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To confront relativity theory with observation, it is necessary to split spacetime into its temporal and

spatial components. The (1þ 3) timelike threading approach involves restrictions on the gravitational

potentials ðg��Þ, while the (3þ 1) spacelike slicing approach involves restrictions on ðg��Þ. These latter
coordinate conditions protect chronology within any such coordinate patch.While the threading coordinate

conditions can be naturally integrated into the structure of Lorentzian geometry and constitute the standard

coordinate conditions in general relativity, this circumstance does not extend to the slicing coordinate

conditions. We explore the influence of chronology violation on wavemotion. In particular, we consider the

propagation of radiation parallel to the rotation axis of stationary Gödel-type universes characterized by

parameters�> 0 and� > 0 such that for�< 1 (�> 1) chronology is protected (violated).We show that in

the WKB approximation such waves can freely propagate only when chronology is protected.
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I. INTRODUCTION

Though space and time refer to essentially different
aspects of our experience, their unification in the theory
of relativity has been a distinct achievement. To interpret
observations in accordance with this theory, however, we
need to split spacetime into its components [1]. Observers
are macrophysical entities; therefore, their associated tem-
poral coordinate is thermodynamic time derived from the
concept of entropy. This leads to the arrow of time, its one-
way property that has no analog in space. In principle,
classical gravity can change this one-way character of time
and produce a closed timelike curve (CTC). That is, such a
possibility is not ruled out by the geometric structure of
classical general relativity. In this paper, we approach the
gravitational violation of chronology from the viewpoint of
the theory of measurement of space and time.

We begin our discussion of spacetime splitting with
ideal inertial observers in Minkowski spacetime. Imagine
a global inertial frame with coordinates x� ¼ ðct;xÞ and
spacetime interval �ds2 ¼ ���dx

�dx�, where ð���Þ ¼
diagð�1; 1; 1; 1Þ. We define fundamental observers to be
those at rest in space. The world lines of the fundamental
observers are therefore temporal coordinate lines that
thread spacetime. At each instant of coordinate time t,
the corresponding orthogonal subspace is the ‘‘space’’ of
the static observer. This is schematically depicted in
panel (a) of Fig. 1. This ‘‘1þ 3’’ splitting is the threading
approach to separating time and space of a fundamental
observer.

Alternatively, consider any congruence of inertial ob-
servers. In their bundle of world lines, we identify ‘‘local’’
t ¼ constant hypersurfaces, whichmust represent the space
experienced by these observers. The vector normal to such a
hypersurface must indicate the direction of increasing time
coordinate. This ‘‘3þ 1’’ splitting is the slicing approach to
separating space and time of an observer family and is
schematically depicted in panel (b) of Fig. 1.
To preserve the temporal order of events under Lorentz

transformations, we must explicitly exclude superluminal
phenomena. To see this, consider the temporal Lorentz
transformation from the global inertial frame to another
inertial frame moving with velocity v, i.e.,

FIG. 1. (a) Schematic plot representing the threading ap-
proach to spacetime splitting in a global inertial frame in
Minkowski spacetime. (b) Schematic plot representing the slic-
ing approach for the congruence x ¼ x0 þ vt, where x0 varies
over the congruence and v is a constant speed.
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t0 ¼ �

�
t� 1

c2
v � x

�
: (1)

Suppose two events ðt1;x1Þ and ðt2;x2Þ are causally re-
lated; hence, j�xj � cj�tj, where �x ¼ x2 � x1 and
�t ¼ t2 � t1. Thus, �t0 ¼ �ð�t� v ��x=c2Þ implies
�t0=�t > 0, and if t2 > t1, then t02 > t01. In this way, cau-
sality is preserved if there is no superluminal propagation.

The treatment of spacetime splitting can be extended to
accelerated observers in Minkowski spacetime using the
hypothesis of locality, namely, the assumption that an
accelerated observer is instantaneously equivalent to an
otherwise identical momentarily comoving inertial ob-
server. Further extension to gravitational fields is then
possible via Einstein’s principle of equivalence. The
threading and slicing approaches coincide for inertial ob-
servers in Minkowski spacetime. Using these extensions to
accelerated systems and gravitational fields, we will show
that they are compatible with each other when a universal
temporal coordinate exists, but are in general incompatible
in a gravitational field that has no cosmic time.

In a gravitational field, the threading and slicing ap-
proaches lead to restrictions on coordinate systems that
may be used to cover the spacetime manifold. The thread-
ing coordinate conditions can be invariantly included in the
geometric structure of Einstein’s theory, so that all space-
time coordinate systems must obey these standard thread-
ing admissibility conditions. The situation is different with
the slicing coordinate conditions; in general, they simply
impose additional restrictions on coordinate systems so as
to exclude causality violation via closed timelike curves.

It is interesting to study the influence of chronology
violation on wave propagation. In fact, Huygens’ principle
assumes at the outset that coordinate time monotonically
increases along the wave front. Therefore, the wave motion
may exhibit some unusual features in chronology violating
universes. A complete treatment of this topic is beyond the
scope of this paper; however, we explore here some of the
consequences of the absence of a cosmic time coordinate
for wave motion in a gravitational field. In particular, we
study wave propagation parallel to the axis of rotation of
stationary Gödel-type universes.

Geometrical units (c ¼ G ¼ 1) will be used hereafter.
The plan of this paper is as follows: In Sec. II, spacetime
splitting is discussed in a gravitational field. The resulting
conditions on the admissibility of coordinates are exam-
ined in Sec. III. Some aspects of wave motion in certain
Gödel-type universe models are treated in Secs. IV, V, and
VI. Sec. VII contains a discussion of our results.

