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Nothing—the absence of spacetime—can be either an endpoint of tunneling, as in the bubble of

nothing, or a starting point for tunneling, as in the quantum creation of a universe. We argue that these two

tunnelings can be treated within a unified framework, and that, in both cases, nothing should be thought of

as the limit of anti-de Sitter space in which the curvature length approaches zero. To study nothing, we

study decays in models with perturbatively stabilized extra dimensions, which admit not just bubbles of

nothing—topology-changing transitions in which the extra dimensions pinch off and a hole forms in

spacetime—but also a whole family of topology-preserving transitions that nonetheless smoothly hollow

out and approach the bubble of nothing in one limit. The bubble solutions that are close to this limit,

bubbles of next-to-nothing, give us a controlled setting in which to understand nothing. Armed with this

understanding, we are able to embed proposed mechanisms for the reverse process, tunneling from

nothing to something, within the relatively secure foundation of the Coleman-De Luccia formalism and

show that the Hawking-Turok instanton does not mediate the quantum creation of a universe.

DOI: 10.1103/PhysRevD.85.104026 PACS numbers: 03.70.+k, 04.50.Cd, 04.60.-m

I. INTRODUCTION

‘‘Nothing’’ first made an appearance in modern physics
with the work of Witten [1], who showed that spacetimes
with compact extra dimensions can be unstable to decay—
the compact extra dimensions can pinch off to form a
bubble of nothing containing not only no matter and no
fields but also no space and no time. If the Universe can
tunnel to nothing, it is natural to ask whether it can tunnel
from nothing—the quantum creation of a universe. Several
authors have addressed this question [2–6], but unfortu-
nately the situation remains somewhat murky. At least part
of this murkiness stems from the ambiguity of what is
meant by nothing. In this paper, we address this ambiguity.

Our first step is to ask what the decay of Kaluza-Klein
spacetime tells us about nothing. Unfortunately, the bubble
of nothing itself turns out to be somewhat enigmatic on this
question. However, in Sec. II, we show that in models with
perturbatively stabilized extra dimensions, bubbles of
nothing are not all we have to work with. The bubble of
nothing is not an isolated solution, instead these models
admit whole families of possible decays which remove
different amounts of the stabilizing potential. Only the
decay that removes all the stabilizing potential, the bubble
of nothing, changes the topology of spacetime; the other
tunneling solutions in the family are topology-preserving
but they nonetheless smoothly approach the bubble of
nothing in the limit in which all the stabilizing potential
is removed. Though we learn little from the bubble of
nothing itself, we learn a great deal from the sequence of
bubbles that approach it, the bubbles of next-to-nothing.

Two things happen to the bubble interior as the bubble of
nothing is approached: the extra dimensions shrink to zero
size and smoothly pinch off; and simultaneously the effec-
tive potential becomes ever more negative. From the per-
spective of the lower-dimension Einstein frame, therefore,
the interior becomes more and more negatively curved, so
that
nothing should be thought of as the limit of anti-de Sitter

space in which the curvature length goes to zero.
As it goes deeper and deeper into anti-de Sitter space,

the interior of the bubble empties out until nothing
remains.
In Sec. III, we turn to the quantum creation of the

Universe. Quantum transitions in dynamical spacetimes
are described by the Coleman-De Luccia formalism [7].
This formalism is well studied, well understood, and is the
most credible part of semiclassical quantum gravity. While
it is always used in the context of transitions to nothing, it
is not always used for transitions from nothing, perhaps
because of the ambiguity of how to treat nothing. With our
new understanding of nothing, however, we are able to
embed otherwise poorly moored questions of the quantum
creation of the Universe within this secure foundation.
The Coleman-De Luccia formalism requires that the

same instanton that describes tunneling to nothing should
also describe tunneling from nothing. Within the context of
this unified framework, we should think of tunneling from
something to nothing as down-tunneling, and tunneling
from nothing to something as up-tunneling. The nothings
in the two processes are therefore the same—they are both
the limit of anti-de Sitter space as the curvature length goes
to zero. But, since up-tunneling from anti-de Sitter space is
impossible, the quantum creation of a universe using a
bubble of nothing instanton—the Hawking-Turok process
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[5]—is forbidden. If the Universe did emerge from nothing,
it must either have happened outside of the Coleman-De
Luccia framework, or from a different kind of nothing, and
we outline the implications of these possibilities in Sec. IV.

II. NOTHING AS THE LIMIT OFANTI-DE SITTER

In this section, we study ‘nothing’ using the bubble of
nothing. In Sec. II A, we review the bubble of nothing in its
original context, that of a single unstabilized extra dimen-
sion. In Sec. II B, we study the approach to the bubble of
nothing in a simple model, the six-dimensional (6D)
Einstein-Maxwell theory, and use it to draw conclusions
about nothing. In Sec. II C, we argue that these conclusions
are not special to the 6D Einstein-Maxwell model but are
in fact general.

A. Bubbles of nothing with unstabilized
extra dimensions

Consider 3þ 1þ 1-dimensional Minkowski spacetime
with the extra dimension compactified on a circle, so that
the metric is

ds2 ¼ �dt2 þ dx2 þ dy2 þ dz2 þ R2d’2; (1)

where ’ is periodically identified with period 2�, so that
the size of the extra dimension is 2�R. This size is
unstabilized—the four-dimensional effective theory con-
tains a massless radion field—but this spacetime is other-
wise classically stable. Quantum mechanically, however,
this spacetime is unstable to the nucleation of a bubble of
nothing [1]. Decay is mediated by a Euclidean instanton
given by

ds2 ¼ dr2

1� R2=r2
þ r2ðd�2 þ cos2�d�2

2Þ
þ ð1� R2=r2ÞR2d’2; (2)

with R � r <1 and ’ still periodically identified.
Figure 1 shows the transition mediated by this instanton.
In the semiclassical description, the spatial metric makes a
quantum jump from a fixed t-slice of the metric in Eq. (1)
to the � ¼ 0 slice of the metric in Eq. (2). Far from the
center of the bubble (r � R), the size of the circle remains
2�R. Closer to the center of the bubble, the circle
shrinks until at r ¼ R, the size of the extra dimension
goes smoothly to zero, and spacetime pinches off. A

three-dimensional slice through the bubble now has a
hole. A sphere that surrounds this hole cannot have surface
area less than 4�R2, it can contract to r ¼ R but no further.
Despite the pinch-off, there is no singularity and indeed the
curvature is nowhere large, so the semiclassical approxi-
mation remains reliable.
After nucleation, the bubble begins expanding. Its sub-

sequent evolution, shown in Fig. 2, can be found by ana-
lytically continuing � ! it in Eq. (2) to give

ds2 ¼ dr2

1� R2=r2
þ r2ð�dt2 þ cosh2td�2

2Þ
þ ð1� R2=r2ÞR2d’2: (3)

These coordinates slice spacetime with timelike hyper-
bolas, so in ordinary circumstances they would miss the
inside of the light cone. In this case, however, there is no
inside of the light cone, because spacetime only exists for
r � R. The bubble of nothing starts at rest, but accelerates
out, so that the minimal-area sphere containing the bubble
has area 4�R2cosh2t. Particles that approach the edge of
the bubble go around the lip and are boosted out again,
albeit on the other side of the extra dimension’ ! ’þ �.

