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We study here circular timelike geodesics in the Janis-Newman-Winicour and Gamma metric space-

times which contain a strong curvature naked singularity and reduce to the Schwarzschild metric for a

specific value of one of the parameters. We show that for both the metrics the range of allowed parameters

can be divided into three regimes where structure of the circular geodesics is qualitatively different. It

follows that the properties of the accretion disks around such naked singularities can be significantly

different from those of disks around black holes. This adds to previous studies showing that if naked

singularities exist in nature, their observational signature would be significantly different from that of the

black hole.
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I. INTRODUCTION

One of the most important unresolved problems in gen-
eral relativity, and an issue that has far reaching observa-
tional implications, is that of the final fate of complete
gravitational collapse of a massive body such as a star.

The Israel-Carter conjecture asserts that a Kerr black
hole, which is described by two parameters, namely, mass
and angular momentum, would be formed as the endstate
of any generic complete gravitational collapse, and thus all
other information regarding the nature of the matter fields,
symmetries, and initial conditions will be radiated away in
the process of collapse. The above statement remains at the
stage of conjecture as of now because proving it analyti-
cally or numerically is turning out to be a very difficult
task. We also do not understand very well how matter
would behave at energies beyond nuclear energy scales
all the way up to Planck scale as we have no theoretical
understanding of evolution of the equation of state of
matter at such energies. Thus theoretical studies do not
provide a definite answer to the question whether or not
black holes are the only possible outcomes of gravitational
collapse.

In fact, in the last few years new theoretical models and
observations seem to suggest that the true nature of the
process could be more complicated. Investigations of
gravitational collapse of various matter configurations in
the context of the general theory of relativity over the last
couple of decades have revealed that the endstates of
complete gravitational collapse could either be black holes
or naked singularities [1].

Therefore, it is natural to ask the question of what
happens during a realistic collapse of a massive body and

what will be the endstate of such a collapse. The possibil-
ities can be divided into three main categories:
(i) The body radiates away all higher multipole

moments and all asymmetry, thus forming a Kerr
black hole.

(ii) Collapse will halt before all matter is squeezed into
a spacetime singularity, thus creating a finite sized
final object that is different from a black hole.

(iii) Matter will fall into the final spacetime singularity
preserving its symmetry structure, thus creating a
final configuration in the form of vacuum space-
time with a singularity (that can be covered or
naked).

The analytical solutions describing dynamical collapse
of a rotating body away from spherical symmetry are few
and not well understood at present. Therefore a possible
mechanism to account for the first hypothesis is still miss-
ing. For this reason it seems natural to turn the attention to
the other two options. Ideas following the second hypothe-
sis have been proposed [2], but the nature of these objects
and the physical processes that could lead to the formation
of the same are not well understood. Furthermore recently
some new scenarios have been proposed that include the
possibility that gravitational collapse can asymptotically
halt, leading to the formation of static configurations of
matter that may or may not contain a naked singularity and
which could be either finite or infinite in extent [3].
On the other hand, if black holes and naked singularities

which are hypothetical astrophysical objects occur in
nature, a question would be how they would be observa-
tionally different. Therefore some researchers have started
looking into the observational features that would distin-
guish these entities. Black holes and naked singularities
could have rather different properties and this could also
possibly shed some light on the nature of existing sources,
like the supermassive dark objects that dwell at the center
of galaxies. Recent studies of gravitational lensing (see
for example [4]) and accretion disks (see [3,5–7]) have
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brought out interesting characteristic differences for these
objects which could possibly distinguish them from each
other. Recently it was also suggested by some of us that
ultrahigh energy collisions and fluxes of the escaping
collision products could be used for this purpose in certain
situations [8].

In the present paper, we investigate the properties of
circular geodesics and accretion disks in two spacetimes
that arise naturally while generalizing the Schwarzschild
solution. One is the Janis-Newman-Winicour (JNW) solu-
tion and the other one is the so called Gamma metric
(�-metric henceforth).

The Schwarzschild metric is the unique vacuum solution
to Einstein equations under spherical symmetry which is
static and asymptotically flat. Different metrics can be
obtained from the Schwarzschild solution by relaxing
one or more of the assumptions above. Firstly, relaxing
the spherical symmetry, we can consider either a static
deformation keeping the axial symmetry intact, or we
could invoke a spin. One of the solutions that can be
obtained in the former case is the �-metric [9], whereas
the spacetime in the latter case is described by the Kerr
metric. On the other hand, the assumption of empty space-
time can be relaxed by invoking the presence of either an
electromagnetic field or a scalar field. In the former case
one obtains the Reissner-Nordström solution, whereas in
the latter case, by invoking a massless scalar field, the JNW
solution is obtained [10].

The uniqueness theorems give a privileged status to the
Kerr and Schwarzschild spacetimes. Nevertheless, since
we do not know if in a realistic physical scenario those
will necessarily be the resulting metrics, it is of interest
to study spacetimes such as JNW and the �-metric that
depart from the black hole models and see if they can be
observationally different from their black hole counter-
parts. The main point that makes the �-metric and the
JNW-metric more appealing is that they are continuously
connected to the Schwarzschild solution via the value of
one parameter. By reducing this parameter to a specific
value we recover exactly the Schwarzschild solution. The
interesting point is that the Schwarzschild metric has a
black hole whereas these two generalizations contain
naked singularities, and therefore we can directly compare
the results obtained for models of accretion disks in these
metrics with the Schwarzschild case. Furthermore the pa-
rameters appearing in the JNW and �-metric have a clear
and direct physical interpretation, as one represents the
addition of a scalar field while the other represents an axial
deformation.

