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We present a class of generally covariant nonlocal gravity models which have a flat-space general

relativistic limit and also possess a stable de Sitter or anti-de Sitter (AdS) background with an arbitrary

value of its cosmological constant. The nonlocal action of the theory is formulated in the Euclidean

signature spacetime and is understood as an approximation to the quantum effective action (generating

functional of one-particle irreducible diagrams) originating from fundamental quantum gravity theory.

Using the known relation between the Schwinger-Keldysh technique for quantum expectation values and

the Euclidean quantum field theory we derive from this action the causal effective equations of motion for

mean value of the metric field in the physical Lorentzian-signature spacetime. Thus we show that the (A)

dS background of the theory carries as free propagating modes massless gravitons having two polar-

izations identical to those of the Einstein theory with a cosmological term. The on-shell action of the

theory is vanishing both for the flat-space and (A)dS backgrounds which play the role of stable vacua

underlying, respectively, the ultraviolet and infrared phases of the theory. We also obtain linearized

gravitational potentials of compact matter sources and show that in the infrared (A)dS phase their effective

gravitational coupling Geff can be essentially different from the Newton gravitational constant GN of the

short-distance general relativistic phase. When Geff � GN the (A)dS phase can be regarded as a strongly

coupled infrared modification of Einstein theory not only describing the dark energy mechanism of

cosmic acceleration but also simulating the dark matter phenomenon by enhanced gravitational attraction

at long distances.
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I. INTRODUCTION

The central problem in the attempts to build a modified
gravity theory as a model of observable cosmic accelera-
tion [1] consists of the elimination of ghost instabilities
that usually make any model physically inconsistent.
Combined with the necessity to retain the general relativ-
istic limit, this makes the simplest appropriate version of
general relativity (GR)—explicit cosmological term—very
robust against possible attempts to modify it, either by
introducing higher-derivative terms or relaxing its diffeo-
morphism symmetry.

On the other hand, there is a fine-tuning problem asso-
ciated with the hierarchy of the fundamental Planck scale
vs the cosmic acceleration scale and also the cosmic coin-
cidence problem: order of magnitude equality of dark
energy (DE) and matter contributions [including dark mat-
ter (DM)]. These problems serve as a strong motivation to
go beyond introduction of explicit cosmological term and
give rise to numerous models (like Rþ R2=� models [2],
quintessence [3], fðRÞ models [4], nonminimally coupled
matter fields [5], brane theories [6], massive gravity [7,8],
nonlocal cosmology [9–11], etc.). However, in this or that
way fine-tuning is creeping into almost all of these models.
Modulo certain exceptions [5], most of them in fact look as
a sophisticated way to incorporate into their action in
addition to the Planck scale the horizon scale (whether it
is explicit cosmological constant, graviton mass of massive
gravity [7], multidimensional Planck mass in braneworld

theories, or the crossover scale in brane induced gravity
models [6], etc.).
To circumvent this difficulty one could adopt another,

perhaps more promising, line of reasoning. If a concrete
fixed scale incorporated in the model is not satisfactory,
then one could look for a model that admits cosmic accel-
eration scenario with an arbitrary scale. Its concrete value
compatible with observations should arise dynamically
by the analogue of symmetry breaking to be considered
separately. Even this very unassuming approach is full of
difficulties, because modified gravity models featuring this
property (like unimodular gravity [12], fðRÞ-gravity, etc.)
generally violate some of its conventional symmetries,
have additional degrees of freedom, and might lead to
ghost instabilities. Thus we get back to the central problem
in the modification of Einstein theory, mentioned above,
which is especially very actual under the requirement to
preserve general covariance of the model.
Here we present a nonlocal infrared modification of

Einstein gravity theory briefly reported in [13], which is
likely to implement the above approach. It will be based on
the realization of the old idea of a scale-dependent gravi-
tational coupling—nonlocal Newton constant [14–17]—
and will amount to the construction of the class of diffeo-
morphism invariant models. These models are compatible
with the GR limit and generate a stable de Sitter (dS) or
anti-de Sitter (AdS) background with an arbitrary value of
its effective cosmological constant �. Repeating the above
motivation again, arbitrariness of� will be a manifestation
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of the fact that, to resolve such issues of DE as fine-tuning
and cosmic coincidence, the scale of � cannot be encoded
in the action of the theory, but rather should arise dynami-
cally by the analogue of symmetry breaking.

In addition to fine-tuning argumentation of the above
type, the driving force of our approach will also be the
aesthetical motivation to consider as a source of DE a
purely metric sector of the theory. No special matter fields
like quintessence [3], dilaton [5], or Lorentz breaking
khronon [18] will be assumed to exist. In distinction
from local fðRÞ models this will be a nonlocal generally
covariant modification of the metric sector of Einstein
theory. Also, it will go beyond the fðR=hÞ models of
[9–11] by involving a very nonlinear and nonlocal depen-
dence on all components of Ricci and Riemann tensors.
Finally, though our model stems from the idea of a non-
local gravitational coupling ‘‘constant’’ [14] motivated by
the idea of degravitation of the vacuum energy [17], no
degravitation of matter will be considered, because the
source of the effective cosmological constant will be en-
tirely the metric sector of the theory.

Although the main goal of this approach was the
achievement of DE phenomenon, the serendipitous nature
of the resulting model will appear as an unexpected bonus:
dark matter simulation is also generated by the metric
sector of the theory. Though it sounds very speculative,
this effect arises as an enhancement of the gravitational
attraction of the ordinary (nondark) matter at large
distances, which is quite opposite to the degravitation
mechanism.

The plan of the paper is as follows. In Sec. II we
formulate the four-parameter family of nonlocal gravita-
tional models and give a brief summary of their properties:
existence of a stable flat-space background corresponding
to their GR limit and an alternative ghost-free (A)dS
background with an arbitrary value of the effective �,
corresponding to their infrared DE phase. Here we also
give the expression for the linearized gravitational poten-
tial of matter sources in this (A)dS phase, which has a DM
interpretation. In Sec. III within a flat-space perturbation
theory setup we give a motivation for the nonlocal structure
of their action, based on the generally covariant concept of
the scale-dependent gravitational coupling and the require-
ment of stability with respect to ghost modes. In Sec. IV we
discuss treatment of nonlocality under the assumption that
the suggested nonlocal action is in fact a certain approxi-
mation for the quantum effective action obtained from
some fundamental quantum gravity theory. Here we em-
ploy the relation between the Schwinger-Keldysh tech-
nique for expectation values [19] and the Euclidean
quantum field theory to show how a nonlocal effective
action leads to causal retarded nature of nonlocal equations
of motion for mean fields [20]. We begin with this relation
within the flat-space perturbation theory setup, but then
show that in the cosmological context this setup fails

unless we modify nonlocal structures of the effective ac-
tion by extra nonpolynomial dependence on the spacetime
curvature. In Sec. V we establish this dependence in the
action (thus recovering its final nonlocal form introduced
in Sec. II) and prove the existence of the (A)dS background
with an arbitrary �. Stability requirement for this back-
ground requires knowledge of the quadratic part of the
action. This represents a technically simple but very
lengthy calculational challenge accomplished in this sec-
tion and paper Appendix. In Sec. VI we show that this (A)
dS background carries, as free propagating modes, a mass-
less graviton with two polarizations and also obtain the
linearized gravitational potentials of matter sources, which
is likely to simulate the effect of DM. Finally, in Sec. VII
we discuss GR and (A)dS phases of our theory and the
extent to which it might match with the cosmological
concordance model and also its prospective nature in other
ramifications of quantum gravity theory.