FIG. 1 (color online). On the left: a cross section through Minkowski4 � S1. The uncompactified dimensions are aligned
horizontally, the extra dimension is vertical. The top line (the plane ’ ¼ �) and the bottom line (the plane ’ ¼ ��) are identified,
so the extra dimension is periodic. On the right: cross section through the center of the bubble of nothing at the instant of nucleation. At
large area-radius r � R, the space is barely perturbed from the original Minkowski4 � S1. As you approach the center, the size of the
extra dimension shrinks until, at r ¼ R, spacetime smoothly pinches off.

FIG. 2 (color online). On the left: the Penrose diagram for the
original 3þ 1þ 1-dimensional Minkowski spacetime, with the
extra dimension, as well as the angular dimensions, suppressed.
On the right: the semiclassical description of the formation and
growth of a bubble of nothing. Along the dotted line at t ¼ 0, the
spacetime makes a quantum jump: before, the spacetime has the
metric of Eq. (1); after, the spacetime has the metric of Eq. (3).
The extra dimension degenerates to zero size at r ¼ R; for
r < R, there is nothing. The bubble wall then expands outward
and the hole in spacetime grows.
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(Eventually, because it is accelerating, the wall will catch
up with the particle and the collision sequence will repeat.
In the instantaneous local rest frame, the infinite sequence
of collisions look exactly alike: they are separated by the
same proper time and the particle reaches the same maxi-
mum proper distance from the bubble wall.)

The bubble of nothing is an insatiable wall of annihila-
tion, advancing unremittingly, ever closer to the speed of
light, and leaving nothing in its wake.

B. Bubbles of nothing in stabilized extra
dimensions: A simple example

In the last subsection, we described the bubble of noth-
ing in the context of an extra dimension that was unstabi-
lized. This bubble of nothing instanton is an isolated
solution, in the sense that it is the only possible decay. In
this subsection, we will describe the bubble of nothing
instanton in the context of extra dimensions that are per-
turbatively stabilized. In this case, the bubble of nothing is
no longer isolated: as well as the bubble of nothing, there is
now a whole family of possible decays that do not change
the spacetime topology, but that nonetheless smoothly
approach the bubble of nothing—a family of bubbles
with a limit in which spacetime hollows out. By examining
solutions close to the bubble of nothing, we will gain
insight into the nature of nothing.

Let us begin by studying this approach to the bubble of
nothing in the simplest possible model with perturbatively
stabilized extra dimensions, the 6D Einstein-Maxwell the-
ory [8,9], a model whose tunneling instantons we con-
structed explicitly in [10].

1. Introduction to the 6D Einstein-Maxwell theory

The action for the 6D Einstein-Maxwell (EM) theory is

SEM ¼
Z

d6x
ffiffiffiffiffiffiffiffi�G

p �
M4

6

2
Rð6Þ � 1

4
FABF

AB ��6

�
; (4)

where FAB is the electromagnetic field strength, �6 is a
positive six-dimensional cosmological constant, and M6 is

the 6D Planck mass. We will examine the sector of the
theory in which two of the dimensions are compactified on
a sphere, leaving 3þ 1 dimensions large.
This theory can be reexpressed as an effective four-

dimensional theory, at the cost of introducing additional
Kaluza-Klein fields. This is done in two steps. The first step
is to perform the integral over the two extra dimensions in
Eq. (4), leaving a four-dimensional action. In this action,
the effective four-dimensional Planck mass M4 is given by

M2
4 ¼ 4�R2M4

6; (5)

whereR is the size of the extra dimensions.Measured in units
ofM6, the four-dimensional Planck massM4 varies depend-
ing on the size of the extra dimensions R. From the four-
dimensional perspective, however, it is more natural to
measure the potential in units ofM4. The second step, there-
fore, is to change coordinates, which is to say to conformally
rescale, so that in our newunitsM4 is independent ofR: this is
called four-dimensional (4D) Einstein frame. Einstein frame
is the natural choice from the point of view of four-
dimensional observers, and from the point of view of the
Coleman-De Luccia tunneling results that we study in
Sec. III.
In 4D Einstein frame, the size of the extra dimensions

becomes a dynamical field. If the two legs of the flux are
wrapped around the two extra dimensions, the effective
potential is

V4ðRÞ
M4

4

¼ 1

4�

�
1

32�2

g2N2

M2
6

M�6
6

R6
�M�4

6

R4
þ�6

M6
6

M�2
6

R2

�
; (6)

where N is the number of units of flux, and g is the
fundamental magnetic charge. The sphere’s positive cur-
vature makes the sphere want to contract to zero size, but
the flux lines resist being squeezed together and therefore
buttress the extra dimensions against collapse. As shown in
Fig. 3, the combination of these two terms gives rise to a
minimum of the radion potential, and so stabilizes the size
of the extra dimensions. The effect of the cosmological
constant is to raise this minimum.

V4

radius

radius

radius

FLUX CURVATURE
V4 V4

V4
radius

V4

COSMO-
CONSTANT 

FIG. 3 (color online). The combination of the repulsive flux term and the attractive curvature term gives rise to a stable minimum of
the radion potential; this minimum necessarily has V4 < 0. The fundamental 6D cosmological constant raises this minimum; vacua
with enough flux can even get raised up to V4 > 0.
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Because the flux is quantized, this gives rise to a discrete
landscape of vacua. Each vacuum in this landscape has a
different integer number of flux units wrapping the extra
dimensions, and correspondingly a different radion potential,
as shown in Fig. 4. Vacua with many units of flux are stabi-
lized at large R and positive V4. The fewer units of flux, the
smaller the stable value of R and the less positive the stable
value of V4. The conformal rescaling ensures that in Einstein
frame, these vacua all have the same value ofM4. By taking
the magnetic charge g to be small, the set of vacua becomes
increasingly dense. These vacua are perturbatively stable, but
can be nonperturbatively unstable to discharging flux.

