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The Mathisson-Papapetrou equations in Schwarzschild’s background both at the Mathisson-Pirani and

Tulczyjew-Dixon supplementary condition are considered. The region of existence of highly relativistic

planar circular orbits of a spinning particle in this background and dependence of the particle’s orbital

velocity on its spin and radial coordinate are investigated. It is shown that in contrast to the highly

relativistic circular orbits of a spinless particle, which exist only for r ¼ 1:5rgð1þ �Þ, 0< � � 1, the

corresponding orbits of a spinning particle are allowed in a wider space region, and the dimension of this

region essentially depends on the supplementary condition. At the Mathisson-Pirani condition new

numerical results which describe some typical cases of noncircular highly relativistic orbits of a spinning

particle starting from r > 1:5rg are presented.
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I. INTRODUCTION

Practically any textbook on general relativity contains
information concerning possible geodesic circular orbits of
a spinless test particle in a Schwarzschild background
as an important point of description of the black hole
properties. The known result is that by the geodesic equa-
tions these orbits are allowed only for r > 1:5rg (r is the

Schwarzschild radial coordinate and rg is the horizon radius)

and the highly relativistic circular orbits exist only for r ¼
1:5rgð1þ �Þ, where 0< � � 1 [1,2,4]. On the contrary,

information on possible circular orbits of a spinning test
particle in Schwarzschild’s background can be found in the
book sources very rarely. Probably it is a result that the
Mathisson-Papapetrou (MP) equations [5,6], which describe
motions of a classical (nonquantum) spinning particle in
general relativity, were significantly less known than the
geodesic equations. In this context we note that even
the encyclopedic book on general relativity [2] devotes to
the MP equations only one page and the seminal work of M.
Mathisson is not pointed out in the bibliography of [2]. (The
interesting history of the MP equations is elucidated in a
special issue of the journal cited in Ref. [3].) However,
because the real physical processes of the gravitational col-
lapse are connected with behavior of the particles with spin,
as protons and electrons, the analysis of this phenomena and
of the physics of black holes cannot be restricted on the
geodesic equations. Even if one can motivate that the role
of spin is negligible, this fact must be clearly pointed out and
in this context it is necessary to recall the MP equations.

Among other types of motions the circular highly rela-
tivistic orbits are of importance for investigations of pos-
sible synchrotron radiation, both electromagnetic and
gravitational, of protons and electrons in the gravitational
field of a black hole [7–12].

The circular orbits of a spinning particle according to
the MP equations in the Schwarzschild, Kerr, and

other backgrounds were considered in many papers
[13–26] in different context. In particular, the stability of
the corresponding orbits was under investigation in [13,15–
17,26]; the clock effect was studied in [18,19]; and the
precession of spin was considered in [22,23]. In some papers
the corresponding effects are calculated by different con-
ditions [16,18–20]. Most often the supplementary condi-
tions of Mathisson-Pirani [5,27] or Tulczyjew-Dixon
[28,29] are used.
Without any supplementary condition, the MP equations

are suitable for describing the wide range of the represen-
tative points which can be in different connection with a
rotating particle. However, if we need to describe, in the
proper sense, just the inner rotation of the particle, it is
necessary to fix the concrete corresponding representative
point. In Newtonian mechanics, the inner angular momen-
tum of a rotating body is defined relative to its center of
mass and just the motion of this center represents the
propagation of the body in the space. Naturally, one can
expect the similar approach in relativity. However, as
pointed out by C. Møller [30,31], in relativity the position
of the center of mass of a rotating body depends on the
frame and, therefore, the Mathisson-Pirani supplementary
condition, which follows from the usual definition of the
center of mass position, and is common for the so-called
proper and nonproper centers of mass. (Here we use the
terminology when the proper frame for a spinning body is
determined as a frame where the axis of the body rotation
is at rest. Correspondingly, the proper center of mass is
calculated in the proper frame.) According to Møller’s
interpretation, the usual solutions of the MP equations at
the Mathisson-Pirani condition in the Minkowski space-
time describe the motion of the proper center of mass of a
spinning body, whereas the helical solutions describe the
motions of the family of the nonproper centers of mass.
Some properties of different centers of mass were dis-
cussed in [32] and the more detailed analysis is presented
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in [33]. It is shown that Mathisson’s helical motions for a
spinning particle are fully physical in the context of
Møller’s kinematical interpretation, in contrast to some
assertions in the literature, and the physical validity of
the Mathisson-Pirani condition is proved [33].

We note that the pointed out helical solutions of the MP
equations are often called Weyssenhoff’s solutions, taking
into account the paper [34].