II. SUMMARY OF RESULTS

The action we will be interested in reads in its full
complexity as the following nonlocal diffeomorphism in-
variant functional of the spacetime metric g��:

1

S ¼ M2

2

Z
dxg1=2

�
�Rþ �R�� 1

hþ P̂
G��

�
; (1)

P̂ � P��
��

¼ aRð�
ð�

�Þ
�Þ þ bðg��R�� þ g��R��Þ

þ cR
ð�
ð��

�Þ
�Þ þ dRg��g

�� þ eR�
��
��: (2)

Here G�� ¼ R�� � ð1=2Þg��R is the Einstein tensor, the

hat denotes the matrix acting on symmetric tensors, and we
use the condensed notation for the Green’s function of the
operator

hþ P̂ � h���
�� þ P��

��; h ¼ g��r�r�; (3)

acting on any symmetric tensor field ��� as

1

hþ P̂
���ðxÞ �

�
1

hþ P̂

�
��

��
���ðxÞ

¼
Z

dyG��
��ðx; yÞ���ðyÞ; (4)

with G��
��ðx; yÞ—the two-point kernel of this Green’s

function.
The boundary conditions for this Green’s function will

be discussed in much detail in Secs. III and IV. Here we
only say that the action (1) is formulated in the Euclidean
signature spacetime, and in the flat-space background
setup it is understood as metric perturbation expansion

1We use the Euclidean signature spacetime and curvature tensor
conventions, R ¼ g��R�� ¼ g��R�

��� ¼ g��@��
�
�� � . . . .
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on this background with trivial zero boundary conditions at
infinity which uniquely fix the zeroth order Green’s func-
tion 1=h. Formal resummation of this expansion series
allows one to go over from the flat-space expansion to the
expansion on maximally symmetric dS or AdS background
with the Green’s function uniquely defined either by the
condition of regularity on S4 (dS case) or boundary con-
ditions for the Euclidean AdS spacetime corresponding to
the definition of the Hartle-Hawking vacuum. As the ques-
tion of our primary interest here will be the existence of
these two vacua [flat-space vacuum and (A)dS one], this
information will be sufficient to specify the Green’s func-
tion, for which we will only require the following sym-
metric variational law (with respect to local metric

variations in h and P̂):

�
1

hþ P̂
¼ � 1

hþ P̂
�ðhþ P̂Þ 1

hþ P̂
; (5)

characteristic of the Euclidean signature d’Alembertian
with zero boundary conditions. The relevance of this
Euclidean space setup to real physical setting in
Lorentzian spacetime and, in particular, to causal effective
equations with retarded nonlocalities will be discussed in
Sec. IV below.

The action (1) has one dimensional parameter M and
depends on six dimensionless parameters �, a, b, c, d, and
e; the first one � determining the overall magnitude of the
nonlocal correction to the Einstein term and the rest enter-

ing the potential term (2) of the operator hþ P̂. For a
small value of � and the value of M related to the Planck
mass MP,

j�j � 1; (6)

M2 ¼ M2
P

1� �
; (7)

the theory (1) has a GR limit on a flat-space background,
whereas the rest of the parameters should be restricted by
the requirement of a stable (A)dS solution existing in this
theory, which in the dS case can serve as a DE model of
accelerating cosmic expansion.

The main claim of our paper is that the theory (1) has
a stable (ghost-free) de Sitter (�> 0) or anti-de Sitter
(�< 0) solution of its variational equations of motion
with an arbitrary�, provided its dimensionless parameters
satisfy the following restrictions:

� ¼ �A� 4B; (8)

C ¼ 2
3; (9)

where the new set of capitalized quantities A, B and C read
as

A ¼ aþ 4bþ c; (10)

B ¼ bþ 4dþ e; (11)

C ¼ a

3
� c� 4e: (12)

These quantities arise in the coefficients of two tensor
projectors on traceful and traceless subspaces, which
remain in the potential term (2),

P��
��jðAÞdS ¼ Aþ 4B

4
�g��g

�� � C�

�
�
��
�� � 1

4
g��g

��

�
;

(13)

after its calculation on the (A)dS background with the
Riemann and Ricci tensors of the form

R���� ¼ �

3
ðg��g�� � g��g��Þ; (14)

R�� ¼ �g��: (15)

The condition (8) guarantees the existence of the (A)dS
solution, while Eq. (9) is responsible for its stability. This
fact, which can be regarded as a major technical achieve-
ment of this work, is based on the calculation of the
quadratic part of the action on its (A)dS background.
Bearing in mind generality and complexity of the original
multiparameter action, the result turns out to be remark-
ably simple. When the metric perturbations h�� on this

background are subject to the background covariant
DeWitt gauge condition,

�� � r�h
�� � 1

2r�h ¼ 0; (16)

(h � g��h�� and the indices of h�� are raised by the

background metric) this quadratic part depends only on
the traceless part of h�� and reads

Sð2Þ ¼ M2
eff

2

Z
d4xg1=2

�
� 1

4
�h��h �h�� � 1

4

�
C� 4

3

�
� �h2��

��2

4

�
C� 2

3

�
2
�h�� 1

h� C�
�h��

�
; (17)

�h�� � h�� � 1
4g��h: (18)

Here the condition (9) signifies the absence of the nonlocal
term and guarantees that the characteristic equation for all
propagating modes will have only one ‘‘massless’’ root for
h, h ¼ 2�=3 (on-shell condition of masslessness for the
(A)dS background differs from its flat-space analogue,
h ¼ 0 [21]). Therefore longitudinal and trace modes
which formally have a ghost nature become unphysical
and can be eliminated by residual gauge transformations
preserving the gauge (16). This well-known mechanism
leaves us with two transverse-traceless physical modes
propagating on the (A)dS background—absolutely the
same situation as in the Einstein theory with two graviton
modes on a flat or (A)dS spacetime.
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What is critically different from the GR phase of the
theory is the effective Planck mass Meff in (17), which
determines the cutoff scale of perturbation theory in the
(A)dS phase and the strength of the gravitational interac-
tion of matter sources. It is given by

M2
eff ¼

8Bð2Bþ �Þ
�ð1� �Þ M2

P: (19)

In the presence of matter sources with the stress tensor T��

the theory on the (A)dS background has linearized gravi-
tational potentials which equal modulo the gauge trans-
formation

h�� ¼ 8	Geff

�hþ 2
3 �

�
T�� þ g��

h� 2�

hþ 2�

�

3h
T

�
: (20)

Here all nonlocal operations should be understood with
retarded boundary conditions (see discussion below in
Secs. IV and VI) and Geff � 1=8	M2

eff is the effective

gravitational constant vs the Newton constant GN ¼
1=8	M2

P.
For a wide range of free parameters of our model, Geff

can be much larger thanGN because in view of (8) a natural
range of the parameter B is B� �, and Geff �GN=� �
GN . This property can be interpreted as a simulation of DM
mechanism, because it implies strengthening of the gravi-
tational attraction in the (A)dS phase of the theory and its
possible effect on rotation curves at relevant distance
scales.

III. SCALE-DEPENDENT COUPLING AND
FLAT-SPACE BACKGROUND SETUP

The choice of the action (1) might look contrived, but we
will show now that it naturally arises within the concept of
the effective scale-dependent gravitational constant. At a
qualitative level this concept was introduced in [14] as an
implementation of the idea that the effective cosmological
constant in modern cosmology is very small not because
the vacuum energy of quantum fields is so small, but rather
because it gravitates too little. This degravitation is pos-
sible if the effective gravitational coupling constant de-
pends on the momentum scale and becomes small for fields
nearly homogeneous at the horizon scale. Naive replace-
ment of the Newton constant by a nonlocal operator sug-
gested in [14] violates diffeomorphism invariance, but this
procedure can be done covariantly due to the following
observation [15].