The first step towards the study of accretion disks is
understanding the circular geodesics in the equatorial plane
of the spacetime. The study of circular geodesics in Kerr
and Reissner-Nordström spacetimes containing black
holes or naked singularities depending on the values of
the spin and charge parameters, respectively, was recently

carried out in [6]. In this paper we investigate the structure
of circular geodesics for the JNW and � spacetimes.
We find that the properties of accretion disks can be

divided in three regimes according to the values assumed
by a parameter in the solutions. In one regime, the stable
circular geodesics extend all the way up to singularity; in
the second, the stable circular orbits can exist in two
disjoint disks separated by a gap, one disk extending
from singularity to a finite radius and another extending
from a larger radius to infinity. Finally, in the third case a
photon sphere surrounds the singularity, and stable circular
geodesics can exist from a particular radius above photon
sphere to infinity.

II. CIRCULAR EQUATORIAL GEODESICS
IN THE JNW METRIC

In this section we investigate the structure of the circular
geodesics in the JNW spacetime. As mentioned earlier,
the JNW metric is obtained as an extension of the
Schwarzschild spacetime when a massless scalar field is
present. In a naive sense, the black hole event horizon, i.e. a
coordinate singularity in the Schwarzschild spacetime
transforms to a real physical singularity which is naked.
The JNWmetric depends upon two parameters, one related
to the mass and an additional parameter which can be
interpreted as the strength of the scalar field or ‘‘scalar
charge’’.
The JNW metric can be written in the following way

ds2 ¼ �Adt2 þ A�1dr2 þ Bd�2; (1)

where d�2 ¼ d#2 þ sin2�d�2 is the line element of a unit
two-sphere and the functions AðrÞ and BðrÞ are given by the
following expressions

AðrÞ ¼
�
2r� r0ð�� 1Þ
2rþ r0ð�þ 1Þ

�ð1=�Þ
; (2)

BðrÞ ¼ 1

4

½2rþ r0ð�þ 1Þ�ð1=�Þþ1

½2r� r0ð�� 1Þ�ð1=�Þ�1
: (3)

The two parameters mentioned above are r0 (that is related
to the mass) and the scalar charge �. The range of � is
given by � 2 ð1;1Þ and the scalar field is given by the
following expression,

’ ¼ a

�
ln

��������
2r� r0ð�� 1Þ
2rþ r0ð�þ 1Þ

��������; (4)

where� and a are linked by the relation� ¼ ð1þ 8� 4a2

r2
0

Þ.
The JNW spacetime contains a strong curvature singularity
which is globally naked at

rsing ¼ 1

2
r0ð�� 1Þ; (5)

for � � 1.
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The Schwarzschild solution in the usual form can be
recovered from the JNW solution when � ¼ 1 after a
simple coordinate transformation of the radial coordinate
given by �r ¼ rþ r0, with r0 ¼ 2M which is the usual
Schwarzschild radius of the event horizon (note that the
radial coordinate r of the JNW metric when � ¼ 1 does
not correspond to the usual Schwarzschild coordinate �r),
and whereM is related to the total mass of the central body
as measured by observers at infinity. Therefore the
case where � is close to 1 corresponds to the small devia-
tions from the Schwarzschild metric due to the presence of
a small massless scalar field, whereas large values of �
correspond to the large deviations from the Schwarzschild
geometry [11].

A. Geodesics in JNW spacetime: basic equations

We now investigate the structure of timelike equatorial
geodesics in the JNW spacetime. The JNW metric is
spherically symmetric and static and therefore admits the
two Killing vectors �t ¼ @t and �� ¼ @�. As a conse-

quence we have the following conserved quantities along
geodesic motion.

E ¼ �g���
�
t u

� ¼ AðrÞUt; (6)

L ¼ g���
�
�u

� ¼ BðrÞU�; (7)

where U� ¼ ðUt;Ur; U�; U�Þ is the four-velocity of the
test particle. The constants of motion E and L can be
interpreted as the conserved energy and orbital angular
momentum per unit mass of the particle, respectively.

Spherical symmetry implies that the motion of the par-
ticle will be restricted to a plane which can be chosen by
gauge freedom to be the equatorial plane. Thus we set
� ¼ �

2 and U� ¼ 0.

From Eqs. (6) and (7) using the normalization condition
for the four-velocity U�U� ¼ �1, we obtain the equation
for the motion of a particle in the radial direction.

_r 2 þ V2 ¼ E2: (8)

Here V can be thought of as an effective potential for the
test particle and it is given by a following expression,

V2 ¼ AðrÞ
�
1þ L2

BðrÞ
�
: (9)

B. Circular geodesics

From the analysis of the above effective potential we can
obtain the structure of circular geodesics. A particle orbit-
ing along a circular geodesics must obey the conditions

Ur ¼ _Ur ¼ 0; (10)

as r must stay constant. Here the dot denotes a derivative
with respect to the affine parameter for geodesic i.e. the
proper time.

From Eqs. (8) and (10) it follows that for circular
geodesics

V ¼ E; and
@V

@r
¼ 0: (11)

Further, one needs to ensure that the circular orbit is stable
against small perturbations in the radial direction, and this
implies that for a stable orbit the effective potential must
admit a minimum:

@2V

@r2
> 0: (12)

When the effective potential admits a maximum, i.e., when
@2V
@r2

< 0 the orbit is unstable against small perturbations.

