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Employing a thermodynamic interpretation of gravity based on the holographic principle and assuming

underlying particle statistics, fermionic or bosonic, for the excitations of the holographic screen leads to

modified Newtonian dynamics (MOND). A connection between the acceleration scale a0 appearing in

MOND and the Fermi energy of the holographic fermionic degrees of freedom is obtained. In this

formulation the physics of MOND results from the quantum-classical crossover in the fermionic specific

heat. However, due to the dimensionality of the screen, the formalism is general and applies to two-

dimensional bosonic excitations as well. It is shown that replacing the assumption of the equipartition of

energy on the holographic screen by a standard quantum-statistical-mechanics description wherein some

of the degrees of freedom are frozen out at low temperatures is the physical basis for the MOND

interpolating function ~�. The interpolating function ~� is calculated within the statistical mechanical

formalism and compared to the leading phenomenological interpolating functions, most commonly used.

Based on the statistical mechanical view of MOND, its cosmological implications are reinterpreted: the

connection between a0 and the Hubble constant is described as a quantum uncertainty relation; and the

relationship between a0 and the cosmological constant is better understood physically.
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I. INTRODUCTION

The connection between gravity and thermodynamics
was first noted in the pioneering works of Bekenstein [1]
and Hawking [2] on black hole thermodynamics. Later on
the idea was further expanded by Unruh [3] who identified
the connection between acceleration and temperature,
demonstrating that an accelerating observer will observe
a black-body radiation whose temperature would be pro-
portional to his acceleration. Employing these ideas and
turning the line of argument around, Jacobson [4] derived
the Einstein field equations from the laws of thermody-
namics, based on the assumption that the proportionality
between area and entropy, derived by Bekenstein for black
holes, is universal. Similar results were also obtained by
Padmanabhan in a series of works reviewed in [5]. Verlinde
[6] introduced the idea that Newton’s law of gravitation
can be understood as an entropic force, basing this result on
the holographic approach and the thermodynamical for-
mulation of gravity; similar ideas were also presented by
Padmanabhan [7].

On the other hand, seemingly unrelated to the thermo-
dynamic interpretation of gravity, gravitational theory is
faced with observational challenges. Observational dis-
crepancies between the observed mass in a galaxy and its
galactic rotation curves and large velocities in galaxy
clusters are already long standing problems. Attempts to
solve this observational puzzle have resulted in the intro-
duction of ‘‘dark matter’’ as well as alternative gravity
theories such as modified Newtonian dynamics (MOND)
[8]. In the late 1990’s, a second cloud appeared in the
horizon, when observations of distant redshift relations
indicated that the expansion of the universe is accelerating

[9], implying a positive cosmological constant �. The idea
of a cosmological constant was first introduced by Einstein
himself, as it appears naturally in his field equations.
However problems arise when considering its observed
physical value and the attempt to connect it with the
quantum-mechanical vacuum energy. MOND, introduced
ad hoc to solve discrepancies on the galactic scale, has also
had success in explaining observations regarding super-
clusters [10]. However it seemed to have no cosmological
predictions. It is thus surprising to find out that the accel-
eration scale a0 introduced into MOND to phenomenolog-
ically explain the observed galaxy rotation curves, is
related to the value of the Hubble constant, H0, through
the relationship ða0=2�Þ � cH0 [11] and to the cosmologi-

cal constant as well ða0Þ � cð�=3Þ1=2=2� [12].
These seemingly unconnected views of gravity, i.e.,

MOND and the thermodynamic approach are nevertheless
interlinked, and obtaining an underlying microscopic the-
ory for them will help explain the cosmological aspects of
MOND. From the thermodynamic representation of grav-
ity it seems natural to relate the constant a0, having di-
mensions of acceleration, to a temperature via the Unruh
relationship, resulting in a temperature scale. Based on
Verlinde’s idea of gravity being an entropic force, several
attempts have been recently made to obtain MOND
by considering some of the degrees of freedom on the
holographic screen to be frozen out. In [13] MOND was
obtained by considering a one-dimensional Debye model
for the excitations on the holographic screen thus restrict-
ing the excited degrees of freedom at low temperatures,
whereas [14] considered collective excitations on the holo-
graphic screen thus obtaining MOND. MOND was also
obtained by considering a minimal temperature on the
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holographic screen [15] and relating it to a0. In [16] a
nonhomogenous cooling of the holographic screen was
considered resulting from a phase transition occurring at
a critical temperature; under this assumption a modified
Friedmann equation compatible with MOND theory was
also obtained. This work was followed and extended by
[17] in which entropic corrections to the theory where
considered. The work in [18] should also be noted for
obtaining MOND through entropic volume corrections to
Newton’s law. The present work simply assumes that
degrees of freedom on the holographic screen should be
treated through the quantum-statistical-mechanics formal-
ism; following this assumption we not only obtain MOND
but we are able to calculate its interpolating function ~� and
compare it to leading phenomenological expressions
which are based on astronomical data.