The Einstein action in the vicinity of a flat-space back-
ground can be rewritten in the form

SE ¼ M2
P

2

Z
dxg1=2

�
�R�� 1

h
G�� þ O½R3

���
�
; (21)

where 1=h is the Green’s function of the covariant
d’Alembertian acting on a symmetric tensor. This expres-
sion is nothing but a generally covariant version of the

quadratic part of the Einstein action in metric perturbations
h�� on a flat-space background. When rewritten in terms of

the Ricchi tensor R�� �rrhþO½h2� this expression

becomes nonlocal but preserves diffeomorphism invari-
ance to all orders of its curvature expansion. In its turn
the quadratic nature of the Einstein action in the vicinity of
a flat-space background follows from the subtraction of the
linear in h�� term by the surface Gibbons-Hawking inte-

gral over asymptotically-flat infinity

SE ¼ �M2
P

2

Z
dxg1=2RðgÞ þM2

P

2

Z
1
d��ð@�h�� � @�hÞ:

(22)

From the viewpoint of the metric in the interior of space-
time this surface term is a topological invariant depending
only on the asymptotic behavior g1�� ¼ ��� þ
h��ðxÞjjxj!1. It can be converted into the form of the

volume integral and covariantly expanded in powers of
the curvature. This expansion starts with2

Z
1
d��ð@�h�� � @�hÞ

¼
Z

dxg1=2
�
R� R�� 1

h
G�� þ O½R3

���
�
; (23)

so that the Ricci scalar term gets canceled in (22) and we
come to (21).
With this new representation of the Einstein action, the

idea of a nonlocal scale-dependent Planck mass [14] can be
realized as the replacement of M2

P in (21) by a nonlocal
operator—a function M2ðhÞ of h,

M2
PR

�� 1

h
G�� ) R�� M

2ðhÞ
h

G��; (24)

which would realize this idea at least within the lowest
order of the covariant curvature expansion. This modifica-
tion put forward in [14,15] did not, however, find interest-
ing applications because it has left unanswered a critical
question: Is this construction free of ghost instabilities for
any nontrivial choice of M2ðhÞ? Here we try to fill up this
omission and put some constraints on M2ðhÞ.
To begin, if we adopt this strategy, then the search for

M2ðhÞ should be encompassed by the correspondence
principle according to which nonlocal terms of the action
should form a correction to the Einstein Lagrangian arising
via the replacement R ) Rþ R��FðhÞG��. The nonlocal

form factor of this correction FðhÞ should be small in the
GR domain, but it must considerably modify dynamics at
the DE scale. Motivated by customary spectral representa-
tions for nonlocal quantities like

2The covariant way to check this relation is to calculate the
metric variation of this integral and show that its integrand is the
total divergence which yields the surface term of the above type
linear in �g��ðxÞ ¼ h��ðxÞ [22].
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FðhÞ ¼
Z

dm2 �ðm2Þ
m2 �h

; (25)

we might try the following ansatz, FðhÞ ¼ �=ðm2 �hÞ,
corresponding to the situation when the spectral density
�ðm2Þ is sharply peaked around some m2 (cf. a similar
discussion in [17]). As we will see, for m2 � 0 this imme-
diately leads to a serious difficulty. Schematically the
inverse propagator of the theory—the kernel of the
quadratic part of the action in metric perturbations
h��—becomes

�hþ �
h2

m2 �h
; (26)

where the squared d’Alembertian h2 follows from four
derivatives contained in the term bilinear in curvatures.
Then its physical modes are given by the two roots of this
expression: the solutions of the corresponding quadratic
equation h ¼ m2�. In addition to the massless graviton
with m2� ¼ 0 massive modes with m2þ ¼ Oðm2Þ appear
and contribute a set of ghosts which cannot be eradicated
by gauge transformations. (For the latter have to be ex-
pended on the cancellation of ghosts in the massless sector:
longitudinal and trace components of h�� subject to

hh�� ¼ 0.)

Therefore, only the case of m2 ¼ 0 remains, and as a
first step to the nonlocal gravity we will consider the action

S ¼ M2

2

Z
dxg1=2

�
�Rþ �R�� 1

h
G��

�
: (27)

(For brevity we omit the surface integral that should ac-
company the Einstein Ricci scalar term.) On the flat-space
background this theory differs little from GR provided the
dimensionless parameter � is small, j�j � 1. Upper
bound on j�j should follow from the analysis of the post-
Newtonian corrections in this model. The additional effect
of � is a small renormalization of the effective Planck
mass. In the linearized theory we have an obvious relation

S ¼ �M2ð1� �Þ
2

Z
dxg1=2Rþ �O½h3���; (28)

which allows one to relate the constantM toMP by Eq. (7).

IV. TREATMENT OF NONLOCALITY:
SCHWINGER-KELDYSH TECHNIQUE VS

EUCLIDEAN FIELD THEORY

At this point we have to address the treatment of non-
locality in (27) and (1). In principle, handling the theories
having a nonlocal action at the fundamental level is a
sophisticated and very often an open issue, because their
nonlocal equations of motion demand special care in set-
ting their boundary value problem. Contrary to local field
theories subject to a clear Cauchy problem setup and local
canonical commutation relations, nonlocal theories can
have very ambiguous rules which are critical for physical

predictions. In particular, the action (27) above requires
specification of boundary conditions for the nonlocal
Green’s function 1=h which will necessarily violate cau-
sality in variational equations of motion for this action.
Indeed, the action (27) effectively symmetrizes the kernel
of the Green’s function Gðx; yÞ of 1=h, so that nonlocal
terms in equations of motion

�S

�g��ðxÞ / rr
Z

dy½Gðx; yÞ þGðy; xÞ�RðyÞ þ . . . (29)

[RðyÞ denoting a collection of curvatures] never have re-
tarded nature even when Gðx; yÞ is the retarded propagator
or satisfies any other type of boundary conditions [10].
Therefore, these equations break causality because the
behavior of the field at the point x is not independent of
the field values at the points y belonging to the future light
cone of x, y0 > x0.
To avoid these ambiguities and potential inconsistencies

we will once and for all assume that our nonlocal action is
not fundamental. Rather it is the quantum effective ac-
tion—the generating functional of one-particle irreducible
diagrams—whose functional argument is the mean quan-
tum field. This functional is necessarily nonlocal, and its
nonlocality originates from quantum effects (by various
mechanisms widely discussed in literature including
[23,24]). In this case boundary conditions for nonlocal
operations are uniquely fixed by the choice of the initial
(and/or final) quantum state, and manifest breakdown of
causality in variational equations for this action is harmless
under a proper treatment of their nonlocal terms.
To begin with, this causality breakdown does not imme-

diately signify inconsistency in the calculation of scatter-
ing amplitudes or hinjouti matrix elements, because these
amplitudes are determined by Feynman diagrammatic
technique and do not have manifest retardation properties
because they are not directly physically observable.
Physically observable quantities like probabilities are
bilinear combinations of scattering amplitudes and can

always be represented as expectation values hinjÔjini of
certain quantum operators Ô in the initial quantum state
jini. For example, the probability of transition from this
state to some final state jfini

Pin!fin ¼ hinjfinihfinjini ¼ hinjP̂finjini (30)

is an expectation value of the projector P̂fin � jfinihfinj
onto this final state. In contrast to in-out matrix elements
these expectation values are subject to the Schwinger-
Keldysh diagrammatic technique [19,25] which guarantees

causality of hinjÔðxÞjini. This property can be formulated
as a retarded response of this average to the variation of the
classical external source JðyÞ coupled to the quantum fields

in terms of which the operator ÔðxÞ is built,

SERENDIPITOUS DISCOVERIES IN NONLOCAL GRAVITY . . . PHYSICAL REVIEW D 85, 104018 (2012)

104018-5



�hinjÔðxÞjini
�JðyÞ ¼ 0; x0 < y0: (31)

This property is again not manifest and turns out to be
the consequence of locality and unitarity of the original
fundamental field theory (achieved via a complex set of
cancellations between nonlocal terms with chronological
and antichronological boundary conditions). However,
there exists a class of problems for which a retarded nature
of effective equations of motion explicitly follows from
their quantum effective action calculated in Euclidean
spacetime [20]. This is a statement based on the
Schwinger-Keldysh technique [19] that for an appropri-
ately defined initial quantum state jini the effective equa-
tions for the mean field

g�� ¼ hinjĝ��jini (32)

originate from the Euclidean quantum effective action S ¼
SEuclidean½g��� by the following procedure [20].3 Calculate

nonlocal SEuclidean½g��� and its variational derivative. In the
Euclidean signature spacetime nonlocal quantities, rele-
vant Green’s functions and their variations are generally
uniquely determined by their trivial (zero) boundary con-
ditions at infinity, so that this variational derivative is
unambiguous in Euclidean theory. Then make a transition
to the Lorentzian signature and impose the retarded bound-
ary conditions on the resulting nonlocal operators,

�SEuclidean
�g��

��������
retarded

þþþþ)�þþþ
¼ 0: (33)

These equations are causal [g��ðxÞ depending only on the

field behavior in the past of the point x] and satisfy all local
gauge and diffeomorphism symmetries encoded in the
original SEuclidean½g���.

A similar treatment of a nonlocal action in [10] was very
reservedly called the ‘‘integration by parts trick’’ needing
justification from the Schwinger-Keldysh technique.
However, this technique only provides the causality of
effective equations, but does not guarantee the Euclidean-
Lorentzian relation (33). The latter is based, among other
things, on the choice of the jini-state.

