativistic field theory
of infinite statistics. It is known that any theory of infinite
statistics is fundamentally nonlocal5 (albeit consistent with
Lorentz and CPT invariance) [28]. As far as we know, such
a complete field-theoretical description of infinite statistics
is not available at present and thus we have to start from
scratch. Here we present a toy model of a neutral scalar
field obeying infinite statistics (see also [35]) and postpone
a full treatment of this problem to the future. We start with
the Klein-Gordon equation

ð@2 þm2Þ�ðxÞ ¼ 0: (22)

Since� is a Hermitian field operator, it can be expanded as

�ðxÞ ¼
Z

d!kðað ~kÞe�ik�x þ ayð ~kÞeik�xÞ; (23)

where d!k 	 d3k

ð2�Þ32
ffiffiffiffiffiffiffiffiffiffiffi
~k2þm2

p with k � x 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

p
t� ~k � ~r.

The annihilation operator a and creation operator ay obey
the infinite statistics algebra

að ~kÞayð ~k0Þ ¼ 2k0ð2�Þ3�ð3Þð ~k� ~k0Þ; (24)

where k0 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

p
, and

að ~kÞj0i ¼ 0 ¼ h0jayð ~kÞ: (25)

The Wightman function is given by

4Verlinde only invokes energy equipartition for the bits (the
unknown microscopic degrees of freedom) on the holographic
screen. In his picture, all matter is emergent from these bits and
the emergent particles can obey infinite statistics or other statis-
tics. But when ordinary matter particles emerge from these bits,
they obey bosonic or fermionic statistics. How this happens is
beyond the scope of this paper. In short, it appears that quantum
gravitational degrees of freedom obey infinite statistics though
this fact is irrelevant in Verlinde’s case. Nevertheless, we cannot
help but wonder whether quantum gravity is actually the origin
of particle statistics and that the underlying statistics is infinite
statistics. Is it possible that ordinary particles that obey Bose or
Fermi statistics are actually some sort of collective degrees of
freedom? For a discussion of constructing bosons and fermions
out of particles obeying infinite statistics, see [29].

5That is, the fields associated with infinite statistics are not
local, neither in the sense that their observables commute at
spacelike separation nor in the sense that their observables are
pointlike functionals of the fields.

DARK MATTER, INFINITE STATISTICS, AND QUANTUM . . . PHYSICAL REVIEW D 85, 104033 (2012)

104033-5



�ðþÞðx� yÞ ¼ h0j�ðxÞ�ðyÞj0i ¼
Z

d!ke
�ik�ðx�yÞ; (26)

where we have used Eqs. (23)–(25). The Feynman propa-
gator

�Fðx� yÞ 	 �ih0jTð�ðxÞ�ðyÞÞj0i; (27)

is given, in terms of the Wightman functions, by

�Fðx� yÞ ¼ �i�ðx0 � y0Þ�ðþÞðx� yÞ
� i�ðy0 � x0Þ�ðþÞðy� xÞ (28)

¼
Z d4k

ð2�Þ4
e�ik�ðx�yÞ

k2 �m2 þ i�
: (29)

Equation (29) can be shown to be equal to Eq. (28) by two
different ways. One way is by explicitly performing the
integration over k0 in Eq. (29) to yield Eq. (28). Another
way is to show that the Feynman propagator is a Green’s
function for the Klein-Gordon equation, i.e.,

ð@2x þm2Þ�Fðx� yÞ ¼ ��4ðx� yÞ; (30)

by applying ð@2x þm2Þ on Eq. (28) and using the fact
that the Wightman function solves the Klein-Gordon equa-

tion and that, with the aid of Eq. (26), �ðþÞðx� yÞ ¼
�ðþÞðy� xÞ at equal time x0 ¼ y0.

From Eq. (29), it is obvious that we get back the con-
ventional result for the scalar propagator and nonlocality is
not manifest. Mathematically, this is because only the term
h0jaayj0i gives a nonzero contribution to the propagator.
The commutator of a and ay, which is absent in the infinite
statistics case, is not required for the calculation of the
propagator. But while nonlocality is not manifest in the
propagator, it is not completely lost. The reason is that
the equal-time commutator ½�ðxÞ; �ðyÞ�jx0¼y0 is nonzero,

which is a manifestation of nonlocality.
We thus conclude that this toy model is illuminating to