In Sec. II Verlinde’s thermodynamic formulation of
gravitation is briefly described. In Sec. III a modification
to Verlinde’s theory is introduced by replacing the equi-
partition rule for excitations on the holographic screen, by
the quantum statistical mechanical expression for the
energy of a fermionic or bosonic two-dimensional gas.
Via this replacement MOND is obtained and the connec-
tion of the MOND interpolating function ~� to the two-
dimensional specific heat is established. The obtained
interpolating function is then compared to the MOND phe-
nomenological interpolating functions. Cosmological impli-
cations of the statistical mechanical interpretation of a0 are
described in Sec. IV.A short summary is then given in Sec.V.

II. A FORMULATION OF THE THERMODYNAMIC
THEORY OF GRAVITY

The connection between gravity and thermodynamics
has been greatly developed by Padmanabhan [7] and
Verlinde [6]. In this section we choose to describe this
connection through a formulation introduced by Verlinde.
We start by briefly introducing this formulation following
Sec. 3 of his paper [6], which is based on four well-known
essential equations from which one obtains Newtonian
gravity theory.

Consider a point mass, M, surrounded by a spherical
holographic screen of radius R. Thermodynamics on the
holographic screen is connected to gravitation by applying
two equations. The first is the Unruh relation between the
temperature, T and the acceleration a of an observer at the
screen,

kBT ¼ 1

2�

ℏa
c
; (2.1)

where c is the speed of light and kB is Boltzmann’s
constant. For simplicity of notation we shall use energy
units such that kB ¼ 1. The second relationship is the
relation obtained by Bekenstein for the number of bits or
degrees of freedom, N, on the horizon of a black hole,
which Verlinde extends to the holographic screen,

N ¼ Ac3

Gℏ
; (2.2)

where A is the area of the holographic screen and G is
Newton’s gravitational constant. The two remaining equa-
tions needed to complete the model are Einstein’s mass,
energy, E, relation

E ¼ Mc2 (2.3)

and the thermodynamic equipartition rule

E ¼ 1
2NT: (2.4)

It should be noted that in this approach it is the gravita-
tional energy of Eq. (2.3) which is related to thermal
excitations on the holographic screen.
Combining these four Eqs. (2.1), (2.2), (2.3), and (2.4),

and expressing the holographic screen area by its
radius, A ¼ 4�R2, one directly obtains Newton’s law of
gravitation,

a ¼ GM

R2
: (2.5)

III. QUANTUM STATISTICAL EXTENSION

In this section we extend Verlinde’s model, introduced in
the previous section, by considering the quantum particle
statistics of the bits on the holographic screen. The equi-
partition rule described in Eq. (2.4) is considered as the
Dulong Petite law, valid for the high temperature limit,
which needs to be modified at lower temperatures due to
the underlying particle statistics. It will be shown that
considering the quantum statistical nature of the excita-
tions on the holographic screen leads to MOND (for a
recent review of MOND theory see [19]).

A. The physical interpretation of a0 in terms of
Fermionic excitations

We start by considering fermionic excitations, on the
holographic screen. In defining the particle statistics of
fermions one needs to introduce an energy scale, the
Fermi energy EF, which distinguishes between excited
thermal states and states which are ‘‘frozen out’’. In the
case of fermionic excitations of the holographic screen,
this energy scale will be related to a0. In Verlinde’s ther-
modynamic gravitational formulation, gravitational effects
are related only to the thermal excitations of the holo-
graphic screen, as can be deduced from the equipartition
rule (2.4). Thus in considering gravitational effects the
systems ground state energy should be ignored and one
should consider only thermal excitations.
We begin by calculating the energy Etot, of an excited

two-dimensional fermionic system due to the heating of
the system to a temperature T, and use the expression
obtained to replace the equipartition relation (2.4). The
energy of the two-dimensional Fermi gas is obtained by
calculating the following integral [20]:
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Etot ¼ gAm