We will assume that our model falls into the range of
validity of this procedure, which implies a particular vac-
uum state jini and the one-loop approximation (in which it
was proven to the first order of perturbation theory in [26]
and to all orders in [20]). The extension of this range is
likely to include multiloop orders and the jini-state on the
(A)dS background considered below, for which this state
apparently coincides with the Euclidean Bunch-Davies
vacuum.

Asymptotically-flat space vs cosmological setup

This subsection demonstrates trial application of the
model (27) in cosmological setup with the purpose of
generating DE. Though it will fail due to inconsistent
treatment of boundary conditions, it is instructive to pass
this exercise to see the importance of their careful
treatment.
Like in papers on fðR=hÞ-gravity (see [27] and refer-

ences therein) stemming from [9], but in contrast to [9]
disregarding consistent treatment of boundary conditions
for nonlocal operations, one can localize the nonlocal part
of (27) with the aid of an auxiliary tensor field ’��. Then,
the theory is equivalently described by the action

S½g;’� ¼ M2

2

Z
dxg1=2

�
�R� 2�’��R��

� �

�
’�� � 1

2
g��’

�
h’��

�
(34)

generating for ’�� the equation of motion h’�� ¼
�G��. Since (27) is understood as the Euclidean action
with zero boundary conditions for 1=h at infinity, the
auxiliary tensor field should satisfy the same Dirichlet
boundary conditions ’��j1 ¼ 0, and this is critically im-
portant for stability of the theory. Indeed, the field ’��

formally contains ghosts, but they do not indicate physical
instability because they never exist as a free fields in the
external lines of Feynman graphs. In the Lorentzian con-
text of (33) this means that ’�� is given by a retarded
solution, ’�� ¼ �ð1=hÞretG��, and does not include free
waves coming from asymptotic infinity.
The artificial nature of these ghosts is analogous to the

case of the simplest ghost-free action that can be formally
rendered nonlocal

S½’� � �
Z

dx’h’ ¼ �
Z

dxðh’Þ 1
h

ðh’Þ

and further localized in terms of the auxiliary field c with
the action

S½’; c � ¼
Z

dxð2ch’þ chc Þ:

This action is equivalent to the original one when c is
integrated out with the boundary conditions ðc þ ’Þj1 ¼
0. After diagonalization this action features the ghost field
g � c þ ’,

S½’; c � ¼
Z

dxðghg� ’h’Þ: (35)

This ghost is however harmless because under the bound-
ary conditions of the above type it identically vanishes in
view of its equation of motion hg ¼ 0. In the presence of
interaction, a nonvanishing g exists in the intermediate
states, but never arises in the asymptotic states or external
lines of Feynman graphs.

3We formulate this statement directly for the case of gravity
theory with the expectation value of the metric field operator
ĝ��ðxÞ, though it is valid in a much wider context of a generic
local field theory [20].
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The main lesson to be drawn from the above example is
that the actual particle content of the theory should be
determined in terms of the original set of fields, whereas
nonlocal reparameterizations can lead to artificial ghost
modes which are actually eliminated by correct boundary
conditions.4 In our case this is the original formulation (27)
in terms of the metric field g��. It indeed turns out to be

ghost free on the flat-space background, because the qua-
dratic part of the action coincides with the Einstein one.5

In the local representation (34) our model could be
directly applied to the FRW cosmology for the purpose
of finding the accelerated stage of cosmic expansion. It is
easy to find a (quasi) de Sitter point of the cosmological
evolution. Indeed, with the natural Lorentz-invariant
ansatz for the auxiliary field ’�� ’ 1

4�g��, which is sup-

posed to be valid close to a certain moment t0 correspond-
ing to the present epoch, the cosmological evolution for the
action (34) can be compatible with the current DE data. By
an appropriate choice of initial conditions the Hubble
factor H ¼ _a=a, the field � and the parameter of the
effective equation of state w ¼ �1� 2 _H=3H2 can satisfy
at t0 the following relations:

_�0 ¼ �4
H0

�
; w0 ¼ �1;

_w0 ¼ �16H0

2�� 1

3�2 þ 2
:

(36)

Here the quantity � ¼ ð2�=3Þ1=2ð2þ ��0 � 3�Þ�1=2 is
determined by the value of the field �0 ¼ �ðt0Þ. If it is
chosen to satisfy � ¼ Oð1Þ> 1=2 we have _w0 ¼ Oð1Þ �
H0 < 0 which yields a pace of change in the effective
equation of state compatible with the horizon scale.

These preliminary estimates could have served as a
starting point for a quantitative comparison with the DE
scenario. However, a formal application of (27) to the FRW
setup disregards nontrivial boundary conditions in cosmol-
ogy. To see this, note that fine-tuning initial conditions for
� to the DE data would generally contradict zero boundary
conditions for the auxiliary tensor field ’�� / �g��, not
to mention that the cosmological FRW setup does not in
principle match with the asymptotically-flat framework of
the action (27). Therefore we have to extrapolate the
definition (27) to nontrivial backgrounds including, first

of all, the de Sitter spacetime and change our technique—
instead of localization method with an auxiliary tensor
field work directly in the original metric representation.
This will help us to look for the (A)dS solution in the
covariant language circumventing explicit FRW metric
ansatz.
This approach to the action (27) suffers from a serious

difficulty. Ricci curvature for the (A)dS background (15) is
covariantly constant, and the nonlocal part of (27) turns out
to be infrared divergent, ð1=hÞg�� ¼ 1: the property that

can hardly be cured by some choice of boundary conditions
for 1=h. This means that the action (27) should be modi-
fied to regulate this type of divergences.

V. STABLE (A)DS BACKGROUND

We will regulate the action (27) by adding to the cova-
riant d’Alembertian the matrix-valued potential term built
of a generic combination of tensor structures linear in the
curvature. This brings us to the six-parameter family of
nonlocal action functionals (1) and (2) introduced in
Sec. II. Of course, such a modification of the original
action (27) leaves its linear approximation on a flat back-
ground intact, because it deals withO½h3���-terms, whereas

its dimensionless parameters will be restricted by the re-
quirement of a stable dS or AdS solution in the model.

The action of the matrix-valued potential P̂ on g�� is

given by the relation

P̂g�� � P��
��g�� ¼ AR�� þ BRg��; (37)

where the coefficients A and B are defined by Eqs. (10) and

(11), so that the Green’s function 1=ðhþ P̂Þ acting on
Ricci and Einstein tensors in (1) is well defined even for
the maximally symmetric (A)dS background with the
covariantly constant curvatures (14) and (15). In this case
the above relation simplifies to the equation

P̂g�� ¼ ðAþ 4BÞ�g��; (38)

which has two obvious corollaries

1

hþ P̂
R��jðAÞdS ¼ �P̂�1g�� ¼ 1

Aþ 4B
g��; (39)

1

hþ P̂
G��jðAÞdS ¼ � 1

Aþ 4B
g��: (40)

These corollaries follow from the fact that on a maximally

symmetric background h commutes with P̂ and annihi-
lates R�� ¼ �g��.

Let us prove now that under the relation (8) between the
parameters of the potential (2) the equation of motion for
(1) has the (A)dS solution with an arbitrary value of the
cosmological constant �. The simplest method to see this
is to apply to the action the conformal metric variation
(more cumbersome straightforward calculation will be
presented in the Appendix).

4This, in particular, means that the ghost avoidance criteria
derived in [27] are not precise, because they are in fact applied to
local scalar-tensor theories rather than to nonlocal ones. We have
to reiterate here that a naive analysis of kinetic terms of auxiliary
fields, which are usually used to localize a nonlocal action of the
theory, cannot exclusively serve as a criterion of the elimination
of ghosts as boundary conditions are equally important for that.