II. OBSERVERS IN A GRAVITATIONAL FIELD:
THREADING AND SLICING APPROACHES

A. Threading approach

The fundamental observers in a gravitational field are
those at rest in space. These static observers are naturally

connected to a coordinate system. All other observers are
pointwise related to the fundamental observers by Lorentz
transformations. Imagine a fundamental observer with
four-velocity u in an arbitrary gravitational field, as de-
picted in Fig. 2. In general, such an observer is accelerated.
The spacetime interval along its trajectory—namely, where
dxi ¼ 0, for i ¼ 1, 2, 3—denotes its proper time, �ds2 ¼
gttdt

2. Therefore, we must have gtt < 0. Moreover, its
orthogonal subspace � represents its local rest space and

is such that u�dx
� ¼ 0, where u� ¼ ð�gttÞ�1=2��

0. Thus

the equation that determines � is gttdtþ gtidx
i ¼ 0. In

general, one can write

g��dx
� � dx� ¼ gtt

�
dtþ gti

gtt
dxi

�
�
�
dtþ gtj

gtt
dxj

�

þ
�
gij �

gtigtj
gtt

�
dxi � dxj; (2)

so that

g��dx
� � dx�j� ¼ �ijdx

i � dxj; (3)

where

�ij ¼ gij �
gtigtj
gtt

: (4)

It follows from the inverse relationship between ðg��Þ and
ðg��Þ that ð�ijÞ and ðgijÞ are inverse of each other; simi-

larly, ðgijÞ and ð�̂ijÞ are also inverse of each other, where

�̂ ij ¼ gij � gtigtj

gtt
: (5)

The threading approach thus leads to the following coor-
dinate admissibility conditions

FIG. 2. Schematic diagram representing the future directed
world line of a fundamental observer. To every admissible
coordinate system, one can associate a set of fundamental
observers, i.e., those at rest in space. The world line of such
an observer is a time line. The infinitesimal orthogonal hyper-
surface � is not in general a simultaneity hypersurface for the u
congruence. The time lines thread the spacetime; hence, this is
the threading approach to splitting spacetime into time plus
space (‘‘1þ 3’’).
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gtt < 0; ð�ijÞ ¼ positive definite matrix: (6)

Given a system of coordinates that uniquely identify events
in a spacetime region, the standard threading admissibility
conditions have to do with the possibility of existence of
hypothetical static observers at all events in that region.

We recall that a real symmetric matrix A is positive
definite if and only if there exists a real invertible matrix P
such that A ¼ P TP . Thus if A is a positive definite
matrix, then so is its inverse; of course, this can also be
seen immediately from the positivity of all of their eigen-
values. It follows, for instance, that for a positive definite
matrix ðAijÞ, � ¼ Aijdx

idxj can be expressed in matrix

notation as � ¼ ðPdxÞTðPdxÞ, which is manifestly posi-
tive, i.e., � � 0.

The measurement of spatial distance between a funda-
mental observer and an arbitrary nearby observer by means
of light signals, as well as the synchronization of their
clocks, has been discussed in Ref. [2]; indeed, it is dem-
onstrated there that the element of spatial distance, d‘, as
calculated here, d‘2 ¼ �ijdx

idxj, coincides with the radar

distance [3].

B. Slicing approach

Imagine an arbitrary congruence of observers in a gravi-
tational field, as depicted in Fig. 3. This bundle of future
directed timelike curves could, for instance, represent the
point particles that form a compact object. The local t ¼
constant hypersurface � is defined by dt ¼ 0; therefore,

g��dx
� � dx�j� ¼ gijdx

i � dxj: (7)

If � is to represent space, ðgijÞ must be a positive definite

matrix. Accordingly, its inverse, ð�̂ijÞ, must also be a
positive definite matrix. Moreover, the normal to �,
N � ¼ ��

0, must be timelike; hence, g��N �N � < 0,

or gtt < 0. Thus the slicing approach leads to the following
coordinate admissibility conditions

gtt < 0; ð�̂ijÞ ¼ positive definite matrix: (8)

These conditions ensure that in the coordinate patch
under consideration coordinate time increases monotoni-
cally along any timelike curve. In particular, the applica-
tion of these conditions to a bundle of fundamental
observers implies that in such coordinate systems, t mono-
tonically increases along the world line of a fundamental
observer. Coordinate systems that are admissible accord-
ing to conditions (8) therefore exclude closed timelike
curves.
Let us note that for gtt � 0, we have in general

g��@� � @� ¼ gtt
�
@t þ gti

gtt
@i

�
�
�
@t þ gtj

gtt
@j

�

þ
�
gij � gtigtj

gtt

�
@i � @j; (9)

which should be compared with Eq. (2); in fact, a formal
duality between them can be illustrated by means of the
lapse and shift functions.

C. Duality

In the threading approach, the lapse and shift functions
are respectively M and Mi given by

M ¼ ffiffiffiffiffiffiffiffiffiffi�gtt
p

; Mi ¼ �gti
gtt

: (10)

Then, we have for metric (2) the equivalent representation

�ds2 ¼ �M2ðdt�Midx
iÞðdt�Mjdx

jÞ þ �ijdx
idxj;

�ij ¼ gij þM2MiMj: (11)

The form of metric (11) is adapted to static observers with
4-velocity

u ¼ 1

M
@t; u[ ¼ �Mðdt�Midx

iÞ; (12)

where the ‘‘flat’’ symbol ([) denotes the fully covariant
form of a tensor. In fact,

� ds2 ¼ �ðu�dx�Þ2 þ �ijdx
idxj: (13)

In a similar way, one may introduce the lapse—shift
notation in the slicing approach, namely,

N ¼ 1ffiffiffiffiffiffiffiffiffiffi�gtt
p ; Ni ¼ �gti

gtt
: (14)

Normalizing N �, so that it becomes a vector of unit

length n�, we have

FIG. 3. Consider any congruence of future directed timelike
world lines V in a standard admissible coordinate system. The
infinitesimal constant-time hypersurfaces � should all be space-
like. Thus their normal vector field should be timelike. The
hypersurfaces slice up this spacetime region; therefore, this is
the slicing approach to the splitting of spacetime into space plus
time (‘‘3þ 1’’). Note that n�V

� > 0 and the temporal coordi-

nate monotonically increases along such a congruence.
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n ¼ � 1

N
ð@t � Ni@iÞ; n[ ¼ Ndt: (15)

Thus in the slicing approach, Eq. (9) can be expressed in
terms of n� and �̂ij in a manner that is completely analo-
gous to the threading approach, namely,

� ð@sÞ2 ¼ �ðn�@�Þ2 þ �̂ijð@iÞð@jÞ: (16)

However, a closer examination reveals that this formal
duality does not extend to the physical conditions con-
tained in Eqs. (6) and (8).