The condition for the marginally stable orbit is @2V
@r2

¼ 0,

corresponding to the inflection point for the effective
potential.
Imposing the conditions (11) on (9) we get the expres-

sion for the conserved energy and momentum of the par-
ticle orbiting along the geodesic of radius r as

L2 ¼ r0
4ð2r� r0Þ

½2rþ r0ð�þ 1Þ�ð1=�Þþ1

½2r� r0ð�� 1Þ�ð1=�Þ�1
; (13)

E2 ¼ 2r

2r� r0

�
2r� r0ð�� 1Þ
2rþ r0ð�þ 1Þ

�ð1=�Þ
; (14)

from which it follows that we must have

r >
r0
2
¼ M; (15)

for the energy and angular momentum to be real. Thus the
circular geodesics can exists only for those values of r for
which this condition holds. The energy and angular
momentum diverge at the radius

rph ¼ r0
2
; (16)

which represents the radius at which photons move on
circular trajectories and it is known as photon sphere.
The photon sphere plays a crucial role in the study of
gravitational lensing since its presence delimits a boundary
below which lensing effects cannot be observed, therefore
implying that two spacetimes that possess a photon sphere
at the same radius cannot be distinguished by the observa-
tion of lensing effects even though their compact sources
might be different.
Imposing the condition for the stability of the circular

geodesics against small perturbations along the radial
direction in Eq. (9) we get

4r2 � 8rr0 þ r20ð�2 � 1Þ> 0; (17)

which implies that the radius of the stable orbit must satisfy
the following condition

r > rþ or r < r�; (18)
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where

r� ¼ r0

�
1� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5��2

q �
: (19)

The marginally stable orbits are located at these two values
of the radii.

In Fig. 1 are shown the values of the radial coordinates
for the singularity, photon sphere, rþ and r� depending
upon the parameter�. Three distinct ranges of the parame-
ters emerge where the structure of the circular geodesics

will be qualitatively different, namely � 2 ð1; 2Þ, � 2
ð2; ffiffiffi

5
p Þ, � 2 ð ffiffiffi

5
p

;1Þ. We discuss these cases separately.
The conserved energy and angular momentum for test

particles as a function of the radius of the circular orbit are
plotted in Figs. 2 and 3 respectively, for different values of
the parameter �. The qualitative behavior of these func-
tions is also manifestly different in the three regimes of the
parameter mentioned above.

1. Case � 2 ð1; 2Þ
For this range of parameters we have the following

relation, as seen from Fig. 1,

rþ > rph > rsing > r�: (20)

This implies that r� does not exist and a photon sphere
covers the singularity. The stable circular orbits can exist in
the region given by,

r 2 ðrþ;1Þ; (21)

which is above the photon sphere. Unstable circular orbits
can exist between the photon sphere and rþ and no circular
orbits can exists below the photon sphere up to the
singularity.

In Fig. 4 the general behavior of the effective potential is
shown as a function of the radius for a fixed value of the
parameter � in the range considered and for different
values of the angular momentum L. The effective potential
admits one maximum and one minimum which correspond
to the unstable and stable circular orbits, respectively. The

FIG. 1. The value of the radial coordinate (in units of 1
2M ) for

the singularity (thick line), photon sphere (thin line), rþ (dotted
and dashed line) and r� (dashed line) as functions of the
parameter �. It is clear that the structure of the circular geo-
desics will be qualitatively different in the three different ranges
of the parameter, namely, (1, 2), ð2; ffiffiffi

5
p Þ and ð ffiffiffi

5
p

;1Þ.

FIG. 2 (color online). The conserved energy per unit mass E is
plotted against the radius of the circular orbit r (in units of 1

2M ) for

different values of �. The curves located higher in the diagram
correspond to lower values of� and vice versa. For values of� 2
ð1; 2Þ, E decreases with the decreasing r, attains a minimum and
again increases to become infinite before the singularity is
reached. For values of � 2 ð2; ffiffiffi

5
p Þ, E initially decreases with

decreasing r, attains a minimum followed by a maximum and
decreases to a zero value at the singularity. Whereas for large
values of � 2 ð ffiffiffi

5
p

;1Þ, E is monotonically decreasing with de-
creasing r and takes a zero value at the singularity.

FIG. 3 (color online). The conserved angular momentum per
unit mass L is plotted against the radius of the circular orbit r (in
units of 1

2M ) for different values of �. The curves located higher

in the diagram correspond to lower values of � and vice versa.
For values of � 2 ð1; 2Þ, L has a minimum at a finite r and
increases diverging as the singularity is approached and as r goes
to infinity. For values of � 2 ð2; ffiffiffi

5
p Þ L vanishes at the singu-

larity and has a local maximum and a local minimum before
increasing indefinitely as r goes to infinity. Whereas for large
values of � 2 ð ffiffiffi

5
p

;1Þ, L increases monotonically from zero at
the singularity to infinity as r goes to infinity.
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unstable circular orbits lie in the region between the photon
sphere and rþ.

