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We point out that the temperature fluctuations of cosmic microwave background can be generated in

a way that is different from the one usually assumed in slow-roll inflation. Our mechanism is based on

vacuum fluctuations of fields which are at rest at the bottom of the potential, such as Kaluza-Klein

modes or string excited states. When there are a large number (typically of order N � 1014) of fields

with small mass in units of Hubble parameter during the inflationary era, this effect can give significant

contributions to the cosmic microwave background temperature fluctuations. This number N makes it

possible to enhance scalar perturbation relative to tensor perturbation. Comparison with the observed

amplitudes suggests that models with string scale of order 10�5 of four-dimensional Planck scale are

favorable.
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I. INTRODUCTION

Observation of cosmic microwave background (CMB)
provides an excellent opportunity for testing theories of
high energy physics. The CMB radiations are the pho-
tons emitted at the era of recombination reaching us
almost unscattered. It has a very homogeneous distribu-
tion over the whole sky with thermal spectrum at T �
2:7 K with fluctuations �T=T of order 10�5. Temperature
fluctuation is directly related to the gravitational potential
at the last scattering surface by the relation, �T=T ¼
��=3 (see e.g. [1]). Gravitational potential � is essen-
tially frozen in the matter or radiation dominated
universe, thus the observation of CMB enables us to
trace back the Universe to the era much earlier than
recombination.

It is believed that there has been a period of exponen-
tial expansion (inflation) in the early Universe [2]. Had
the Universe been decelerating (matter or radiation domi-
nated) since the beginning, the observable universe
would have to be made of many spatial regions which
have been initially independent, making it difficult to
explain the homogeneity of our universe. Exponential
expansion brings these regions in causal contact in the
past. This is the only compelling resolution of this
horizon problem.

The fluctuations generated during inflation has nearly
scale invariant spectrum. At each time �t�H�1 (whereH
is the Hubble parameter of inflation), fluctuations of order
���H will be created in a spatial region of horizon

size �H�1. This fluctuation is stretched by the cosmic
expansion, and once the wavelength of fluctuation exits
the horizon, it is frozen and treated classically. Quantum
fluctuations continuously exit the horizon, and this mecha-
nism creates the same structure of perturbations at every
length scale (see e.g. [3]).
The observations of WMAP [4] find a nearly scale

invariant spectrum of primordial temperature fluctua-
tions. It is often stated that WMAP confirmed inflation,
and the results expected from PLANCK satellite will
narrow down possible models of inflation. In making
such a statement, it seems that a particular mechanism
[5] for generating CMB fluctuations is assumed, which
is based essentially on slow-roll inflation [6]. Regarding
the fact that theories of inflation have not been derived
from fundamental theory of quantum gravity yet, we
believe it is important to examine whether there are any
issues that are overlooked in making predictions from
inflation.
In this paper, we point out that the temperature fluctua-

tions of CMB can be generated by purely quantum effects,
which is different from the mechanism usually assumed in
the slow-roll scenario. Our mechanism is based on the
vacuum fluctuations of a large number of fields that are
classically at rest at the bottom of their potential. The effect
from each field is small, but we show that a sufficiently
large number of fields from Kaluza-Klein (KK) modes or
string excitations can produce an observable level of tem-
perature fluctuations. The effect of these fields on the
tensor perturbation is small.
By comparing the temperature fluctuations obtained

from our mechanism to the observed amplitude, we find
that a theory with relatively low fundamental scale (i.e.
string scale being 5 orders of magnitude lower than the
four-dimensional [4D] Planck scale) is favored.

*habara@yukawa.kyoto-u.ac.jp
†hkawai@gauge.scphys.kyoto-u.ac.jp
‡ninomiya@yukawa.kyoto-u.ac.jp
§sekino@post.kek.jp

PHYSICAL REVIEW D 85, 104027 (2012)

1550-7998=2012=85(10)=104027(16) 104027-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.104027


A. Temperature fluctuations

To clarify the difference of our mechanism for generat-
ing temperature fluctuations from the one in slow-roll
scenario, let us briefly review the latter [5].

In most of the currently studied models of inflation, it is
assumed that a scalar field (inflaton) goes through a clas-
sical motion. In slow-roll inflation [6], inflaton rolls down
the potential which is flat enough for vacuum energy
dominates over the kinetic energy. In chaotic inflation
[7], potential is generic but the friction due to the expan-
sion makes the motion effectively slow. In other models,
such as N-flation [8], slowly moving classical field is
effectively involved in a certain sense.

The equal value surface of the inflaton field provides a
natural time slicing. Thus, fluctuations of inflaton �’ can
be reinterpreted as the fluctuation of time duration, or how
much the Universe has expanded: The slice of �’ ¼ 0 is
obtained by gauge transformation, �t ¼ ��’= _’cl, and on
that slice, fluctuation of the spatial curvature R ¼ �H�t
is generated1 (which can be translated into the gravitational
potential �). In the slow-roll scenario, curvature perturba-
tion is enhanced due to the slowness of the classical motion
1= _’cl. Using the fact that �’�H, and the slow-roll
approximation, _’cl ¼ V0=ð3HÞ, curvature perturbation is
written as R� ð1=�ÞðH=mpÞ, where � ¼ ðV0mpÞ2=
ð8�VÞ2 is a slow-roll parameter characterizing the flatness
of the inflaton potential (see e.g. [11]).

During inflation, tensor perturbation is also generated
[12]. In the linearized approximation around an isotropic
background, transverse-traceless (TT) tensor is decoupled
from other fields. It satisfies massless equation of motion,
and the amplitude is of order H=mp, as is clear from

dimensional analysis, where mp is the Planck scale.

Tensor perturbation will produce B-mode polarization in
the CMB. This is not observed at present, and the tensor to
scalar ratio is bounded above by rT=S ¼ 2T 2=R2 & 0:2.
This leads to an important conclusion that H is at least
5 orders of magnitude smaller than mpl.

We propose a mechanism for generating temperature
fluctuations by vacuum fluctuations of the fields which
are classically at rest. (Our mechanism is different from
N-flation [8] in this sense.) Energy-momentum tensors are
quadratic in these fields, and their effect on the gravita-
tional potential � is neglected in the usual first order
perturbation theory. Each field gives a small contribution
of order ðH=mplÞ2 to �, but when there are many fields

(typically of order N � 1014), this can sum up to an ob-
servable level.

The fields with small mass compared to H do not
oscillate during inflation, since the friction due to cosmic
expansion overdamps the oscillation. These fields contrib-
ute to temperature fluctuations. When there are extra di-
mensions whose size L is large L � H�1, we have a large
number of KK modes which contribute. The effect of these
fields on tensor fluctuations is shown to be small. In our
approach, the enhancement of scalar perturbation to tensor
perturbation is due to the large number of fields that
contribute to the former.
In this paper, we first compute fluctuations assuming the

background is pure de Sitter, and later discuss the changes
needed when Hubble is time dependent. Since the fluctua-
tions originate from massive fields, the spectrum is tiled
towards the UV (spectral index ns > 1), if Hubble parame-
ter were constant. However, the spectral index is strongly
dependent on the time-dependence of H. It can be lowered
if Hubble decreases with time. We cannot know the dy-
namics of Hubble unless we know the origin of vacuum
energy during inflation. In this paper, we do not make
definitive statement, but we mention the possibility that
quantum fluctuations of these fields (renormalized expec-
tation value of energy-momentum tensor) is the source of
vacuum energy.
Related work has been done by Nambu and Sasaki

[13]. They computed correlation functions of energy-
momentum tensor at the quadratic order in fluctuations,
and related them to curvature perturbations. Their analy-
sis is very similar to ours, but the setup and the inter-
pretation are different. They consider a scalar field in an
unstable potential m2 < 0 (with a suitable regularization).
Their goal is to rederive density fluctuations in slow-roll
inflation from purely quantum analysis without directly
using the classical solution which rolls down the poten-
tial. On the other hand, we are considering fields in the
stable potential m2 > 0, and studying their vacuum
fluctuations.