5A similar mechanism of eliminating ghosts by boundary
conditions was recently used in [28]. However, in contrast to
our model, the ghost modes of the conformal gravity in [28] are
higher-derivative ones and are essentially nonlinear. Therefore,
the nonghost nature of the theory requires further verification
even after integrating these ghosts out.
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For this introduce the local conformal variation with the
parameter �� ¼ ��ðxÞ,

�� ¼
Z

d4x��g��
�

�g��
: (41)

Under its action various quantities in (1) transform accord-
ing to their conformal weights,

��g��¼��g��; ��g
1=2¼2g1=2��;

��R��¼OðrÞ; ��R¼���RþOðrÞ;
��R

��¼�2��R��þOðrÞ; ��P̂¼���P̂þOðrÞ;
��h¼OðrÞ; (42)

modulo the derivatives OðrÞ acting on ��ðxÞ and these
quantities themselves. Then the conformal variation of (1)
on the (A)dS background reads

��S ¼ M2

2

Z
d4xg1=2

�
�Rþ �R�� 1

hþ P̂
G��

�
��

¼ �2M2�

�
1þ �

Aþ 4B

�Z
d4xg1=2��; (43)

so that the corresponding variational derivative equals

�S

��

��������ðAÞdS
¼ �2M2�

�
1þ �

Aþ 4B

�
g1=2: (44)

Since all tensor quantities on this background algebraically
express via g�� the metric variational derivative of the

action reduces to this conformal variation. Then the result-
ing equation of motion

�S

�g��

��������ðAÞdS
¼ 1

4
g�� �S

��

��������ðAÞdS
¼ 0 (45)

holds with an arbitrary value of the effective cosmological
constant � when the parameters in Eqs. (1) and (2) satisfy
the relation (8).

Note that the existence of the (A)dS solution with an
arbitrary� is neither the result of the local Weyl invariance
of the theory, nor even its global scale invariance. Rather
this is the corollary of the relation (8) which, in virtue of
Eq. (40), guarantees the vanishing on-shell value of the
action,

SjðAÞdS ¼ 0: (46)

Thus, this solution is another vacuum: a direct analogue of
the flat-space one.

Another remarkable corollary of Eq. (8) is that the
stability of the (A)dS solution against ghost and tachyon
excitations is guaranteed by only one additional restriction
(9) on the parameter C defined by (12). In principle, the
hope to eliminate ghosts and tachyons from the quadratic
part of the action Sð2Þ on the (A)dS background is based on

the following observation.

In the DeWitt gauge on metric perturbations (16) Sð2Þ
contains only two structures h�� � h�� and h� h, or

equivalently �h�� � �h�� and h� h, where �h�� is a trace-

less part of h��. Since the potential term P̂ on the maxi-

mally symmetric background commutes withh and equals
the linear combination (13) of projectors on traceless and
trace subspaces, the nonlocal parts of these two structures
have the form

�h�� 1

h� C�
�h��; h

1

h� ��
h; (47)

where the Green’s function in the trace sector follows from
the equation

ðhþ P̂Þg��h ¼ g��ðh� ��Þh; (48)

which is also based on (8) and (38). As in the flat-space
background discussion above, the ghosts necessarily ap-
pear if these nonlocalities are nonvanishing in Sð2Þ, because
the dispersion equation for h becomes quadratic and gen-
erates a doubled set of physical modes withh ¼ m2� (with
C� or �� playing the role of a nonvanishing m2).
Therefore it seems a priori possible to cancel these two
nonlocal structures and provide the right signs of the
remaining local terms by the appropriate choice of the
five free parameters in (2).
A curious fact is that in the DeWitt gauge (16) Sð2Þ has a

very simple form

Sð2Þ ¼M2
eff

2

Z
d4xg1=2

�
�1

4
h��hh��þ 1

16
hhh

�1

4

�
C�4

3

�
�h2��þ 1

16

�
C�4

3

�
�h2��2

4

�
C�2

3

�
2

�
�
h�� 1

hþ P̂
h���1

4
h

1

h���
h

��
; (49)

where the effective Planck mass Meff is given by
Eq. (19).
A rather lengthy technical derivation of this result is

presented in the Appendix. It is strongly based on the
relation (8), Eqs. (39) and (40) and, what is less pro-
nounced but equally important, on a symmetric variational
relation for the Green’s function (5) and the possibility of
integrating by parts without extra surface terms. These
properties are guaranteed by the Euclidean spacetime sig-
nature in the action (1) and regularity of Green’s functions
on a closed compact S4 for the de Sitter case or their
boundary conditions at the AdS boundary for the anti-
de Sitter case.
Again, it is worth mentioning here that this rule of free

integration by parts, that was used throughout the series of
papers [9–11] and interpreted there as a trick, makes sense
only within the relation between the Schwinger-Keldysh
technique and Euclidean quantum field theory (QFT) and
applies only in the Euclidean spacetime. Below we will see
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that, once the effective equations in the physical
Lorentzian spacetime have been obtained by Eq. (33), the
indiscriminate omission of surface terms under integration
by parts becomes illegitimate and leads to wrong properties
of free propagating modes of h��.

Remarkably, the expression (49) depends only on the
traceless part (18) of the metric perturbation, because the
combination of tensor contractions h�� � h�� � ð1=4Þh�
h equals �h�� � �h��. This property, apart from explicit

calculation done in the Appendix, can be derived from
the scaling transformation of the action (1)

S½ð1þ "Þg��� ¼ ð1þ "ÞS½g��� (50)

under a global dilatation of the metric, r�" ¼ 0. This

implies that the quadratic part of the action (in fact on an
arbitrary background) identically vanishes for global con-
formal perturbations h�� ¼ "g�� obviously satisfying the

DeWitt gauge (16)

Sð2Þjh��¼"g��
¼ 0; " ¼ const: (51)

This observation serves as an independent check of explicit
calculations of Sð2Þ in the Appendix and uniquely deter-

mines the minus one quarter ratio of the coefficients of
h� h and h�� � h�� structures (except their local kinetic

terms hhh and h��hh�� which identically vanish for

h�� ¼ "g�� with a constant ").

Thus in the DeWitt gauge the quadratic part of the action
(49) takes the form (17) quadratic in the traceless part of
metric perturbations. Moreover, in view of the projector
properties of the potential term (13) it simplifies even
further:

Sð2Þ ¼ �M2
eff

8

Z
d4xg1=2 �h��

ðh� 2
3�Þ2

h� C�
�h��: (52)

With an arbitrary value of C the characteristic equation for
physical modes still yields only one root h ¼ ð2=3Þ�, but
this is the second order root which for C � 2=3 corre-
sponds to double poles in the propagator and signifies
presence of higher-derivative ghosts.

Therefore, the requirement of absence of ghosts imposes
only one extra equation (9) for C, C ¼ 2=3, and the pos-
itivity requirement forM2

eff . Bearing in mind that j�j � 1,
this selects two admissible intervals for the parameter B in
the case of a positive �,

B<��

2
; B > 0; (53)

and an even more interesting compact range of this pa-
rameter for a negative �,

0<B<��

2
; � < 0: (54)

VI. FREE PROPAGATING MODES
AND GRAVITATIONAL POTENTIALS

IN THE (A)DS PHASE

In order to obtain correct linearized equations of
motion we need a quadratic part of the action without
gauge-fixing. It is invariant under the linearized gauge
transformations h�� ! h�� þ �fh�� with the vector dif-

feomorphism parameters f� ¼ g��f
�,

�fh�� ¼ r�f� þr�f�; (55)

where covariant derivatives are determined with respect to
the background metric. The invariant Sð2Þ can be obtained

from (49) by representing h�� in the DeWitt gauge as the
projection to this gauge of the nongauged field,

h��j��¼0 ¼ h�� � 2rð�
��
�Þ

hþ�
��: (56)

Here it is worth reminding the definition of the DeWitt
gauge condition functions (16) for which the vector field
operator ðhþ�Þ��

� plays the role of the Faddeev-Popov
operator

�� ¼ g���
�; �� � r�h

�� � 1
2r�h; (57)

�f�� ¼ ðhþ�Þf�: (58)

The result of substituting (56) in Eq. (49) for C ¼ 2=3
reads

Sð2Þ ¼ M2
eff

2

Z
d4xg1=2

�
1

4
h��

�
�hþ 2

3
�

�
h��

� 1

8
h

�
�h� 2

3
�

�
h� 1

2
�2
� � 1

4
Rð1Þ

1

hþ 2�
Rð1Þ

�
;

(59)

where Rð1Þ is the linearized Ricci scalar on the (A)dS

background which has a form of the combination of two
terms linear, respectively, in r��

� and h,

Rð1Þ � r�r�h�� �hh��h ¼ r��
� � 1

2ðhþ 2�Þh:
(60)

