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We present numerical relativity simulations of nine-orbit equal-mass binary neutron star covering the

quasicircular late inspiral and merger. The extracted gravitational waveforms are analyzed for conver-

gence and accuracy. Second-order convergence is observed up to contact, i.e. about 3–4 cycles to merger;

error estimates can be made up to this point. The uncertainties on the phase and the amplitude are

dominated by truncation errors and can be minimized to 0.13 rad and& 1%, respectively, by using several

simulations and extrapolating in resolution. In the latter case finite-radius extraction uncertainties become

a source of error of the same order and have to be taken into account. The waveforms are tested against

accuracy standards for data analysis. The uncertainties on the waveforms are such that accuracy standards

are generically not met for signal-to-noise ratios relevant for detection, except for some best cases using

extrapolation from several runs. A detailed analysis of the errors is thus imperative for the use of

numerical relativity waveforms from binary neutron stars in quantitative studies. The waveforms are

compared with the post-Newtonian Taylor T4 approximants both for point-particle and including the

analytically known tidal corrections. The T4 approximants accumulate significant phase differences of

2 rad at contact and 4 rad at merger, underestimating the influence of finite-size effects. Tidal signatures in

the waveforms are thus important at least during the last six orbits of the merger process.
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I. INTRODUCTION

An exciting possibility to reveal and to study the nature
of the neutron star (NS) interior is provided by the detec-
tion of gravitational waves (GWs) from binary neutron star
(BNS) mergers. The GWs emitted by BNS during the late
inspiral and merger are sensitive to finite-size effects, and,
in particular, to the tidal interaction between the bodies,
thus they are quantitatively dependent on the star parame-
ters and, in turn, on the equation of state (EoS). Ground-
based interferometers are sensitive to the last 10 orbits of a
typical equal-mass binary system of mass �2:8M�, which
roughly corresponds to the frequency range 400–1500 Hz.
During this phase tidal effects are expected to be
significant.

A general relativistic perturbative theory of tidal inter-
actions has been developed in recent years [1–3]. These
results have been incorporated into the post-Newtonian
(PN) formalism [4–6], thus permitting the extension of
phasing formulas to tidally interacting binaries, as well
as into the effective-one-body (EOB) model [7].

An exact and quantitative evaluation of the dynamics
and of the waveforms during the merger process requires,
however, the solution of the full nonlinear Einstein equa-
tions. In particular, numerical relativity (NR) simulations
are to date the only tool to tackle the problem (see e.g.
[8–12] for recent works in the field and [13–15] for
reviews).

Numerical relativity data have been used in combination
with PNmethods in order to assess the detectability of tidal
effects and the accuracy of the parameter estimated from

GW measurements [16]. A more recent application of NR
results concerns their use for calibrating the tidal-EOB
model [9,17]. These works highlight the importance of
using NR waveforms and analytic results in order to quan-
titatively evaluate the impact of tidal effects in the
waveforms.
An aspect which deserves a more detailed assessment

than is currently available in the literature is the accuracy
of the NR waveforms. The estimates of error-bars on phase
and amplitude of BNS waveforms, as well as their assess-
ment against accuracy standard for detection [18–20], is of
fundamental importance for any quantitative study. In
contrast to binary black holes (BBHs) data, whose quality
for data analysis purposes is well documented, see e.g.
[21–24], convergence and uncertainties in BNS simula-
tions are so far poorly investigated. To our knowledge,
the only analysis of truncation errors have been performed
in [25], and, more exhaustively, in [26]. Both works found
that the waveforms are second-order convergent up to
merger but they are limited to short runs (three orbits)
and do not consider accuracy criteria for detection. In [9]
the same initial data as in this work have been evolved,
error-bars considering finite-extraction effects and trunca-
tion errors have been estimated but without performing
convergence tests and using only two simulations. In their
conclusions the authors stressed the need for a detailed
error budget based on convergence measurements. Since
the numerical treatment of the matter (hydrodynamics)
makes it very challenging to obtain accurate waveforms
(in comparison with BBHs simulations), a precise and
rigorous assessment of their quality is urgent.
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In this work we report results about the accuracy of the
waveforms extracted fromBNS simulations. Focusing on an
example configuration, we consider nine-orbit simulations
employing different resolutions, and reaching the highest
resolutions for production runs used so far. We discuss
convergence in detail, compute error-bars of the waveform
amplitude and phase, and test them against accuracy stan-
dards for detection. The NR waveforms are then contrasted
with the post-Newtonian (PN) T4 phasing formula, both for
point-particle and including the leading-order and next-to-
leading order tidal corrections analytically known.

The structure of the paper is as follows. In Sec. II we
review our methodology. In Sec. III the simulated binary
dynamics is presented. In Sec. IV we analyze the wave-
forms. In particular, convergence is analyzed in Sec. IVA,
the influence of finite-radius extraction is analyzed in
Sec. IVB, and the waveforms are tested against accuracy
standards in Sec. IVD. In Sec. V the numerical waves are
compared with the analytic post-Newtonian T4 formula
including tidal effects.

Dimensionless units c ¼ G ¼ M� ¼ 1 are used in this
paper, unless otherwise stated.

II. THEORETICAL AND NUMERICAL SETUP

In this section we outline the theoretical and numerical
frameworks employed in this paper, and we describe the
setup of the simulations. More details on the methodology
are given in [26,27] and references therein.

The present study relies on evolutions of BNS initial
data within 3þ 1 numerical relativity, using the BSSNOK
formulation [28–30] of Einstein equations coupled with the
general relativistic hydrodynamics (GRHD) system [31].
The gauge is specified by the 1þ log lapse and Gamma-
driver-shift [32–35], using the same expressions and pa-
rameters of Sec. 2 of [26]. In particular the damping
parameter for the shift equation is set to � ¼ 0:3.
Gravitational waves are extracted from the numerically
generated spacetime by using the Newman-Penrose scalar,
c 4. The projections onto spin-weighted spherical harmon-
ics, i.e. the multipoles of the radiation, are evaluated on
extraction sphere of finite-coordinate radius r. The same
conventions of [27] are employed here. The diagnostic
quantities discussed in the following are the ADM mass,
MADM, the Hamiltonian constraint, Ham, and the rest-mass
integral, M0, Cf. Eq. (31) of [26].