B. Organization of this paper

We will include descriptions of some known facts to
make this paper self-contained and to clarify our
assumptions.
In Sec. II, we review quantization in de Sitter back-

ground. In Sec. III, we study Einstein equations and ex-
press gravitational potential � in terms of matter fields.
In Sec. IV, we obtain two-point functions of �. In Sec. V,
we find the CMB temperature fluctuations, and compare
our formula with the observed amplitude to find typical
value of parameters of fundamental theory. In Sec. VI, we
study the spectral index, and discuss the effect of time-
dependent Hubble constant. In Sec. VII, we consider non-
Gaussianities. We compute three-point functions at the
lowest order in the interaction, and we estimate the im-
portance of interactions. In Sec. VIII, we give a summary.
In the Appendix, we perform the analysis of fluctuations,

1Although this heuristic derivation gives the correct answer in
the slow-roll limit, for a consistent analysis, one should use the
gauge invariant variable defined in [9], which corresponds to the
curvature perturbation on comoving hypersurfaces. This enables
one to study the general cases; see e.g. [10].
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including an inflaton field as an effective model for time-
dependent Hubble.

Part of the results of this paper has been reported in our
previous publication [14].

II. QUANTIZATION IN DE SITTER SPACE

In this and the following two sections, we derive the
formulas assuming the background is pure de Sitter space.
We will discuss later what kind of changes are needed
when Hubble is time dependent. We start by reviewing
the calculation of correlation functions in de Sitter space,
paying attention to the behavior in the small mass limit,
which will be important for later applications.

We will consider free fields, since we are mainly inter-
ested in weakly coupled theories. The magnitude of tem-
perature fluctuations described in this paper depends on the
number of fields which have masses smaller than the
Hubble scale, but not on the details of the theory, so our
conclusions will be valid even in the presence of interac-
tions. We will discuss the effect of interaction in Sec. VII.

The metric of de Sitter space is

ds2 ¼ dt2�a2ðtÞd~x2; aðtÞ ¼H�1eHt; ð�1� t�1Þ
(2.1)

¼a2ð�Þðd�2�d~x2Þ; að�Þ¼ 1

ð�H�Þ ; ð�1���0Þ;
(2.2)

where the conformal time � is defined by � ¼ R
dt=aðtÞ ¼

�e�Ht.

A. Scalars

Let us consider a free massive minimally-coupled scalar
field,

S ¼ 1
2

Z
d4x

ffiffiffiffiffiffiffi�g
p f@��@���m2�2g: (2.3)

It is convenient to define a rescaled field, �ð�; ~xÞ ¼
að�Þ�ð�; ~xÞ, which has the standard kinetic term. The
equation of motion for the Fourier mode �~kð�Þ, where
�ð�; ~xÞ ¼ R½ðd3kÞ=ð2�Þ3��~kð�Þei ~k

_~x is

�00
~k
ð�Þ þ

�
j ~kj2 þ ðH�2m2 � 2Þ 1

�2

�
�~kð�Þ ¼ 0: (2.4)

The canonical quantization condition is
½�ð�; ~xÞ; �0ð�; ~x0Þ� ¼ i�3ð ~x� ~x0Þ. We define the creation

and annihilation operators ay~k , a ~k by

�ð�; ~xÞ ¼
Z d3k

ð2�Þ3=2
1ffiffiffiffiffiffiffiffi
2j ~kj

q ½u ~kð�Þa ~ke
i ~k� ~x þ u�~kð�Þa

y
~k
e�i ~k� ~x�;

(2.5)

where u ~kð�Þ is the solution of (2.4) which is normalized as

u ~k _u
�
~k
� u�~k _u ~k ¼ 2ijkj. We take the solution which ap-

proaches u ~kð�Þ ! e�ij ~kj� at early time � ! �1, so that

the choice of the vacuum reduces to the one for flat space-
time in the short-distance limit. Wewill take Bunch-Davies
vacuum, which is annihilated by ak’s in (2.5), throughout
this paper. The explicit form of u ~kð�Þ is

u ~kð�Þ ¼
ffiffiffiffi
�

2

r
eið�=2Þð�þð1=2ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�j ~kj�

q
Hð1Þ

� ð�j ~kj�Þ (2.6)

with

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
�m2H�2

s
: (2.7)

Asymptotic behavior at the late times (in the superhorizon

j ~kj=a � H limit) is given by u ~k � ð�j ~kj�Þ��þð1=2Þ, or in
terms of the original field,�� ð��Þ3=2��, as we can easily
from the equation of motion (2.4): The jkj2 term drops out
from the equation at late times, and the scaling with respect
to time is independent of jkj2; de Sitter symmetry tells us
that the spatial (jkj) dependence enters as a multiplicative
factor with the same scaling dimension as the one for � (see
e.g. [15]).
Fields with small mass,

mH�1 < 3
2; (2.8)

do not oscillate in time.: The friction due to the cosmic
expansion overdamps the oscillation due to energy of
massive field.
We are interested in correlation functions, which are

the expectation values taken with Bunch-Davies vacuum
as in and out states. Two-point function at equal time is
given by

h�ð�; ~xÞ�ð�; ~x0Þi ¼ 1

a2ð�Þ
Z d3k

ð2�Þ3
1

2jkj jukð�Þj
2ei

~kð ~x� ~x0Þ:

(2.9)

Substituting the late time expression for ukð�Þ, we get

h�ð�; xÞ�ð�; x0Þi ¼ H2Cð	ÞðHajx� x0jÞ�	; (2.10)

where

	 ¼ 3� 2�; (2.11)

and

Cð	Þ ¼ sinð�2 ð	� 1ÞÞ�ð	2Þ
4�3=2fsinð�2 ð3� 	ÞÞg2�ð	�1

2 Þ : (2.12)

In the limit of small mass mH�1 � 1, we have
	� ð2=3Þm2H�2, and

Cð	Þ � 1

4�2	
: (2.13)
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The coefficient Cð	Þ diverges in the mH�1 ! 0 limit,
but physical quantities such as the gravitational potential
� stays finite in this limit as we will see below. In the
massless limit, the exponent 	 approaches zero, and the
decay is slowest. We will see that fields with small mass
(more precisely mH�1 & 10�1) mostly contribute to �.

The energy-momentum tensor for a minimally-coupled
scalar is given by

�T�� ¼
�
@��@��� 1

2
g��ð@
�@
��m2�2Þ

�
: (2.14)

This serves as the source for the gravitational fields. Let us
look at the time dependence of the �T00 component. Since

�� ð��Þ	=2, the leading term of �T00 scales as

�T00 � ð��Þ	�2: (2.15)

We will see in the next section that this produces the
gravitational potential �� ð��Þ	, which decays slowly
when 	� ð2=3Þm2H�2 � 1. The fields that give impor-

tant contributions are those which give �T00 �
ð��Þ�2þOðm2H�2Þ at late times. We can safely neglect the
fields for which �T00 decay faster than this, when we
compute � in the late time limit.

So far we have considered minimally-coupled scalar. If
there is coupling to the curvature, the action becomes

S ¼ 1
2

Z
d4x

ffiffiffiffiffiffiffi�g
p f@��@��� ðm2 þ �RÞ�2g; (2.16)

where R is the scalar curvature of the background; �ð	 0Þ
is a constant, which takes the value � ¼ 1=6 for the con-
formally invariant coupling. For de Sitter space, we have
R ¼ 12H2. The curvature coupling effectively increases
the mass by

m2 ! m2 þ 12H2�; (2.17)

and changes � to

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4 � 12��m2H�2

q
: (2.18)

The late time behavior of such a field is

�� ð��Þð3=2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9=4Þ�12��m2H�2

p
: (2.19)

For the conformal scalar (� ¼ 1=6, m ¼ 0), � decays as
�� ð��Þ1. To have the exponent close to zero, so that the
field contributes to �, we need � ¼ 0 (minimal coupling)
or close to zero, and mH�1 � 1.