At any event p on the spacetime manifold, we have a
tangent space Tp of vectors at p as well as the dual space

T�
p of one-forms at pwith corresponding expressions of the

metric tensor given, respectively, by Eqs. (2) and (9). At p,
the symmetric matrix ðg��Þ can be diagonalized, so that

ðg��Þ ¼ Q�1DQ, where Q, QQT ¼ 1, is an orthogonal

matrix and D ¼ diagðd0; d1; d2; d3Þ, where d0 < 0 and
di > 0, for i ¼ 1, 2, 3. Thus by means of a local trans-
formation and a certain scaling, ðg��Þ at each point p can

be reduced to ð���Þ. Furthermore, we have that at p,

ðg��Þ ¼ Q�1D�1Q, where the diagonal elements of D�1

respect the metric signature, as before. In a similar way,
ðg��Þ can be reduced to ð���Þ at p. This pointwise duality
thus stays at the threading level and does not extend to the
slicing approach. That is, the conditions given in Eq. (8)
are in general different from those given in Eq. (6), as can
be seen via explicit examples discussed in Sec. IV.

III. ADMISSIBILITY CONDITIONS

The coordinate conditions (6) that result from the
threading approach can be naturally incorporated into the
underlying geometric framework of general relativity;
however, the slicing conditions (8) can be neither invari-
antly formulated nor are they sufficiently local to become
part of the structure of Lorentzian geometry. Indeed, all
coordinate patches in which the metric takes the form
g��ðxÞ ¼ ��� þ h��ðxÞ, where h��ðxÞ can be treated as

a small perturbation—such as in the Riemann normal
coordinates about any event or the Fermi normal coordi-
nates about the world line of an observer—satisfy both
conditions (6) and (8). While coordinate systems that are
compatible with conditions (8) protect chronology, this
does not mean that chronology violation does not occur
in the gravitational field under consideration. In fact, gen-
eral relativity per se does not require the existence of a
cosmic time, as conditions (8) cannot be woven into the
fabric of Lorentzian geometry [4]. From this viewpoint,
general relativity must be abandoned if one insists on
integrating the slicing coordinate conditions into the foun-
dations of the theory of gravitation.

The threading and slicing approaches and their respec-
tive restrictions on coordinate charts have been discussed
in one form or another by a number of authors. We should
mention, in particular, the work of Zelmanov [5,6],

Cattaneo [7], Møller [8] and Lichnerowicz [9], among
others. A historical review is beyond the scope of this
paper. Following Synge [10], we refer to the combined
threading and slicing conditions as the Lichnerowicz ad-
missibility requirements (see the theorem on page 9 of
Ref. [9]). The book of Landau and Lifshitz [2] contains a
particularly clear discussion of the standard admissibility
requirements.
It is a theorem of linear algebra [11] that a real sym-

metric n� n matrix A is positive definite if and only if the
principal minors of A are all positive. These are n scalars
defined by

det

A11 . . . A1k

: :

: :

Ak1 . . . Akk

2
666664

3
777775; k ¼ 1; . . . ; n: (17)

Now consider the standard threading admissibility condi-
tions. These involve the matrix ðg��Þ: gtt < 0 and �ij ¼
gij � gtigtj=gtt must form a positive definite matrix.

Therefore,

ð�ijÞ ¼
�11 �12 �13

�12 �22 �23

�13 �32 �33

2
664

3
775 (18)

must be such that

�11 > 0; �11�22 � �2
12 > 0; detð�ijÞ> 0: (19)

Note that gtt < 0 and �11 ¼ g11 � g2t1=gtt > 0 together
imply that

gtt�11 ¼ det
gtt gt1

g1t g11

" #
< 0: (20)

Next, �11�22 � �2
12 > 0, when written out in detail, can be

expressed as

det
�11 �12

�21 �22

" #
¼ 1

gtt
det

gtt gt1 gt2

g1t g11 g12

g2t g21 g22

2
664

3
775: (21)

Similarly, one finds that (see the Appendix)

detð�ijÞ ¼ 1

gtt
detðg��Þ: (22)

Putting all these results together, we find that the stan-
dard threading admissibility conditions are equivalent to
the statement that the principal minors of ðg��Þ must all be
negative for our ð�;þ;þ;þÞ signature. That is ðg��Þmust
be a negative definite matrix. Similarly, the slicing admis-
sibility conditions imply that ðg��Þ must be a negative
definite matrix. The Lichnerowicz admissibility conditions
then require that both ðg��Þ and ðg��Þ be negative definite
matrices, i.e., all their principal minors must be negative.
In many spacetimes of interest in general relativ-

ity, Lichnerowicz conditions reduce to the standard
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admissibility conditions; indeed, most solutions of
Einstein’s equations are of this type [12]. This is the
case, for instance, for the Kerr metric in the standard
Boyer-Lindquist coordinates outside the static limit; how-
ever, CTCs occur in the region interior to the inner event
horizon. Moreover, geodesic coordinate systems estab-
lished along the world line of an accelerated observer in
Minkowski spacetime are such that the threading and slic-
ing conditions coincide [13,14]; somewhat similar results
are expected for radar coordinates [3]. The important point
here is that Lichnerowicz conditions exclude CTCs,
whereas the standard coordinate conditions do not in gen-
eral exclude them. Much has been written about CTCs
and time travel in general relativity—see, for example,
[15–18], the recent review [19] and the references cited
therein.