Note that both EðrÞ and LðrÞ become infinite at a
certain finite radius r in this case (as can be seen from
Figs. 2 and 3). As we approach the singularity from infin-
ity, the stable circular geodesics can exist up to the mini-
mum of energy and angular momentum. The unstable
orbits exist in the region between the minimum and
the radial value where EðrÞ and LðrÞ blow up, which is
the photon sphere. No circular orbits can exist below the
photon sphere, a result that is consistent with the earlier
discussion.

2. Case � 2 ð2; ffiffiffi
5

p Þ
In this range of parameters we get the following relation

rþ > r� > rsing > rph: (22)

This implies that the photon sphere does not exist and there
are two distinct regions where circular geodesics can exist,
namely,

r 2 ðrþ;1Þ and r 2 ðrsing; r�Þ: (23)

A new interesting feature arises in this case since the
second region extends all the way up to singularity.
Particles reaching the innermost boundary of the exterior
accretion disk would plunge in the region of unstable orbits
to reach r� where they would shock and circularize again,
inspiralling onto the singularity.

In Fig. 5 the general behavior of the effective potential
for this range of the parameter is shown for different values
of L. The effective potential admits two minima which
correspond to the two stable circular orbits in the two
regions we discussed above. There is also one local maxi-
mum between the two minima, which lies in the unstable
region between the two stable ones.

The qualitative behavior of the functions EðrÞ and LðrÞ
in this range of parameter shows that both quantities do not
blow up, instead as r decreases they reach a maximum and
then decrease to zero as singularity is approached (see
Figs. 2 and 3). The existence of two regions where stable
circular geodesics can exist can be derived also from the
analysis of EðrÞ and LðrÞ as the two regions correspond to
the portions where the two functions decrease with the
decreasing r, namely, from infinity to the first minimum
and from the maximum to the singularity. Since the two
functions do not blow up at any allowed radius, no photon
sphere is present in the spacetime.

3. Case � 2 ð ffiffiffi
5

p
;1Þ

Within this range of values for the parameter rþ and r�
do not exist as the solutions of Eq. (19) are not real. For this
range of parameters we have

rsing > rph; (24)

from which we see that the photon sphere is not present as
well. This implies that the stable circular orbits can exist
for

r 2 ðrsing;1Þ; (25)

i.e. from the singularity to infinity everywhere on the
equatorial plane.
In Fig. 6 the general behavior of the effective potential

for this range of parameter values for various angular
momenta is shown. The effective potential admits only
one minimum which indicates the presence of stable cir-
cular orbit. Since the potential does not admit maximum,
unstable circular orbits do not exists. The circular orbits
exist all the way up to the singularity.
In this case, the qualitative behavior of the functions

EðrÞ and LðrÞ is decreasing from infinity until they become

FIG. 4 (color online). The effective potential for radial motion
V is plotted as a function of radial coordinate r

2M for � ¼ 1:5 2
ð1; 2Þ for different values of L. It can be seen that the V admits
one minimum and one maximum, which corresponds to stable
and unstable circular orbits, respectively.

FIG. 5 (color online). The effective potential for radial motion
V is plotted as a function of radial coordinate r

2M for � ¼ 2:1 2
ð2; ffiffiffi

5
p Þ for different values of L. It can be seen that V admits two

minima and one maximum in between, which indicate the
presence of two regions with stable circular orbits separated
by one region of unstable circular orbits.
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zero at the singularity (see Figs. 2 and 3). This implies that
the stable circular orbits would exist all the way up to
singularity, which is consistent with the above discussion.

III. CIRCULAR EQUATORIAL GEODESICS IN
THE GAMMA METRIC

In this section, we study the structure of circular geo-
desics in the � spacetime. The �-metric is obtained by
extending the Schwarzschild spacetime when spherical
symmetry is deformed to develop a prolate or oblate
spheroid.

The �-metric is a two parameter family of spacetimes
belonging to the Weyl class of static, axially symmetric,
vacuum solutions of Einstein equations that are asymptoti-
cally flat. In principle all the metrics belonging to the Weyl
class are known since there is a one to one correspondence
between such spacetimes and solutions of the Laplace
equation in flat two-dimensional space. The interesting
feature of the �-metric is that it is continuously linked to
the Schwarzschild metric via one of the parameters. The
two parameters can be defined as a mass parameter M and
the parameter �, that quantifies the deformation from
spherical symmetry. We investigate the circular geodesics
in �-spacetime as a function of the deformation parameter.

The �-metric is given by

ds2¼�Fdt2þF�1½Gdr2þHd�2þðr2�2mrÞsin2�d�2�;
(26)

where the functions FðrÞ, Gðr; �Þ and Hðr; �Þ are given by
the following expressions

F ¼
�
1� 2M

r

�
�
; (27)

G ¼
�

r2 � 2Mr

r2 � 2MrþM2sin2�

�
�2�1

; (28)

H ¼ ðr2 � 2MrÞ�2

ðr2 � 2Mr�M2sin2�Þ�2�1
: (29)

The total ADMmass as measured by an observer at infinity
associated with the �-spacetime is given by Mtot ¼ �M
and the range of the deformation parameter is over all the
positive real numbers with the Schwarzschild spacetime
recovered when � ¼ 1, whereas � > 1 (� < 1) corre-
sponds to an oblate (prolate) geometry, respectively. In
the limit � ¼ 0 a flat spacetime is obtained.
There is a strong curvature singularity in the � spacetime

whenever � � 1 and it is located at the radial value

rsing ¼ 2M: (30)

The singularity is visible to all observers if � < 1 while for
� > 1 it has a directional behavior being visible only to
observers not on the polar plane. So if we confine ourselves
to the equatorial plane, the singularity is a naked singular-
ity [12].