The code employed in this work is the BAM code
[26,27,36,37], which implements finite-differencing meth-
ods on Cartesian refinedmeshes. The evolution algorithm is
based on the method of lines and explicit Runge-Kutta
methods (third order in this work). A combination of cen-
tered and lopsided standard finite differences in space is
used for themetric fields, see [27]. In this work fourth-order
operators are employed, together with sixth-order artificial
dissipation. The algorithm implemented for the matter is a
robust high-resolution-shock-capturing scheme based on a

central scheme for the numerical fluxes [38–42]. Both the
time stepping and the spatial refined mesh are shared with
the metric system. The interface fluxes are computed by the
local Lax-Friedrichs (LLF) central scheme [39,40], while
reconstruction is performed with the third-order convex-
essentially-non-oscillatory (CENO) interpolation [43,44].
Mesh refinement is provided by a hierarchy of cell-centered
nested Cartesian grids and Berger-Oliger time stepping.
Metric variables are interpolated in space by means
of fourth-order Lagrangian polynomials and matter
conservatives by a fourth- order weighted-essentially-non-
oscillatory (WENO) scheme [45]. Interpolation in Berger-
Oliger time stepping is performed at second order. Some of
the mesh refinement levels can be dynamically moved and
adapted during the time evolution according to the tech-
nique of ‘‘moving boxes’’, e.g. [27].
Initial data are chosen from quasiequilibrium configura-

tions of irrotational equal-mass binaries in quasicircular
orbits [46,47]. The configuration selected for this work is
binary with ADM mass MADM ¼ M ¼ 3:005 06, ADM
angular momentum JADM ¼ 9:716, and rest-mass M0 ¼
3:250, and angular momentum J=M2 ¼ 1:081. The initial
proper relative separation is d ’ 50 (�70 km) correspond-
ing to a GWs frequency f0 ¼ 0:0019 (394 Hz). The com-
pactness of each star in isolation is 0.14. The EoS for the
fluid is the polytropic one, with adiabatic index
� ¼ 2. The initial configuration is computed with a multi-
domain spectral code which solves the Einstein constraint
equations under the assumption of a conformally flat met-
ric. The code is based on the LORENE library [48] and
provided by the NR group in LUTH (Meudon). These
initial data represent to date the most accurate computation
of equilibrium BNSs and they are publicly available on the
Web. The same initial data were used for the evolutions
discussed in [9,17].
Evolutions were performed for the � ¼ 2 polytropic

EoS, i.e. we consider the fluid isentropic and neglect
thermal effects. In [26] we have shown that, in agreement
with the physical expectation, waveforms computed with
both the polytropic EoS and the ideal gas EoS (which
includes in a rough way thermal effects) are indistinguish-
able within the simulation errors, at least up to contact,
while significant differences accumulate during merger
and the HMNS phase. In this work we are mainly inter-
ested in the inspiral phase, hence thermal effects can be
neglected; we will consider thermal effects in the present
setup in future work.
Gravitational waves were extracted at levels l ¼ 1, 2, 3.

Several resolutions and a single grid setup were employed.
The latter is composed of a fundamental grid level, l ¼ 0,
and seven refinement levels from l ¼ 1 to lmax ¼ 7; four
refinement levels are moving, l ¼ 4, 5, 6, 7. The only
symmetry assumed is reflection symmetry about the
z ¼ 0 plane, i.e. the numerical domain is restricted to
z > 0. The grid configurations, as well as the performances
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of the runs are reported in Table I. The grid settings are
similar to those of other codes, e.g. [49]. The highest
resolution employed here for run HH6 is slightly (3%)
higher than the maximum resolution used to date on BNS
simulations employing mesh-refined-Cartesian-grid-based
codes [9]. All the runs were performed with Courant-
Friedrich-Lewy (CFL) factor of 0.25. The (self) convergent
series are formed by triplets of runs, that in the following
will be denoted as HHfLMHg, where L, M, H correspond
to the low, medium, and high resolution employed. Self-
convergence tests can be biased by the choice of the
resolutions employed. An ‘‘optimal’’ setup would require
that (i) the ratios between the low and medium and medium
and high resolutions are hL=hM ’ hM=hH ’ 2; and (ii)
the scaling factor is at least of order two, SF ¼
ðhrL � hrMÞ=ðhrM � hrHÞ * 2, where r is the convergence
rate. It is difficult to obtain an optimal convergent series
since low resolutions are too inaccurate and differ even in a
qualitative way [26]. Considering the criteria above, the
‘‘best’’ convergent series is HHf235g or HHf236g.

III. OVERVIEW OF THE BINARY DYNAMICS

In this section we summarize the binary dynamics and
present some diagnostics of the simulations.

The binary evolves for about nine orbits dynamics be-
fore merger, when a hyper-massive-neutron-star (HMNS)
is formed. The latter oscillates nonlinearly in time, loses
angular momentum by GW emission increasing its com-
pactness, and, finally, collapses to a black hole surrounded
by a disk rapidly accreting.