2�ℏ2

Z 1

0

�d�

exp½ð���Þ=T� þ 1
; (3.1)

where, g ¼ 2sþ 1, s is the spin of the particle, m, is its
mass, and � is the chemical potential. The energy was
denoted as Etot to distinguish it from the energy appearing
in Eqs. (2.3) and (2.4), which is the gravitational energy
related only to thermal excitations. Calculating the integral
to second order in the temperature one obtains

Etot ¼ E0 þ gAm�

12ℏ2
T2: (3.2)

The number of particles in the system, is given by

Npar ¼ gAm

2�ℏ2

Z 1

0

d�

exp½ð���Þ=T� þ 1
; (3.3)

In our derivation we consider the particle number, Npar, to

be the free variable whereas � is determined through
Eq. (3.3). In the zero temperature limit T ¼ 0, one obtains

N0
par ¼ gAm

2�ℏ2
EF; (3.4)

where EF is the system’s Fermi energy. Finite temperature
corrections to the particle number are exponentially small
in T=EF. We can now express the system’s thermal energy,
E ¼ Etot � E0, in terms of the temperature, the particle
number and the Fermi energy,

E ¼ T2N0
par�

2

6EF

: (3.5)

The above expression for the thermal energy replaces the
equipartition relation (2.4).

Employing Eq. (3.5), we follow Verlinde’s steps using
the three remaining Eqs. (2.1), (2.2), and (2.3) and some
algebraic manipulations to obtain MOND. We start by
obtaining an expression for the temperature squared,

T2 ¼ 6Mc2EF

N0
par�

2
: (3.6)

Relating the temperature to the acceleration through the
Unruh formula (2.1), we obtain

a2 ¼ 24c2

ℏ2

Mc2EF

N0
par

: (3.7)

In two dimensions Npar ¼ N=2 where N is the number of

degrees of freedom and is equal to the number of Planck
cells on the holographic screen. Thus

N0
par ¼ Ac3

2Gℏ
: (3.8)

The area of the screen is given by A ¼ 4�R2. Equation
(3.7) is very similar to the MOND equation in the deep
MOND limit

a

�
a

a0

�
¼ G

M

R2
: (3.9)

TheMOND equation (3.9) is obtained, employing Eq. (3.8)
and identifying a0 as

a0 ¼ 12c

ℏ�
EF: (3.10)

The Fermi energy defines an energy scale, relating it to
an acceleration scale the same way temperature is trans-
formed, Eq. (2.1) we define EF ¼ ðℏ=2�Þð ~EF=cÞ and
obtain

a0 ¼
~EF

b
; (3.11)

where b � �2=6. It should be noted that the Newtonian
limit for Eq. (3.9) is obtained at the high temperature
(acceleration) limit since the Maxwell-Boltzmann statis-
tics is the high temperature limit of the Fermi, Bose
statistics. When T � EF the fermionic particle distribu-
tion in Eq. (3.1) goes to the Maxwell-Boltzmann limit and
the limit is independent of EF i.e., a0.

B. The interpolating function ~�

Regarding the physical interpretation of Eq. (3.11)
which relates a0 to ~EF, it should be noted that since the
Fermi energy is related to the density of the particles, a0
can also be viewed as a constant interparticle distance on
the holographic screen. We obtained the above correspon-
dence for a0 by introducing fermionic degrees of freedom
on the holographic screen and considering the deepMOND
regime, i.e., very low accelerations, a � a0. The high
temperature regime was shown to correspond to the
Newtonian limit. In the intermediate regime MOND is
characterized by an interpolating function ~� which defines

the MOND formula ~a ~�ðj ~aj=a0Þ ¼ � ~r�. The asymptotic
behavior of the function ~�ðxÞ; x ¼ a=a0, in the low accel-
eration regime x ! 0 is ~�ðxÞ ¼ x corresponding to the
deep MOND limit, and in the high acceleration limit
~�ðxÞ ¼ 1, defining the Newtonian limit described above.
Whereas in MOND the interpolating function is obtained
phenomenologically from astronomical data, we can use
our statistical mechanical interpretation in terms of the
underlying fermionic degrees of freedom to obtain ~�ðxÞ
in the intermediate regime. We start by expressing ~�ðxÞ in
MOND as the following ratio:�

GM

R2

�
=a ¼ ~�ða=a0Þ: (3.12)

Employing Eqs. (2.1), (2.2), and (2.3) we can write the
above ratio as

E

NparT
¼ ~�ða=a0Þ: (3.13)