A. Geodesics in �-spacetime: basic equations

The complete structure of geodesic motion in the
�-metric was studied by Herrera et al. [13]. The �-metric
is axially symmetric and static. Thus as in the case of JNW
metric the existence of the Killing vectors �t ¼ @t and
�� ¼ @� implies that the following two quantities are

constants of motion

E ¼ �g���
�
t U

� ¼ FUt; (31)

L ¼ g���
�
�U

� ¼ r2 � 2Mr

F
U�; (32)

where U� ¼ ðUt;Ur;U�;U�Þ. We assume that the geo-
desics are confined to the equatorial plane and thus impose
� ¼ �

2 .

Using the condition for the normalization of velocity
U�U� ¼ �1 and Eqs. (31) and (32) the equation for the
radial motion can be written as

G _r2 þ V2 ¼ E2; (33)

where V can be thought of as an effective potential and it is
given by the following expression

V2 � Fþ L2F2

r2 � 2Mr
: (34)

B. Circular geodesics

As described in the previous section the conditions for
the circular geodesic are given by

Ur ¼ _Ur ¼ 0; (35)

FIG. 6 (color online). The effective potential for radial motion
V is plotted against r (in units of 1

2M ) for � ¼ 3 2 ð ffiffiffi
5

p
;1Þ for

different values of L. The effective potential admits only one
minimum. Unstable orbits do not exists since V does not admit
maximum.
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where the dotted quantity means derivative with respect to
the affine parameter, i.e. the proper time. These again are
equivalent to

V ¼ E; and
@V

@r
¼ 0; (36)

meaning that the effective potential must be equal to the
energy and it must admit an extremum.

For the circular orbits to be stable against radial pertur-
bations the effective potential must admit a minimum, thus
satisfying the condition

@2V

@r2
> 0: (37)

For the unstable circular geodesics we have @2V
@r2

< 0,

whereas for the marginally stable case we get @2V
@r2

¼ 0.

Now imposing condition (36) on the effective potential
(34) we obtain the following expressions for angular mo-
mentum and energy

L2 ¼
�
1� 2M

r

�
1�� r2M�

r�Mð1þ 2�Þ ; (38)

E2 ¼
�
1� 2M

r

�
� r�Mð1þ �Þ
r�Mð1þ 2�Þ : (39)

Circular orbits exist if the condition r � Mð1þ 2�Þ is
satisfied which ensures that E and L are real.

Conserved energy and angular momentum blow up at
the radius of the photon sphere which is given by the
equation

rph ¼ Mð1þ 2�Þ: (40)

The condition for the stability of the circular geodesics is
then

r > rþ or r < r�; (41)

where

r� ¼ Mð1þ 3��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2 � 1

q
Þ; (42)

are the radii of marginally stable orbits.
In Fig. 7 are shown the values of radial coordinate for the

singularity, photon sphere, rþ and r� as the parameter � is
varied. Three distinct ranges of the parameters emerge
where the structure of the circular geodesics will be quali-
tatively different, namely � 2 ð0; 1ffiffi

5
p Þ, � 2 ð 1ffiffi

5
p ; 12Þ and

� 2 ð12 ;1Þ. We discuss these cases separately.

The conserved energy and angular momentum as func-
tions of the radius of the orbit of the test particle are plotted
in Figs. 8 and 9 respectively for different values of the
parameter �. The qualitative behavior of these functions is
also manifestly different in the three regimes of the
parameter mentioned above.

1. Case � 2 ð0; 1ffiffi
5

p Þ
In this range of parameter rþ and r� do not take real

values and we have

rsing > rph; (43)

meaning also that the photon sphere does not exist. This
implies that the stable orbits can exist from infinity to the
singularity:

FIG. 7 (color online). The radial curves (in units of 1
2M ) for the

singularity (x-axis), photon sphere (thick line), rþ (dotted and
dashed line) and r� (dashed line), respectively, as functions of
the parameter �. It is obvious from the graphs that the structure
of the circular geodesics will be qualitatively different in the
three different regimes of the parameter, namely ð0; 1ffiffi

5
p Þ, ð 1ffiffi

5
p ; 12Þ

and ð12 ;1Þ.

FIG. 8 (color online). The conserved energy per unit mass E is
plotted against the radius of the circular orbit r (in units of 1

2M )

for different values of �. The curves located higher in the
diagram correspond to higher values of �. For values of � 2
ð12 ;1Þ, E diverges at the singularity, decreases to a minimum at a

finite radius and then increases to diverge again as r goes to
infinity. For values of � 2 ð 1ffiffi

5
p ; 12Þ, E goes to zero at the singu-

larity and it has a maximum and a minimum. Whereas for values
of � 2 ð0; 1ffiffi

5
p Þ, E is monotonically increasing from zero at the

singularity to infinite as r goes to infinity.
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r 2 ðrsing;1Þ: (44)

In Fig. 10 the general behavior of the effective potential
for this range of parameter is shown. The effective poten-
tial admits only one minimum. Since the potential does not
admit maximum, unstable circular orbits do not exist. This
is consistent with the existence of stable circular orbits
everywhere as discussed above.

The qualitative behavior of the functions EðrÞ and LðrÞ,
as shown in Figs. 8 and 9, is decreasing as the radial
coordinate decreases from infinity and vanishes at the
singularity.