B. Vectors

Massive vector field (Proca field) is described by the
action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

4
g��0

g��
0
F��F�0�0 �m2

2
g��0

A�A�0

�
:

(2.20)

Vector field arising from the KK reduction of a gauge field
in higher dimension is such an example.
The equation of motion in de Sitter space (in the con-

formal coordinates) is

���0
@�ð@�0A� � @�A�0 Þ þm2a2A� ¼ 0: (2.21)

We act @� on this equation, and find a constraint,

@0A0 þ 2HA0 ¼ @iAi; (2.22)

where

H ¼ a0

a
¼ � 1

�
: (2.23)

To solve the equation of motion, we decompose Ai into
the transverse and the longitudinal part,

Ai ¼ AðTÞ
i þ @i
; (2.24)

where @iA
ðTÞ
i ¼ 0. The transverse part satisfies

ð@20 � �þm2a2ÞAðTÞ
i ¼ 0: (2.25)

The component A0 satisfies the same equation after a
rescaling by the scale factor,

ð@20 ��þm2a2ÞðaA0Þ ¼ 0: (2.26)

The scalar function 
 is determined by

�
 ¼ @0A0 � 2
A0

�
: (2.27)

These equations (2.25) and (2.26) are equivalent to the
equation of motion satisfied by a’conf , where ’conf is a
scalar with conformal coupling, m2H2 ! m2H2 þ 2. At
late time and in the limit of small mass, the fields scale as

A0 � ’conf � ð��Þ1þOðm2H�2Þ; (2.28)

AðTÞ
i � a’conf � ð��ÞOðm2H�2Þ: (2.29)

Also, from (2.27), we find 
� ð��ÞOðm2H�2Þ.
The energy-momentum tensor for massive vector field is

�T�� ¼ F�
F


� �m2A�A�� 1

2g��

�
1
2F
�F


� �m2A
A



�
:

(2.30)

To see the scaling of �T00 at late times, let us look at its
mass-dependent part,

�Tðm2Þ
00 ¼ �m2

2
ðA0A0 þ AiAiÞ: (2.31)

The leading time dependence is given by

�Tðm2Þ
00 ��m2

2
a2’2

conf � ð��Þ2þOðm2H�2Þ: (2.32)

The energy-momentum tensor scales in the way as if we
had the scalar field ’conf . Whether the field contributes to
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� or not depends on the effective mass in the equation of
motion. Vector field in (3þ 1) dimensions has conformal
coupling (due to the conformal invariance in the massless
limit), decays faster than the minimally-coupled scalar at
late times, and does not contribute to �.

C. Spinors

The action of Dirac spinor is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p f ��ðie��̂	�̂D� �mÞ�g: (2.33)

In the background (2.2), this is written as

S ¼
Z

d4xfða3=2 ��Þði	�̂@�̂ �maÞða3=2�Þg; (2.34)

reflecting on the fact that spinors are conformally invariant
in the massless case.

The Dirac equation is

ði	�̂@�̂ �maÞða3=2�Þ ¼ 0; (2.35)

and the independent components [a3=2� ¼ ðcþ; c�Þ in
certain representation of gamma matrices] satisfy

�
@20 ��þm2H�2 
 imH�1

�2

�
c
 ¼ 0: (2.36)

Note that in the massless limit, (2.36) is the equation
satisfied by the conformal scalar a’conf . Thus, the original

field scales as �� a�1=2’conf � ð��Þ3=2þOðm2H�2Þ at late
times.

Energy-momentum tensor for spinors is (see e.g. [16])

�T�� ¼ i

2
f ��	ð�D�Þ�� ðDð� ��Þ	�Þ�g: (2.37)

The �T00 component scales as

�T00 � ��	0D0�� ð��Þ1þOðm2H�2Þ; (2.38)

since 	0 ¼ e�̂0	
�̂ has one factor of a� ð��Þ�1, and @0

decreases the power of � by 1. This �T00 is smaller than
that for the massless minimally-coupled scalar, so spinors
do not contribute to � at late times.

D. The fields that are important at late times

We have seen that minimally-coupled scalar with mass

mH�1 � 1 decays most slowly, �� ð��ÞOðm2H�2Þ, in the
late time limit. Coupling to the curvature effectively in-
creases the mass, and fields such as conformal scalars
decay faster. The fields whose independent components
scale in the same way as minimally-coupled scalar can
contribute to � in the late time limit.

We can have small mass for the KK modes when extra
dimensions are large enough L � H�1. Let us list possible
origins of the fields which have minimal coupling.

(i) Massless minimally-coupled scalars in higher
dimensions.

(ii) The scalar fields which appear from the KK reduc-
tion of gauge fields whose indices are along the
internal directions: As long as the size of the extra
dimension is stabilized independently of the scale
factor for the 4D spacetime, these field do not have
coupling to the curvature. Higher dimensional
graviton with indices in the internal directions is
also such an example.

(iii) Massive tensors (in 4D) from the KK reduction of
higher dimensional gravitons: In the massless limit,
the transverse mode satisfy the equation of motion
equivalent to massless minimally-coupled scalar
(see (3.25) below), thus contributes at late times.

Whether the first type of fields exist or not may depend on
the theory, but the second and the third (oneform gauge
fields and gravitons) will exist in fundamental theories in
general. In the following, we will not ask how many of
these fields exist. We will ignore order 1 factor coming
from this multiplicity, since this is much smaller than the
huge multiplicity of the KK modes for each field. In the
explicit analysis, we will take minimally-coupled scalar
fields. Other fields can be studied in the similar manner by
considering the independent components which satisfy
scalar-type equations of motion, as long as we are consid-
ering vacuum fluctuations of these fields.

III. EINSTEIN EQUATIONS

We now study Einstein equations. Einstein equations are
constraint equations which allow us to write the gauge
invariant metric fluctuations (such as gravitational poten-
tials � and �) in terms of matter fields. The metric
fluctuations are decomposed into scalar, vector, and tensor
modes, each of which can be studied separately. Tensor
mode is the part which is transverse-traceless in the spatial
directions, vector modes are those which are divergence-
less, and scalar modes are those which can be written as
derivatives of scalar functions. We follow the notation
of [1].

A. Scalar fluctuations

The scalar part of the (0,0), ð0; iÞ, ði; jÞ components of
Einstein equations are given, respectively, by

��� 3H ð�0 þH�Þ ¼ 4�G�T00; (3.1)

ð�0 þH�Þ;i ¼ 4�G�TðSÞ
0i ; (3.2)

�
�00 þH ð2�þ�Þ0þð2H 0 þH 2Þ�þ�

2
ð���Þ

�
�ij

�1

2
ð���Þ;ij¼4�G�TðSÞ

ij : (3.3)

We take the background spacetime to be pure de Sitter
space (a ¼ �H�1=�, H ¼ �1=�). The left-hand side is
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the Einstein tensor expanded to the 1st order in metric
fluctuations.� and� are the two gauge invariant variables
constructed from the scalar components. In the longitudi-
nal gauge, they are given by

ds2l:g: ¼ a2fð1þ 2�Þd�2 � ð1� 2�Þ�ijdx
idxjg: (3.4)

On the r.h.s., we take the energy-momentum tensor
which is quadratic in the matter fields. We consider
minimally-coupled scalars here. We assume there are
many free scalar fields. The energy-momentum tensor is
a sum over the contributions,

�T�� ¼ X�
@��@��� 1

2g��ð@
�@
��m2�2Þ
�
: (3.5)

For brevity, the label on the field is suppressed, and the sum
is understood to be over the species. The fields � have
vanishing classical background, and are gauge invariant.
Each component of �T�� is given by

�T00 ¼
X

1
2f�02 þ @i�@i�þm2a2�2g; (3.6)

�T0i ¼
Xf�0@i�g; (3.7)

�Tij ¼
X�

@i�@j�þ 1
2�ijð�02 � @i�@i��m2a2�2Þ

�
:

(3.8)

The superscript ðSÞ in (3.2) and (3.3) denotes the scalar
part. Recall that �T0i and �Tij can be decomposed as

�T0i ¼ @i~sþ ui; (3.9)

�Tij ¼ @i@js� 1

3
�ij�sþ @ivj þ @jvi þ tij þ f�ij;

(3.10)

where ui and vi are transverse vectors @ivi ¼ @iui ¼ 0,
and tij is a transverse-traceless tensor, @itij ¼ tii ¼ 0. By

the scalar part, we mean the part involving ~s in (3.9), and
the part involving s and f in (3.10).