It is of importance that the Mathisson-Pirani condition
‘‘. . .arises in a natural fashion in the course of the deriva-
tion’’ [35]. A simple and clear derivation of this condition
is presented, for example, in [36]. In this context it is useful
to recall a simple visual situation which follows from this
derivation as a partial case. Namely, following [32], Sec. 5,
let us consider a sphere of uniformmass density at rest. The
center of mass of this sphere coincides with its geometrical
center. Now let the sphere rotate about a proper axis.
Because of the axial symmetry, the proper center of mass
of this rotation sphere remains in the geometrical center.
Then if this center is chosen as the representative point for
this sphere to describe its motion in the gravitational field
by the MP equations, just the Mathisson-Pirani condition
must be satisfied. Naturally, other supplementary condi-
tions can be used for the description of other representative
points.

In contrast to the Mathisson-Pirani condition, the
Tulczyjew-Dixon one picks out a unique (nonhelical)
worldline of a spinning particle in the gravitational field.
Just to avoid the helical solutions, the Tulczyjew-Dixon
condition was used in many papers.

Especially highly relativistic circular orbits of a spinning
particle in the Schwarzschild and Kerr fields were inves-
tigated in [12,37]. It was shown that in the Schwarzschild
field these orbits exist in the small neighborhood of the
value r ¼ 1:5rg, both for r > 1:5rg and r � 1:5rg, in con-

trast to the geodesic highly relativistic circular orbits [12].
We stress that in [12,37] only the Mathisson-Pirani condi-
tion was used.

The purpose of this paper is to present the results of
more detailed analysis of highly relativistic circular orbits
in Schwarzschild’s field which follows from the MP equa-
tions both under the Mathisson-Pirani and Tulczyjew-
Dixon conditions. Besides, some noncircular highly rela-
tivistic orbits are considered as well.

In Sec. II the MP equations, Mathisson-Pirani and
Tulczyjew-Dixon supplementary conditions, and other
general relationships, which are valid for any metric, are
presented. In Sec. III the concrete form of the MP equa-
tions for planar motions in the Schwarzschild background
under Tulczyjew-Dixon condition is written. The equations
from Sec. III are used in Sec. IV to describe the region of
existence of the highly relativistic circular orbits of a
spinning particle in the Schwarzschild field and to deter-
mine the dependence of the particle’s orbital velocity on its
spin and radial coordinate. The similar problem is under

investigation in Sec. Vat the Mathisson-Pirani supplemen-
tary condition. Section VI is devoted to some numerical
examples of the noncircular highly relativistic motions of a
spinning particle in the Schwarzschild background accord-
ing to the exact MP equations at the Mathisson-Pirani
condition. We conclude in Sec. VII.

II. GENERAL FORM OF THE MP EQUATIONS
AT MATHISSON-PIRANI AND

TULCZYJEW-DIXON CONDITIONS

The initial form of MP equations, as presented in [5], is

D

ds

�
mu� þ u�

DS��

ds

�
¼ � 1

2
u�S��R�

���; (1)

DS��

ds
þ u�u�

DS��

ds
� u�u�

DS��

ds
¼ 0; (2)

where u� � dx�=ds is the particle’s 4-velocity, S�� is the
tensor of spin, m and D=ds are, respectively, the mass and
the covariant derivative with respect to the particle’s proper
time s, and R�

��� is the Riemann curvature tensor (units

c ¼ G ¼ 1 are used). Here, and in the following, Latin
indices run 1, 2, 3 and Greek indices 1, 2, 3, 4; the signature
of the metric ð�;�;�;þÞ is chosen.
The Mathisson-Pirani supplementary condition for

Eqs. (1) and (2) is [5,27]

S��u� ¼ 0; (3)

and the Tulczyjew-Dixon condition is [28,29]

S��P� ¼ 0; (4)

where

P� ¼ mu� þ u�
DS��

ds
(5)

is the 4-momentum. As usual, instead of (1) and (2) the
Mathisson-Papapetrou equations at condition (4) are
written as

DP�

ds
¼ � 1

2
u�S��R�

���; (6)

DS��

ds
¼ 2P½�u��: (7)

Both at condition (3) and (4), the constant of motion of the
MP equations is

S20 ¼ 1
2S��S

��; (8)

where jS0j is the absolute value of spin.
In the case of the condition (4) the mass of a spinning

particle is defined as

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
P�P

�
q

; (9)

and m0 is the constant of motion. (We stress that m0 is not
equal to m from Eq. (1); at condition (3) the constant of
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motion ism.) The quality V� is the normalized momentum,
where by definition