Interestingly, the first three lines of Sð2Þ above coincide

with the quadratic part on the (A)dS background of the
Einstein-Hilbert action with the � term [21]. Therefore,
this part of Sð2Þ is invariant under (55), while the invariance
of the last term of (59) directly follows from the invariance
of Rð1Þ. The form of (59) shows that despite a complicated

tensor structure of nonlocal term in (1) near the (A)dS
background it reduces to the Ricci scalar sector similar
to the R 1

h
R distortion of Einstein theory considered in

[9–11].
Now, according to the relation (33) between Euclidean

QFT and causal effective equations for mean field we
calculate the variational derivative of Sð2Þ, with respect to
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h��, and go over to the Lorentzian metric signature and

establish retardation of all nonlocal operations. This gives
the following equation for free propagating modes of the

mean (expectation value) metric field h�� ¼ hinjĥ��jini:
4

M2
eff

g�1=2
�Sð2Þ
�h��

��������
retarded

þþþþ)�þþþ

¼
�
�hþ 2

3
�

�
h�� þ 1

2
g��

�
hþ 2

3
�

�
h

þ 1

2
g��Rð1Þ þ 2rð�
�Þ � g��r�


� ¼ 0; (61)

where 
� is the nonlocal function


� ¼ �� � 1

2
r� 1

hþ 2�

��������ret
Rð1Þ (62)

whose nonlocality is given by the retarded Green’s
function.

The trace of this effective equation gives

4

M2
eff

g�1=2g��
�Sð2Þ
�h�� ¼ 2r�ð�� �
�Þ

¼ h

�
1

hþ 2�

�
ret
Rð1Þ

¼ Rð1Þ � 2�

hþ 2�

��������ret
Rð1Þ ¼ 0: (63)

The last equation yields not only the homogeneous differ-
ential equation for Rð1Þ but also its zero initial conditions at
past infinity because of the retarded nature of the Green’s
function. Acting on this equation by the operator hþ 2�
we immediately get the initial value problem,

hRð1Þ ¼ 0; (64)

Rð1Þjx0!�1 ¼ 0; @0Rð1Þjx0!�1 ¼ 0; (65)

with the identically vanishing solution. Therefore the lin-
earized Ricci scalar of the free propagating wave is vanish-
ing throughout the entire (A)dS spacetime

Rð1ÞðxÞ ¼ 0: (66)

As a result the nonlocal function (62) coincides with the
local DeWitt gauge condition function, 
� ¼ ��, and
Eq. (61) becomes absolutely identical to the linearized
Einstein equations on the (A)dS background.

Now it is high time to impose the DeWitt gauge (16) in
which Eq. (66) reduces to

ðhþ 2�Þh ¼ 0: (67)

Similarly to the Feynman gauge in electrodynamics, in this
relativistic gauge all components of h�� are propagating,

but their gauge ambiguity is not completely fixed and
admits residual gauge transformations (55) with the
parameter f� satisfying the equation

ðhþ�Þf� ¼ 0: (68)

By the usual procedure these transformations can be used

to select two polarizations: free physical modes hphys�� ¼
h�� þr�f� þr�f�. In particular, they can nullify

boundary conditions for h on any initial Cauchy surface
�, so that this trace identically vanishes in view of the
homogeneous equation (67) and makes the physical modes
transverse and traceless as in the Einstein theory with a
�-term,

r�hphys�� ¼ 0; hphys ¼ 0: (69)

Indeed, under these transformations hphys ¼ hþ 2r�f
�,

and both r�f
�j� and @0r�f

�j� can be chosen to provide

zero initial data for hphys on�. The remaining three pairs of
initial data for f� accomplishes the counting of the physi-
cal degrees of freedom among spatial components of h��,

6� 1� 3 ¼ 2, while the four lapse and shift functions
h0�, as usual, express via the constraint equations of

motion �Sð2Þ=�h0� ¼ 0.6

It is important that a priori in the DeWitt gauge the
equation of motion (61) is not local even though the
function (62) seems to become localized; cf. Eq. (60).
This is because the seemingly correct equation

�
1

hþ 2�

�
ret
ð ~hþ 2�Þ’ðxÞ ¼ ’ðxÞ (70)

does not hold for the field ’ðxÞ with a noncompact support
extending to past infinity. This is exactly the case of free
propagating modes, when integration by parts of h yields
extra surface terms; the situation is different from the
Euclidean QFT side of the relation (33), as it was men-
tioned in the previous section. Disregarding these terms
would lead to inconsistent equations of motion breaking
their diffeomorphism invariance.7

The opposite situation occurs when we consider retarded
gravitational potentials h�� generated by matter sources

with a stress tensor T�� having a compact support. Then

h�� also has a compact support in the past, and Eq. (70)

applies to the calculation of the vector function (62). In the
DeWitt gauge it becomes local,
�j��¼0 ¼ ð1=4Þr�h, and

the equation (61) for the retarded potential also takes the
local form,

6Or equivalently, when they are treated as propagating modes
subject to second order in time differential equations, their initial
data express via ��j� ¼ 0 and @0�

�j� ¼ 0.
7Indiscriminate use of Eq. (70), which leads to the local

equation (61) in the DeWitt gauge, would imply the wrong trace
equation hh ¼ 0 different from (67). This would contradict the
corollary of Eq. (68), ðhþ 2�Þr�f

� ¼ 0, because h and hphys

differing by 2r�f
� would not satisfy one and the same equation

as they should.
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�
�hþ 2

3
�

�
h�� þ 1

2
r�r�h��

6
g��h ¼ 2

M2
eff

T��;

(71)

with matter stress tensor coupled to h�� via the effective

Planck mass (19).
The retarded solution of this equation for the trace part

of h�� immediately reads

M2
effh ¼ �4

1

h

��������ret
T: (72)

After careful commutation of covariant derivatives and the
Green’s function of the tensor operator ð�hþ 2

3�Þ���
��,

���
��

�hþ 2
3�

r�r�¼�r�r�

1

hþ2�

þ2�

3
g��

h

ð�hþ 2
3�Þðhþ2�Þ ; (73)

one finally finds the gravitational potential of matter
sources. In the DeWitt gauge it takes the form

h�� ¼ 16	Geff

�hþ 2
3 �

�
T�� þ g��

h� 2�

hþ 2�

�

3h
T

�
ret

�r�r�

16	Geff

ðhþ 2�Þh
��������ret

T: (74)

Here of course retardation prescription applies to all
Green’s functions; the last term represents a pure gauge
transformation and Geff � 1=8	M2

eff is the effective gravi-

tational constant vs the Newton one GN ¼ 1=8	M2
P,

Geff ¼ �ð1� �Þ
8Bð2Bþ �ÞGN: (75)

This proves the gauge invariant part of this potential
advocated in Sec. II.

The expression (74) differs from the GR analog by the
tensor structure: the nonlocal combination in the first line
of (74) vs the GR structure T�� � ð1=2Þg��T. From the

viewpoint of expansion in j�j � 1 this implies for non-
relativistic sources certain Oð1Þ corrections. What is much
more interesting, is that it yields an unexpected bonus in
the form of a possible dark matter simulation: Oð1=j�jÞ
amplification of the gravitational attraction due to the
replacement of the Newton gravitational constant GN by
Geff �GN=j�j with j�j � 1. This necessarily happens in
the case (54) of a negative �, because the factor
�=8Bð2Bþ �Þ 	 1=j�j and

Geff 	 1� �

j�j GN � GN: (76)

For a positive � in the domain (53) the theory is also
strongly coupled with Geff >GN for the following two
intervals of B:

�
ffiffiffiffi
�

p þ �

4
<B<��

2
; 0<B<

ffiffiffiffi
�

p � �

4
; (77)

and might correspond to the DM phenomenon. In the rest
of this domain it is on the contrary weakly coupled with
Geff <GN . At the crossover between these two regions of
strong and weak coupling, jBj ’ ffiffiffiffi

�
p

=4, both Newton and
effective gravitational coupling constants can be of the
same order of magnitude, GN=Geff ¼ Oð1Þ even for a
very small � � 1, which together with (76) leaves a large
window for a possible strength of DM attraction relative to
the GR behavior.