2. Flux tunneling in the 6D Einstein-Maxwell theory

The flux wrapping the extra dimensions is discharged by
the quantumnucleation of a charged brane that forms a sphere
in the extended directions—a bubble—and sits at a point in
the extra dimensions, as in Fig. 5. Outside this bubble, the flux
is unchanged, but inside the bubble the flux is reduced. The
radion potential inside is correspondingly adjusted, and the
radion settles into its new minimum in which both R and V4

are less positive. After nucleation, the bubble classically
expands, accelerating toward the speed of light.

For a given vacuum, there is a whole family of possible
flux decays; the vacuum can nucleate any number of
charged branes, and therefore discharge any number of
units of flux inside the bubble. As shown in Fig. 6, the larger
the stack, the less flux left inside the bubble and the smaller

the size of the extra dimensions. The largest stack dis-
charges all of the flux, leaving no force to buttress the extra
dimensions against collapse; the extra dimensions shrink to
zero size and smoothly pinch off, as in a bubble of nothing.1

We have thus constructed a whole family of possible
decays that do not change the spacetime topology, but that
hollow out in one limit. To study nothing, we can now
study members of this family that are close to the bubble of
nothing, but that are nevertheless topology-preserving. In
the limit in which there are very few units of flux left in the
interior (g2N2=M2

6 � M6
6=�6), the cosmological constant

in Eq. (6) becomes subleading and the radius and potential
inside the bubble are well approximated by

M6R ¼
ffiffiffi
3

p
8�

gN

M6

�
1þO

�
g2N2

M2
6

�6

M6
6

��
; (7)

V4

M4
4

¼ � 1024�3

27

M4
6

g4N4

�
1þO

�
g2N2

M2
6

�6

M6
6

��
: (8)

V4

radius

V4

radius

V4

radius

MUCH FLUX

LITTLE FLUX

NO FLUX

V  at 
minimum

4

radius at minimum

FIG. 4 (color online). For a given �6, varying the number of units of flux wrapping the extra dimensions changes the radion
potential. On the right: three radion potentials are shown with different amounts of flux. When there are many units of flux, the
minimum is at V4 > 0 and large R. When there are fewer units of flux, the minimum is at V4 < 0 and small R. When there is no flux,
the minimum disappears to V4 ! �1 and R ! 0. (De Sitter vacua have an additional nonperturbative instability, which is to
decompactification—the radion tunnels out to larger values. This instability is not relevant to our discussion about nothing.) On the
left: the values of V4 and R in the compactified vacua are shown for various values of N. The vacua can be made arbitrarily dense by
taking the fundamental magnetic quantum g arbitrarily small.

1Note that the charged brane sits in the middle of the wall
region, set back from the true vacuum, as depicted in Fig. 5; its
position can be calculated in detail, as in [10]. Our argument in this
paper will only rely on the possibility of nucleating a bubble of
nothing, but in fact it can be shown that for some landscapes this is
not only a possible decay, it is the fastest decay—the larger the
stack of charged branes, the easier it is to nucleate [10,11].
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As ever more flux is discharged, the size of the extra
dimensions inside the bubble becomes ever smaller and the
effective potential becomes ever more negative. When
gN ¼ 0, we have the bubble of nothing, and the interior is

nothing. Therefore, from the four-dimensional perspective,
nothing corresponds to the limit inwhichV4 ! �1. In other
words, nothing should be thought of as the limit of anti-de
Sitter space in which the curvature length goes to zero.

true vacuum

wall

false vacuummfalse vacuumm

wall

V4

radius

V4

radius

V4

radius

FIG. 5 (color online). A cross section through a flux-tunneling instanton. As in Fig. 1, extended directions are aligned horizontally
and the extra dimensions are aligned vertically. The three-sphere of charged brane, indicated by the colored dots, forms a bubble in the
extended dimensions and sits at a point in the extra dimensions. Outside the bubble, there are many units of flux wrapping the extra
dimensions. Inside the bubble there are fewer units of flux, because some have been discharged by the brane. This means that the
radion inside the bubble lives in a different radion potential, one with a minimum at a smaller value of R and a less positive value of V4.

extra dimensions

extra dimensions

extra dimensions

extra dimensions

FIG. 6 (color online). A sequence of tunneling instantons that discharge different amounts of flux. The more charged branes in the
stack, the more units of flux are discharged, and the smaller the size of the extra dimensions inside the bubble. In the limit that all the
flux is discharged, the area-radius of the bubble stays nonzero, but the size of the extra dimensions inside the bubble goes to zero. This
is the bubble of nothing, and can be compared with Fig. 1. The exact instanton profiles are computed numerically in [10]; this figure
shows the qualitative behavior.
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This is the central claim of this paper. We spend the
remainder of this section justifying this claim, first by
showing that this limit is smooth, and, second by showing
that this is not a special feature of the 6D Einstein-Maxwell
theory and in fact holds in all compactifications that admit
a bubble of nothing.

3. Bubbles of next-to-nothing

The bubble of nothing is the limit of flux tunneling in
which all the flux is discharged; despite being topology-
changing, it is the limit of a family of transitions that are
topology-preserving. In what sense is this limit smooth?

For thin branes, the flux-tunneling instantons amongst
the vacua of the 6D Einstein-Maxwell model break up into
three parts: a false-vacuum exterior, a true-vacuum interior,
and a brief transitionary wall containing the charged brane,
as shown in Fig. 5. For decays that leave only a few units of
flux inside the bubble, the (Euclidean) interior metric is
well approximated by

ds2 ¼ ‘2ðd�2 þ sinh2�d�2
3Þ þ 1

6‘
2d�2

2; with

0< �< arcsinhr0=‘; (9)

or

ds2 ¼ dr2

1þ r2=‘2
þ r2d�2

3 þ
1

6
‘2d�2

2; with

0< r < r0; (10)

where ‘ ¼ 3gN=ð ffiffiffiffiffiffi
32

p
�M2

6Þ ¼
ffiffiffi
6

p
R. As we approach the

limit, two-dimensional slices at a fixed point in the ex-
tended directions are becoming increasingly positively
curved and four-dimensional slices at a fixed point in the
compact directions are becoming increasingly negatively
curved.2 This interior metric is cut off at an area-radius r0
and glued into the wall region; as we showed in [10], r0
stays nonzero as ‘ goes to zero.