IV. CAUSALITYAND WAVE PROPAGATION

Consider the propagation of test radiation in a coordi-
nate patch containing a CTC. The CTC might leave an
imprint on waves propagating in such a spacetime domain
and such a trace could then be observationally detectable.
In this connection, it appears useful to study wave phe-
nomena in spacetimes with CTCs. Consider, for example, a
massless field propagating in a spacetime region with a
closed null geodesic. In the WKB approximation, we can
imagine a wave packet moving essentially along the closed
null geodesic, since in the WKB limit, massless wave
propagation reduces to null geodesic motion. An examina-
tion of this situation reveals that the wave would appear to
get immediately reflected: if the wave is initially moving
forward in time, its spatial direction of propagation gets
reversed when it starts to move backward in time. A similar
result is expected for massive fields. We recall that a wave
with propagation vector k� ¼ ð!;kÞ in an inertial frame of
reference is, up to a certain amplitude function, of the form
expð�i!tþ ik � xÞ, so that as t increases, x increases
along the wave vector k as the wave travels forward;
however, if t decreases, the wave travels in the �k direc-
tion. When the direction of the arrow of time reverses, the
wave appears to suffer a reflection. Thus we expect some
unusual features for wave phenomena in gravitational
fields that do not have a global time coordinate.

Consider, for instance, the propagation of waves in the
exterior Kerr spacetime [20]; in fact, there is absorption of
radiation through the horizon in this case, but the scattering
process contains little information about the CTCs that
exist in the interior Kerr spacetime. Thus we must concen-
trate on wave propagation in regions where the CTCs are
accessible. An ideal case would be the Gödel universe
[21–24], which is free of horizons and singularities. Do
waves propagating in the Gödel universe exhibit such an
imprint [25–28]? In fact, the elucidation of this issue
originally motivated the preliminary analysis presented in

this paper and, as will become clear below, its complete
treatment remains a task for the future.
The metric of Gödel’s universe in the original quasi-

Cartesian coordinates can be written as

�ds2 ¼ �dt2 � 2
ffiffiffi
2

p
Udtdyþ dx2 �U2dy2 þ dz2;

U ¼ e
ffiffi
2

p
�x; (23)

where �> 0 is the frequency of universal rotation and @t,
@y and @z are three of the five Killing vectors of this

spacetime. The determinant of the metric turns out to be
g ¼ �U2 and the inverse metric is thus given by

�ð@sÞ2 ¼ ð@tÞ2 � 2
ffiffiffi
2

p
U�1ð@tÞð@yÞ þ ð@xÞ2

þU�2ð@yÞ2 þ ð@zÞ2: (24)

The fundamental observers follow geodesics of metric
(23); in fact, their four-velocity u is given by u ¼ @t, so
that we have

G�	 ¼ �2ðg�	 þ 2u�u	Þ: (25)

The source of Gödel’s solution of the Einstein field equa-
tions is dust of constant energy density 
, with fluid unit
four-velocity aligned with the time coordinate lines, and
cosmological constant � ¼ ��2 ¼ �4�
. Here �> 0
describes an intrinsic counterclockwise rotation of the
universe around the z axis. The threading conditions are
satisfied by metric (23), while it is clear from the inverse
metric (24) that gtt ¼ 1. Indeed, the slicing coordinate
conditions do not hold and the original Gödel coordinates
are therefore not admissible in the sense of Lichnerowicz.
In [29], exact Fermi normal coordinates were first

explicitly introduced along the world line of a fiducial
fundamental observer in Gödel spacetime. Imposing
Lichnerowicz conditions on these Fermi coordinates limits
their domain of applicability to the interior of a cylindrical

region of radius
ffiffiffi
2

p
lnð1þ ffiffiffi

2
p Þ=� ’ 1:25=� about the

axis of rotation [29]. This boundary cylinder consists of
closed null curves beyond which CTCs exist.
Propagation of test electromagnetic radiation in the

Gödel universe was first investigated in [25] with the
express purpose of demonstrating the coupling of photon
spin with the essentially uniform gravitomagnetic field of
this rotating universe. The formal simplicity of the Gödel
metric made it possible to find the exact solution of the
perturbation equations and thus establish the gravitational
coupling of the helicity of the photon to the rotation of
the Gödel universe. To solve Maxwell’s equations, it was
deemed convenient to use the Skrotskii method, which is
based on the analogy between a gravitational field and an
optical medium [30], and replace the Gödel field with
an effective gyrotopic medium. As is well known, in the
treatment of electrodynamics in arbitrary spacetime coor-
dinates, it is always possible to introduce instead a certain
hypothetical medium with definite constitutive properties
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that occupies Minkowski spacetime in quasi-Cartesian
coordinates [31]; in fact, this method is conceptually re-
lated to Weyl’s formulation of Fermat’s principle in gen-
eral relativity and to Gordon’s optical metric [10,32,33].
The physical description of photon helicity states is
straightforward in scattering situations involving asymp-
totically flat spacetimes, but requires special care in uni-
verse models that are not asymptotically flat. For instance,
in the Gödel universe this connection is established via the
limit as� ! 0 and Gödel spacetime reduces toMinkowski
spacetime. Furthermore, we expect that the spectrum of
electromagnetic wave perturbations of the Gödel universe
would contain certain discreteness properties in close anal-
ogy with the Landau spectrum of charged particles in a
uniform magnetic field. Out of the complete spectrum of
finite perturbations, there is a part that satisfies these
various physical requirements and only this part of the
full spectrum was given in [25] without providing details
of the selection process. The preferred part of the spectrum
involves wave vectors whose magnitudes are sufficiently
large compared to�, corresponding to a pulse of radiation
produced by a localized source. From this solution one
finds, in addition to the spin-rotation-gravity coupling, that
waves cannot propagate parallel to the direction of rota-
tion of this universe and, moreover, that waves can propa-
gate only in one direction along the y axis. We wish to
determine how these features as well as the spectrum are
connected with the violation of causality in the Gödel
universe.