2. Case � 2 ð 1ffiffi
5

p ; 12Þ
In this range of parameters we get the following relation

rþ > r� > rsing > rph; (45)

which means that no photon sphere is present in the space-
time and there are two distinct regions where circular
geodesics can exist, namely

r 2 ðrþ;1Þ and r 2 ðrsing; r�Þ (46)

where the first region extends from infinity and the second
region extends until to the singularity.
In Fig. 11 we show the general behavior of the effective

potential for this range of parameter values. The effective
potential admits two minima. These correspond to the two
stable circular orbits in the two regions we discussed
above. There is also one local maximum between the two
minima which lies in the unstable region between the two
stable regions.
A particle reaching the innermost stable circular orbit of

the outer disk would plunge in towards the singularity until
it reaches r� where stable orbits are allowed again. It
would then shock and circularize its motion spiralling
towards the singularity.
The qualitative behavior of the energy and angular mo-

mentum functions EðrÞ and LðrÞ is shown in Figs. 8 and 9.
In this case, E and L vanish at the singularity and both have
a local maximum and a minimum indicating again that
there are two regions where stable circular geodesics can
exist. The two regions would correspond to the places
where functions decrease with decreasing r, namely,
from infinity to first minimum and from the maximum to
the singularity. Again the unstable region extends between
maximum and minimum, where EðrÞ and LðrÞ increase
with decreasing r. Since these functions do not blow up at

FIG. 9 (color online). The conserved angular momentum per
unit mass L is plotted against the radius of the circular orbit r (in
units of 1

2M ) for different values of �. The curves located higher

in the diagram correspond to higher values of �. For values of
� 2 ð12 ;1Þ L diverges at the singularity and as r goes to infinity,

thus having a minimum at a finite radius. For values of � 2
ð 1ffiffi

5
p ; 12Þ L has both a minimum and a maximum, goes to zero as r

approaches the singularity and diverges as r goes to infinity.
Whereas for values of � 2 ð0; 1ffiffi

5
p Þ L is monotonically increasing

from zero at the singularity to infinity as r grows indefinitely.

FIG. 10 (color online). The effective potential V is plotted
against radial coordinate r in units of 1

2M for � ¼ 0:3 2 ð0; 1ffiffi
5

p Þ
for different values of L. The effective potential admits only a
minimum implying that unstable orbits in this case do not exist.

FIG. 11 (color online). The effective potential for radial mo-
tion V is plotted as a function of radial coordinate r in units of 1

2M

for � ¼ 0:47 2 ð 1ffiffi
5

p ; 12Þ for different values of L. It can be seen

that the V admits two minima and one maximum indicating the
presence of two regions of stable circular orbits separated by a
region of instability.
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any radius we infer that the photon sphere is absent in this
case.

3. Case � 2 ð12 ;1Þ
For this range of values of the parameter we have the

following relations

rþ > rph >maxfr�; rsingg; (47)

as can be seen from Fig. 7. Note that r� can be either larger
or smaller than rsing but in both cases lies below the photon

sphere. The stable circular orbits can exist in the region

r 2 ðrþ;1Þ; (48)

which is above the photon sphere. Unstable circular orbits
can exist between the photon sphere and rþ. No circular
orbits can exist below the photon sphere until the
singularity.

In Fig. 12 we show the general behavior of the effective
potential as a function of radius for the parameter in this
range. The effective potential admits one maximum and
one minimum which correspond to the unstable and stable
circular orbits, respectively. The unstable circular orbits lie
in the region between the photon sphere and rþ.

The qualitative behavior of the energy and angular
momentum functions EðrÞ and LðrÞ shows a minimum
and it diverges at a certain radius above the singularity
corresponding to the photon sphere (see Figs. 8 and 9).
This is consistent with the above discussion on the struc-
ture of geodesics since as r decreases from infinity, the
stable circular geodesics can exist up to the minimum, then
unstable orbits exist in the region between the minimum
and the radial value where EðrÞ and LðrÞ blow up, which is
a photon sphere. No circular orbits can exist below the
photon sphere.

IV. ACCRETION DISK PROPERTIES

In the context of astrophysics an accretion disk is a
nearly flat disk of heated gas whose particles slowly spiral
onto a central accreting compact object. Observationally
such accretion disks can be detected by their emitted
radiation and the spectrum of this radiation can be a
valuable source of information about the properties of the
accretion disk itself and the central compact object. In the
present framework we approximated the accretion disk
with an infinitesimally thin disk of test particles moving
on circular orbits. The gas is then represented by the test

particles moving with angular velocity ! ¼ d�
dt on

Keplerian orbits around the central compact object. Then
EðrÞ and LðrÞ would represent the energy and angular
momentum of the test particles circling on the r-orbit of
the disk. Then the last stable circular orbits represent the
limits within which the disk can exist with the innermost
stable circular orbit given by the radius rþ representing the
inner edge of the outer disk. A test particle reaching rþ
would then plunge in free fall until it reaches either the
singularity or another radius where stable circular orbits
are allowed. The general relativistic setting for accretion
disks around a black hole was developed by Novikov and
Thorne [14] and by Page and Thorne [15] for steady state
accretion on the equatorial plane onto a rotating black hole
and it can be extended to the scenarios with naked singu-
larities analyzed here.
Page and Thorne assumed the spacetime to be stationary,