The question of the smoothness of this limit is the
question of to what extent the interior metric of Eq. (10)
smoothly approaches nothing. The limit is not topologi-
cally smooth, but we now show that it is geometrically
smooth in three physically important senses:

(1) Six-dimensional volume smoothly vanishes. The six-
dimensional volume of the true-vacuum region
shrinks smoothly to zero as we take ‘ ! 0 because
the size of the extra dimensions smoothly vanishes,

ðVolumeÞ6 ¼ ðVolumeÞ2 � ðVolumeÞ4
¼ 4�‘2

6
� ðVolumeÞ4 ! 0: (11)

But, it is more than that. Another example of a
metric for which the six-dimensional volume inside
the bubble smoothly vanishes is

ds2not smooth ¼ dr2 þ r2d�2
3 þ ‘2d�2

2; with

0< r < r0: (12)

For this metric, as ‘ ! 0 the extra dimensions
shrink to zero size but we are left with a wafer-
thin interior region with four-volume but no thick-
ness—the spacetime inside the bubble is flattened
but not annihilated. However, the interior metric of
flux-tunneling instantons, Eq. (10), approaches
nothing more smoothly than the metric of
Eq. (12), in the following sense.

(2) Four-dimensional volume smoothly vanishes.
Consider a four-dimensional slice through the bub-
ble at a fixed value of the extra dimensions. The
four-dimensional volume of this region is

ðVolumeÞ4 ¼
Z

d�3

Z r0

0
dr

r3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=‘2

p

¼ 2�2

3
r30‘þOðr20‘2Þ ! 0: (13)

The reason that the four-volume of this slice goes to
zero is that the slice is becoming increasingly nega-
tively curved. Negatively curved spaces have the
property that, for a given surface area, spheres
have less volume than in flat space, as shown in
Fig. 7. Most of the volume lies within a proper
distance ‘ of the surface; the volume inside of a
four-sphere of radius r scales not as r4 but as r3‘, as
is evident from Eq. (13). In the limit that ‘ ! 0, the
volume of any region inside the bubble goes to zero
while the surface area stays finite.
But it is even more than that. Another example of a
metric for which both the six-dimensional volume
and the four-dimensional volume inside the bubble
smoothly vanish is

ds2not smooth ¼ ‘2dr2 þ r2d�2
3 þ ‘2d�2

2; with

0< r < r0: (14)

Consider foliating this metric with spheres labeled
by r; though these spheres have zero volume as we
approach the limit, they have nonzero surface area.
When the spheres disappear, they are inside the

2For the 6D Einstein-Maxwell model, there is a simple way to
see how these two divergences are linked. The contribution of
flux to the six-dimensional energy momentum tensor is traceless,
so the only contribution to the six-dimensional curvature R6 is
from the bulk cosmological constant; this means that R6 is
fixed, finite, and the same for all the decay instantons. Therefore,
since R6 ¼ R2 þR4, if the size of the extra dimensions goes
to zero (sending R2 ! 1) then the anti-de Sitter curvature
length must also go to zero (sending R4 ! �1). [Notice that
R4 is the curvature of a four-dimensional spatial slice and not
the Einstein-frame effective curvature; they differ because of the
conformal rescaling. The curvature length in 4D Einstein frame
is ‘curv � g2N2, whereas the curvature length of a four-
dimensional slice is ‘� gN.]
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bubble in the sense that though the proper distance
of a sphere from the edge of the bubble goes to zero,
the proper distance from the center of the bubble
also goes to zero, so the sphere stays a fixed pro-
portion of the way out of the bubble. Therefore,
when we reach the limit, the foliating spheres dis-
appear abruptly. However, the interior metric of
flux-tunneling instantons, Eq. (10), approaches
nothing more smoothly than the metric of
Eq. (14)—the foliating spheres do not abruptly
disappear, instead they get smoothly ejected.

(3) Spheres of nonzero area get expelled from the true-
vacuum region. Consider a sphere of area-radius �r.
The distance of this sphere from the boundary of the
true-vacuum region is

distance from the edge ¼
Z r0

�r

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2=‘2

p
¼
�
‘arcsinh

r

‘

�
r0

�r
�‘log

r0
�r
:

(15)

This goes to zero in the limit ‘ ! 0. The distance
from the center of the bubble is

distance from the center ¼
Z �r

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2=‘2

p
¼
�
‘arcsinh

r

‘

�
�r

0
�‘log

2�r

‘
:

(16)

This also goes to zero in the limit ‘ ! 0, but
crucially, it goes to zero slower than the distance
to the edge

distance from the edge

distance from the center
¼ �1

log‘
! 0: (17)

All spheres get pushed to the edge, and expelled
from the bubble, as shown in Fig. 8.
In the limit that the flux-tunneling instanton ap-
proaches the bubble of nothing, the six-dimensional
volume of the interior of the bubble smoothly goes
to zero, the four-dimensional volume of the interior

of the bubble smoothly goes to zero, and all spheres
of nonzero three-two- or one-volume get smoothly
ejected.3

C. Bubbles of nothing in stabilized extra dimensions:
The general case

In the last subsection, we looked at perhaps the simplest
way to perturbatively stabilize extra dimensions—the six-
dimensional Einstein-Maxwell model—and argued that
the nothing that emerges in the bubble of nothing should
be thought of as the limit of anti-de Sitter space as the
curvature length goes to zero. In this subsection, we will
argue that this is not just a feature of the 6D Einstein-
Maxwell model, and is in fact true for general compacti-
fications that admit bubbles of nothing.
The three contributions to the Einstein-frame effective

potential, V4, in the Einstein-Maxwell model all diverge as
the size of the extra dimensions goes to zero, as can be seen
in Eq. (6) and Fig. 3. The contributions of the flux and the
cosmological constant go to plus infinity, and the contri-
bution of the curvature goes to minus infinity. Any radion
potential constructed out of such components will neces-
sarily have the property that it diverges as the radion
shrinks to zero size: if it diverges to plus infinity, then the
extra dimensions cannot vanish; if it diverges to minus
infinity, then our result is established. We will now show
that this remains true even if we take more exotic ingre-
dients than flux, curvature, and cosmological constants,
that every compactification that admits a bubble of nothing
has the property that V4 ! �1 as the size of the extra
dimensions shrinks to zero.
At first, consider a general compactification that features

a bulk stress-energy component that is a perfect fluid and is
isotropic in them extra dimensions. Then, we can write the

FIG. 7 (color online). For a given surface area, spheres in positively curved spaces have more volume than in flat space. Spheres in
negatively curved spaces have less volume than in flat space.