We can find ~s and s by taking divergence and applying
inverse Laplacian,

~s ¼ 1

�
@k�T0k ¼

X 1

�
@kð�0@k�Þ; (3.11)

s ¼ 3

2�2
@k@l

�
�Tkl � 1

3
�kl�Tmm

�

¼ X 3

2�2
@i@j

�
@i�@j�� �ij

3
@k�@k�

�
:

(3.12)

Using Einstein Eqs. (3.1), (3.2), and (3.3), we can solve
for � and� in terms of �. First, from the traceless part of
(3.3), we find

��� ¼ �8�Gs: (3.13)

Using this in (3.2),

�0 þH� ¼ 8�G

�
�s0 þ 1

2�
@ið�0@i�Þ

�
: (3.14)

The last term is the part that we would get if we had
� ¼ �.
Let us solve (3.14) by substituting the late time asymp-

totics of � on the r.h.s. This is a valid procedure, since we
are interested in the correlation functions of � in the late
time limit, and � only appears as external lines. Special
care is needed if the leading term (which has the lowest
scaling dimension) is degenerate with another term, which
can happen at certain values of the parameter; we will
comment on this point when necessary.
In the late time limit, the time and space dependence of

the field � factorizes,

�ð�; xÞ ¼ ð��Þð	=2Þ�̂ðxÞ; (3.15)

where 	 is defined in (2.11). Time dependence of � is
found from the time dependence of the r.h.s. of (3.14),

�

�
1

�
�

�0 � ð��Þ	�1 ) �� ð��Þ	: (3.16)

Thus, � at late times can be written as

�ð�; xÞ ¼ ð��Þ	�̂ðxÞ: (3.17)

Time derivative is given by �0 ¼ 	
��, �0 ¼ 	

��,

�0 ¼ 	
2��. From (3.14), we get

�¼4�G
	

	�1

�
� 3

�2
@i@jð@i�@j�Þþ 1

�
@i�@i�þ1

4
�2

�
;

(3.18)

where we have used @ið�@i�Þ ¼ ��2=2 to rewrite the last
term. This solution is consistent with all the other compo-
nents of Einstein equations.
The expression (3.18) diverges at 	 ¼ 1. At this special

value, (3.14) cannot be solved with the naive ansatz
�� ð��Þ	, since the left-hand side vanishes. In this
case, we can solve the equation by setting �� ð��Þ�
logð��Þ.
Also note that there is always a freedom of adding a term

which has time dependence �ð��Þ1 to the solution of
(3.18), but we can eliminate this piece by requiring that
the solution does not blow up in the early time limit.

B. Vector fluctuations

The vector modes are the following part of the metric
fluctuations,

ds2 ¼ a2½d�2 þ 2Sidx
id�� ð�ij � Fi;j � Fj;iÞdxidxj�;

(3.19)
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where @iSi ¼ @iFi ¼ 0, and, i denotes derivative with
respect to xi. There is a gauge invariant combination,

Vi ¼ Si � F0
i: (3.20)

The vector part of the ð0; iÞ and ði; jÞ components of the
Einstein equations are

�Vi ¼ 16�G�TðVÞ
0i ; (3.21)

ðVi;j þ Vj;iÞ0 þ 2H ðVi;j þ Vj;iÞ ¼ 16�G�TðVÞ
ij ; (3.22)

where the superscript (V) denotes the vector part, which
are the part of �T0i and �Tij which involves ui and vi, as

defined in (3.9) and (3.10). ui is given by subtracting the
scalar part from �T0i,

�TðVÞ
0i ¼ ui ¼ �0@i�� 1

�
@i@kð�0@k�Þ: (3.23)

The leading term of ui at late times is smaller than it

naively looks. Recall that �� ð��Þ	=2�̂ð1þOð�2ÞÞ. We
can see that the order ð��Þ	�1 term of the r.h.s. of (3.23)
vanishes by using �0 ¼ 	

2�� and �@i� ¼ @ið�2Þ=2. Thus
the leading term of the r.h.s. of (3.21) scales as ð��Þ	þ1,
which implies Vi � ð��Þ	þ1. This behavior is consistent
with the Eq. (3.22).

Since Vi decays at least as ð��Þ1, we conclude that the
vector perturbation produced by the matter fields � is
negligible at late times.

C. Tensor fluctuations

The TT tensor fluctuation hij (rihij ¼ hii ¼ 0) is de-

fined by

ds2 ¼ a2½d�2 � ð�ij � hijÞdxidxj�: (3.24)

It is sourced by the TT part of energy-momentum tensor,

h00ij þ 2Hh0ij ��hij ¼ 8�G�TðTÞ
ij : (3.25)

The general solution to this equation is given by the

solution hð0Þij for the homogeneous equation on top of a

particular solution hð1Þij , which depends on �TðTÞ
ij .

The homogeneous equation is equivalent to massless

scalar equation of motion. Its solution hð0Þij is the usual

gravitational wave, which scales logarithmically in space
and time. This has the scale invariant spectrum with the
amplitude H=mpl.

The time dependence of hð1Þij is determined by (3.25) to

be hð1Þij � ð��Þ	þ2, since �TðTÞ
ij � ð��Þ	. Care is needed

when 	 ¼ 1. In this case, ð��Þ	þ2 ¼ ð��Þ3 is degenerate
with the (decaying) solution of the homogeneous equation,
and (3.25) cannot be solved with this ansatz. In this case we

have to take hð1Þij � ð��Þ3 logð��Þ. In any case, hð1Þij decays

at late times, and the effect of �TðTÞ
ij for the tensor fluctua-

tions is negligible at late times.

IV. CORRELATION FUNCTIONS

Having expressed � in terms of �, it is straightforward
to compute correlation functions of �. Let us compute the
two-point function.
We decompose � in (3.18) into two pieces,

� ¼ �0 þ�1; (4.1)

�0 ¼ ��G
	

1� 	
�2; (4.2)

�1 ¼ 4�G
	

1� 	

�
3

�2
@i@jð@i�@j�Þ � 1

�
ð@i�@i�Þ

�
;

(4.3)

where �0 is the part which we would get when � ¼ �,
and �1 is the part which depends on s defined in
(3.12).
The h�0�0i correlator is just a product of two propa-

gators,

h�0ð�; xÞ�0ð�; x0Þi
¼ 2ð�GÞ2 X

�
	

1� 	

�
2h�ð�; xÞ�ð�; x0Þi2

¼ 2ð�GH2Þ2 X
�

	

1� 	

�
2
C2ð	Þð��Þ2	jx� x0j�2	;

(4.4)

where as in the last section, the sum is taken over all
species of �. When the mass of the fields are small
(	 � 1), we get

h�0ð�; xÞ�0ð�; x0Þi � 1

8�2
ðGH2Þ2 Xð��Þ2	jx� x0j�2	:

(4.5)

The contribution from the fields with 	 � 1 is finite, since
the two factors of 1=	 from the propagator are canceled by
the two factors of 	 from (4.2).
The other parts of the correlator can be computed by

using the formulas such as (@0i ¼ @=@x0i)