Electromagnetic fields in the Gödel universe have been
discussed via the Debye potential formalism in [34].
Moreover, the scalar and neutrino perturbations of the
Gödel universe have been studied by a number of au-
thors—see [35–39] and the references therein.

To see the imprint of acausality on these wave results, it
is necessary to compare them with the results of wave
propagation in causal Gödel-type rotating universes that
possess cosmic time. Indeed, Gödel-type solutions of
Einstein’s equations exist that contain both causal and
acausal universe models—see [40–43] and the references
cited therein. The metric of such Gödel-type solutions is of
the form

�ds2 ¼ �dt2 � 2�RðtÞUdtdy

þ R2ðtÞ½dx2 � ð�2 � 1ÞU2dy2 þ dz2�; (26)

where RðtÞ is the scale factor,

U ¼ e�x; � ¼ 2�

�
: (27)

Here � > 0 is a constant parameter and�> 0 is a vorticity

parameter. The Gödel solution is recovered for R ¼ 1, � ¼ffiffiffi
2

p
� and � ¼ ffiffiffi

2
p

. In general, Eq. (26) represents a space-
time of Petrov type D with three Killing vector fields given
by @x � �y@y, @y and @z, so that it is a spatially homoge-

neous universe of type III in the Bianchi classification. Let

�� ¼ ��
0 be the four-velocity vector of the family of

fundamental observers in the Gödel-type universe, then
this congruence has expansion and rotation, but no shear.
In particular, the rotation tensor can be expressed as

f�	 ¼ �½�;	� þ a½��	�; (28)

where a� is the acceleration of this congruence given by

a[ ¼ �� _RUdy with _R ¼ dR=dt. It follows that the only
nonzero components of f�	 are given by fxy ¼ �fyx ¼
�RU, so that the vorticity of the congruence of the
fundamental observers can be expressed as

~� ¼
�
1

2
f�	f

�	

�
1=2 ¼ �

RðtÞ : (29)

Only positive square roots are considered throughout
this paper. Moreover, the expansion is given by 3 _R=R. In
the special case of stationary Gödel-type universes with
R ¼ 1, the fundamental observers follow geodesics and
the vorticity of their congruence is simply �. Various
sources have been considered for universes of Gödel type
[40,41,43]; moreover, the corresponding two-fluid cosmo-
logical models have been discussed in [44].
For metric (26), we find g ¼ �R6U2 and hence the

inverse metric is given by

� ð@sÞ2 ¼ ð�2 � 1Þð@tÞ2 � 2�R�1U�1ð@tÞð@yÞ
þ R�2½ð@xÞ2 þU�2ð@yÞ2 þ ð@zÞ2�: (30)

The threading coordinate conditions are satisfied here,
while the slicing coordinate conditions are only satisfied
for �< 1. Thus the solutions are causal for �< 1 and
acausal for �> 1, while � ¼ 1 constitutes a rather special
limiting case.
A detailed treatment of the propagation of electromag-

netic waves in this Gödel-type universe is due to Korotky
and Obukhov [26] and Saibatalov [27], who provided a
complete description of the spectrum and outlined the main
differences between the spectra in the causal and acausal
cases. We emphasize that the more extended treatments of
the Gödel case in [26,27] go beyond the results of [25],
where only the part of the spectrum that was deemed most
physically reasonable was presented. In particular, the
discrepancy between the results of [25,27] is not due to
any inherent limitation of the Skrotskii method.
It is interesting to note that scalar and neutrino pertur-

bations of Gödel-type universes have been the subject of
recent investigations [28,45,46].
In the following section, we investigate the propagation

of radiation parallel to the direction of rotation of a
stationary Gödel-type universe with R ¼ 1. This two-
parameter subclass has been thoroughly investigated in
[47,48] and the references cited therein.
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V. WAVES IN STATIONARY GÖDEL-TYPE
UNIVERSES

Consider the propagation of waves in metric (26) with
R ¼ 1. It turns out that the main result of this analysis is
essentially independent of any particular wave equation;
therefore, we consider the scalar wave equation for the
sake of simplicity. We seek a solution of

r�@
��� m̂2

0� ¼ 0 (31)

in the form

� ¼ eið�!tþk2yþk3zÞc ðxÞ; (32)

where m̂0 ¼ m0=ℏ,m0 is the mass of the scalar particle and
!, k2 and k3 are constant propagation parameters. The
function c ðxÞ satisfies

U
d

dx

�
U

dc

dx

�
� fk22 þ 2�!k2Uþ ½ð�2 � 1Þ!2

þ k23 þ m̂2
0�U2gc ¼ 0: (33)

Now introducing U�1 ¼  as a new variable and impos-
ing the requirement that the wave travel in the z direction
(k2 ¼ 0), we find

�22 d
2c

d2
� ½ð�2 � 1Þ!2 þ k23 þ m̂2

0�c ¼ 0: (34)

Alternatively, Eq. (33) with k2 ¼ 0 can be written in terms
of variable x as a second order ordinary differential equa-
tion with constant coefficients and its solutions are of the
form expð���xÞ. For x: �1 ! 1, : 1 ! 0 and the
solutions for c can be written as �, where

�2�ð�� 1Þ ¼ ð�2 � 1Þ!2 þ k23 þ m̂2
0: (35)

The only finite solution for c in the range : 0 ! 1 is a
constant, provided

ð�2 � 1Þ!2 þ k23 þ m̂2
0 ¼ 0: (36)

Therefore, if �< 1, so that the stationary Gödel-type uni-
verse is causal, we have

� ¼ c 0e
ið�!tþk3zÞ; !2 ¼ k23 þ m̂2

0

1� �2
; (37)

where c 0 is a constant; otherwise, for � � 1 wave propa-
gation parallel to the rotation axis is impossible. That is,
waves can only propagate parallel to the rotation axis of
causal stationary Gödel-type universes. Let us recall here
that waves can freely propagate parallel to the rotation axis
of a compact gravitating source as well as a Kerr black hole
[20,25,30].