3For the 6D Einstein-Maxwell model, we have shown that the
limit is smooth because while the area-radius of the bubble of
nothing remains nonzero, all foliating spheres get expelled.
Another way that the approach to the bubble of nothing can be
smooth is for the area-radius of the nucleated bubble to go to
zero in the limit. This possibility is realized for some theories,
including the five-dimensional Einstein-Maxwell theory.
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pressure in the extra dimensions as p ¼ w�, wherew is the
equation-of-state parameter.

Let us ask what happens to the higher-dimensional
energy density � as we shrink the volume of the extra
dimensions down to zero size. The continuity equation
implies that

�� ðVolumeÞ�1�w
m ; (18)

which is to say that energy density gets more intense with
decreasing volume if and only if

w>�1: (19)

If w ¼ �1, then we have a cosmological constant and
the higher-dimensional energy density is independent of
volume. If w<�1, then the higher-dimensional energy
density gets less intense as the extra dimensions shrink
to zero size (and, conversely, the energy density di-
verges as the extra dimensions get very large, leading
to a ‘‘big rip’’ [12]).

However, the higher-dimensional energy density is not
the quantity that we are interested in. We are interested in
the energy density, V4, in 4D Einstein frame. To get from
the higher-dimensional energy density � to the Einstein-
frame energy density, we must first integrate out the extra
dimensions, which introduces a factor of ðVolumeÞm, and
we must then rescale our coordinates to ensure that M4 is

independent of the size of the extra dimensions, which
as we discussed in Sec. II B introduces a factor of
ðVolumeÞ�2

m . Altogether, then, the Einstein-frame effective
potential scales as

V4 � ðVolumeÞ�2�w
m ; (20)

which is to say that the Einstein-frame energy density gets
more intense with decreasing volume if and only if

w>�2: (21)

Figure 9 shows the form of the effective radion potential
for different values of w and �. For w>�2, the radion
potential vanishes at large volume and diverges at small
volume; for w<�2, it is the other way around.
What would the stress-energy ingredients of a perturba-

tive stabilization have to be in order to have bubbles of
nothing for which the interior V4 was not going to minus
infinity? There are two requirements. First, the stabiliza-
tion would require at least one w<�2 component with
positive � to force the size of the extra dimensions to zero
inside the bubble of nothing. Second, the stabilization
would require no immovable ingredients with w>�2;
any such ingredient would either positively diverge, for-
bidding bubbles of nothing, or negatively diverge, sending
V4 ! �1. These are two difficult conditions to satisfy,
because w<�2 components with positive � are hard to
come by, and w>�2 components are hard to exclude.
That energy components with w<�2 are hard to come

by is in part a result of the fact that such components must
violate the null energy condition, �ð1þ wÞ � 0.
Moreover, even the standard null-energy-violating ingre-
dients in compactifications4 do not have w<�2. This is
related to an argument by Giddings [13]. Giddings showed,
following an older argument of Dine and Seiberg [14], that
all of the ingredients in string theory—including the

FIG. 8 (color online). Consider foliating the interior metric,
Eq. (10), with three-spheres. A sphere of area-radius �r lies a
proper distance ‘arcsinh½�r=‘� from the center of the bubble; the
edge of the bubble lies a proper distance ‘arcsinh½r0=‘� from the
center of the bubble. Therefore, the sphere lies a fraction
arcsinh½�r=‘�=arcsinh½r0=‘� out of the bubble. Here, we plot
this fraction as a function of the area-radius of the sphere, �r,
for various values of ‘. For flat space, this would be a straight
line because the area-radius is equal to the proper radius, but for
negatively curved spaces the area-radius grows faster than the
proper radius. As the space becomes increasingly negatively
curved, a sphere with a given area-radius �r lies an ever-
increasing fraction of the way out; on the plot, the value of the
function at a given value of the x coordinate gets ever larger as ‘
gets ever smaller. In the limit ‘ ! 0, all the foliating spheres
accumulate at the edge of the bubble.

4For example, curvature in the extra dimensions contributes to
G��, but by taking this contribution over to the other side of
Einstein’s equations we can treat this as an effective contribution
to T��, a contribution which can violate the null energy condi-
tion. If we have m small dimensions, labeled by i, j, etc.,
compactified on a maximally symmetric subspace of curvature
k then

RM
N ¼ diagf0; 0; . . . ; 0; kgijg; (22)

so

RM
N � 1

2Rg
M
N ¼ diagf�1

2mkg
�
� ; ð1� 1

2mÞkgijg: (23)

In other words, curvature makes an effective contribution to the
stress energy with equation-of-state parameter given by

w ¼ 2�m

m
>�1: (24)

Even though positive curvature gives an effective contribution to
the stress-energy that violates the null energy condition, extra-
dimensional curvature of either sign gives us an energy compo-
nent which blows up in the limit of tiny extra dimensions.

ADAM R. BROWN AND ALEX DAHLEN PHYSICAL REVIEW D 85, 104026 (2012)

104026-8



null-energy-violating, the anisotropic, and the imperfectly
fluid—all have the property that their contribution to
the radion potential goes to zero at large volume.
Correspondingly, their contribution to the radion potential
diverges at small volume.

That energy components with w>�2 are hard to ex-
clude is exemplified by Casimir energy.5 Casimir energy
can make either a positive or a negative contribution to
the radion potential depending on the matter content and
boundary conditions, but in either case will have w>�2.
Indeed the presence of Casimir energy even brings the
otherwise-exceptional Witten bubble of nothing of
Sec. II A into the framework we have been discussing. If
Casimir energy diverges to plus infinity, as it would for a
spinor with periodic boundary conditions, then the bubble
of nothing is forbidden. If Casimir energy diverges to
negative infinity, as it would for a spinor with antiperiodic
boundary conditions, then in this case too we should think
of nothing as the limit of anti-de Sitter space as the curva-
ture length goes to zero.