E can be calculated from Eq. (3.1) under the constraint of a
fixed particle number given by Eq. (3.3). Subtracting from
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the result the ground state energy one obtains the thermal
energy, E. We have performed this calculation numerically
and the result is expressed in Fig. 1 by the continuous line.
As expected the function crosses over from a linear depen-
dence for small a (low temperatures) to a 1� c=a depen-
dence for large a (high temperature). The result is
compared with two leading phenomenological expressions
for the MOND ~� function, ~� ¼ x=ð1þ xÞ, known as the
‘‘simple’’ � function which is expressed in the figure as a

dot-dashed line and ~� ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ x2Þp

, which is also com-
monly used [19], known as the ‘‘standard’’ interpolating
function, designated in the figure by the dotted line. Both
interpolating functions belong to the n family of interpo-

lating functions ~� ¼ x=ð1þ xnÞ1=n, where the n ¼ 1 de-
scribes the simple interpolating function and the n ¼ 2 the
standard interpolating function. It should however be noted
that these MOND interpolating functions are put in by
hand, whereas the function in Eq. (3.13) is a result of
physical considerations.

The data on galaxy rotation curves is becoming more
and more restrictive regarding which functions can
be considered as reasonable interpolating functions.
Nowadays the data seem to favor the simple, n ¼ 1 inter-
polating function or some interpolation between n ¼ 1 to
the standard interpolating function n ¼ 2 [19]. The ther-
modynamic interpolating function we have calculated
seems to do exactly that.

It should be noted that the same calculation for the
thermal energy E performed numerically to obtain ~� in
Eq. (3.13) can be performed analytically, and the result can
be expressed in terms of the dilog function Li2ðyÞ

E ¼ �N0
par

EF

�
T2Li2ð�e�=TÞ þ E2

F

2

�
; (3.14)

where N0
par and EF are given in Eq. (3.4) and � is defined

through Eq. (3.3). Thus an analytical expression can be
given for the ~�ðxÞ MOND interpolation function

~�ða=a0Þ ¼ � b

aa0

��
a

b

�
2
Li2ð�e ��=aÞ þ a20

�
; (3.15)

where �� ¼ ðℏ=2�Þð ~�=cÞ is the chemical potential related
to an acceleration scale the same way temperature is trans-
formed, Eq. (2.1). The MOND interpolating function, ~�, in
the thermodynamic interpretation is simply the thermal
energy divided by the total number of excitations times
the temperature, thus it can be viewed as the relative
number of the thermal excitations.
In the low temperature limit ~� can be connected to the

specific heat for the two-dimensional fermionic gas. To
demonstrate this connection we compare the thermal
energy to E ¼ Mc2 but in this case we do not estimate
the integral as was done in Eq. (3.2), instead to obtain the
thermal energy we use the specific heat integrating it up to
a given temperature

Z T

0
dT0CV

�
T0

EF

�
¼ Mc2; (3.16)

where the partial derivative was replaced by the specific
heat CV ¼ ð@E=@TÞV . Since for low temperatures the spe-
cific heat is linear in the temperature we can obtain E in
terms of the low temperature specific heat, thus�

T

2

�
CV

�
T

EF

�
ffi Mc2: (3.17)

From Eq. (3.13) we identify ~� in the MOND equation with
the specific heat, divided by the temperature times N0

par the

number of degrees of freedom, obtaining the following
relation

1

N0
par

CV

�
T

EF

�
ffi ~�

�
a

a0

�
: (3.18)

The physical interpretation of Eq. (3.18) is straightfor-
ward: applying a force to a body, in trying to accelerate the
body we are also attempting to heat degrees of freedom on
the holographic screen, our ability to do so is given by the
specific heat of the screen. However, the physical basis for
MOND is revealed in Eq. (3.13), which shows that the
interpolating MOND function ~� is essentially the relative
number of thermal excitations since it is given by the ratio
of the thermal excitation energy divided by the high tem-
perature thermal excitation energy, where in this limit each
degree of freedom gets an energy of T=2.
In the high temperature limit the physics does not

depend on the quantum nature of excitations. Rather each
excited degree of freedom receives an energy of T=2

0 1 2 3 4 5 6 7
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FIG. 1 (color online). Comparison of ~� as obtained by the
statistical mechanical considerations (full line) to two of the
leading MOND interpolating functions: the standard (dot-dashed

line) ~�ðx � 1Þ ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
and the simple (dotted line)