What happens to a packet of scalar radiation produced in
the neighborhood of z ¼ z0 in the acausal (� � 1) Gödel-
type universe? It follows from Eq. (36) that the radiation is
then confined in space around z0. That is, with k3 ¼ 	i�,

where we use the upper sign for z > z0 and the lower sign
for z < z0, � > 0 is given by

� ¼ ½ð�2 � 1Þ!2 þ m̂2
0�1=2: (38)

Then the solution for the scalar field can be expressed as

� ¼ �0e
�i!t��ðz�z0Þ; z � z0; (39)

and

� ¼ �0e
�i!tþ�ðz�z0Þ; z � z0; (40)

where �0 is a constant.
Consider now the propagation of radiation in the limit of

high frequencies and wave numbers. For electromagnetic
radiation, the geometric optics (or eikonal) approximation
scheme results in the massless Hamilton-Jacobi equation
and the corresponding propagation along null geodesic
rays [49]. This is indeed the case for any reasonable mass-
less wave equation. In the massive case, the analogous
treatment is the WKB approximation, where for the scalar
field we set

� ¼ eiS=ℏð�0 þ ℏ�1 þ � � �Þ: (41)

Substitution of this ansatz into Eq. (31) results in an
expansion in increasing powers of ℏ starting with ℏ�2;
for ℏ ! 0, the terms in the expansion proportional to
ℏ�2, ℏ�1 and ℏ0 must vanish. The primary result, which
follows from setting the coefficient of ℏ�2 equal to zero, is
indeed independent of the nature of the wave and is the
Hamilton-Jacobi equation

g��r�Sr�Sþm2
0 ¼ 0; (42)

where the scalar field S is related to action. The other
equations then describe, for instance, how the wave ampli-
tude �0 propagates along the geodesic that is the solution
of the Hamilton-Jacobi equation, and so on [49].
In the case under consideration, Eq. (30) implies that

ð�2 � 1Þ
�
@S

@t

�
2 � 2�U�1

�
@S

@t

��
@S

@y

�
þ
�
@S

@x

�
2

þU�2

�
@S

@y

�
2 þ

�
@S

@z

�
2 þm2

0 ¼ 0: (43)

For propagation along the z direction, it is natural to
assume that

S ¼ �Etþ P3z; (44)

where E and P3 are real constants representing the energy
and momentum of the particle. Substitution of Eq. (44) into
Eq. (43) yields

ð�2 � 1ÞE2 þ P2
3 þm2

0 ¼ 0: (45)

This equation has no real solution in the acausal case
(� � 1), but in the causal case (�< 1), the solution cor-
responds to Eq. (37), as expected. That is, the wave front is
the hypersurface of constant phase, which is proportional
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to S in the eikonal approximation; therefore, hypersurfaces
of constant S must be spacelike (for massive fields) or null
(for massless fields) in accordance with the Hamilton-
Jacobi equation.

In general, the solution of the Hamilton-Jacobi equation
corresponds to a geodesic. To see this, let m0w� ¼ r�S

and note that w�;� ¼ w�;�; that is, w� is a curl-free vector

field. Taking covariant derivative of Eq. (42), we find that
g��w�;�w� ¼ 0. This can be written, using the curl-free

property, as g��w�;�w� ¼ 0, which is the geodesic equa-

tion for w� ¼ dx�=ds. Thus in the case under considera-
tion, m0w� ¼ ð�E; 0; 0; P3Þ and one can easily find the

curl-free geodesic congruence in the causal case (�< 1),
namely,

t ¼ t0 þ E

m0

ð1� �2Þð�� �0Þ; (46)

where � is the proper time along the world line and

x ¼ x0; y ¼ y0 þ �E

m0Uðx0Þ ð�� �0Þ;

z ¼ z0 þ P3

m0

ð�� �0Þ:
(47)

Here t0, x0, y0, z0 and �0 are constants of integration and
E and P3 are connected via Eq. (45). There is no corre-
sponding geodesic for � � 1, as the Hamilton-Jacobi
equation results in an imaginary energy in this case.

It is puzzling that the geodesic corresponding to the
eikonal limit of waves propagating in the z direction for
�< 1 involves motion in the y direction as well. Let us
note that in general, metric (26) allows geodesics moving
parallel to the axis of rotation regardless of the value of �;
indeed,

�� ¼ �ð1; 0; 0; 	Þ; (48)

where 	 and � ¼ ð1� 	2Þ�1=2 are constants, is the unit
four-velocity of such geodesic observers. However, m0��
is not the gradient of a scalar, since �� is not a curl-free

vector field, as can be directly verified. A bundle of neigh-
boring geodesics has in general nonzero vorticity; on the
other hand, if the vorticity vanishes at one point, then the
bundle will be completely free of vorticity—see page 84
of [23].