III. NO UP-TUNNELING FROM NOTHING

In the last section, we discussed how the bubble of
nothing instanton mediates the transition, roughly speak-
ing, from something to nothing. In this section, we discuss
the reverse process, the transition from nothing to some-
thing, the quantum creation of a universe. We show that it

is possible to address this issue within the relatively secure
foundation of the Coleman-De Luccia formalism [7],
which we review in Sec. III A. In Sec. III B, we argue
that it is impossible to up-tunnel using a bubble of nothing
instanton. In Sec. III C, we show that this excludes a
number of proposals for the quantum creation of a uni-
verse, both the Hawking-Turok instanton [5] and the more
recent ‘‘bubbles from nothing’’ proposal [6].

A. Down-tunneling and up-tunneling

The Coleman-De Luccia (CDL) tunneling prescription
is used to calculate the rate of quantum transitions in
dynamical spacetimes. This formalism is the most credible
part of semiclassical quantum gravity, and the aspiration of
this section is to embed questions of the quantum creation
of the Universe within it. We shall start, in this subsection,
by reviewing the CDL formalism, and, in particular, by
highlighting three important elements that will be useful in
our upcoming discussion.
Figure 10(a) shows a typical situation for which the CDL

formalism is employed. A field uniformly in the A vacuum
is classically stable and, through its potential, makes space-
time inflate. Quantum mechanically, however, the field is
unstable. In the semiclassical description, the field and the
spacetime make a quantum jump from being uniformly in
A to being a less-than-horizon-sized bubble of B embedded
in a background of A. After the quantum jump, the pressure
differential across the wall ensures that the bubble of B
grows outward, so we are left with a region of B that (at
least classically) endures.
The instanton that mediates this decay, shown in

Fig. 10(b), is a solution to the Euclidean equations of
motion that interpolates between the two vacua. In the
thin-wall limit, it glues together regions of A and B along
a thin domain wall; the regions of A and B are sections of

FIG. 9 (color online). The radion potential contributions that result from high-dimensional stress-energy sources with various
equations of state in the extra dimensions. For w>�2 (the shaded regions), the radion potential diverges at small volume and goes to
zero at large volume. For w<�2 (the unshaded regions), the radion potential vanishes at small volume and diverges at large volume.

5In addition to Casimir energy, in string theory there will
generically be another contribution to the radion potential that
diverges at small volume: the closed string tachyon. Closed
strings that wind a small enough cycle on a manifold can develop
a tachyonic mass. In [15], it was argued that the endpoint of the
condensation of this tachyon is for spacetime to pinch off—
nothing corresponds to the tachyon rolling all the way down its
potential toward V4 ! �1 [16–18].
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Euclidean de Sitter, which is to say they are sections
of four-spheres. The CDL prescription gives the tunneling
rate from A to B in terms of a change in Euclidean
action SE:

�A!B � e��SE=ℏ; �SE ¼ SEðinstantonÞ� SEðAÞ: (25)

The important thing for our purposes is that this rate is
nonzero. The instanton is compact, and so has finite action.
The Euclidean B vacuum is compact too and so it too has
finite action. The exponent in the rate equation, Eq. (25), is
the difference of two finite quantities and so gives a non-
zero tunneling rate.

But, this is not the only transition mediated by the
instanton of Fig. 10(b). In fact, the first general principle
of CDL tunneling that we wish to highlight is that

Every instanton describes not one but two transitions.
If an instanton calculates the rate for one process, then it

necessarily also calculates the rate for the reverse process.
In the case at hand, this means that as well as describing
‘‘down-tunneling’’ from A to B, the instanton also de-
scribes ‘‘up-tunneling’’ from B to A [19]. A field uniformly
in the B vacuum is unstable to the nucleation of a bubble of
A. After nucleation, the bubble wall classically expands
into the region of A, but the region of A classically endures
because there is more than a horizon volume of it, so the de
Sitter expansion of the spacetime within the bubble more
than compensates for the encroachment of B.6

Both of these processes are described by the same
instanton, and the rate to up-tunnel from B to A is given by

�B!A � e��SE=ℏ; �SE ¼ SEðinstantonÞ � SEðBÞ;
(26)

which differs from Eq. (25) only in the background sub-
traction. This background subtraction will turn out to be

central to our argument, and arises because e�SEðBÞ is the
number of microstates in the Bmacrostate. (The entropy is
minus the Euclidean action.) As is required by the principle
of detailed balance, the ratio of the tunneling rates, the ratio

of Eqs. (25) and (26), is given by eSEðAÞ�SEðBÞ, the ratio of
the exponentials of the entropies.
The essential feature of de Sitter space that allows up-

tunneling is that it is a finite system in the sense that it has a
finite horizon volume and a finite entropy, and therefore
SEðBÞ is finite.7 By contrast, when system sizes are infinite,
two states can have infinite entropy differences, and then
the principle of detailed balance requires that up-tunneling
is impossible. Minkowski space and anti-de Sitter space
have infinite horizon volumes and infinite entropies, which
leads to the second general principle that we wish to high-
light, that
up-tunneling is impossible from Minkowski or anti-de

Sitter space.
Let us see how this fact emerges from the CDL

formalism.
Consider what happens to the up-tunneling transition

rate as VB is lowered toward zero from above. The instan-
ton is only marginally affected: the region of B becomes
flatter and smaller, but the instanton stays compact and
the Euclidean action stays finite. On the other hand, the
Euclidean de Sitter B vacuum is greatly affected: the four-
sphere grows without bound, and its action diverges as

SEðV � 0Þ ¼ � 24�2M4
4

V
: (27)

As VB goes to zero, the background subtraction goes to
minus infinity so the up-tunneling rate, Eq. (26), smoothly
vanishes. (It is not just that the rate per unit volume, �B!A,
is going to zero; the expected number of bubbles per
Hubble volume per Hubble time, H�4

B �B!A, is also going
to zero. Even thoughH�1

B is diverging in the limit that VB is
lowered to zero, �B!A is going to zero faster—the expo-
nential beats the polynomial.) That this rate is zero is the
CDL formalism’s way of telling us that up-tunneling from
Minkowski space is impossible.
As VB is lowered past zero and into negative values, up-

tunneling remains impossible. The instanton continues to
be compact and continues to have finite Euclidean action,
while the Euclidean B vacuum continues to be noncompact
and its Euclidean action continues8 to be infinite

φA

V

B

VA

VB

B

A

FIG. 10 (color online). Because VA > 0, the instanton describ-
ing down-tunneling from A to B is compact. The instanton has a
less-than-horizon-sized bubble of B embedded in A. The same
instanton also describes the reverse process, up-tunneling from B
to A.