The evolution of the maximum rest-mass density is
reported in Fig. 1 (left), together with the proper distance
(right). During the inspiral the maximum of the rest-mass
remains constant as expected; the proper distance shows
some residual eccentricity from the initial data. The latter
is larger during the first three orbits and then progressively
radiated away, although not completely. The stars touch
each other about 1.5 orbits before merger (t=M * 2050),
which happens at tm=M ¼ 2259 for run HH6 (see Sec. IV
for the definition of merger used also in this work). After
the merger the maximum of the rest-mass density increases
indicating the compactness of the HMNS increases; it

reaches a peak during the collapse then drops down to
the densities of the accretion disk. The quasiradial oscil-
lations of the HMNS are also visible before the collapse.
An apparent horizon is formed at tAH=M ’ 2475 (run
HH6), the mass and spin of the final puncture describing
the black hole [50–52] are MBH ¼ 2:955� 0:005 and
aBH ¼ 0:80� 0:01. The latter values are computed from
the irreducible mass and spin, after an initial transient in
the BH formation.
Overall the new simulations at higher resolution confirm

our previous findings about the merger outcome [26]: the
HMNS experiences a delayed collapse [53] while a prompt
collapse seems an artifact of lower resolution runs (see
HH2). Note also that the use of lower resolutions results in
earlier mergers.
The evolution of the rest-mass is reported in Fig. 2.

During the inspiral it is conserved up to maxð�M0=M0Þ &
1% for runs HH4 and higher resolutions. At the collapse it
drops several order of magnitude, similarly to the maxi-
mum of rest-mass density. As explained in [50] this effect
is produced by the gauge conditions which, handling the
singularity formation, stretch the numerical grid effec-
tively moving grid points to larger proper radii. The values
ofM0 at late times are an estimate (upper limit) for the rest-
mass of the accretion disk, which is below 1% of the initial
rest-mass. Note the strong dependence of the result on the
resolution.
The convergence of the L2 norm of the Hamiltonian

constraint is reported in Fig. 3. The different data set are
rescaled for second-order convergence to the highest reso-
lution one. As one can observe from the figure, the lines are
superposed during the inspiral while they progressively
differ from the contact, towards the merger. After the
merger convergence is not measurable.
Finally we comment about the ADMmass conservation.

We computed finite-radius approximations to the ADM
mass, MADMðrÞ, by integrals over coordinate spheres as
in the case of the GW, considering two different formulas:
(a) Eq. (54) of [27], and (b) the integral of the conformal
factor only. The ADMmass is defined for the limit of large
spheres, r ! 1. The value at finite r is a coordinate
dependent quantity, and, for large but finite r, it suffers
of resolution problems in the outer levels. In our setup the

TABLE I. Summary of the grid configurations and of the runs. Columns: name of the configuration, maximum refinement level,
minimum moving level, number of points per direction in the moving levels, resolution per direction in the level l ¼ lmax, number of
points per direction in the nonmoving levels, resolution per direction in the level l ¼ 0, number of processors, maximal memory usage,
and average speed in terms of the mass of the configuration evolved including checkpointing and initialization (reference machine:
JUROPA cluster).

Name lmax lmv Nmv
xyz hlmax

Nxyz h0 Nproc Memory (Gb) Speed ðM=hrÞ
HH2 7 4 100 0.1875 160 24 64 150 6

HH3 7 4 128 0.1466 176 18.75 64 190 4.5

HH4 7 4 140 0.1328 192 17.14 96 240 5

HH5 7 4 150 0.1250 200 16 256 350 12

HH6 7 4 160 0.1172 212 15 256 400 12
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calculation is not accurate enough to make quantitative
statements and extrapolation r ! 1 does not seem to
improve the results. We observe anyway a consistency
between MADMðrÞ and the energy of the emitted GW
within the 1% level.

IV. WAVEFORMS

The total gravitational energy radiated during the merger
process is about 1% of the initial ADM mass. About 99%
of the energy radiated during the inspiral is emitted into the
ð‘;mÞ ¼ ð2; 2Þmultipolar channel: the latter is also respon-
sible for about the 92% of the energy emitted during the
whole simulation. In the following we will consider only
the (2,2) mode. Figure 4 (left) shows the real part, the
imaginary part, and the absolute value of the GWmultipole
rh22 extracted at r ¼ 750 (250 M) and from the HH6 run.
All the plots relative to the waveforms are in term
of the retarded time without changing notation. We use

thus t ! t� r�, where the tortoise radius is computed as
r�¼Rþ2MlogðR=ð2MÞ�1Þ, with RðrÞ the Schwarzschild
radius corresponding to the coordinate extraction (iso-
tropic) radius r.
The waveform is characterized by the chirp-like shape

typical of the quasicircular inspirals, after about 18 cycles it
peaks, and then shows a more complicated structure with
multiple maxima in amplitude and progressively higher fre-
quencies.We formally define themerger time, tm, as the time
corresponding to the peakof the amplitude of rh22 [9,26].The
signal after the merger is characterized by the emission from
the HMNS. We reported an analysis in [26], see also [54] for
recentwork.More detailswill begiven in a futurework, in the
following we will focus on the inspiral waveforms.
The simulation output is the multipole of the curvature

scalar, c 4
22. The actual GW strain, h, is recovered from c 4

by integrating the relation €h ¼ c 4. The integration is not
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straightforward in the case of noisy numerical data. We
employ the method described in [55], i.e. we perform
the integration in the Fourier frequency domain by
applying a fixed-frequency high-pass filter, following
closely [26]. The cutting frequency used in this work is
fcut ¼ 0:0016< f0. As shown in Fig. 4, the waveform is
affected by some amplitude modulations mostly present at
early times. Their origin may be due to the residual eccen-
tricity contained in the initial data.

In the following waveforms will be split into phase and
amplitude according to the notation,

rh22 ¼ A22 expð�i�Þ; rc 4
22 ¼ a22 expð�i�Þ: (1)

The instantaneous GW frequency is ! ¼ �=ð _h=hÞ, and is
plotted in Fig. 4 (right) in case of the (2,2) multipole. It
increases monotonically during the inspiral, and reaches
the valueM!22ðtmÞ ’ 0:123 at the merger. At t=M� 2400
it shows a signature of the HMNS, and at later times
increases to the quasinormal modes (QNMs) frequencies
of the final black hole (BH). Note that the GW frequency
drops to zero at t=M ’ 2300, corresponding to a minimum

of the amplitude and to a quasispherical shape of the stars
[26]. The frequency of the BH fundamental QNMs can be
extracted from the GW frequency, however a cleaner
equivalent signal is provided by the frequency of rc 4

22.
We found for run HH6 fQNM ’ 6:47 kHz (M!22 � 0:6), in
2% agreement with the estimate obtained from the horizon
quantities.
In the following the accuracy of the numerical wave-

forms is assessed. We stress that here, for the first time,
phase and amplitude errors are measured precisely and
consistently from convergence tests.