VII. CONCLUSIONS

Thus we have a class of generally covariant nonlocal
gravity models which have a GR limit and also a stable
de Sitter or anti-de Sitter background with an arbitrary
value of its cosmological constant. This background carries
as free propagating modes two massless gravitons identical
to those of Einstein theory with a cosmological term. These
gravitons are coupled to matter with a variable effective
gravitational coupling which can be stronger than the
Newton coupling in general relativity theory. The interpre-
tation of these models looks as follows.
The theory with the action (1) has two phases. For short

distances corresponding to the range of wavelengths with

rr�h � R; (78)

it has a GR phase on the zero curvature background with
small Oð�Þ � R=h corrections of higher orders in space-
time curvature (collectively denoted by R). This regime
might apply to galactic, solar system, and other small-scale
phenomena and is likely to pass all general relativistic tests
for a sufficiently small �. A disturbing property of pertur-
bation theory in this phase could be the presence of poles
�ð1=hÞR in the vertices of (1) which could contribute too
strong to graviton scattering, but these contributions vanish
on shell R�� ¼ 0 provided, perhaps, that the Riemann term

is forbidden in the potential (2) of the tensor differential
operator which specifies a nonlocal part of (1), a ¼ 0.
Another phase of the theory corresponds to the infrared

wavelengths range

rr � R (79)

in which a stable (A)dS background exists and the modi-
fied gravitational potential of matter sources is given by
Eq. (74). This equation is valid for the perturbation range
j�R�

� j � jrrh�� j � � and jh�� j � 1, which is equivalent
in virtue of Eq. (71) to very small matter densities,

jT�
� j �M2

eff�jh�� j � M2
eff�; (80)

characteristic of galaxy, galaxy cluster, and horizon scales
for which DE and DM modification of gravity theory
becomes important. Thus, nonlocal gravity interpolates
between the GR theory and its infrared modification. The
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latter is likely to generate a stable ghost-free stage of
cosmic acceleration and, perhaps, even simulate the DM
effect on rotation curves in a strong coupling domain (54)
and (77).

How realistic is this picture from the viewpoint of the
concordance model of DE and DM? There are open prob-
lems which might derail its viability. The most serious
objection is that absence of ghosts is guaranteed only on
two backgrounds: flat space and (A)dS ones. Outside of
these two solutions the theory is most likely unstable,
which perhaps can be interpreted as a kind of attraction
mechanism pushing the system to one of its two stable
phases. Therefore, inclusion of matter sources can be con-
sistently done only within perturbation theory in the vicin-
ity of these two solutions, that is when the total matter
stress tensor T�� is treated as a perturbation. In fact, the

range of energies (80) is a condition justifying this pertur-
bation theory on the (A)dS background. A similar range on
the flat background is of course bounded by the Planck
scale which is not at all restrictive, because we anyway stay
in the infrared domain of effective gravity theory.

It goes without saying that the model should undergo
tests on consistency of post-Newtonian corrections, the
magnitude of the DM phenomenon should be compared
with observations, the effect of nonlocal stress tensor trace
term of (74) should be studied, etc. Moreover, the mecha-
nism should be found, by which the model picks up a
concrete scale jT�

� j �M2
eff� of a crossover from the GR

regime to cosmic acceleration—a necessary element in
realistic cosmology. Regarding this mechanism we only
note that the existence of an (A)dS solution with an arbi-
trary � is possible due to the fact that the purely gravita-
tional action (1) transforms homogeneously under the
global rescaling (50), g�� ! �g��, S½�g��� ¼ �S½g���,
so the crossover mechanism can be based on the break-
down of this property by matter fields; cf. [5].

The last but not the least is the justification of the choice
of (1) as an approximation for the effective action coming
from some fundamental quantum gravity theory. Quantum
effective action with the scaling property of the above type
is hard to imagine within semiclassical expansion which
contains additional to M2

P dimensional parameters and has
another scaling behavior [23,24]. However, infrared non-
local expansion in the heat kernel theory of gravitating
models and their nonlocal effective action [22,29] contain
nonlocal structures similar to (1).

Apart from pragmatic applications in cosmology the
model in question can be interesting from a pure field-
theoretical viewpoint. It is usually considered that modifi-
cations of Einstein theory are associated with new degrees
of freedom of the gravitational field or broad graviton
resonances [17]. The above model shows that it is not
necessarily the case, because both phases of the theory
have the same set of Einstein massless modes. In fact, our
model presents theway how the vacuum equation ofmotion

R�� ��g�� ¼ 0 (81)

can be encapsulated into the action functional in such a
sophisticated way that feeding the theory with matter
sources takes place with a nonlocal coupling varying
from one of its stable phases to another. Usually this is
very hard to implement if we want to maintain stability
and unitarity of the theory. An interesting example of
such a procedure is a local model of conformal gravity
[28], in which higher-derivative ghosts are advocated to
be eliminated by special boundary conditions. Our model
is the example of a nonlocal model explicitly demon-
strating absence of ghosts on two vacua of the theory
and possible strong and weak coupling regimes associ-
ated with these vacua. Moreover, both of these flat and
(A)dS vacua have zero value of their on-shell action
(46), which makes the situation very attractive because
their contributions to physical amplitudes become
equally important without being infinitely suppressed or
enhanced, as it happens in other models of Euclidean
quantum gravity.8

In conclusion we mention that serendipity of ghost-free
nonlocal gravity models (1) might not be exhausted by
applications in cosmology. In particular, they might admit
generic (not maximally symmetric) Einstein space solu-
tions (81) with an arbitrary cosmological constant.
Therefore, these models can have implications in black
hole physics and be an alternative to the conformal gravity
model of [28], whereas with a negative � they become a
new testing ground for AdS/CFT correspondence perhaps
promising other exciting consequences.
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8The degeneracy in the family of (A)dS vacua with different �
might be interpreted as instability with respect to classical or
quantum leaps between them. However, classically � is a
constant of motion, whereas its quantum mechanical treatment
does not make much sense, because we already work within
effective theory for mean fields, which resulted from quantiza-
tion, and � is the mean value of the effective cosmological
constant.
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class of Schwarzschild-de Sitter black hole solutions with
vanishing horizon entropy [30].

APPENDIX: QUADRATIC PART OF THE ACTION

The symmetric variation rule for the Green’s function
(5) allows one to write down the first order variation of the
action (1) under the metric variation �g�� � h��,

�S ¼ M2

2

Z
d4xg1=2

�
G��h�� þ �

2
hR�� 1

hþ P̂
G��

þ ��R�� 1

hþ P̂
G�� þ �R�� 1

hþ P̂
�G��

� �R�� 1

hþ P̂
ð� ~hþ �P̂Þ 1

hþ P̂
G��

�
: (A1)

Here and in what follows we use obvious but deserving
special mentioning notations

h�g��h��; h���g��g��h��; �g��¼�h��;

�R��¼�ðg��g��R��Þ¼g��g���R���2h�ð�R�Þ
� :

The arrow over h indicates the direction in which this
operator is acting. For its metric variation �h it is impor-
tant to indicate whether it acts to the right or to the left,

because in contrast to the symmetric operator g1=2h the

operator g1=2�h is not symmetric, and under integration
by parts (reversing the direction of the arrow) generates

extra terms / �g1=2 ¼ 1
2g

1=2h.