~�ðx � 1Þ ¼ x=ð1þ xÞ interpolating functions.
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as defined by the equipartition rule. In this limit we
can simply follow Verlinde’s formulation and obtain
Newtonian dynamics. The Newtonian limit in the formu-
lation of MOND obtained by taking the limit a0 ! 0, has a
simple physical meaning, in the formulation of MOND via
the specific heat, Eq. (3.18) the Newtonian limit results
directly from the Dulong Petite law. Even though the high
temperature limit is governed by the Dulong Petite law
obtaining the first asymptotic correction to ~� in the high
temperature limit T > T0 is not straightforward. ~� is pro-
portional to the ratio between the thermal energy and the
temperature (3.13) in the Dulong Petite law the energy is
linear in temperature however there is also a temperature
independent part to the energy as can be deduced from
Eq. (3.14); this term gives a correction to ~� which is
inverse in the temperature. Numerically one obtains
~�ðx � 1Þ � 1� ð0:41=xÞ, in the particle statistics formu-
lation whereas employing the simple interpolating function
the asymptotic correction is ~�simpleðx � 1Þ � 1� ð1=xÞ
and via the standard interpolating function one obtains
~�standardðx � 1Þ � 1� ð1=2x2Þ. In general, for the n fam-
ily of interpolating functions the asymptotic correction is
given by ~�nðx � 1Þ � 1� ð1=nxnÞ.

C. Bosonic extension

The above relationship (3.18) between the two-
dimensional specific heat and ~� in the MOND equation
was obtained for fermions, however in two dimensions the
specific heat for an ideal gas of Fermi particles is identical
to the specific heat of an ideal Bose gas for all T and N.
Thus in general the acceleration a0 is related to the tem-
perature T0 which divides the classical from the quantum
regime. The physical meaning of (a0=a) is obtained by the

connection to thermodynamics in which ðT=T0Þ1=2 is the
ratio of the mean interparticle separation to the thermal
wavelength [21].

Since the typical temperature scale, T0, separating the
classical from the quantum regime is identified with the
MOND acceleration scale a0, our result applies both to
Fermi as well as Bose excitations of the holographic
screen. The result for bosons is expressed in terms of T0,
instead of in terms of EF. It should be realized that the
temperature scale T0 does not correspond to a critical
temperature associated with a phase transition; quite the
opposite is true. The reason the fermionic and bosonic two-
dimensional specific heat can be identical, is the fact that
there is no Bose condensation in two dimensions.

Equation (3.18) is valid for the low temperature limit,
and was obtained for fermions; to verify it for bosons we
first consider the case of a two-dimensional bosonic gas
composing the holographic screen, and comparing it to our
previous results we obtain their equivalence to the fermi-
onic results. We start with the general expression for the
two-dimensional specific heat, both for fermions and for
bosons, [22]

CVðy0Þ ¼ �N2
par

T�

1þ y0
y0

� 2T�Li2ð�y0Þ; (3.19)

where Npar is the total number of particles, � is a constant

defined as � ¼ gAm=4�ℏ2 and y0 is defined through the
relationship Npar ¼ T� logð1þ y0Þ which holds for fermi-

ons as well as for bosons. Since, y0 ! 1 when T ! 0, we
obtain from Eq. (3.17) in the low temperature limit where
Li2ð�y0Þ � �½�2=6þ log2ðy0Þ=2� the expression

T2 ¼ Mc2

�b
: (3.20)

To compare this with our previous results we insert the
fermionic expression� ¼ ðN0

par=2EFÞ and obtain Eq. (3.6),
through which the fermionic result in Eq. (3.10) is also
obtained. From Eq. (3.18), taking the low temperature limit
CV=N ¼ ðbT�=NÞ, we obtain via Eqs. (2.1) and (3.11) the
required MOND low acceleration limit,

~�ðx � 1Þ ¼ x; (3.21)

where x ¼ ða=a0Þ. It should be noted that the leading order
corrections to (3.21) are exponentially small in x.