@i@
0
j

1

jx�x0j�¼�

�
�ij

jx�x0j�þ2
�ð�þ2Þðxi�x0iÞðxj�x0jÞ

jx�x0j�þ4

�
;

(4.6)

�
1

jx� x0j� ¼ �ð�� 1Þ
jx� x0j�þ2

; (4.7)

which are valid up to possible contact terms. The cross
term h�1�0i is
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h�1ð�; xÞ�0ð�; x0Þi ¼ �8ð�GH2Þ2 X
�

	

1� 	

�
2
�
3

�2
@i@jh@i�ð�; xÞ�ð�; x0Þih@j�ð�; xÞ�ð�; x0Þi

� 1

�
h@i�ð�; xÞ�ð�; x0Þih@i�ð�; xÞ�ð�; x0Þi

�

¼ �4ð�GH2Þ2 X
�

	

1� 	

�
2
�

	

1þ 	

�
C2ð	Þð��Þ2	jx� x0j�2	: (4.8)

In the following, we will find that the fields that mostly contribute to the CMB temperature fluctuations are the ones with
mH�1 & 10�1, so let us study the 	 � 1 behavior here. In this limit, (4.8) is smaller than (4.5) by a factor of 	.

The part h�1�1i,
h�1ð�; xÞ�1ð�; x0Þi ¼ 16ð�GH2Þ2 X

�
	

1� 	

�
2 	2ð2	2 þ 4	� 3Þ
ð	þ 1Þð	þ 3Þð2	� 1Þð2	þ 1ÞC

2ð	Þð��Þ2	jx� x0j�2	; (4.9)

is smaller than (4.5) by a factor of 	2. Thus, we can
consider only the h�0�0i part when 	 � 1.

A. Summing up KK modes

Let us perform the summation over the massive fields�,
assuming they are Kaluza-Klein modes from the compac-
tification of extra dimensions. For definiteness, let us as-
sume there are D dimensions which are compactified on a
torus TD with the periodicity L (assumed to be the same for
all directions for simplicity) being large compared to the
inverse Hubble of inflation, L � H�1. We assume the
internal directions other than these D dimensions are com-
pactified on a space with the string scale size.

The mass of a KKmodewith fnag units of momentum on
TD is

m2 ¼ XD
a¼1

ð2�naÞ2
L2

: (4.10)

When the level is sufficiently dense, the density of states in
the mass interval dm around m is given by

SD�1jnjD�1djnj ¼ SD�1ðL=2�ÞDmD�1dm; (4.11)

where SD�1 ¼ 2�D=2=�ðD=2Þ is the volume of the D� 1
dimensional unit sphere. This relation states that the num-
ber of states is proportional to the phase space volume (the
volume element of the KK momentum space times the
volume of the internal space).

Using (4.11), we convert the sum in the h��i correlator
to an integral,

h��i¼cDL
D

�
H

mpl

�
4Z mc

0
dmmD�1ðHaj ~x� ~x0jÞ�2	; (4.12)

where cD ¼ SD�1=ð4ð2�ÞDþ2Þ. We have used the expres-
sion (4.5) for the correlator in the 	 � 1 limit. The upper
limit mc of the integration should be mc � ð3=2ÞH as long
as we are working in Einstein gravity, so that the field� are
the ones which do not oscillate.
However, if string scale is less than Hubble scale, ms <

H, string states also have to be taken into account. In this
case, we expect that the sum over the mass is effectively cut
off at mc �ms for the following reason. Let us assume the
two-point function of� comes from the one-loop diagram
in string theory (Fig. 1). String theory can be regarded as a
field theory with infinitely many fields, except that one-
loop amplitude effectively has UV cutoff due to modular
invariance. The integral over the moduli � is restricted to
the fundamental domain (Fig. 2), and the Schwinger proper
time (Imð�Þ) is cut off at string scale. There is no physical
meaning to time interval shorter than string scale, or os-
cillations much higher than string scale. This means the
internal states in the loop which has mass much larger than
string scale do not have physical effect. This argument is
based on the perturbative string theory in flat spacetime,
and it is not clear whether it is valid in an arbitrarily curved
background, but we believe this is a reasonable estimate.2

FIG. 1. One-loop diagram: One-loop diagram in field theory corresponds to the torus diagram in string theory. String theory can be
regarded as a field theory with an infinite number of fields, which are the Fourier modes on the world sheet spatial direction.

2In fact, the precise value of the upper limit of integration is
not very important in the parameter region of interest. The
conclusion that msH

�1 � 0:1 is favored does not change even
if we take the upper limit to be ð3=2ÞH instead of ms.
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V. CMB TEMPERATURE FLUCTUATIONS

A. Generation of adiabatic fluctuation

The formula (4.12), which was obtained with constant
H, is approximately valid during inflation. H decreases
towards the end of inflation. WhenH becomes less than the
mass of a field �, the field will undergo classical oscilla-
tion, and decay into radiations and stable particles. The
energy density from this process produces curvature per-
turbation. This is similar to what happens in the ‘‘curvaton
scenario’’ [17], in which the curvaton field (different from
inflaton, and usually assumed to be one field), produces
curvature perturbation. The situation that we are consider-
ing has similarities and differences with the situation
usually considered in curvaton scenario. Even though it
is helpful to have curvaton mechanism in mind, we em-
phasize the following specific assumptions that we make.

We assume that the KK modes and string states decay
sufficiently fast so that they do not interfere with the
standard big bang nucleosynthesis. The decay products
are assumed to be in local thermal equilibrium, and can
be treated as a single fluid which dominates the energy
density of the Universe. We do not assume low-energy
(such as TeV scale) supersymmetry. In such a case, it
will be generically expected that the decay products inter-
act among themselves, reaching thermal equilibrium. This
is the reheating mechanism in our model. The particles that
have conserved quantum numbers at present, such as bary-
ons, cold dark matter, etc., will be produced after the above
thermal equilibrium has been established. In this case,
fluctuations of the density of these species are determined
solely by the local temperature, and obey the adiabaticity
relation (see e.g. discussion in [18]). In the context of
curvaton, this corresponds to the case where matter (such
as cold dark matter and baryons) are produced after curva-
ton decays, in which case there is no isocurvature fluctua-
tions [19]. Even though the mass scale of KK modes is

lower than the Hubble of inflation, it will be much higher
than the scale of standard model of particle physics. In such
a case, we do not have reason to expect that the fluctuations
of particular species of KK modes to be directly related to
those of cold dark matter or baryons. Thus, we do not
expect there to be significant isocurvature perturbation
(which is strongly constrained by observation; see e.g.
Sec. 3.6 of [20]) in our model.
The amplitude of the energy density fluctuations pro-

duced by the above process is determined by the quantum
fluctuations of �’s during inflation. We assume the tran-
sition from quantum fluctuations to classical oscillation
and the decay of these fields occurs quickly and more or
less simultaneously for all the fields. (This is a simplifica-
tion to make the argument simple; we leave more general
analysis to future work.) Under this assumption, we iden-
tify � evaluated at the end of inflation as the one sourced
by the thermal fluid described above. Once the Universe is
in thermal equilibrium with a single fluid dominating the
density, the superhorizon mode of � basically remains
constant (see e.g. [1]). It changes only by order 1 factor
at the transition between matter and radiation domination,
but ignoring this factor,� at the end of inflation is directly
related to its value at the recombination.
One may worry that this mechanism produces anisot-

ropy, since there are fields with nonzero spin (such as KK
modes of gravitons) whose components separately undergo
classical oscillation. However, note that the inhomogene-
ities �
=
 that result from the fluctuations of many fields

scales as 1=
ffiffiffiffi
N

p
as the number of fields N increases. This is

because the possible classical density 
 will be propor-
tional to N, but the fluctuations �
 (or more precisely, the

root of the square expectation value
ffiffiffiffiffiffiffiffiffiffiffiffih�
2ip

) will be of

order
ffiffiffiffi
N

p
if the fields fluctuate independently. Therefore,

total anisotropy from the fluctuations of many fields scales

as 1=
ffiffiffiffi
N

p
and is kept small. This type of suppression of

anisotropy due to a large number of fields appears also in
the context of ‘‘vector inflation’’ [21].