V� ¼ P�

m0 : (10)

Sometimes V� is called the ‘‘dynamical 4-velocity,’’
whereas the quantity u� from (1)–(3) is the ‘‘kinematical
4-velocity’’ [38]. As the normalized quantities, u� and V�

satisfy the relationships

u�u
� ¼ 1; V�V

� ¼ 1: (11)

There is the important relationship between u� and V�

[13,14]:

u� ¼ N

�
V� þ 1

2m02�
S��V�R����S

��

�
; (12)

where

� ¼ 1þ 1

4m02 R����S
��S��: (13)

The condition for a spinning test particle

jS0j
m0r

� " � 1 (14)

must be taken into account [39], where r is the character-
istic length scale of the background spacetime (in particu-
lar, for the Schwarzschild metric r is the radial coordinate).

The MP equations were considered from different points
of view in many papers: the wide bibliography up to 1997
is presented in [38], more recent publications are
[17–26,37,40–57]. In particular, it was shown that in a
certain sense these equations follow from the general
relativistic Dirac equation as a classical approximation
[58].

III. MP EQUATIONS UNDER TULCZYJEW-DIXON
CONDITION FOR PLANAR MOTIONS IN THE

SCHWARZSCHILD BACKGROUND

Let us consider the explicit form of expression (12) for
the concrete case of the Schwarzschild metric, for the
particle motion in the plane � ¼ �=2, when spin is or-
thogonal to this plane. (We use the standard Schwarzschild
coordinates x1 ¼ r, x2 ¼ �, x3 ¼ ’, x4 ¼ t.) Then we
have

u2 ¼ 0; u1 � 0; u3 � 0; u4 � 0; (15)

S12 ¼ 0; S23 ¼ 0; S13 � 0: (16)

In addition to (16), by condition (4) we write

S14 ¼ �V3

V4

S13; S24 ¼ 0; S34 ¼ V1

V4

S13: (17)

According to (12)–(17) the expressions V� through u� are
[59]

V1 ¼ u1R

�
1� 2"2

M

r

�
;

V3 ¼ u3R

�
1þ "2

M

r

�
;

V4 ¼ u4R

�
1� 2"2

M

r

�
;

(18)

where R is determined by

R ¼
��

1� 2"2
M

r

�
2 � 3ðu3Þ2"2Mr

�
2� "2

M

r

���ð1=2Þ
;

(19)

and M is the Schwarzschild mass.
As in [59], it is convenient to use the dimensionless

quantities yi connected with the particle’s coordinates by
definition

y1 ¼ r

M
; y2 ¼ �; y3 ¼ ’; y4 ¼ t

M
; (20)

as well as the quantities connected with its 4-velocity

y5¼u1; y6¼Mu2; y7¼Mu3; y8¼u4: (21)

Taking into account the explicit form of the g�� and R
�
���

in the standard Schwarzschild coordinates for � ¼ �=2, by
expressions (8) and (18) it is not difficult to obtain from (6)
the system of the three independent equations

_y5

�
1�2"20

y31

�
þ3"20

D

�
_y7y5y7

1

y1

�
1�2"20

y31

��
2�"20

y31

�

�y25y
2
7

1

y21

�
1þ8"20

y31
�2"40

y61

��
�y25

1

y21

�
1� 2

y1

��1
�
1�2"20

y31

�

�ðy1�2Þy27
�
1þ"20

y31

�
þy28
y21

�
1� 2

y1

��
1�2"20

y31

�

¼�3"0
y21

y7y8

�
1� 2

y1

�
; (22)

_y7

�
1þ "20

y31

��
1� 2"20

y31

�
2 � 9"20y5y7

1

y41

�
1� 2"20

y31

�

� 3"20y5y
3
7

1

y21

�
1� 7"20

y31
þ "40

y61

�
þD

y5y7
y1

�
2� "20

y31

�
¼ 0;

(23)

_y8

�
1� 2"20

y31

�
þ 3"20

D

�
_y7y7y8

1

y1

�
1� 2"20

y31

��
2� "20

y31

�

� y5y
2
7y8

1

y21

�
1þ 8"20

y31
� 2"40

y61

��

þ 2y5y8
1

y21

�
1� 2

y1

��1
�
1� 2"20

y31

�

¼ � 3"0
y21

y5y7

�
1� 2

y1

��1
; (24)
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where

"0 ¼ jS0j
m0M

; D ¼
�
1� 2"20

y31

�
2 � 3"20y

2
7

1

y1

�
2� "20

y31

�
:

(25)

(Without any loss in generality, the right-hand sides of
Eqs. (22) and (24), which contain "0, are written for the
orientation of the particle’s spin when S31 > 0.) In
(22)–(24), and in the following, a dot denotes the usual
derivative with respect to the dimensionless argument
x ¼ s=M; in contrast to the value " from (14), which
depends on the radial coordinate, the value "0 from (25)
is const. Equations (22)–(24) together with the simple
equations

_y 1 ¼ y5; _y3 ¼ y7; _y4 ¼ y8; (26)

give the full set of the six first-order differential equations
for the six functions y1, y3, y4, y5, y7, y8 (for the planar
motions y2 ¼ �=2 and y6 ¼ 0, identically).

IV. HIGHLY RELATIVISTIC CIRCULAR ORBITS
IN SCHWARZSCHILD’S FIELD ACCORDING TO

MP EQUATIONS AT TULCZYJEW-DIXON
CONDITION

In the case of the circular orbits with r ¼ const, u3 ¼
const, u4 ¼ const, when by notation (21) and (26) we have

y5 ¼ 0; _y5 ¼ 0; _y7 ¼ 0; _y8 ¼ 0: (27)

Equations (23) and (24) are satisfied automatically and
from Eq. (22) we obtain

ðy1 � 2Þy27
�
1þ "20

y31

�
� y28

y21

�
1� 2

y1

��
1� 2"20

y31

�

¼ 3"0
y21

y7y8

�
1� 2

y1

�
: (28)

Taking into account the known relationship u�u
� ¼ 1 and

(21) we write the expression y8 through y7:

y8 ¼
�
1� 2

y1

��ð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y21y

2
7

q
: (29)

Inserting y8 from (29) into Eq. (28) we obtain the algebraic
equation for y7:

y27

�
3� y1 � "20

y21

�
þ 1

y21

�
1� 2"20

y31

�

¼ � 3"0
y21

y7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y21y

2
7

q �
1� 2

y1

�
1=2

: (30)

Because y7 � Mu3 ¼ Md’=ds, Eq. (30) determines the
dependence of the particle angular velocity on the radial
coordinate.

It is easy to see that in the limit case of a spinless
particle, if "0 ¼ 0, it follows from Eq. (30) the known
result that the circular orbits in the Schwarzschild field

exist only for y1 > 3, i.e. r > 3M, and the highly relativ-
istic circular orbits correspond to the values r from the
small neighborhood of r ¼ 3M.
The simple analysis of Eq. (30) at "0 � 0 shows that the

highly relativistic circular orbits exist only if

y1 ¼ 3� k"0; jkj"0 � 1; (31)

both for the positive and negative or zero values k. If

�ð1= ffiffiffi
3

p Þ< k< ð1= ffiffiffi
3

p Þ, Eq. (30) has the real root

y7 ¼ � 1

3
ffiffiffiffiffi
"0

p 1þOð"0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffi
3

p � k
q : (32)

If k <�ð1= ffiffiffi
3

p Þ, Eq. (30) has the two real roots

y7 ¼ � 1

3
ffiffiffiffiffi
"0

p 1þOð"0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1ffiffi

3
p � k

q : (33)

By notation (20) and (21), it follows from (32) and (33) that
the orbital 4-velocity uorbit ¼ r _’ ¼ y1y7 of the spinning
particles on the circular orbits with r ¼ ð3� k"0ÞM,
which are described by Eqs. (32) and (33), satisfies the
relationship ðuorbitÞ2 � 1="0 � 1, i.e. this velocity is
highly relativistic.

V. HIGHLY RELATIVISTIC CIRCULARORBITS IN
SCHWARZSCHILD’S FIELD ACCORDING TO MP

EQUATIONS AT MATHISSON-PIRANI
CONDITION

By direct calculation, it is not difficult to obtain from
Eq. (1) and (2) at condition (3) the algebraic equation

y37ðy1 � 3Þ2ðy1 � 2Þy8y�1
1 "0 � y27ðy1 � 2Þðy1 � 3Þ

þ y7ð2y1 � 3Þðy1 � 2Þ"0y8y�3
1 þ ðy1 � 2Þy�2

1 ¼ 0;