The remaining difficulty has to do with the fact that the
Hamilton-Jacobi equation does not result in a real particle
energy for � � 1. This circumstance is a consequence of
the violation of slicing coordinate conditions in metric (26)
. To see this in general, note that the geodesic equation is
derived from the extremum of the action, �S ¼ 0, where

S ¼ �m0

Z
ds (49)

is a functional of the path that connects the two fixed events
that are endpoints of the integral in Eq. (49). Let us define

the Lagrangian Lðt; xi; vjÞ ¼ �m0ds=dt, where vi ¼
dxi=dt. Using pi ¼ @L=@vi, the corresponding
Hamiltonian Hðt; xi; pjÞ ¼ piv

i � L works out to be

�p0, where p0, as a function of t, xi and pj, must be

obtained from g��p�p� þm2
0 ¼ 0. This equation has the

solution

�p0 ¼ Hðt; xi; pjÞ ¼ gti

gtt
pi 	

�
m2

0 þ �̂ijpipj

�gtt

�
1=2

: (50)

Thus the slicing coordinate conditions would ensure that
the Hamiltonian in Eq. (50) is real [50]. Then, integrating
along geodesics in Eq. (49), but now with only the initial
event kept fixed and the final event considered variable, we
have

Sðt; xiÞ ¼
Z ðt;xiÞðpjv

j �HÞdt; (51)

so that dS ¼ pidx
i þ p0dt, or r�S ¼ p�, which then

leads directly to the Hamilton-Jacobi equation. However,
if Eq. (50) cannot produce a real solution, then a real
Hamiltonian does not exist and the connection of the
geodesic equation with the Hamilton-Jacobi equation and
hence wave propagation is severed. We should mention in
passing that this derivation of the Hamilton-Jacobi equa-
tion implies that a fountain of neighboring geodesics ema-
nating from a single event has vanishing vorticity.
It is interesting to illustrate these results for the propa-

gation of Dirac particles parallel to the rotation axis of
stationary Gödel-type universes.

VI. DIRAC EQUATION IN STATIONARY
GÖDEL-TYPE UNIVERSES

Let us now consider the massive Dirac equation in a
stationary Gödel-type universe described by metric (26)
with R ¼ 1. Here we follow the standard notation for the
Newman-Penrose formalism as employed in the mono-
graph of Chandrasekhar [51]. Therefore, due to the nature
of the subject matter, the notations and conventions used in
this section are generally independent of the rest of the
paper, except when otherwise indicated; in particular, we
switch the sign of the metric signature.
An orthonormal frame naturally adapted to the space-

time coordinates is given by

!t̂ ¼ dtþ �Udy; !x̂ ¼ dx;

!ŷ ¼ Udy; !ẑ ¼ dz; (52)

which can be used to form a null tetrad frame

l ¼ 1ffiffiffi
2

p ð!t̂ þ!ẑÞ; n ¼ 1ffiffiffi
2

p ð!t̂ �!ẑÞ;

m ¼ 1ffiffiffi
2

p ð!x̂ þ i!ŷÞ:
(53)

The associated nonvanishing spin coefficients are
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� ¼ �	 ¼ �
ffiffiffi
2

p
4

�; � ¼ 
 ¼ 2� ¼ 2� ¼ � i
ffiffiffi
2

p
2

�;

(54)

while the only nonvanishing Weyl scalar is

c 2 ¼ ��2

6
ð�2 � 1Þ; (55)

as metric (26) is of Petrov type D. Following [51], the
massive Dirac equation in the Newman-Penrose formalism
is summarized by the following set of equations

ðDþ �� 
ÞF1 þ ð�� þ �� �ÞF2 ¼ im�G1;

ð�þ�� �ÞF2 þ ð�þ 	� �ÞF1 ¼ im�G2;

ðDþ �� � 
�ÞG2 � ð�þ �� � ��ÞG1 ¼ im�F2;

ð�þ�� � ��ÞG1 � ð�� þ 	� � ��ÞG2 ¼ im�F1;

(56)

where F1, F2, G1 and G2 are the components of the Dirac

spinor, m� ¼ m̂0=
ffiffiffi
2

p
is proportional to the mass of the

Dirac particle (see [51], p. 543) and

D ¼ l�r�; � ¼ n�r�; � ¼ m�r� (57)

are directional derivatives along the null tetrad frame.
Thus,

ðDþ �� 
ÞF1 þ ð�� � �ÞF2 ¼ im�G1;

ð�þ 
� �ÞF2 þ ð�� �ÞF1 ¼ im�G2;

ðD� �þ 
ÞG2 � ð�� �ÞG1 ¼ im�F2;

ð�� 
þ �ÞG1 � ð�� � �ÞG2 ¼ im�F1;

(58)

so that the spin coefficients are involved only through a real
� and the combination

�� 
 ¼ �� ¼ i
ffiffiffi
2

p
4

�; (59)

which is purely imaginary. Hence, Dirac equation can be
finally expressed as

ðD� �ÞF1 þ ð�� � �ÞF2 ¼ im�G1;

ð�þ �ÞF2 þ ð�� �ÞF1 ¼ im�G2;

ðDþ �ÞG2 � ð�� �ÞG1 ¼ im�F2;

ð�� �ÞG1 � ð�� � �ÞG2 ¼ im�F1:

(60)

Let us look for separable solutions of the form

½F1;F2;G1;G2�¼½X1ðxÞ;X2ðxÞ;Y1ðxÞ;Y2ðxÞ�e�i!tþik2yþik3z

(61)

with k2 ¼ 0, as for scalar waves examined in the previous
section.

The resulting equations for the spinor components X1;2

and Y1;2 form a first order system of ordinary differential

equations with constant (complex) coefficients, namely,

d

dx

X1

X2

Y1

Y2

0
BBBBB@

1
CCCCCA ¼

Aþ Bþ 0 b

B� A� b 0

0 �b Aþ Cþ
�b 0 C� A�

0
BBBBB@

1
CCCCCA

X1

X2

Y1

Y2

0
BBBBB@

1
CCCCCA; (62)

where b ¼ im̂0 and

A	 ¼ ��

2
	!�; B	 ¼ i

�
�!	