B. Amplitude of the CMB temperature fluctuations

Having stated our assumptions which lead to the iden-
tification of � at the end of inflation with � at recombi-
nation, let us now study the CMB temperature fluctuations
�T=T.
Temperature fluctuation of CMB is related to � at

recombination (at redshift z� 1100) by �T=T ¼ ��=3.
The angle � on the sky corresponds to the distance dr ¼
2Rr sinð�=2Þ, where Rr is the radius of the surface of last
scattering. This is of order the inverse of the present
Hubble parameter Rr �H�1

0 . The modes outside the hori-

zon at recombination correspond to the angle 3� � � (or
angular momentum l � 60). These modes have been out-
side the horizon since the inflation, and� is frozen (remain
constant at fixed comoving distance). The distance dr
corresponds to the distance

τ

1

FIG. 2 (color online). Fundamental region: Integration over
the moduli of the torus should be restricted to the fundamental
region, since other regions are physically equivalent to this
region due to modular invariance. Imð�Þ, which corresponds to
the Schwinger parameter, is cut off at the distance of order string
scale.
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ðae=arÞdr ¼ 2R sinð�=2Þ ¼ aej ~x� ~x0j (5.1)

at the end of inflation. The radius R ¼ ðae=arÞRr will
depend on the scale of inflation. We will take the standard
estimate RH � 1029 � e67 in the following, which
amounts to the assumption that the reheating temperature
is not much lower than the grand unification scale.

The angular power spectrum Cl is defined by

�
�T

T
ð�Þ�T

T
ð0Þ

	
¼ X1

l¼1

ð2lþ 1ÞClPlðcos�Þ: (5.2)

We will focus on the superhorizon modes. To find ampli-
tude of these modes, we expand the coordinates in the
correlation function (4.12) (around � ¼ �) as

ðHaj ~x� ~x0jÞ�2	 � ð2RHÞ�2	ð1� 2	 logðsinð�=2ÞÞ;
(5.3)

and recall that�2 logðsinð�=2ÞÞ is 1=ðlðlþ 1ÞÞ in harmonic
space. From (4.12), we find the square amplitude �2

T 

lðlþ 1ÞCl,

�2
T ¼ 2

27
cD

LD

H2

�
H

mpl

�
4 Z ms

0
dmmDþ1ð2RHÞ�ð4=3Þm2H�2

¼ 2

27
cD

�
ms

H

�
2ðLmsÞD

�
H

mpl

�
4
MDð�0Þ: (5.4)

Note that the integrand is strongly suppressed at m *

H=10, due to the factor ð2RHÞ�ð4=3Þm2H�2
. In (5.4), we

have taken the upper limit to be mc ¼ ms. This is a good
approximation even when ms > H, since the integral has
little contribution from the region near the upper limit. We
have defined

M Dð�Þ ¼
Z 1

0
dte��t2tDþ1; �0 ¼ 4

3

m2
s

H2
logð2RHÞ:

(5.5)

To see the qualitative behavior of �2
T , it would be helpful

to note MDð�0Þ � ��ðDþ2Þ=2
0 when �0 � 1. In this limit,

we have �2
T � ð Hmpl

Þ4ðLHÞDðlogð2RHÞÞ�ðDþ2Þ=2 up to con-

stant factors. �2
T is enhanced when extra dimensions are

large, ðLHÞD � 1, since many fields contribute to it. �2
T

becomes small if logð2RHÞ were larger due to the decrease
of massive wave function at large separation.

C. Comparison with the data

We will now use observational data [4],

�T � 2:6� 10�5; rt=s & 0:22; (5.6)

to constrain the parameters in our model. This implies

H=mpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9�=2Þ�2

Trt=s

q
& 0:81� 10�4. Let us first as-

sume this inequality is saturated. Then the amplitude
(5.4) provides the relation between the two parameters
ms and L, or equivalently, between ms and the string

coupling gs, since L is written as ðLmsÞD ¼
8�6g2sðm2

pl=m
2
sÞ.

Figures 3 and 4 show ðLmplÞ and gs as functions of

ms=H, respectively. It is easier to have weak coupling
with small D, while it is easier to keep L not too large
with large D. Typical values that are consistent with (5.6)
would be:

fD ¼ 2; ms=H ¼ 0:2; Lmpl ¼ 1012; gs ¼ 3g; (5.7)

fD ¼ 3; ms=H ¼ 0:2; Lmpl ¼ 1010; gs ¼ 5g; (5.8)

fD ¼ 4; ms=H ¼ 0:1; Lmpl ¼ 109; gs ¼ 7g: (5.9)

The number of the fields that participate in �T=T is
roughly N � ðLmsÞD. For the above choice of parameters,
1014 & N & 1016.

FIG. 3 (color online). log10ðLmplÞ as a function of ms=H, with
�T ¼ 2:6� 10�5, rt=s ¼ 0:22, RH � 1067.

FIG. 4 (color online). gs as a function of ms=H, with �T ¼
2:6� 10�5, rt=s ¼ 0:22, RH � 1067.
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VI. TIME-DEPENDENT HUBBLE

So far we have studied the fluctuations generated during
inflation, assuming the background is pure de Sitter. Let us
now consider the effect of time-dependent Hubble.

A. Spectral index

Since �T=T originates from the fluctuations of massive
fields, the spectrum is stronger in the UV. The spectral
index ns is slightly larger than 1,

ns ¼ 1� d

d logðHaj ~x� ~x0jÞ log
�
�T

T
ð�; ~xÞ�T

T
ð�; ~x0Þ

	

¼ 1þ 4m2
s

3H2

MDð�0Þ
MD�2ð�0Þ : (6.1)

This is in the range 1 & ns & 1:02 when D ¼ 2, and
1 & ns & 1:05 for D � 6 (see Fig. 5).

The above values are obtained by assuming the Hubble
is constant. However, ns is sensitive to the time dependence
of H. As long as the change of Hubble is adiabatic
j _Hj=H2 � 1, it would be reasonable to assume the ampli-
tudes are determined in terms of H at the time of horizon
crossing. We will have to replace the prefactor ðH=mplÞ4 in
the h��i two-point function (4.12) to ðHðthorÞ=mplÞ4,
where thor is the time of the horizon exit for the scale of
interest (e�Hthor � jx� x0j). Since the long wavelength
mode exits the horizon early, the amplitude is lifted in
the infrared. The spectral index is lowered by 0.5 if there
is time dependence of order _H=H2 ��0:01.

It would be necessary to understand the origin of vac-
uum energy during inflation to understand its time depen-
dence. In this paper, we cannot make a definitive statement,
but we would like to mention a possible origin of vacuum
energy in the next subsection.

B. Possible origin of vacuum energy

In most inflationary models, the presence of vacuum
energy (or a nearly flat inflaton potential) is simply
assumed and its origin is not clear. Also, in the recent
constructions of de Sitter vacua in string theory, the mecha-
nism for uplifting from supersymmetric vacua to de Sitter
vacua is not fully understood. In the study of low-energy
effective action of string theory, it has been very difficult to
find de Sitter vacua in a controllable approximation. (See
e.g. [22] for a recent discussion.)
It might be necessary to understand vacuum fluctuations

of the fields to find de Sitter vacua. In string compactifi-
cation models with large internal space [23], which is
believed to be realizable generically, there are many light
KK fields. Quantum fluctuations of these fields might be an
important source of vacuum energy.
With this motivation in mind, in this subsection we

discuss a possible dynamical scenario in which vacuum
fluctuations and Hubble are determined in a self-consistent
manner.
Consider the expectation value (one-point function) of

the energy-momentum tensor. This quantity is UV diver-
gent, and we will renormalize it so that it vanishes in the
flat background. Because of de Sitter symmetry, the expec-
tation value is proportional to g��.