axially symmetric, asymptotically flat and reflection sym-
metric in an equatorial plane. Here both metrics satisfy
these requirements once we consider accretion disks on the
equatorial plane (note that the JNW metric is spherically
symmetric and thus such a choice of the plane is arbitrary
while the � spacetime is axially symmetric and therefore
the equatorial plane is fixed). Furthermore the choice of the
radial coordinate complies with the requirements imposed
in [15] as can be seen from the asymptotic behavior of both
metrics and from the fact that r reduces exactly to the radial
coordinate of the Schwarzschild metric for � ¼ 1 in the
�-metric and to a translation of the Schwarzschild radial
coordinate for � ¼ 1 in the JNW metric.
From the knowledge of the structure equations describ-

ing the gas in the disk it is possible to construct the
quantities relevant for observations [15]. The radiant
energy flux can be written as

fðrÞ ¼ � _M0

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg

p !;r

ðE�!LÞ2
Z r

rþ
ðE�!LÞL;rdr

(49)

where _M0 is the mass accretion rate and it is assumed to be
constant for steady state accretion. Note that since both
metrics considered here are continuously linked to the
Schwarzschild solution one retrieves precisely the formula

FIG. 12 (color online). The effective potential for radial mo-
tion V is plotted as a function of radial coordinate r (in units of
1
2M ) for � ¼ 1:4 2 ð12 ;1Þ for different values of L. It can be seen
that the V admits one minimum and one maximum, which
corresponds to stable and unstable circular orbit, respectively.
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for the radiant energy flux in the Schwarzschild spacetime
once the values � ¼ 1 or � ¼ 1 are chosen.

As an example we studied here the qualitative behavior
of the radiant energy flux in the JNW metric and in the
�-spacetime in natural units (therefore to obtain the effec-
tive flux one would have to reintroduce c and G in the
equation), for different values of the parameters � and �.

The general feature that emerges for the JNW metric is
that when there is an inner boundary for the disk one
obtains a flux qualitatively similar but of greater magnitude
with respect to that of a black hole (see Fig. 13).

On the other hand, when the accretion disk is allowed to
extend up to the singularity the total flux is diverging in the
limit of r going to the singularity (see Fig. 14). This
divergence of flux in the limit of approach to the singularity
is clearly unphysical. Nevertheless, we note here that as the
outgoing radiation becomes larger, the outward force act-
ing on the infalling accreting matter will also become
bigger. It can be shown that at a particular radius the
pressure exerted due to the outgoing radiation will balance
out the inward gravitational pull of the gas in the disk.

Therefore the accretion disk will not extend below this
radius regardless of the presence of a singularity at the
center. Thus although the circular geodesics as we have
shown in this paper can extend all the way up to the
singularity, it is reasonable to expect that physically the
accretion disk will be terminated at a finite radius above
the singularity. Nevertheless this is a complex issue that is
not entirely well understood at present and requires more
work and further discussion which is beyond the scope of
this paper.
Furthermore, since the �-metric is not spherically sym-

metric it should be noted that the axial symmetry will have
some influence on the structure of accretion disks close to
the singularity. In fact it can be shown that close to the
center strong forces in the z direction appear in the space-
time. These forces would disrupt the inflow of particles on
the equatorial plane thus deviating them towards the poles,
which could be a mechanism that may in principle describe
the formation of high energy jets from the poles of such
compact objects.
In the case of the �-metric a similar behavior is found for

the radiant energy flux to that of the JNW case. The flux
presents a behavior qualitatively similar to that of a black

FIG. 13. Radiant energy flux for unit mass accretion rate in
natural units for the JNW spacetime with � � ffiffiffi

5
p

. Note that the
lowest curve represents the flux for the Schwarzschild black
hole.

FIG. 14. Radiant energy flux for unit mass accretion rate in
natural units for the JNW spacetime with � � ffiffiffi

5
p

. Note that the
lowest curve represents the case � ¼ ffiffiffi

5
p

, with all values greater
than

ffiffiffi
5

p
diverging as r approaches the singularity.

FIG. 15. Radiant energy flux for unit mass accretion rate in
natural units for the �-spacetime with � � 1=2.

FIG. 16. Radiant energy flux for unit mass accretion rate in
natural units for the �-spacetime with � � 1=2. Note that the
flux diverges for values of � � 1=

ffiffiffi
5

p
.
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hole when there is an inner edge (see Fig. 15) and diverges
in the cases where the accretion disk extends all the way to
the singularity (see Fig. 16).

Note that since the total mass as seen by an observer at
infinity for the �-metric is M� it can happen for values of
� < 1 that the flux is smaller than that of a Schwarzschild
black hole with mass M. Nevertheless we expect it to be
greater than that of a Schwarzschild black hole with mass
M�, which would be the right spherical source to compare
it with.

To summarize we studied in detail the structure of the
circular geodesics in JNW and � spacetimes in the equa-
torial plane. JNWand �-metric are obtained by variation of
the Schwarzschild black hole by addition of the massless
scalar field and by deformation of spherical symmetry to
oblate/prolate spheroidal geometry, respectively. Naively
speaking the event horizon in the Schwarzschild black hole
transforms into a naked singularity. These solutions are
described by two parameters, one related to the mass as in
the Schwarzschild case and another related to the scalar
charge (�) or the deformation (�) and continuously linked
to the Schwarzschild spacetime. In fact the Schwarzschild
metric is obtained by setting � ¼ 1 and � ¼ 1. The struc-
ture of the circular geodesics undergoes a qualitative
change as we vary the values of the extra parameter. In
both spacetimes the whole range of the parameters can be
divided into three regimes.