A. Convergence

In this section we present the results concerning the self-
convergence of the inspiral waveforms. The convergence
series HHf236g is discussed as an example, similar results
are obtained for HHf235g. We focus on the extraction
radius r ¼ 750 and on rc 4

22. Similar results are found for
rh22.
In Fig. 5 the self-convergence test is shown. The scaling

factor is SFð2Þ ¼ 1:8. The differences are noisy so the
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figure employs a standard Savitzky-Golay averaging filter
for a better visualization; results are not affected anyway.
The waveforms show compatibility with second-order self-
convergence during the inspiral up to t=M ’ 2000. At later
times they become, as other quantities, progressively over-
convergent, and after the merger the convergence order can
not be established. We observe here a common finding in
NR simulations (e.g. [25,26,56]): as long as only the bulk
motion of the matter is important, the numerical methods
employed do quite well modeling the inspiral due to GW
emission, but degrade when strong field and matter dy-
namics develop.

The over-convergence behavior appearing at late times
is probably due to the run HH2, but also to the fact that,
when the stars come in contact, the effective order of the
(nonlinear) numerical scheme for hydrodynamics probably
drops below the second order (in norm). As in previous
shorter runs [26], the phase is not exactly convergent at rate
two but at lower rate (between one and two). Note that,
differently from previous works on BNS and consistently
with [26], we do not align the waveforms for the conver-
gence tests. The gravitational energy carried by the (2,2)
mode also shows approximately second-order self-
convergence.

The interpretation of these data can be delicate because
several sources of systematic errors are not completely
under control: the exact expected convergence rate, the
role of different grid setup, the limited and not optimal
choices of resolutions for the convergent series, etc. Our
findings, however, appear consistent and sufficiently ro-
bust; the second-order rate is expected, in convergence
regime, by basic arguments, and the diagnostic quantities
of Sec. III show second-order convergence in norm. The
results seem to indicate that second-order convergence can
be confidently assumed up to contact, or, equivalently, to
M!22 ¼ 0:07. In the following we will assume second-
order convergence for the extrapolation of the inspiral
waveforms up to merger, errors will be given both for

M!22 � 0:07 and for M!22 � 0:1. The reliability of the
latter estimate is not clear.

B. Finite-radius extraction

In this section we study the uncertainties on phase and
amplitude related to the computation of waveforms at finite
extraction radii. We consider several extraction radii r ¼
200, 300, 400, 500, 750 (or R ’ 203, 303, 403, 503, 753)
from run HH6 and rc 4

22.
The differences in amplitude and phase extracted at

a given radius with the previous, e.g. ���22ðRiÞ ¼
�22ðRiÞ ��22ðRi�1Þ, are shown in Fig. 6. Both amplitude
and phase increase for higher extraction radii. The differ-
ences are bigger at earlier times, the phase differences at
early times scale approximately as 1=r, while amplitude
differences approximately as 1=r2. For radii r � 400 dif-
ferences in amplitude are & 2% and they seem to saturate.
By contrast differences in phase keep on increasing and
between r ¼ 750 and r ¼ 500 they are �0:1 rad. The
differences become progressively smaller towards the
merger.
Following previous works [57–62], an approximation of

the waves at null infinity can be obtained by simple
1=R-extrapolation,

Fðt; RÞ ¼ XK
k¼0

FkðtÞR�k; (2)

where Fðt; RÞ is either the phase or the amplitude, t is the
retarded time, and F0ðtÞ is the extrapolated value. In
[63–65] the robustness of the extrapolation procedure has
been assessed against null-infinity waveforms from equal-
masses BBH inspirals computed with the Cauchy-
characteristic extraction (CCE) method [66–68]. In
[69,70], by mean of BH perturbation theory on hyperbol-
oidal foliations, it has been shown that, in case of an
unambiguous definition for the background and for the
retarded time, the extrapolation reproduce null-infinity

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

∆*  φ
22

 [r
ad

]

t/M

 

R =  303
R =  403
R =  503
R =  753

0 500 1000 1500 2000 2500

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

∆*  a
22

/a
22

t/M

 

 

R =  303
R =  403
R =  503
R =  753

FIG. 6 (color online). Differences between amplitude (left) and phase (right) of waves extracted at successive radii r ¼ 200, 300,
400, 500, 750. Run HH6.
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waveforms up to their numerical uncertainties for enough
high values of K > 3.

Figure 7 shows the differences between the extrapolated
value for different K and the reference radius r ¼ 750.
Note that waveforms at different radii are not shifted in
time or phase, but only considered against the retarded
time. The fit errors, �F, are computed at the 68% confi-
dence level, and distributed quite uniformly in the inspiral.
Hence, their average, h�Fi, can be used as a meaningful
measure of the fit quality in comparison with the differ-
ences, �F, between the extrapolated waves and the finite-
radius extracted ones. In case of a linear extrapolation,
K ¼ 1, the average fit errors are h��22i � 0:02 rad and
h�a22=a22i � 3%, and the maximum differences with the
last radius are �a22=a22 �þ5% and max��22 �
þ0:23 rad. For K ¼ 2, the average fit errors are h��22i �
0:04 rad and h�a22=a22i � 3%, and maximum differences
with the last radius are max�a22=a22 �þ1% and
max��22 �þ0:21 rad. The use of K > 2 results in
more noisy data as shown by the figure, and also the fit
errors increase. The best extrapolation is thus given by
K ¼ 1 or K ¼ 2. Note however that the fit-averaged un-
certainties are about 10% of the phase difference with the

last resolution also in the best cases, and that, within this
uncertainty, both the extrapolations basically agree (see
right-hand panel of Fig. 7).
A similar behavior has been observed for the extrapola-

tion of rh22. In this case however data are less noisy and the
fit errors are smaller. Specifically we found h��22i �
0:006 rad and h�A22=A22i & 2% for K ¼ 1 and h��i22 �
0:002 rad and h�A22=A22i & 1% for K ¼ 2. The latter is
thus preferable. The differences with the last extraction
radius are reported in Fig. 8, and comparable in absolute
size to those of Fig. 7.