(34)

which is an analog of Eq. (28) for condition (4) at relation-
ships (27). That is, Eq. (34) with (29) determines the region
of existence of the circular orbits of a spinning particle in
Schwarzschild’s field and the dependence of the particle’s
angular velocity, which in notation (21) corresponds to y7,
on the radial coordinate. In contrast to Eq. (28), where y7 is
presented to the power no higher than two, Eq. (34) con-
tains y37: it is connected with the known fact that in general
cases of motions the strict MP equations at condition (3)
become the third-order differential equations, whereas
these equations at condition (4) are the system of the
second-order differential equations.
In the limiting transition to the spinless particle ("0 ¼ 0)

we get from Eq. (34) the result known from the geodesic
equations.
Taking into account the results of the previous section,

let us first consider the solution of Eq. (34) in the narrow
space region which is determined by Eq. (31). It is easy to

check that for 0 � k < ð1= ffiffiffi
3

p Þ Eq. (34), as well as Eq. (30)
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, has the single real root which in the main approximation
in "0 coincides with the right-hand side of Eq. (32). At

�ð1= ffiffiffi
3

p Þ< k< 0 Eq. (34) has the real root which is
determined by the same right-hand side of (32). Further,

if condition (31) is satisfied, in the region k <�ð1= ffiffiffi
3

p Þ
Eq. (34) has the two real roots, the positive y7ðþÞ and
negative y7ð�Þ, where

y7ðþÞ ¼ 1þOð"0Þ
3

ffiffiffiffiffi
"0

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1ffiffi

3
p � k

q ;

y7ð�Þ ¼ � 1þOð"0Þ
3

ffiffiffiffiffi
"0

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffi
3

p � k
q :

(35)

That is, in the main approximation by "0, the positive root
from (35) coincides with the positive root from (33), and
the negative root from (35) coincides with (32). It means

that for k <�ð1= ffiffiffi
3

p Þ both Eq. (30) and (34) have the
positive and negative roots. However, according to (33),
in the case of Eq. (30) the absolute values of the corre-
sponding roots are equal, whereas by (35) the absolute
value y7ð�Þ is less than the absolute value y7ðþÞ.

The appropriate physical characteristic of the above
considered highly relativistic circular orbits of a spinning
particle in Schwarzschild’s background is the Lorentz
	-factor. The value of this factor in the notation (20) and
(21) is 	 ¼ y1jy7j (see, e.g. Eq. (27) in [37]).

Figures 1–5 illustrate both the domain of existence of the
corresponding circular orbits and the dependence of the
	-factor on the radial coordinate for these orbits. While
drawing the curves in Figs. 1–5, we use the numerical
solutions of Eqs. (30) and (34) with (29). We also consider
the solutions of the MP equations in the linear spin ap-
proximation, which follow from Eq. (30) if the quadratic in
"0 terms in the left-hand side of (30) are neglected. For

comparison, the corresponding curves, which follow from
the geodesic equations, are presented as well. Without any
loss in generality, the orientation of the particle spin is
chosen by the condition S2 � S� > 0 for all Figs. 1–5. We
put 10�2 for the small value "0.
Figure 1 describes the highly relativistic circular orbits

with the positive values of the particle orbital velocities
(y7 > 0) in the small neighborhood of the radial coordinate
r ¼ 3M, when y1 ¼ 3þ �, 0< � � 1. The dotted curve
corresponds to the known geodesic circular orbits for
which the 	-factor tends to 1 if � ! 0. The dashed line
corresponds to the solution of the MP equations in the
linear spin approximation and this solution practically
coincides with the solution of Eq. (30). Here 	 ! 1 if
� !� 0:00577. The solid line shows the dependence of

FIG. 1. Dependence of the Lorentz factor on � > 0 for the
highly relativistic circular orbits with d’=ds > 0 of the spinning
particle in the small neighborhood of r ¼ 3M according to the
exact MP equations under the Mathisson-Pirani condition (solid
line) and under the Tulczyjew-Dixon one (dashed line). The
dotted line corresponds to the geodesic circular orbits.

FIG. 3. Lorentz factor vs � for the highly relativistic circular
orbits with d’=ds < 0. In the main spin approximation the solid
line is common for the exact MP equations under the Mathisson-
Pirani and Tulczyjew-Dixon conditions. The dotted line corre-
sponds to the geodesic circular orbits.

FIG. 2. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds > 0 of the spinning par-
ticle beyond the small neighborhood of r ¼ 3M by the exact MP
equations under the Mathisson-Pirani condition (solid line). The
dotted line corresponds to the geodesic circular orbits.
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the 	-factor on � for the highly relativistic circular orbits
according to the exact MP equations at the Mathisson-
Pirani condition by Eq. (34). These orbits appear at � �
0:00631 and for any fixed �, that is greater than this value,
there are two different values of the 	 which lay on the
upper and lower part of this solid line correspondingly.