6There is a parameter regime when the tension is large for
which the instanton features less than a hemisphere of A, and
hence there is less than a horizon volume of A at nucleation.
Nevertheless, the region of A still classically endures, in this case
not solely because of de Sitter expansion, but also because of the
repulsive gravitational force of the domain wall.

7It is the finite volume that is essential for up-tunneling, not the
nonzero temperature (though the temperature does speed tran-
sitions): finite periodic flat space at zero temperature can up-
tunnel, while hot Minkowski cannot [20].

8Often in AdS/CFT calculations, it is convenient to regulate
the Euclidean action of AdS space by adding a canceling
divergent boundary term. This convenience does not, however,
mean that up-tunneling from AdS is possible. As we are inter-
ested in Euclidean action differences between spaces with differ-
ent asymptotics, this procedure does not regulate the divergence.
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SEðV � 0Þ ¼ �1: (28)

Up-tunneling from anti-de Sitter (AdS) to dS is impossible.
(Furthermore, up-tunneling from AdS to any higher vac-
uum is impossible, not just up-tunneling from AdS to dS.)

Notice that up-tunneling did not become impossible
because the instanton disappeared or misbehaved. The
instanton scarcely changed. Instead, all the action was in
the false vacuum subtraction, which blew up as the tran-
sition became impossible. There is still a perfectly well-
defined instanton describing up-tunneling from AdS to dS,
it is just that the rate the CDL prescription assigns to it is
zero. This illustrates our third general principle, which
is that

just because a transition is described by an instanton
does not mean that the transition is possible.

Some transitions described by instantons are assigned
zero rate. (Indeed, when there are two nonpositive minima,
instantons can exist for which transitions are impossible in
both directions. This arises when the tension of the corre-
sponding domain wall exceeds the BPS bound—we will
discuss this in more detail at the end of the next
subsection.)

B. No up-tunneling from nothing

In Sec. II, we saw that a bubble of nothing instanton
mediates the formation of a hole in spacetime—the decay
of something to nothing. In the last subsection, we saw that
an instanton that describes one transition necessarily also
describes the opposite transition. The question therefore
arises: can the bubble of nothing instanton be used to up-
tunnel from nothing to something? Does the bubble of
nothing instanton mediate the quantum creation of a
universe?

In the CDL formalism, the rate to up-tunnel from noth-
ing is given by

�nothing!dS � e��SE=ℏ;

�SE ¼ SEðinstantonÞ � SEðnothingÞ;
(29)

and the instanton is shown in Fig. 11.
What is the action of nothing? Previous authors have

implicitly assumed that the action of nothing is zero. Then,
when SEðinstantonÞ is finite, this leads to the conclusion
that up-tunneling from nothing is allowed. However, there
is no need to guess at SEðnothingÞ, instead we can appeal to
our newfound understanding.

Let us go back to the simplest case, the 6D Einstein-
Maxwell theory. There, in Sec. II B, we saw that there is a
whole family of flux-tunneling instantons. Each of these
instantons describes both down-tunneling and up-tunneling
transitions but, as we have seen, this does not necessarily
mean that these transitions are possible—some of
these transitions have zero rate. In Fig. 12, we show
which transitions are possible, and which transitions are
impossible.

Figure 12 shows instantons describing four decays out of
a de Sitter vacuum. The top line shows a decay by just a
few units of flux, so that the interior is still a de Sitter
vacuum. As a consequence, both down-tunneling and up-
tunneling are possible using this instanton. The second line
shows a decay by more units of flux, enough that the
interior is Minkowski. As a consequence, while down-
tunneling is possible using this instanton, up-tunneling is
impossible. The third line shows a decay by even more
units of flux, enough that the interior is AdS. Again, while
down-tunneling is possible using this instanton, up-
tunneling is impossible. Finally, the fourth line shows a
decay by all the flux, it is a bubble of nothing. Down-
tunneling from something to nothing using this instanton is
possible, but up-tunneling from nothing to something is
impossible. In short, not only is up-tunneling from nothing
a forbidden transition, up-tunneling from nothing is the
endpoint of a long sequence of forbidden transitions.
In the language of Euclidean actions, since nothing

should be thought of as a limit of AdS space, and the
action of AdS space is minus infinity,

SEðnothingÞ ¼ �1; and so �nothing!dS ¼ 0: (30)

Quantum creation of a de Sitter universe is impossible.
Quantum creation of a Minkowski or AdS universe is

equally impossible. In Sec. III A, we saw that not only is
up-tunneling from AdS to dS impossible, up-tunneling
from AdS to any higher vacuum is impossible. Since
nothing is the lowest of all AdS minima, it cannot transi-
tion at all.
A direct consequence is that the bubbles from nothing of

[6] (see also [21,22]) do not mediate the quantum creation
of a universe. Bubbles from nothing are Minkowski bub-
bles of nothing with tension bigger than the BPS bound, so
that the instantons are compact. However, in the CDL
formalism the compactness or noncompactness of an in-
stanton does not affect the question of whether up-
tunneling is possible from AdS to Minkowski—either
way, it is always impossible. The only thing it does affect
is whether the instanton mediates down-tunneling from
Minkowski to AdS—for noncompact instantons it does,
for compact instantons it does not. That down-tunneling is
impossible for compact instantons fromMinkowski to AdS

FIG. 11 (color online). On the left: the instanton describing the
formation of a bubble of nothing in de Sitter space. The region of
B from Fig. 10 is replaced by a region of nothing. Recall that, at
the lip of the bubble, the extra dimensions pinch off smoothly, as
is shown on the right.
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is the phenomenon of gravitational blocking described in
CDL [7].

C. Bubbles of nothing and the
Hawking-Turok instanton

We have argued that the quantum creation of a universe
by a bubble of nothing instanton never happens. In this
subsection, we show that this means that the quantum
creation of a universe via a Hawking-Turok instanton [5]
also never happens, because the bubble of nothing instan-
ton and the Hawking-Turok instanton are the same thing.

The Hawking-Turok instanton is a four-dimensional
instanton with a singularity. It solves the Euclidean equa-
tions of motion for gravity coupled to a scalar field in an
inflationary potential; the scalar field is smooth everywhere
except at one point—at that point it runs off to infinity in an
integrable singularity.