C. Truncation errors

In this section we quantify the truncation errors in the
inspiral waveforms. Richardson extrapolation is employed
using different data sets and assuming second-order con-
vergence. Extrapolation series are indicated with the same
notation of convergence series, e.g. HHf23456g. Errors are
computed as differences with the highest resolution data.
We stress that this is a common but optimistic choice. Also,
to avoid underestimates of the errors, the whole convergent
series is, at least, used in the extrapolation.
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Figure 9 shows the differences in amplitude and phase
between the extrapolated data from HHf23 456g and those
from run HH6. Similar plots were produced for rc 4

22 and

for different extrapolation series. The differences are nega-
tive and increase towards the merger. Before the merger the
trend changes and they rapidly increase to positive values.
From the argument given at the end of Sec. IVA, we do not
expect to have a fully reliable extrapolation at the merger,
thus proper error estimates must be restricted to slightly
before that point. In case of other extrapolation series the
errors are bigger but qualitatively they show the same
behavior. The maximum absolute errors observed before
the merger are reported in Table II for different extrapola-
tion series. They are computed within the GW frequency
intervals M!22 ¼ ½0:0358; 0:07� (i.e. f 2 ½f0; fmax� ¼
½0:0019; 0:0037�), where the extrapolation is reliable, and
also within the GW frequency intervals M!22 ¼
½0:0358; 0:1�. In the latter case they roughly correspond
to the minima in Fig. 9.

As shown by the table, it is necessary to include at least
four resolutions to obtain a phase error ��22 & 1 rad and
an amplitude error of �A22=A22 & 1% for M!22 � 0:07.
In this case truncation errors become of the same order of
magnitude of the finite-extraction effect. The error esti-
mates up to M!22 ¼ 0:1 indicate how dramatically the
errors increase up to merger. This analysis suggests that
truncation errors represent the main source of uncertainties
in BNS simulations.

D. Accuracy

In this section we test the inspiral waveforms against
accuracy standards for data analysis. As a measure of the
accuracy we employ the square of the inaccuracy func-
tional, I2, whose definition is discussed in detail in
Appendix A, Eq. (A3). Accuracy requirements are set to
minimal levels and an ideal detectors is assumed. As
mentioned in Appendix A, two waveforms are distinguish-
able depending on the signal-to-noise ratio (SNR, %) of the

detection. Given a difference between two waveforms
(the error-bars, in our case), �h, there always exists a
sufficiently high SNR such that the difference is significant
(in our case, the waveforms are inaccurate). The point is
thus to assess the accuracy with respect to SNR that are
high enough but also realistic for the future detections. We
recall that for equal-masses BBH waveforms accuracy
standards are achieved for relevant SNR, and wave
forms can be considered faithful, e.g. [21,23,24,71]. By
contrast, such analysis for BNS has never been considered
before.
We recall that the inaccuracy functional has been rarely

employed in NR literature, see e.g. [24], but it provides an
equivalent measure to the most common mismatch func-
tional, M (see again Appendix A for the definition). The
inaccuracy functional is here preferred because its value
does not depend on the distance between the detector and
the source or on the normalization of the PSD of the
detector noise. In the accuracy standards the dependency
on the distance from the source is then moved to the right-
hand-side of the expressions. All the results presented here
can be translated in terms of the latter considering that
I2=% 	 2M [23,72].
In Table III we report, for several detector configura-

tions, the SNR, computed assuming the source at an effec-
tive distance of 100 Mpc, and the inaccuracy functional,
computed for different waveforms and choices of the error-
bars. Specifically, I2½hm; hx� is computed employing as
exact waveform (hx) three waveforms extrapolated in reso-
lution, HHf236g, HHf2346g, and HHf23 456g, and one
extrapolated in resolution and radius using the series
HHf23 456g and the K ¼ 2 series of Sec. IVB. The choice
of the model waveform, hm, in I2 basically determines the
size of the uncertainties. In the table we employ the wave-
form from the highest resolution run HH6 and extracted at
r ¼ 750, except for the last column which employed the
extrapolated in radius form the same run. Other choices
were considered but they are not shown in the table.
The Wiener scalar product is computed on the interval
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f 2 ½f0; fmax� as in Sec. IVC. Extrapolation in radius is
marked with �.

As already clear from the analysis of Sec. IVC the
inaccuracy decreases by increasing the number of runs
used in the extrapolation in resolution. The inaccuracy
further increases if finite-extraction effects are included.
Let us consider the criteria in Eq. (A6), and the minimal
requirements " ¼ 0:5 [24,77] and "M ¼ 0:005 or "M ¼
0:035 [19]. Note that they correspond to mismatches of
0.5% and 3.5%, respectively, where a 3.5% mismatch in-
dicates that no more then 10% of the signals are lost.
Overall our results indicate that:

(1) the extrapolated waveform form the series
HHf23 456g is effectual and faithful for SNR % &
10 for most of the configurations if errors are com-
puted from run HH6 and finite-extraction effects are
neglected or included in both hx and hm at the same
time;

(2) the extrapolated waveform HHf2346g and the ex-
trapolated HHf23 456g� with errors from HH6, are
effectual only for the less restrictive requirement,
"M ¼ 0:035, and faithful for SNR % < 3;

(3) if waveforms are extrapolated from fewer runs
and/or computing errors from runs at lower resolu-
tions then HH5, the inaccuracy had always larger or
comparable values to those reported in the table for
HHf236g.