�
k3 þ�

2

��
;

C	 ¼ i

�
!	

�
k3 ��

2

��
:

(63)

Let us note that the function U ¼ expð�xÞ appears in
Eq. (52) and the subsequent analysis in association with
variation along the y direction, but such variation disap-
pears once we set k2 ¼ 0 in Eq. (61).
The eigenvalues of the 4� 4 matrix in Eq. (62) deter-

mine the solutions. These are given by

�1;...;4 ¼ ��

2
þ�

�
!2ð�2 � 1Þ

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂2
0 þ k23

q
þ�0 �

2

�
2
�
1=2

; (64)

where� and�0 independently can be eitherþ1 or�1; that
is, �2 ¼ �02 ¼ 1. The elementary solutions of system (62)
are of the form e�Ix, where I ¼ 1; . . . ; 4. We require that
the Dirac equation have finite solutions for all the spinor
components for x: �1 ! 1. The only possibility is then
that of having constant solutions for X1;2 and Y1;2, i.e., the

determinant of the 4� 4 matrix in Eq. (62) must vanish.
Thus the allowed values of ! satisfy the relation

!2ð�2 � 1Þ þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂2
0 þ k23

q
	�

2

�
2 � �2

4
¼ 0; (65)

which agrees with Eq. (36) in the WKB regime. That is,
with E ¼ ℏ! and P3 ¼ ℏk3, Eq. (65) can be written as

ð�2 � 1ÞE2 þ P2
3 þm2

0 	 ℏ�ðP2
3 þm2

0Þ1=2

þ 1

4
ℏ2�2ð1� 4��2Þ ¼ 0; (66)

so that as ℏ ! 0, while E, P3 and m0 are held fixed, we
recover the WKB limit.
The two branches of Eq. (66) reflect the spin 1=2 char-

acter of the Dirac particle; indeed, with m0 ¼ 0, the
helicity-rotation coupling evident in the spectrum (66) is
precisely reminiscent of the corresponding result for pho-
tons [25], when one allows for the different helicities
involved.
For a localized packet of cosmic ray protons, for in-

stance, we expect that the packet is dominated by k3 
 �
and k3 
 �, where 1=� and 1=� are length scales asso-
ciated with the Gödel-type universe. Thus propagation of
the packet parallel to the rotation axis is generally possible
in the causal case (�< 1) and impossible in the acausal
case (�> 1). In the latter situation, we expect confinement
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of the high-energy particles in space, just as for the scalar
field—see Eqs. (39) and (40)—since waves with k3 < �
and k3 <� may be able to propagate in accordance with
Eq. (65).

VII. DISCUSSION

The most basic measurements of an observer consist of
the determination of temporal and spatial intervals. In this
connection, we have explored the admissibility of coordi-
nate patches in some open spacetime region on the basis of
splitting spacetime into its elements via the threading and
slicing approaches. All coordinate systems in general rela-
tivity must satisfy the threading (Landau-Lifshitz) condi-
tions. The Lichnerowicz admissibility conditions involve
the additional slicing coordinate requirements, which pro-
tect chronology and exclude CTCs.

If it were possible to incorporate the slicing coordinate
conditions into the geometric structure of Lorentzian ge-
ometry, violations of chronology and hence CTCs would
be forbidden in the general theory of relativity. However,
since the local t ¼ constant hypersurfaces cannot be natu-
rally absorbed into the foundations of general relativity, the
slicing conditions simply place additional restrictions on
possible coordinate systems.

The threading and slicing coordinate requirements to-
gether ensure that the coordinates assigned to spacetime
events are physically reasonable. As such, coordinate sys-
tems that can be physically constructed, such as the GPS
system, are expected to satisfy Lichnerowicz coordinate
conditions. We have examined the physical implications of
Lichnerowicz conditions by studying wave propagation in
spacetimes that do not possess universal temporal coordi-
nates. In such stationary rotating Gödel-type universes, for
instance, we show that radiation in the WKB approxima-
tion cannot propagate parallel to the axis of rotation.
Possible generalizations of this result as well as further
consequences of chronology violation for wave propaga-
tion are topics for future investigation.
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APPENDIX: GENERAL FORM OF EQ. (22)

Imagine an arbitrary ð1þ nÞ � ð1þ nÞ matrix of the
form

A ¼

A00 A01 . . . A0n

A10 A11 . . . A1n

..

. ..
.

. . . ..
.

An0 An1 . . . Ann

0
BBBBBB@

1
CCCCCCA; (A1)

which can be denoted as

A ¼ A00 A0i

Ai0 Aij

 !
; i; j ¼ 1; 2; . . . ; n: (A2)

We assume that A00 � 0; in fact, this condition can be
ensured—unless A is trivial in the sense that it has only
zeros in its first row and column—by appropriately shifting
rows or columns, as we are only interested in detðAÞ. Then,
it is possible to show that

detðAÞ ¼ A00 det

�
Aij �

Ai0A0j

A00

�
: (A3)

Consider the first row of matrix A,

R0 ¼ ½A00; A01; . . . ; A0n�: (A4)

Now subtract R0ðA10=A00Þ from the second row of matrix
A, R0ðA20=A00Þ from the third row and so on. In this
process, the determinant of the matrix does not change
due to its alternating character but matrix A is transformed
into

B ¼
A00 A0i

0 Aij � Ai0A0j

A00

0
@

1
A: (A5)

The determinant of this matrix is simply

detðBÞ ¼ A00 det

�
Aij �

Ai0A0j

A00

�
; (A6)

which proves Eq. (A3), since detðAÞ ¼ detðBÞ.
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