The bubble of nothing instanton, when described in 4D
Einstein frame, is just a Hawking-Turok instanton, as was
first realized by Garriga [23]. The radion field in the bubble
of nothing plays the role of the scalar field in the Hawking-
Turok instanton, and the radion potential becomes the
inflationary potential. The pinch-off in the extra dimen-
sions gives rise to a singularity in the scalar field: even
though the higher-dimensional metric is smooth, the pro-
jection down to four dimensions has a caustic. The fact that
the singularity can be smoothly resolved manifests itself
as the integrability of the singularity. In the higher-
dimensional theory, there is a sphere of minimal area

surrounding the origin, but in the coordinates of 4D
Einstein frame it appears that this sphere has shrunk to a
point. This is related to the conformal rescaling; to pre-
serve the 4D Planck mass, the Einstein-frame rods are
infinitely stretched near the pinch-off point, so that zero
rods are required to span even the nonzero area. In sum-
mary, the Hawking-Turok instanton is the bubble of noth-
ing instanton written in 4D Einstein frame.
The Hawking-Turok instanton does not mediate up-

tunneling, but not because the singularity means it is not
a valid instanton. On the contrary, the singularity is inte-
grable and the Hawking-Turok instanton is a perfectly
legitimate instanton that does mediate a transition: the
decay of something to nothing. It does not describe the
creation of an open universe not because it is not a valid
instanton, but because the rate is zero.

IV. DISCUSSION

We have examined two contexts in which the concept of
nothing—the absence of spacetime—appears in physics:
the bubble of nothing, and the quantum creation of a universe
from nothing. By considering the decays of perturbatively
stabilized extra dimensions, we have constructed the bubble
of nothing as the limit of a family of otherwise topology-
preserving transitions. Every term in the Einstein-frame
radion potential diverges when the extra dimensions get
small, so if shrinking to zero size is not forbidden (which
is the case if the potential diverges positively), then shrinking

FIG. 12 (color online). The four flux-tunneling instantons from Fig. 6. Each instanton describes two transitions: a down-tunneling
transition and an up-tunneling transition. However, as we have seen not every transition described by an instanton is possible; some
have zero rate. Beside each instanton we note which of these transitions are possible and which are impossible. Down-tunneling is
always possible. Up-tunneling is possible when the interior metric is de Sitter. However, as we move down the family of instantons, up-
tunneling is no longer possible once the interior is Minkowski, and remains impossible when the interior is lowered through AdS and
on to nothing.
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to zero size forces the effective potential to negative infinity.
Therefore, the nothing inside the bubble of nothing should be
understood as the limit of anti-de Sitter space as the curva-
ture length approaches zero.9

We then applied this understanding of nothing to the
question of the quantum creation of a universe using a
Hawking-Turok instanton, which we embedded within the
Coleman-De Luccia formalism. We argued that, since up-
tunneling from anti-de Sitter space is forbidden, it is im-
possible to start with nothing and create a universe.

And yet, here we are. How come? Why is there some-
thing rather than nothing? Let us discuss three possibilities,
in ascending order of plausibility.

First, we showed that up-tunneling from nothing is
impossible within the context of the semiclassical low-
energy effective theory, but perhaps higher-order terms in
the Lagrangian, or quantum corrections to the equations of
motion, invalidate our argument. We said that nothing is
associated with the curvature length going to zero, but
when the curvature length gets smaller than the string/
Planck scale, there is no reason to expect the corrections
to be small.10 Maybe these corrections somehow allow up-
tunneling from nothing.

We would find this possibility more plausible if up-
tunneling only became impossible as V4 ! �1, if up-
tunneling were only forbidden for the final member of the
family. However, up-tunneling became impossible as soon
as V4 reached zero, which is to say as soon as the bubble
interior was no longer de Sitter. There is thus a broad
parameter regime for which the solutions are well under
control but for which up-tunneling is already forbidden.

Second, in addition to the nothing that emerges in the
bubble of nothing, from which we have shown tunneling is
impossible, perhaps there is a second, different type of
nothing from which tunneling is possible. This alternative
is implicit in the tunneling wave function of Vilenkin [2],
in the Linde tunneling prescription [3], and (insofar as it
can be thought of as a tunneling from nothing) in the no-
boundary proposal of Hartle and Hawking [4]. While the
existence of the limit-of-AdS type of nothing discussed in
this paper is guaranteed by the bubble of nothing, to permit
tunneling from nothing these proposals must invoke a
second kind of nothing, over and above the nothing of
the bubble of nothing.

However, even this is not necessarily enough. The rea-
son we attach so much significance to tunneling from
nothing is that nothing seems like a natural place to begin,
and so if we can explain how the Universe came to tunnel
from nothing, we would explain how the Universe came to
be. But, if there are several different kinds of nothing, then
we are stuck asking which type is the most likely. For the
Hartle-Hawking prescription, the answer seems to be prob-
lematic. The Hartle-Hawking wave function assigns am-
plitudes to three-geometries; if you want to interpret it as
tunneling from nothing, then this nothing is a three-sphere
with zero scale factor. The amplitude the Hartle-Hawking
wave function assigns to this kind of nothing is small,
much less than the amplitude it assigns to a de Sitter
universe. This means that rather than being a natural place
for the Universe to begin, beginning with this kind of
nothing is less likely than beginning with a de Sitter uni-
verse in the first place—tunneling from nothing has lost
any explanatory power. But, even worse than the fact that
the Hartle-Hawking wave function assigns a very small
amplitude to the small-scale-factor nothing is that it as-
signs an amplitude to the limit-of-AdS nothing that is
infinite, so that once the wave function is normalized, the
probability of being in any other state is zero. As Hartle and
Hawking [4] write, ‘‘The ground-state wave function ob-
tained by summing over compact four-geometries diverges
for large three-geometries in the case V � 0 and the wave
function cannot be normalized.’’ This indicates that the
ground state of the system is no longer spread out over all
the de Sitter vacua, but is instead collapsed into the single
lowest vacuum state. Since the nothing of the bubble of
nothing is like the most divergent AdS of all, this means
that the ground-state wave function lies completely in that
state, no overlap with any other vacua, and no probability
of up-tunneling from nothing. In other words, the existence
of any other kind of nothing, besides the nothing of the
bubble of nothing, seems completely irrelevant: either it
has infinitely negative action and you cannot up-tunnel
from it, or it has finite action and the Hartle-Hawking
wave function assigns it an amplitude of zero.
The third and most likely answer is that we are asking

the wrong question. There is so much we do not under-
stand—about the breakdown of the spacetime description
at the smallest scales, about quantum gravity, about the
ultimate building blocks of existence—that most likely we
do not yet even possess the vocabulary to ask a well-posed
question. One thing seems clear though: to truly under-
stand everything, we must understand nothing.
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