In conclusion, minimal requirements for data analysis
are met if waves are extrapolated in resolution from more
then four runs and certain optimistic choices for the error-
bars are made. In the other cases waveforms are inaccurate.
Similar statements can be made if the inaccuracy func-
tional is computed up to M!22 ¼ 0:1, while obviously its
values increase slightly.

V. COMPARISON WITH POST-NEWTONIAN
T4 PHASING FORMULA

In this section we perform a comparison between the
NR waveforms and PN approximants. The main goal is
to quantify their agreement/disagreement and the relative
signature of the tidal interactions on the waves during
the last nine orbits of the merger process. The comparison
presented here is not exhaustive; a systematic investigation
of the different phasing formulas (see e.g. [57]) and
fitting models, as well as the investigation of different
comparison procedures (e.g. [78]), is beyond the scope of
this work.
Here we will focus only on the so-called T4 formula

[57,79–83], T4pp hereafter, accurate at 3.5 PN level. In
addition to the point-particle T4, we will consider a ‘‘tidal’’
T4, T4td hereafter, as proposed in [4–7,9]. T4td includes
the leading-order (LO) and next-to-leading order (NLO)
tidal PN corrections in the dynamics and the leading-order
corrections in the waveform [84].

TABLE III. Inaccuracy functional for several configurations. Columns: detector configuration with reference for the noise curve,
SNR at 100 Mpc (assuming the detector and the binary are optimally aligned), inaccuracy functional for different choice of the
waveforms. HHf2–6g indicates the waveform has been extrapolated in resolution with those runs, � indicates the extrapolation in radius
is performed. The model waveform, hm, in the inaccuracy functional is always the one from run HH6 at r ¼ 750, except for the last
column where the extrapolated in radius from the same run is used.

I2½hm; hx�
Sn % HH6;HHf236g HH6;HHf2346g HH6;HHf23 456g HH6;HHf23 456g� HH6;HHf23 456g�
advLIGO [73] 3.6 0.333 0.117 0.043 0.149 0.045

advLIGO NSNS Opt [74] 5.4 0.352 0.126 0.046 0.144 0.048

advLIGO Narrow Band [74] 3.2 0.462 0.198 0.072 0.112 0.074

advLIGO High Sens. [74] 5.1 0.401 0.153 0.055 0.132 0.058

advVIRGO [73] 5.1 0.445 0.182 0.066 0.117 0.068

ET [75,76] 52.0 0.383 0.142 0.051 0.138 0.054

TABLE II. Maximum differences between extrapolated values in resolution and the highest
resolution data (run HH6) in different quantities during the inspiral. The first three rows refer to
the maximum errors forM!22 � 0:07, while the last three rows refer to the maximum errors for
M!22 � 0:1.

Runs j�a22=a22j½%� j��22j½ rad� j�A22=A22j½%� j��22j½ rad� j�!22=!22j½%�
HHf236g 38 1.8 8 2 9

HHf2346g 5 0.4 1 0.4 2

HHf23 456g 1 0.13 0.2 0.13 0.6

HHf236g >100 7 20 5 >100

HHf2346g 70 1.4 6 1.4 15

HHf23 456g 13 0.3 2 0.3 4
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A comparison with the T4 approximants and NR data
have been already considered in [9,17], to which we also
refer for the precise equations used in this work.
The analysis there is performed in frequency domain
considering a certain measure of the phase acceleration,
that has the advantage of being independent of time and
phase shifts (and a simple physical interpretation, see
discussion in Sec. IV) but the drawback of requiring fits
of the numerical data and a certain fine-tuning. The result
obtained is that T4td NLO accumulates about 2.25 rad on
the frequency interval M!22 2 ½0:043; 0:057� for the
model employed here, and about 2� rad on the same
interval for a binary with less compact stars.

In the following both T4pp and T4td are considered in a
time-domain comparison with the NR waveform. In order
to be contrasted, the waveforms must be aligned in time
and phase. Let us make some general comments on this
point. There is no unique way to align waveforms for such
comparison, in the literature several methods are proposed,
e.g. [16,59,78]. A priori none of them is free from ambi-
guities or clearly preferable. The alignment region is typi-
cally chosen after the ‘‘initial transient’’ (or adjustment) of
the numerical waveforms. The transient is related to the
use of conformally flat initial data, and the main effect (but
in principle not the only one) is the well-known burst of
radiation at early times of the simulation [85]. The tran-
sient is quite rapid, typically within the first orbit, after
that the system relaxes to the expected quasicircular state
[86]. The allowed alignment region is constrained by the
validity of the post-Newtonian approximation and the
length of NR waveforms. The lowest frequency interval,
compatible with the NR data available and the comment
above, may be thus preferable. For a quantitative analysis
on the length requirement of NR waveforms in the BBHs
case see [23].

Guided by these considerations, we chose the following
strategy: (i) NR and PN waveforms are aligned in phase
and time by considering an interval, ½t1; t2�, in the first half

of the numerical signal available, where the frequencies are
closer to those of validity of the PN method; (ii) following
[59] the time shift, �st, and the phase shift, �s�, are
determined by minimizing the functional,

G½�st;�s��¼
Z t2

t1

dt½�ðtÞ��PNðt��stÞ��s��2: (3)