IV. COSMOLOGICAL IMPLICATIONS

Having obtained MOND through a quantum statistical
mechanical view we proceed to review MOND’s cosmo-
logical implications through similar considerations. It
should be noted that the key equations defining the con-
nections between the MOND acceleration scale a0 and
cosmological scales were all previously obtained. The
purpose of this section is mainly to reinterpret previous
results in terms of a quantum statistical mechanical view.
The relationship between the MOND acceleration scale

a0 and the Hubble constant

a0
2�

� cH0; (4.1)

was obtained in observations. It turns out employing the
quantum statistical mechanical description the above rela-
tion has a simple quantum-mechanical interpretation as a
cosmological energy time uncertainty relation,�E�t � ℏ.
a0 relates through the Unruh formula, Eq. (2.1), to the
energy dividing quantum and classical regimes, thus relat-
ing to an energy uncertainty �E � ðℏa0=2�cÞ. The in-
verse of the Hubble constant relates to a time uncertainty
�t � 1=H0, and combing both we obtain a cosmological
quantum uncertainty relation Eq. (4.1).
The second cosmological relationship related to MOND

is the connection between a0 and the square root of the
cosmological constant [12,23]

a0 � a�
2�

; (4.2)

where a� ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
. Astronomical observations indicate

we live in an accelerating universe [9], i.e., one defined
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by a positive cosmological constant �> 0. In a cosmo-
logical constant dominated universe a connection between
the cosmological constant and a0 had been obtained in [12]
and recently reviewed in [23]. We briefly review its deri-
vation and use our statistical mechanical interpretation of
MOND to explain the connection. The net temperature
measured by a noninertial observer with acceleration, a,
in a de Sitter universe is given by [12],

~T ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ a2�

q
� a�

�
=2�; (4.3)

which is simply an acceleration analog of the background
reference temperature arising due to the universe’s accel-
eration. In [23] it was shown by considering the limit
a � a� that one obtains Eq. (4.2). Similar considerations
were also presented in [15]. The relationship (4.2) has the
same physical interpretation in a quantum statistical
mechanical description of excitations on the holographic
screen. However in the quantum statistical description
there is a natural connection between a0 as the Fermi
energy or its bosonic analog to the background reference
temperature or energy with respect to which the excitations
defined via a noninertial Unruh temperature are measured.

Through the expression for the background reference
temperature (4.3) Milgrom obtained an expression for the
MOND interpolating function, ~� [12],

~� ¼ ½1þ ð2xÞ�2�1=2 � ð2xÞ�1: (4.4)

It is interesting to note that the asymptotic expansion
for large x for the above interpolating function (4.4) is
~�ðx � 1Þ � 1� 1=2x which is very close to the asymp-
totic expansion via the quantum statistical approach
~�ðx � 1Þ � 1� ð0:41=xÞ, whereas the latter was obtained
for the dynamics due to a given mass M. However, the
asymptotic expansion for small x of the interpolating function
(4.4) has corrections of the order of Oðx3Þ to the leading x
term whereas for the quantum statistical approach we ob-
tained corrections which are exponentially small in 1=x, i.e.,
Oðexp½�1=x�Þ. Unfortunately these differences are ex-
tremely small on all relevant scales and thus are almost
impossible to discriminate with current astronomical
observations.

V. SUMMARY

In summary, a quantum-mechanical microscopic de-
scription has been found to lead to MOND. Through this
approach the physics of MOND has been shown to arise
from the possibility of creating excitations on the holo-
graphic screen; more specifically for low temperatures it
was directly related to the specific heat of fermionic or
bosonic excitations of the holographic screen. The MOND
acceleration term, a0, was first shown to correspond to the
Fermi energy of excitations on the holographic screen;
later it was shown to apply also to bosonic excitations,
thus corresponding more generally to a temperature scale
T0, separating the classical from the quantum regime. A
general expression for the MOND interpolating function
was obtained and its physical meaning was shown to be
related to the relative number of thermal excitations on
the holographic screen, which in turn can be related to the
temperature integral of the specific heat or directly to the
specific heat for low temperatures. Moreover the interpo-
lation function was calculated numerically and compared
with leading phenomenological interpolating functions.
The calculated quantum statistics based interpolation func-
tion seems to fit well with the best estimated phenomeno-
logical MOND interpolation functions. It is thus important
to stress that the quantum-mechanical microscopic basis
approach is not only a physical basis for MOND; it is a
physical theory with observable predictions. Even though
the interpolating function arising from the theory seems to
agree with the leading phenomenological functions, there
still are some differences in high-order corrections.
Whereas corrections to the linear leading order term in
the phenomenological interpolating functions, in the
deep MOND regime, i.e., small a=a0, are polynomial in
a=a0 in the quantum-mechanical microscopic description t
hese corrections are exponentially small in a0=a, i.e.,
Oðexp½�1=x�Þ.
On the cosmological scale the relationship between a0

and the Hubble constant was shown to be related to an
energy time uncertainty and a0 was shown to correspond to
the background reference Unruh temperature arising from
the universe’s acceleration.
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