For the physical interpretation of the circular orbits,
which are presented in Fig. 1, it is useful to recall some
properties of the geodesic orbits in Schwarzschild’s back-
ground. Namely, if for any fixed value of the � the initial
value of the 	-factor lays above the dotted geodesic line in
Fig. 1, a spinless particle that starts in the tangential
direction with the corresponding velocity begins the quick
motion away from the Schwarzschild mass. It means that in
this case the particle velocity is too high and the usual
gravitational attraction cannot hold this spinless particle on
the circular orbit. We note that for any � from the region

where the curves for a spinning particle appear all corre-
sponding values of 	 lay above the geodesic line (Fig. 1).
This fact that in these cases the spinning particle remains
on the circular orbit can be interpreted as a result of an
additional attractive action caused by the spin-gravity in-
teraction. To check this interpretation, below in this context
we consider other highly relativistic circular orbits of a
spinning particle in Schwarzschild’s background.
There is an essential difference between the upper and

lower part of the solid curve in Fig. 1. Namely, the last
curve is close to the dashed line for � > 0:00631 and both
these curves tend to the geodesic line as � is growing,
whereas the upper part of the solid curve in Fig. 1 signifi-
cantly differs from the geodesic line. The dependence of
the 	 on r=M for this case on the interval from 3.02 is
presented in Fig. 2, and simple analysis of Eq. (34) shows
that for r � 3M the value 	 is proportional to

ffiffiffi
r

p
. It means

that for the motion on a circular orbit with r � 3M the
particle must posses much higher orbital velocity than in
the case of the motion on a circular orbit near r ¼ 3M.
Figure 3, in contrast to Figs. 1 and 2, describes the

circular orbits with the negative values of the orbital ve-
locities (y7 < 0). The dotted and solid lines are presented
for the geodesic circular orbits and for the orbits which
follows from the exact MP equations correspondingly. At
the same time, this dashed line practically coincides with
the corresponding line following from the MP equations in
the linear spin approximation. Note that beyond the narrow
initial interval by � the difference between the solid and
dashed lines in Fig. 3 becomes negligible, whereas for the
very small � these lines differs significantly. We point out
that the line for a spinning particle lays below the geodesic
line. It is a known feature of the geodesics in
Schwarzschild’s background that if a spinless particle
starts in the tangential direction with the velocity less
than the value, which is determined by the dotted line in
Fig. 3, that this particle begins its motion toward the
Schwarzschild mass. Therefore, this fact that the spinning
particle, with the same initial velocity, remains on the
circular orbit means that in this case the spin-gravity
interaction caused the repulsive action which balances
the usual gravitational attraction. In this sense the situation
in Fig. 3 corresponds to the cases in Figs. 1 and 2, with the
difference being that due to the opposite sign of y7,
Fig. 3 shows the pointed out repulsive action, whereas
Figs. 1 and 2 correspond to the additional attractive one.
Figures 4 and 5 describe the highly relativistic circular

orbits of the spinning particle for the r < 3M, i.e. in the
region where there does not exist any circular geodesic
orbit. Figure 4 shows that by the exact MP equations, in the
small neighborhood of 3M, the circular orbits for a spin-
ning particle exists both at the Mathisson-Pirani and
Tulczyjew-Dixon condition. The dashed graph 	 vs � is
the same for the circular orbits which follow from the MP
equations in the linear spin approximation as well. Note

FIG. 5. Lorentz factor vs r for the highly relativistic circular
orbits with d’=ds < 0 of the spinning particle beyond the small
neighborhood of r ¼ 3M according to the exact MP equations
under the Mathisson-Pirani condition.

FIG. 4. Lorentz factor vs � for the highly relativistic circular
orbits with d’=ds < 0 of the spinning particle in the small
neighborhood of r ¼ 3M according to the exact MP equations
under the Mathisson-Pirani condition (solid line) and under the
Tulczyjew-Dixon one (dashed line).
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that if � ! �0:00577, the dashed line tends to 1 [more
exactly, by (31) and (32), the critical value of � is equal to

�"0=
ffiffiffi
3

p
, i.e. it is equal to � �0:00577 for "0 ¼ 10�2],

whereas the solid line for the spinning particle, which is
described by the exact MP equations under the Mathisson-
Papapetrou condition, remains finite both in the small
neighborhood of 3M and for the all values 2M< r <
3M. (The solid line in Fig. 5 is a continuation of the solid
line in Fig. 4, in another scale.) We note that Figs. 4 and 5
correspond to the case of the negative sign of the particle
orbital velocity, with d’=ds < 0, as well as in the case
which is presented in Fig. 3. Therefore, this common
direction of the particle orbital rotation leads to the same
direction of the action of the spin-gravity interaction on the
spinning particle. Namely, this action is repulsive for
Figs. 3–5. This result corresponds to the known fact that
a spinless particle, which starts in the tangential direction
relative to the Schwarzschild mass with any velocity from
the position r < 3M, falls on the horizon surface.