The PN waveforms are then matched to NR ones by
applying the shifting; (iii) different results are obtained if
the center and the length of the alignment interval are
varied. However we observed that the main dependence
is on the position of the center rather than in the interval
length. For simplicity, we fixed the interval length as
100 M and vary the position of the center tc 2
½0; 900� M; (iv) The best value of tc is estimated by min-
imizing the mismatch between the PN and NR waveform.
As a case study we focus on our best NR waveform

extrapolated only in resolution, i.e. HHf23 456g.
Neglecting finite-extraction uncertainties does not particu-
larly affect the conclusions, also because they decrease
towards merger. As discussed extensively in [78] the error
estimates of Sec. IV based on the convergence analysis
may not be the optimal ones to be used in PN comparison.
If only a certain range of frequencies of the NR waveform
is of interest, a phase error estimated on that range (i.e. by
shifting in some way NR waves from different runs) may
be less conservative and thus preferable for the specific
application. However, such error estimates suffer of ambi-
guities related to the alignment procedure and we prefer
not to pursue that method. For the purpose of this section it
is sufficient and justified to use the errors estimated in
Sec. IV that can be, eventually, considered as an upper
bound to the actual errors (see below).
Figure 10 shows the real part of the aligned waveforms

(error-bars are not shown there for clarity), and the GW
frequencies with error-bars. The alignment interval used
for the analysis in the figure is ½t1; t2�=M ¼ ½450; 550�,
which minimizes the mismatch between the NR and T4td
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BERNUZZI, THIERFELDER, AND BRÜGMANN PHYSICAL REVIEW D 85, 104030 (2012)

104030-10



waveform as described above. Figure 11 shows the phase
differences between the waveforms in time (left) and fre-
quency (right) domain. The PN waveform maintains a
good phasing for few GW cycles after the alignment region
and up to t=M� 1200. At later times, phase differences
with respect the PN evolution become positive and signifi-
cant, the largest difference is the one with T4pp. At higher
GW frequencies than M!22 � 0:05 the PN approximant
significantly differs from NR waves, and the T4pp rapidly
accumulates a phase difference of ��22 � 2 rad at
M!22 � 0:07 and of ��22 � 4 rad at M!22 � 0:1. The
T4td performs slightly better then T4pp at later times, but
(not yet calculated) higher-order tidal corrections are im-
portant [87]. This is the central observation here: tidal
interactions in the nonlinear regime dominate the dynamics
and the GW emission at least during the last 5-6 orbits of
the merger process. A similar conclusion can be drawn
considering the waveform HHf2346g, but not for HHf236g.
In the latter case the PN and NR signals are indistinguish-
able due to larger error-bars.

As mentioned above, we did not perform a systematic
study of different alignment procedures, but a certain
dependence on the alignment interval was expected and
observed. The phase differences given above are lower
bounds, since they are determined by a minimization of
the mismatch functional. In particular, dropping the step
(iv) in the procedure outlined above and varying tc 2
½0; 900� M, we estimated also an upper bound. The latter
corresponds to an alignment interval centered at tc � 70 M
and the accumulated phase are ��22 � 3 rad at M!22 �
0:07 and of ��22 � 6 rad at M!22 � 0:1.

VI. CONCLUSIONS

In this paper we have presented results about the accu-
racy of NR waveforms from BNS mergers and their com-
parison with PN methods. The simulations cover nine
orbits of the late inspiral and the merger phase, they are

the longest and most accurate BNS simulations to date, in
terms of the resolution employed and the number of runs
performed for a single initial configuration. The conver-
gence of the waveforms and their uncertainties related to
truncation errors and finite-radius extraction are discussed.
For the first time in case of BNS merger waveforms, the
accuracy standards for detection have been evaluated. The
aim of the study is to assess the quality of NRwaveforms in
view of their future use to understand the physics of the
merger and of tidal interactions or for data analysis pur-
poses. As a first step in this direction, a comparison with
the PN T4 waveforms has been presented.
NR waveforms are found to be convergent at second-

order rate during the inspiral and up to contact, i.e. until the
last 1.5 orbits or, equivalently, for the GW frequencies
M!22 & 0:07. Later an over-convergent behavior is ob-
served, likely due to the numerical treatment of the matter
and possibly also to the lowest resolution run employed in
the self-convergence test. The uncertainties on the inspiral
waves have been estimated by using Richardson extrapo-
lation of different data sets and assuming the observed
convergence rate where it is valid. Finite-radius extraction
affects were investigated by extrapolating the waves to
null-infinity. Truncation errors increase towards the
merger, when the amplitude of the GW becomes maxi-
mum. The maximum errors in phase and amplitude ob-
served are reported in Table II for different extrapolations
series. The errors related to finite-radius extraction de-
crease towards the merger and they are generically the
smaller then truncation errors, but of the same order of
magnitude of truncation errors in some relevant cases of
waves extrapolated in resolution. Some of these results are
compatible with the findings of [9].
Accuracy standards have been evaluated using

noise curves of ground-based detectors, and assuming
minimal requirements. Results are reported in Table III.
Considering the most optimistic error-bars, extrapolated
waveforms from five runs are effectual and faithful for
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detection with SNR % & 10 for most of the configurations
considered. Considering instead more conservative error-
bars, or extrapolation in resolution with fewer runs, wave-
forms are neither effectual nor faithful for relevant SNRs.

These facts may affect some of the conclusions of
previous works where errors of the NR waveforms were
(not available and thus) neglected, but statements about the
detectability of (small) effects (EoS, magnetic fields) were
made. Our results should be taken into account and/or
reproduced in future works employing NR waveforms for
data analysis purposes or for comparison with analytic
methods.

The NR data have been compared with the prediction of
the PN T4 formula, both for point-particle (T4pp) and
including all the analytically known tidal corrections
(T4td). The comparison between the NR and the T4 waves
has been carried out by aligning them in time and phase at
low frequencies, and looking at the accumulated phase
difference. The aligned T4pp waveform accumulates rap-
idly a significant dephasing of ��22 � 2 at M!22 � 0:07,
and ��22 � 4 at M!22 � 0:1. These values can be con-
sidered lower bounds since in the comparison waves are
aligned in such a way to minimize the mismatch and error-
bars from the convergence test are employed. The inclu-
sion of tidal corrections does not reduce the phase differ-
ence more than a fraction of a radiant. The results suggest
that tidal interactions are very amplified in a strong field
and nonlinear regime and play a significant role already
during the last nine orbits. As already observed in [9] the
analytically known LO and NLO tidal terms in the T4 PN
approximant are not sufficient to match the NR waveform.