The renormalized expectation value of energy-
momentum tensor of a scalar field in de Sitter background
is given by (see (6.183) of [16])

hT��iren ¼
g��

64�2

�
m2

�
m2 þ

�
�� 1

6

�
R

��
c

�
3

2
þ �

�

þ c

�
3

2
� �

�
� logð12m2R�1Þ

�

�m2

�
�� 1

6

�
R� 1

18
m2R

� 1

2

�
�� 1

6

�
2
R2 þ 1

2160
R2

�
; (6.2)

where c ðzÞ ¼ �0ðzÞ=�ðzÞ, and � is the order of Hankel
function as described in Sec. II. hT��iren is renormalized by

subtracting the divergent piece in the flat background.
When there are N scalar fields (assuming massless mini-
mally coupled), we have

hT��iren ¼ N
61

960�2
H4g��: (6.3)

It would be possible that de Sitter space during inflation is a
self-consistent solution of

R�� � 1
2g��R ¼ �8�GhT��iren: (6.4)

The condition that both sides of the equation balances
impliesFIG. 5 (color online). Spectral index as a function of ms=H.
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H2 � N
H4

m2
pl

;) H

mpl

� 1ffiffiffiffi
N

p : (6.5)

In fact, our scenario is not consistent with this equation
as it is. The value of N, which produces the observed level
of temperature fluctuations, is at least N � 1012 with
H=mpl � 10�4, and N is too large by a factor of 104 for

(6.4) to be satisfied. However, this is not a contradiction.
We do not expect that Einstein Eq. (6.4) is applicable, since
our preferred value of string coupling is ms=H � 0:1, and
the left-hand side will be corrected by string (
0) effects,
which are not negligible when ms=H & 1.

Presumably, the self-consistent de Sitter solution of (6.4)
is an unstable solution, and small fluctuation of H will
drive the background to flat space, which is another solu-
tion of this equation. To study time dependence, we will
have to compute the expectation value hT��iren in the

background with _H � 0. This with (6.4) will tell us the
evolution of Hubble. We will leave this analysis as an
important open question.

It is not clear whether the dynamics of quantum expec-
tation value hT��iren is similar to the dynamics of inflaton,

but let us assume it is for the moment. In the Appendix, we
perform the analysis of fluctuations including inflaton
fluctuations �’. We take �’ to be of the same order as
�,�. The gravitational potential � has a term induced by
�’ in addition to the term from the matter fields that we
have studied. The relative importance of inflaton and the
matter fields depends on the details, such as the slope of the
inflaton potential and the time between horizon crossing
and the end of inflation. The effect of the matter fields will
be important unless the slope is fine tuned to a small value.

VII. NON-GAUSSIANITIES

Non-Gaussianities appear in a characteristic manner in
our mechanism. We first describe the calculation ignoring
interactions among the matter fields �. We then remark
that the magnitude of non-Gaussianities is controlled by
the coupling constant in higher dimension.

The three-point function of � is given by the triangle
diagram where each pair of points is connected by h��i,

h�ð�; ~xÞ�ð�; ~yÞ�ð�; ~zÞi
¼ 1

8�3

�
H

mpl

�
6XðH3a3j ~x� ~yjj ~y� ~zjj ~x� ~zjÞ�	: (7.1)

We define the nonlinearity parameter fNL by a local re-
placement, � ! �g þ fNL�

2
g [24], with a Gaussian field

�g. Let us consider three points at superhorizon separa-

tion, and estimate fNL by expansing the coordinates as in
(5.3). The local form of fNL is enough to characterize the
magnitude of non-Gaussianity in this approximation.
From (7.1),

fNL � 1

24
rt=s

�
ms

H

�
2 MDð32 �0Þ
MD�2ð�0Þ : (7.2)

This is proportional to rt=s, and further suppressed by

the other factors (see Fig. 6). For rt=s ¼ 0:22, we have

fNL < 10�4.
The reason for the smallness of non-Gaussianity is that

h��i is roughly proportional to the number of fields N,
and h���i is also proportional to N in our setting. This
makes the non-Gaussianity small fNL � h���i=
h��i2 � N�1 in the large N limit. This is in contrast to
the curvaton case [17], where non-Gaussianity is neces-
sarily large if curvaton is the only source of curvature
fluctuations [19].
When there are interactions among �’s, we will have

higher loop diagrams, such as the ones in which a propa-
gator traverses two sides of the triangle. (See Fig. 7.) Even
though there are many fields, interactions do not neces-
sarily make fNL huge. Since the fields � are KK modes or
string states, there will be conserved quantities, such as
momentum in the internal space or the excitation number
of strings. The third field in the right diagram in Fig. 7 is
determined by the first two, and this diagram will be of

FIG. 6 (color online). Non-Gaussianity fNL as a function of
ms=H.

FIG. 7 (color online). Diagrams for the three-point function of
�. Left panel: Ignoring the interaction among the fields�, this is
of order N (the number of fields). Right panel: Higher loop
diagram where �1 and �2 are independent, but �3 will be
determined from the conservation law (such as KK momentum
conservation). This is of order �2N2.
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order �2N2. The natural magnitude of the coupling � will

be �0=
ffiffiffiffi
V

p
where �0 is the coupling constant in higher

dimension, and V is the volume of internal space. This is
because the canonically normalized KK fields � has a

factor 1=
ffiffiffiffi
V

p
relative to the higher dimensional field, and

the interaction ��3 has one more � than the kinetic term.
Since V � N, as mentioned in Sec. , the factor �2N2

associated to the right diagram of Fig. 7 is just given by
�2
0. (This is equivalent to saying that the correlation func-

tions are computed by Feynman rules in the higher dimen-
sions with the diagrams of the type of Fig. 7.)

If �0 takes finite but small enough value that perturba-
tion theory is applicable, non-Gaussianities will be given
by the diagrams such as the ones in Fig. 7. The shape
(momentum dependence) [25] of this type of non-
Gaussianity will be different from those arising from the
usual slow-roll inflation [26]. The difference will be seen
by studying the three-point correlations at subhorizon sep-
arations. We will leave this analysis to future study.

VIII. CONCLUSIONS

We have shown that the CMB temperature fluctuations
(adiabatic perturbation) can be generated by the purely
quantum effects of fields which are classically at rest.
When there are a large number of fields, this can produce
observable level of fluctuations. Tensor fluctuations are
hardly affected by this effect, and will remain of order
H=mpl. In our mechanism, the enhancement of scalar

fluctuations relative to tensor fluctuation is due to the large
number of fields involved, and not due to the smallness of
the slow-roll parameter as in the usual slow-roll scenario.

When the size of the extra dimensions are large com-
pared to the inverse Hubble during inflation, we have a
large number of Kaluza-Klein modes which contribute to
this effect. String excited modes also contribute ifms < H.
We compare our results with observed amplitude, and find
that ms=H � 0:1 is preferred. The size of extra dimensions
is typically of order 107 GeV�1 or smaller.

There have been models of inflation based on TeV scale
supersymmetry (see [27] for a review). Inflation and re-
heating have been studied in explicit string compactifica-
tion in [28]: Supersymmetry is broken by the hidden-sector
branes wrapped around internal cycles, and inflaton is
given by closed string moduli. In that case, it is important
to make sure that the decay of inflaton reheats the visible
sector dominantly and not the hidden sectors significantly,
which has been checked in [28]. This is necessary to avoid
cosmological problems, such as the generation of large
isocurvature perturbations.

In our case, we do not assume low-energy supersymme-
try. In this case, it will be generically the case that massive
fields, such as KK modes, decay and reach thermal equi-
librium. This will occur well before the standard big bang
nucleosynthesis begins. In this situation, there will be no
isocurvature perturbations, as shown in [18].