some extent, and indeed it could serve as a preliminary
model for MONDian dark matter. However, we will not
explore it further. This is because we are more interested in
the particle physics phenomenology of the nonlocality
associated with MONDian dark matter. Such phenomeno-
logical studies will crucially rely on a nonlocal propagator
of the infinite statistics quanta, as well as their interactions
with the Standard Model particles. In contrast, nonlocality
in this toy model is only manifest in the equal-time com-
mutator ½�ðxÞ; �ðyÞ�jx0¼y0 ; but it is not clear that it will

lead to any direct and observable phenomenological con-
sequences. Undoubtedly, for the particle physics phenome-
nology of MONDian dark matter to be relevant, we will
need a full description which involves a truly nonlocal field
theory of infinite statistics quanta. Investigating the precise
nature of such a nonlocal theory is the next step in our
research program. However, the proposal that MONDian
dark matter quanta should be described by a nonlocal

theory of infinite statistics, with ultimate origins in quan-
tum gravity, is already quite remarkable, and this feature of
MONDian dark matter uniquely distinguishes our sugges-
tion from other phenomenological models of dark matter.
We end this section with the following observation on

the phenomenology of MONDian dark matter. On the one
hand, infinite statistics has been associated with the phys-
ics of quantum gravitational quanta such as D0-branes, in
particular, backgrounds [33] as well as with black hole
physics (as in the work of Strominger [33]). On the other
hand, there are existing proposals arguing for the rele-
vance of primordial black holes in the physics of dark
matter [36], and, what is more important, for experimen-
tal searches for such primordial black holes [36].
Naturally we are led to conjecture that the application
of the same experimental techniques may be relevant in
the observational search of MONDian dark matter with
infinite statistics.

V. CONCLUSION: INFINITE STATISTICS
AND QUANTUM GRAVITY

In this paper, we have further developed our proposal for
MONDian dark matter which unifies the salient features of
cold dark matter and the phenomenology of modified
Newtonian dynamics. The MONDian dark matter behaves
like CDM at cluster and cosmological scales but emulates
MOND at the galactic scale. We have pointed out a sur-
prising connection between our proposal and an effective
gravitational Born-Infeld description of the MOND-like
phenomenology of our dark matter quanta. Furthermore,
we have argued that these unusual quanta of dark matter
must obey the crucial property of infinite statistics. Thus,
MONDian dark matter has to be described as an essentially
nonlocal theory for such infinite statistics quanta. Such a
theory would be fundamentally quantum gravitational and
thus distinguished from the usual phenomenological mod-
els of dark matter.
We conclude by presenting a possible top-down ap-

proach to our proposal. As already mentioned, it is quite
natural to expect that quantum gravity in some form of
matrix theory [32], has a non-Abelian Born-Infeld exten-
sion. If one concentrates on the Uð1Þ part of that theory,
which would correspond to a ‘‘center of mass’’ sector of
the full quantum theory of gravity, one will in principle
expect to derive an effective gravitational Born-Infeld
theory of the kind discussed in this paper. Also matrix
theory [33] allows for infinite statistics being a theory of
large (infinite size) matrices. Thus it would be possible to
envision a gravitational Born-Infeld Hamiltonian which, in
conjunction with the equipartition theorem that is true for
infinite statistics, would imply the temperature formula and
thus the force law derived in our previous paper [9].
Finally, by invoking the equivalence principle in this ther-
modynamic limit, we would be able to derive the exact
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formula ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

q
� a0� from which we could deduce the

MONDian scaling at galactic distances.
This scenario would imply that quantum gravity (in the

guise of M theory) is really behind MONDian dark matter
and its implications for particle physics as well as astron-
omy on the galactic and extragalactic scales. In this dis-
cussion, we would need to take account of holography (i.e.
a matrix model description) in the cosmological asymptoti-
cally de Sitter background [37], which will be quite non-
trivial. One simple idea would be to envision a matrix
model (inspired by matrix theory [32])

L ¼ Trð12ð@MÞ2 þm2M2 þ gVðMÞOSMÞ; (31)

where M is an infinite dimensional square matrix. The
mass termm2 and the ‘‘Yukawa’’ coupling g are phenome-
nological parameters. Here VðMÞ denotes some effective
potential (for simplicity, we can envision a quartic term
M4) and OSM is the relevant standard model operator that
describes the necessary coupling to the dark matter sector.
The mass parameterm could be related to the cosmological

SUSY breaking mechanism of Banks [38] if the matrix M
has fundamental origins in matrix theory in a cosmological
de Sitter background. However this topic is beyond the
scope of our present work and we leave it for further study
in the future.
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