The interesting point is that Eq. (34) has the real roots
which describe the highly relativistic circular orbits of a
spinning particle beyond the narrow space region which is
determined by (31). Indeed, if y1 is not very close to 3 in
the sense of Eq. (31), in the region y1 > 3 Eq. (34) has the
positive root

y7 ¼ 1ffiffiffiffiffiffiffiffiffiffi
"0y1

p
�
1� 2

y1

�
1=4

��������1�
3

y1

��������
�ð1=2Þð1þOð"0ÞÞ;

(36)

whereas in the region y1 < 3 this equation has the negative
root

y7 ¼ � 1ffiffiffiffiffiffiffiffiffiffi
"0y1

p
�
1� 2

y1

�
1=4

��������1�
3

y1

��������
�ð1=2Þð1þOð"0ÞÞ:

(37)

We stress that highly relativistic circular orbits of a
spinning particle in the Schwarzschild field with 2M< r <
3M, which are described by (37), were considered in
[12,51]. It was noted that these orbits are caused by the
interaction of spin with the gravitational field and the force
of this interactions acts as the repulsive one. Besides, in
[51], the noncircular highly relativistic orbits with small
initial radial velocity of a spinning particle, as compared to
its tangential velocity, were analyzed; for example, the
orbits which are illustrated in Figs. 1 and 2 of [51]signifi-
cantly differ from the corresponding geodesic orbits of a
spinless particle.

For a deeper understanding of the physics of the highly
relativistic circular orbits of the spinning particle in
Schwarzschild’s background, let us estimate the values of
the particle’s energy E on these orbits. It is known that in
Schwarzschild’s or Kerr’s background the MP equations
have the integrals of motion E and the angular momentum
J. Their expressions are presented in many papers (see, e.g.
[13,14,17,43,59]). It is not difficult to obtain from these

general expressions the values for E in the case of the
circular orbits in the Schwarzschild background as

E ¼ m

��
1� 2

y1

�
y8 � "0y1ðy1 � 3Þy37

�
: (38)

[Eq. (38) is written at condition (3) in notation (21).]
Taking into account Eqs. (29) and (34) it is easy to check
that by (38) the energy of the spinning particle on the above
considered highly relativistic circular orbits is positive and
much less than the energy of the spinless particle on the
corresponding geodesic circular orbits. For example, the
energy of the spinless particle on the circular orbits with
r > 3M tends to 1 if r ! 3M, whereas according to (38)
the energy of the spinning particle is finite for its circular
orbits with any r, including r ¼ 3M. In the case of the
highly relativistic circular orbits of the spinning particle
beyond the small neighborhood of 3M, which are illus-
trated in Fig. 2, it follows from (38) that

E ¼ m

ffiffiffiffiffi
"0

p
ffiffiffiffiffi
y1

p
�
1� 2

y1

�
1=4

��������1�
3

y1

��������
�ð3=2Þ�

1� 3

y1
þ 3

y21

�
:

(39)

Hence, by (39) we have E2 � m2 (We also note that the
right-hand side of Eq. (39) is positive for all values y1
beyond the horizon surface.) That is, in this sense one can
draw a conclusion concerning the strong binding energy
for those orbits which is caused by the interaction of the
spin with the gravitational field.
In the next section we shall consider the noncircular

highly relativistic orbits of a spinning particle in the
Schwarzschild field which starts from the position where
r is beyond the small neighborhood of 3M (for r > 3M)
with the tangential initial velocity corresponding to ex-
pression (36) and with much smaller initial radial velocity.