We performed our analysis assuming the extra dimen-
sions are compactified on a torus TD. We believe this
captures the qualitative features of quantum effects of
KK states in the general compactifications with
L � H�1 whenever the multiplicity of the KK modes is
similar to that for TD. There have been studies on string
compactifications which realizes supersymmetric vacua
with all moduli fixed. It is argued that the large-volume
compactification is generically achievable in the construc-
tion of [23]. Understanding of the mechanism for uplifting
to de Sitter vacua or realizing inflation is at a more quali-
tative level at present. Brane-antibrane pair [29] will be a
candidate for such a mechanism. We expect our mecha-
nism for generating CMB temperature fluctuations should
be relevant in these contexts.
Non-Gaussianity in our mechanism is given by triangle

diagrams, with possible corrections. The magnitude is
controlled by the coupling constant in higher dimension.
It would be possible, in principle, to distinguish our mecha-
nism from others by the precise measurement of non-
Gaussianities.
The main purpose of this paper is to study fluctuations

without asking the origin of vacuum energy during infla-
tion. However, as we mentioned in Sec. VI, it would be
possible that vacuum fluctuations (the renormalized expec-
tation value of energy-momentum tensor) of a large num-
ber of fields are the source of vacuum energy. It is
important to understand the dynamics of this vacuum
energy [30]. We have included the analysis of fluctuations
in the background with time-dependent Hubble by intro-
ducing inflaton in the Appendix, but it is not clear to what
extent this captures the dynamics of quantum vacuum
energy.
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APPENDIX: PERTURBATIONS
INCLUDING INFLATON

In this appendix, we assume the dynamics of time-
dependent Hubble is effectively described by an inflaton
field ’, and study fluctuations including the inflaton fluc-
tuation �’ in addition to matter fields �.
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We assume inflaton and matter are not directly coupled
with each other. Thus, the equation of motion for � is the
same as above,

½@2� þ 2H@� � �þ a2m2�� ¼ 0; (A1)

except that H and a are the ones for general backgrounds
now. This does not couple to fluctuations of other fields, so
the quantization of � can be done at first.

The action of inflaton is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1
2g

��@�’@�’� Vð’Þ
�
: (A2)

We decompose ’ into classical part (which is homogene-
ous in space) and fluctuations,

’ ¼ ’0ð�Þ þ �’ð�; ~xÞ: (A3)

Classical part satisfies the equation of motion

@2�’0 þ 2H@�’0 þ a2V;’ ¼ 0: (A4)

To find the equation of motion for �’, it is convenient to
take the longitudinal gauge,

ds2 ¼ a2½ð1þ 2�Þd�2 � ð1� 2�Þd~x2�; (A5)

and expand the equation of motion,

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@�’Þ þ V;’ ¼ 0; (A6)

to the first order in �’, �, �. Then, we get

½@2� þ 2H@� ��þ a2V;’’��’
� ð’0

0Þð�0 þ 3�0Þ þ 2a2V;’� ¼ 0: (A7)

Energy-momentum tensor for ’ is

Tð’Þ�
� ¼ @�’@�’� 1

2ð@
’@
’� 2Vð’ÞÞ��
� : (A8)

The classical part (zeroth order in �’) is

Tð’;0Þ0
0 ¼

1

2a2
ðð’0

0Þ2 þ 2VÞ; (A9)

Tð’;0Þi
j ¼

1

2a2
ð�ð’0

0Þ2 þ 2VÞ�i
j: (A10)

The linear part in �’ is

�Tð’Þ0
0 ¼

1

a2
ð�ð’0

0Þ2�þ ’0
0�’

0 þ a2V;’�’Þ; (A11)

�Tð’Þ0
i ¼

1

a2
’0

0@i�’; (A12)

�Tð’Þi
j ¼

1

a2
ðð’0

0Þ2�� ’0
0�’

0 þ a2V;’�’Þ�i
j: (A13)

Note that �Tð’Þi
j does not have off-diagonal components.

To write Einstein equations, we include the linear terms
in �’ and the quadratic terms in � in the energy-
momentum tensor. The (0,0), ð0; iÞ, and ði; jÞ components
of Einstein equations are as follows:

��� 3H ð�0 þH�Þ
¼ 4�G

�
’0

0�’
0 � ð’0

0Þ2�þ a2V;’�’

þX
1
2ð�02 þ @i�@i�þm2a2�2Þ

�
; (A14)

ð�0 þH�Þ;i ¼ 4�G

�
’0

0�’þX 1

�
@kð�0@k�Þ

�
;i
;

(A15)

�
�00þH ð2�þ�Þ0þð2H 0þH 2Þ�þ�

2
ð���Þ

�
�ij�1

2
ð���Þ;ij

¼4�G

��
ð’0

0Þ2��’0
0�’

0þa2V;’�’þX1

2
ð�02�@i�@i��m2a2�2Þ

�
�ijþ

X�
3

2�2
@k@lð@k�@l�Þ� 1

2�
@k�@k�

�
;ij

�
;

(A16)

where the summation is taken over the species of matter
fields �, as in the main text.

Let us study the leading behavior in the superhorizon
limit following [1]. We assume inflaton is classically slow-
rolling,

3H _’0 þ V;’ ¼ 0: (A17)

We consider inflaton equation of motion (A7) and the ð0; iÞ
component of Einstein Eq. (A15). In terms of physical time
t (and in the slow-roll limit),

3H _�’þ V;’’�’þ 2V;’� ¼ 0; (A18)

H� ¼ 4�G

�
_’0�’þX 1

�
@kð _�@k�Þ

�
; (A19)

where we have ignored the terms in the energy-
momentum tensor of �, which are small in the small
mass limit, 	 ¼ ð2=3Þm2H�2 � 1 [we ignore the term
s0 in (3.14)].
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These equations imply

d

dt

�
�’

V

V;’

�
�X	H

2
fð�Þe�	Ht ¼ 0; (A20)

where we have defined fð�Þ by
1

�
@kð _�@k�Þ ¼ �	H

2
fð�Þe�	Ht: (A21)

That is,

fð�Þe�	Ht � 1
2�

2 (A22)

in the late time limit. From (A20),

�’ ¼ V;’

V

�
C� 1

2

X
fð�Þe�	Ht

�
; (A23)

with a constant C. We fix C so that the amplitude of �’ is
H at the horizon exit (since �’ is essentially a massless
scalar inside the horizon),

�’ ¼ V;’

V

�
H�

�
V

V;’

�
�
þ 1

2

X
fð�Þðe�	Ht� � e�	HtÞ

�
;

(A24)

where the star denotes the quantities evaluated at the
horizon exit.

In the usual slow-roll inflation, there is only the first
term. The factor ðV;’=VÞ generally grows towards the end

of inflation, and it is assumed to be of ordermp at the end of

inflation. The second term represents the effect of matter
fields to the evolution of inflaton fluctuation.
In terms of �,

� ¼ �2

�
V;’

V

�
2
�
H�

�
V

V;’

�
�
þ 1

2

X
fð�Þðe�	Ht� � e�	HtÞ

�

� 4�G

H

X	H

2
fð�Þe�	Ht (A25)

¼ �2

�
V;’

V

�
2
�
H�

�
V

V;’

�
�
þ 1

4

Xð�2� ��2Þ
�

�X
�G	�2: (A26)

The first term is the part induced from the inflaton fluctua-
tion (A24) through the usual mechanism. The second term
is the effect of matter (agrees with the formula that we have
obtained), which exists even if there is no inflaton.
This expression will be valid until the end of inflation.

After inflation, � will be constant (assuming � is classi-
cally oscillating, in which case it can be regarded as matter,
or � has decayed into radiation). Relative importance of
the effect of � compared to that of inflaton in (A26)
depends on the details such as how steep the potential is
or how much time has passed between horizon exit and the
end of inflation.
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