(i) For � 2 ð1; 2Þ in JNW metric and for � 2 ð1
2 ;1Þ in

�-metric a photon sphere surrounds the singularity
and stable circular geodesics can exist from a radius
above the photon sphere to infinity. Unstable circular
geodesics can exist below this radius up to the pho-
ton sphere. No circular geodesics can exist below the
photon sphere.

(ii) For � 2 ð2; ffiffiffi
5

p Þ in JNW metric and for � 2 ð 1ffiffi
5

p ; 12Þ
in the �-metric, stable circular geodesics can exist
from the singularity to a finite radius and from a
larger radius to infinity. There is a region containing
unstable circular geodesics between the two stable
regions. No photon sphere is present.

(iii) For � 2 ð ffiffiffi
5

p
;1Þ in JNW metric and for � 2

ð0; 1ffiffi
5

p Þ in �-metric, the circular geodesics exist

everywhere from the singularity to infinity. Again
no photon sphere is present.

This study suggests that there is a significant difference
as far as the structure of circular geodesics is concerned in
JNW and � spacetime containing naked singularity as
compared to the Schwarzschild black hole, which would
reflect into their accretion disk properties.

Similar analysis of circular geodesics in connection
with properties of accretion disks around naked singular-
ities have recently drawn some attention as we try to
understand the nature of compact objects such as the super-
massive ones that exist at the center of galaxies. Harko and
Kovacs [7] studied a modified Kerr metric with scalar field

where, due to the presence of the scalar field, a naked
singularity is present in the spacetime. They showed
that for certain ranges of the parameters, stable circular
orbits can exist up to the singularity, a result that does not
hold for the Kerr black hole (obtained in the limit of no
field).
A similar analysis has been carried out for the Kerr and

Reissner-Nordstrom metrics by Pugliese et al. [6], where it
was shown that for the Kerr naked singularity (a=M > 1)
unstable circular orbits can extend up to the singularity in
some cases, though this does not happen for stable circular
orbits. Therefore, an accretion disk made of test particles
always extends from a minimum radius to infinity, without
any forbidden regions or regions of instability. The disk
can be divided into substructures based on whether they
consist of corotating and/or counter-rotating particles. For
a naked singularity, depending on the value of a=M, the
accretion disk may be divided into: (a) two parts—an inner
disk with corotating particles and an outer disk with both
corotating and counter-rotating particles, (b) three parts,
namely, an innermost disk of counter-rotating particles, a
second disk of corotating particles and an external disk
with both. For a Kerr black hole the allowed region of
circular orbits, stable or unstable, terminates outside the
horizon. However the accretion disk is similar, extending
from a minimum radius to infinity and it can have only two
such substructures, a corotating inner disk and an external
disk with both kinds of particles; here the size of the inner
disk has an upper limit and can even go to zero. In the case
(a) for naked singularity, the inner disk has a minimum size
but there is no upper limit thus showing that there is some
difference in the accretion disk structure between Kerr
black hole and Kerr naked singularity. In the Reissner-
Nordstrom spacetime a naked singularity is obtained for
Q=M > 1, where Q is the charge parameter. In this case
there exists a forbidden zone outside the horizon or the
singularity where no circular orbits are allowed. For the
black hole case, the stability region and hence the accretion
disk is continuous from a minimum radius to infinity. In the
case of a naked singularity, there can be two scenarios
depending on the value of Q=M, namely, (a) an accretion
disk extending from a minimum radius to infinity, or (b) an
accretion disk comprising an inner disk and an outer disk
separated by a zone of instability. Therefore the accretion
disk structure around a Reissner-Nordstrom naked singu-
larity shows some difference with respect to the black hole
case only for a certain range of the parameter.

V. CONCLUDING REMARKS

The study of circular geodesics provides only the first
tool to model accretion disks around a compact source. In
order to obtain measurable quantities that could eventually
be checked against observations, a detailed analysis of the
efficiency of conversion of mass of the infalling particles
into emitted radiation and the luminosity spectrum of
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radiation of the disk are needed. For example assuming that
the accretion disk is in thermodynamical equilibrium one
can approximate the radiation emitted by the disk with a
black body spectrum where the temperature T of the black
body is related to the energy flux by fðrÞ ¼ 	T4ðrÞ (with	
being the Stefan-Boltzmann constant). Then, considering
redshift and inclination of the disk with respect to the
observer, it is possible to evaluate the observed luminosity
spectrum of the black body, which is an observable quan-
tity [7].

It is reasonable to suppose that the pressure of the out-
going radiation near the singularity will be very strong,
thus balancing the inflow of particles from the accretion
disk. This effect could possibly drive the particles away
from the equatorial plane and it should also be analyzed in
some detail. Furthermore, electromagnetic fields and

possible perpendicular forces that could deviate the parti-
cles towards the poles thus creating high energy jets could
also be considered.
Nonetheless, the analysis such as given here makes it

clear that if naked singularities, which are hypothetical
astrophysical objects, do exist in the universe, they would
bear an observational signature considerably different from
that of a black hole of the same mass. Therefore, it is quite
possible that in the foreseeable future we will be able to
devise some observational tests to check if such exotic
objects are indeed present somewhere in the universe.
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