In summary, our work indicates that NR waveforms from
BNS are physically ‘‘reliable’’ because they are convergent
and comparable with PN at sufficiently low frequencies.
The measured uncertainties are such that the NR wave-
forms from BNS may not be sufficiently accurate for data
analysis purposes, unless data extrapolated from several
runs are employed. For data analysis applications, an error
estimate based on relative as well as absolute comparisons
(aligning/not-aligning the waveforms) will be relevant. A
very careful evaluation of the waveform uncertainties is
unavoidable for their use in quantitative studies.

Future work will be devoted to a more comprehensive
comparison between the NR waves and analytic PN fitting
models, either in the standard Taylor form or resummed
one (EOB), to extend these results to different mass ratios
and EoSs, and to the investigation of different grid setup
and higher-order methods for the treatment of the matter.
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APPENDIX A: ACCURACY STANDARDS

In this appendix the accuracy standards used in this
paper are discussed. We follow [18–20,77,89].
Given two real time series (waveforms), hx;mðtÞ, and

their Fourier complex transform, ~hx;mðfÞ, theWiener scalar

product is defined as,

ðhxjhmÞ 
 4<
Z 1

0
df

~hxðfÞ~h�mðfÞ
SnðfÞ ; (A1)

where SnðfÞ is the one-sided power spectral density of the
detector noise. The (squared of the) norm associated to the
Wiener product is jjhxjj2w 
 ðhxjhxÞ. TheWiener product is
real and symmetric, the associated norm is positive defi-
nite. The Wiener product provides a measure in the wave-
form space [89]. The mismatch functional is defined as,

M ½hm; hx� 
 1� ðhxjhmÞ
jjhxjjwjjhmjjw ; (A2)

and it is often employed to discuss accuracy standards for
BBH NR waveforms, see e.g. [21–23]. In this work we will
mainly focus on (the square of) the inaccuracy functional
[77], defined as

I 2½hm; hx� ¼ jjhm � hxjjw
jjhxjjw : (A3)

The inaccuracy functional has been considered for NR
waveforms, for example, in [24], and provides an equiva-
lent measure to the mismatch functional.
Assuming an ideal detector (i.e. neglecting calibration

errors), a waveform hm (the ‘‘model’’) is indistinguishable
from the waveform hx (the ‘‘exact’’), if and only if their
difference �h ¼ hm � hx satisfies,

jj�hjjw < 1: (A4)

Equation (A4) represents an accuracy requirement for mea-
surement purposes, and it determines the faithfulness of the
model waveform. A less restrictive requirement can be
given for detection purposes, and it is related to the effec-
tualness of the model waveform. A sufficient condition is,

jj�hjjw <
ffiffiffiffiffiffiffiffiffi
2"M

p
%; (A5)

where % 
 jjhxjjw is the optimal signal-to-noise ratio
(SNR) and the constant "M set the accuracy level. We set
in this work "M ¼ 0:005 or "M ¼ 0:035 as suggested in
[19] (see references therein).
Conditions (A4) and (A5) depend on the distance of the

detector form the source. If they are written in term of the
inaccuracy functional, the dependence on absolute scales
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can be moved to the right-hand side and expressed only in
terms of the SNR. The accuracy requirements then read,

I2 ¼ jj�hjjw
jjhxjjw <

8<
:
"=% faithful;ffiffiffiffiffiffiffiffiffi
2"M

p
effectual;

(A6)

where the functional dependence has been omitted for
clarity. The level " < 1 is here set as " ¼ 0:5. Equivalent
conditions to Eq. (A6) can be expressed in term of the L2
norm of the time-domain signals [19], however they are not
considered here because they seem more restrictive than
the frequency-domain criteria.

In order to evaluate the accuracy of NR waveforms, one
can consider hx as the best waveform model (the extrapo-
lated resolution waveform in our case), and construct
hm ¼ hx þ �h from the error estimates (the last resolution
waveform in our case). The accuracy requirements in
Eq. (A6) then quantify the accuracy of the NR waveforms.
In the analysis presented in the paper the integration
interval f 2 ½0;1� is approximated as f 2 ½f0; fmax�, cov-
ering only the inspiral physical frequencies.

The Wiener product is computed by scaling the wave-
forms to physical units and to an effective distance, Deff ,
typically given in 100 Mpc. From the code output rh22,
we: (i) recover rhþ from the (2,2) multipole, using the
expression for the spin-weighted spherical harmonics,

�2Y2�2ð�;�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=ð64�Þp

expð�i2�Þð1� cos�Þ2; and
(ii) scale rhþ to an effective distance. Assuming the radia-
tion is emitted on the z axis, perpendicularly to the orbital
plane, one has,

rhþðtÞ ¼ r<ð�2Y22h22 þ�2 Y2�2h2�2Þ
’ 0:6308r<ðh22Þ ðfor � ¼ 0; � ¼ 0Þ (A7)

hþðt; DeffÞ ¼ rhþðtÞ GM�c�2

�
Deff

Mpc

��1

’ rhþðtÞ4:7857� 10�20

�
Deff

Mpc

��1
: (A8)

Unit conversion: 1 Mpc ’ 3:085 680 25 � 1024 cm,
GM�c�2 ’ 1:476 701 33 � 105 cm.
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[27] B. Brügmann et al., Phys. Rev. D 77, 024027 (2008).
[28] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor.

Phys. Suppl. 90, 1 (1987).
[29] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428

(1995).
[30] T.W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,

024007 (1998).
[31] F. Banyuls, J. A. Font, J.M.A. Ibanez, J.M.A. Marti, and

J. A. Miralles, Astrophys. J. 476, 221 (1997).
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