VI. SOMEEXAMPLESOFHIGHLYRELATIVISTIC
NON-CIRCULAR ORBITS

In [59] the full set of 11 first-order differential equations
with respect to 11 dimensionless quantities yi (y1; y2; . . . y8
are determined by (20) and (21) and the values y9, y10, y11
are connected with the components of spin) following from
the exact MP equations at the Mathisson-Pirani supple-
mentary condition for Kerr’s background is presented.
Naturally, we can use these equations in the more simple
partial case of planar motions of a spinning particle in the
Schwarzschild background.
We note that the pointed out system of equations from

[59] contains the two parameters proportional to the con-
stants of the particle’s motion: the energy and angular
momentum. By choosing different values of these parame-
ters for the fixed initial values of yi one can describe the
motions of different centers of mass. To describe the proper
center of mass of a spinning particle in the Schwarzschild
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background, the method of separation of the corresponding
solutions of the exact MP equations, proposed in [51], was
used in [59] (see Eqs. (46), (47), and (48) and Figs. 8, 9, 10,
and 11 from [59]). Here we use the same method.
All Figs. 6–11 correspond to the initial value of the

radial coordinate r ¼ 10M ¼ 5rg, the initial value of the

tangential velocity r _’, which is determined by (36), and
for the small value "0 we put 10

�2. The initial value of the
radial velocity in Figs. 6, 7, 10, and 11 is equal to �10�2,
and is equal to 10�2 in Figs. 8 and 9. For comparison, we
present the corresponding solutions of the geodesic equa-
tions with the same initial values of the coordinates and
velocity. By the way, numerical integration of the exact MP
equations under the Tulczyjew-Dixon condition (22)–(24),
with the same initial values of the particle coordinates and
velocity that are used in Figs. 6–9, shows that the
corresponding solutions are close to the solutions of the
geodesic equations.
Figures 10 and 11 show the oscillatory solutions of the

exact MP equations under the Mathisson-Pirani condition
which arise when the balance between the particle’s initial

FIG. 8. Radial coordinate vs proper time for the spinning
particle with the initial values of the tangential and radial
velocities which are equal to � 35 and 10�2 correspondingly
(solid line) and for the geodesic motion (dashed line).

FIG. 6. Radial coordinate vs proper time for the spinning
particle with the initial values of the tangential and radial
velocities which are equal to � 35 and �10�2 correspondingly
(solid line) and for the geodesic motion (dashed line).

FIG. 9. Trajectories in the polar coordinates of the spinning
(solid line) and the spinless particle (dashed line) with the same
initial values of the coordinates and velocity as for Fig. 8.

FIG. 7. Trajectories in the polar coordinates of the spinning
(solid line) and the spinless particle (dashed line) with the same
initial values of the coordinates and velocity. The circle with the
radius 2 corresponds to the horizon line.

FIG. 10. Radial coordinate vs proper time for an oscillatory
solution of the MP equations (solid line) and for the geodesic
motion with the same initial values of the coordinate and
velocity (dashed line).
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coordinates, velocity, and the parameters of energy and
angular momentum, necessary for description of the proper
center of mass, is violated.

VII. CONCLUSIONS

In this paper, the highly relativistic solutions of the MP
equations in the Schwarzschild background are under in-
vestigation. It is shown that the representative points for
the spinning particle which are chosen by both the
Mathisson-Pirani and Tulczyjew-Dixon supplementary
condition can follow the circular significantly nongeodesic
highly relativistic orbits in Schwarzschild’s background
with the radial coordinate r from the small neighborhood
of r ¼ 1:5rg. Beyond this neighborhood the highly

relativistic circular orbits exist only for the representative
point which is determined by the Mathisson-Pirani condi-
tion, both for rg < r < 1:5rg and r > 1:5rg. Some cases of

such orbits in the region rg < r < 1:5rg were considered in

[12,51], and in the focus of the present paper are the
circular and noncircular highly relativistic orbits which
start from r > 1:5rg. In contrast to the circular orbits in

rg < r < 1:5rg, which are possible due to the significant

repulsive action of the spin-gravity interaction, the orbits in
the region r > 1:5rg show the significant additional attrac-

tive action of this interaction, as compare to the motion of a
spinless particle (Secs. Vand VI). These concrete examples
of the strong additional gravity action on a spinning parti-
cle is the novel contribution of the present paper.
For realization of the all highly relativistic orbits,

pointed out above, the spinning particle must posses high
orbital velocity which corresponds to the relativistic
Lorentz factor proportional to 1=

ffiffiffiffiffi
"0

p
(some numerical

estimates are presented in [12,37]). The dependence of
this factor on the radial coordinate is determined by (36).
In particular, for r � 1:5rg the particle’s orbital velocity

uorbit ¼ y1y7 and the corresponding Lorentz factor are
proportional to

ffiffiffi
r

p
.

We point out: (1) The results from Secs. IV and V are
useful in further investigations of possible synchrotron
radiation of charged spinning particles in strong gravita-
tional fields, and (2) The new data from Secs. Vand VI are
interesting in the context of the paper [33] results, where
the importance of the Mathisson-Pirani condition for the
MP equations is stressed.
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