The expression (A1) allows one to derive explicitly the
variational derivative of the action on the (A)dS back-
ground and confirm Eqs. (44) and (45) derived above by
the conformal variation method. Using (39) and (40) and

reversing the action of the symmetric ðhþ P̂Þ�1 to the left
in the fourth and fifth terms of (A1) we have

�SjðAÞdS ¼ M2

2

Z
d4xg1=2

�
��h� 2��

Aþ 4B
h

� �

Aþ 4B
g���R

�� þ �

Aþ 4B
g���G��

þ �

ðAþ 4BÞ2 g
��ð� ~hþ �P̂Þg��

�
: (A2)

To calculate the first four terms here we use the Ricci
tensor variation

�R�� ¼ r�rð�h�Þ� � 1
2hh�� � 1

2r�r�h; (A3)

while the fifth term can be obtained as follows. Consider
the first order metric variation of the identities hg�� ¼ 0

and (37). This gives

ð� ~hÞg�� ¼ �hh��; (A4)

ð�P̂Þg��¼�P̂h��þA�R��þBRh��þBg���R; (A5)

so that on the (A)dS background

ð� ~hþ �P̂Þg�� ¼ �ð ~hþ P̂Þh�� þ A�R�� þ 4B�h��

þ Bg���R: (A6)

Therefore the variation (A2) takes the form

�SjðAÞdS ¼ �M2�

2

�
1þ �

Aþ 4B

�Z
d4xg1=2g���g��

(A7)

and confirms Eqs. (44) and (45) which lead to the criterion
(8) of the (A)dS background with an arbitrary �.
Now let us go over to the quadratic part of the action

on this background. For this we make the metric varia-
tion of (A1) by applying the same rule (5) and integra-
tion by parts

Sð2Þ ¼ 1
2�

2SjðAÞdS: (A8)

The result immediately simplifies if we use the following
two corollaries:

g�� 1

hþ P̂
��� ¼ 1

h� ��
ðg�����Þ; (A9)

1

hþ P̂
ðg���Þ ¼ g�� 1

h� ��
�; (A10)

of the equation

g��ðhþ P̂Þ���� ¼ ðh� ��Þg��; (A11)

which is of course based on the relations (38) and (8).
The above equations hold for generic tensor ��� and
scalar � fields and allow us to pull the metric tensor
through the tensor propagator converting it into the
scalar one.
As a result the quadratic part of the action splits into the

sum

Sð2Þ ¼ �Sð2Þ þ ~Sð2Þ (A12)

of the purely local term

�Sð2Þ ¼ M2

4

Z
d4xg1=2

�
1

2
h�Rþ 1

2
�h2 þ �G��h��

� 1

2
h2��Rþ 1

2
hg���R

�� þ ð�2R��Þg��

� g��ð�2G��Þ þ 1

�
g��ð�2 ~hþ �2P̂Þg��

�
(A13)

and the term which together with some local pieces
contains all nonlocalities of Sð2Þ
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~Sð2Þ¼M2

4

Z
d4xg1=2

�
þ��

2
h

1

h���
g���G��

��

2
h

1

h���
g��ð� ~hþ�P̂Þg��

� 2

�
g��ð� ~hþ�P̂Þ 1

hþP̂
ð� ~hþ�P̂Þg��

þ2��R�� 1

hþP̂
�G���2�R�� 1

hþP̂
ð� ~hþ�P̂Þg��

þ2g��ð� ~hþ�P̂Þ 1

hþP̂
�G��

�
: (A14)

1. Disentangling nonlocal structures

Here we begin with disentangling nonlocal terms from
(A14). From now on we will consider metric perturbations
in the DeWitt gauge (16) in which the Ricci tensor varia-
tion (A3) (on the (A)dS-background) simplifies to

�R��jðAÞdS ¼ �1
2hh�� þ 4

3�

�
h�� � 1

4g��h

�
: (A15)

Therefore, the expression (A6) takes the form

g��ð� ~hþ �P̂Þg�� ¼ �
�
1� �

2

�
ðh� ��Þhþ �2

2
�h:

(A16)

Using this expression and the fact that g���G�� ¼
hh=2 one finds that the sum of the first two nonlocal terms
in (A14) is in fact local [here we consider all the contri-
butions to (A14) modulo the overall factor M2=4]

Z
d4xg1=2

�
��

2
h

1

h���
g��ð� ~hþ�P̂Þg��

þ��

2
h

1

h���
g���G��

�
¼�

2

Z
d4xg1=2h2: (A17)

Using the relation (A6) and its transpose9 one can show
that the last three terms in (A14) reduce to

Z
d4xg1=2

�
þ2��R�� 1

hþ P̂
�G���2�R�� 1

hþ P̂
ð� ~hþ�P̂Þg��þ2g��ð� ~hþ�P̂Þ 1

hþ P̂
�G��

�

¼
Z
d4xg1=2

�
4h���R���8�h2��þ�

�
1��

2

�
h2þ2��R�� 1

hþ P̂
�R����2�2

2
h

1

h���
h

�
: (A18)

Finally, the third term in (A14) can be transformed as

� 2

�

Z
d4xg1=2g��ð� ~hþ �P̂Þ 1

hþ P̂
ð� ~hþ �P̂Þg��

¼ 1

2�

Z
d4xg1=2

�
½�� 2� 2BðAþ 2BÞ�hhhþ 4h��hh�� þ 4�h2��½2�� C�

þ�h2
�
C� BðAþ 2BÞð8þ 2�Þ � �

2

�
þ�2½�3 � BðAþ 2BÞð8�þ 2�2 þ 8Þ�h 1

h� ��
h

þ 32�2BðAþ 2BÞh�� 1

hþ P̂
h�� � 4A2�R�� 1

hþ P̂
�R��

�
: (A19)

To calculate �R�� � �R��-terms in the above two expressions we use another form of the Ricci tensor variation which

holds in view of (A15) and (13)

�R��jðAÞdS ¼ � 1

2
ðhþ P̂Þh�� � �

8
�g��h��

�
C

2
� 4

3

��
h�� � 1

4
g��h

�
: (A20)

This form contains as a whole the operator hþ P̂ which cancels ðhþ P̂Þ�1 and renders a part of terms explicitly local.
The result reads

Z
d4xg1=2�R�� 1

hþ P̂
�R��¼

Z
d4xg1=2

�
1

4
h��hh��þ�

4
h2��

�
C�4

3

�
þ�

16

�
��Cþ16

3

�
h2

þ�2

16

�
��Cþ8

3

��
�þCþ4

3

�
h

1

h���
hþ�2

4

�
Cþ4

3

��
C�8

3

�
h�� 1

hþ P̂
h��

�
: (A21)

9Functional transposition of �h should take into account the variation of the integration measure g1=2 because, as mentioned above,
the operator g1=2ð�hÞ is not symmetric in contrast to symmetric g1=2h.
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Using this relation and collecting in (A18) and (A19) the coefficients of two nonlocal structures we get the nonlocal part of
(A14). In particular, the overall coefficient of the h��ðhþ P̂Þ�1h�� nonlocality turns out to be

�2

2�

�
Cþ 4

3

��
C� 8

3

�
ð�2 � A2Þ þ 16�2

�
BðAþ 2BÞ ¼ 4BðAþ 2BÞ

�
�2

�
C� 2

3

�
2
; (A22)

because �2 � A2 ¼ 8BðAþ 2BÞ. Similarly the coefficient of hðh� ��Þ�1h equals

�2

8�

�
�þ Cþ 4

3

��
�� Cþ 8

3

�
ð�2 � A2Þ ��2BðAþ 2BÞ

�
4þ �þ 4

�

�
¼ �BðAþ 2BÞ

�
�2

�
C� 2

3

�
2
: (A23)

This finally gives the nonlocal terms of Eq. (49) and explains the origin of the effective Planck mass (19).

2. Local terms

Local terms of the quadratic part of the action are contained both in (A13) and (A14). The most economical way to
simplify the second variations of Ricci and Einstein tensors in (A13) is to use the identity ð�2R��Þg�� � g��ð�2G��Þ ¼
�ð�R��g�� � g���G��Þ � h���R

�� � h���G�� and then repeat this trick for first order variations. In this way the

second order variations reduce to the calculation of

Z
d4xg1=2�2R ¼

Z
d4xg1=2

�
2�h2�� � 1

2�h2 � h���R�� � 1
2h�R

�
; (A24)

and the first seven terms of (A13) simplify to

Z
d4xg1=2

�
1
2h�Rþ 1

2�h2 þ �G��h�� � 1
2h

2
��Rþ 1

2hg���R
�� þ ð�2R��Þg�� � g��ð�2G��Þ

�

¼
Z

d4xg1=2
�
5
2h

��hh�� � 1
4hhhþ 4

3�h2�� þ 1
6�h2

�
: (A25)

For the calculation of the last term of (A13) consider the second order variation of the identities hg�� ¼ 0 and (37)

ð�2 ~hÞg�� ¼ �2ð� ~hÞh��; (A26)

ð�2P̂Þg�� ¼ �2�P̂h�� þ A�2R�� þ 2B�Rh�� þ Bg���
2R; (A27)

and again use the first order variations (A4) and (A5). Then bearing in mind that g��ð�hÞh�� ¼ �ðg��hÞh�� þ
h��hh�� ¼ ð�hÞh�hðh2��Þ þ h��hh�� we reduce the last term of �Sð2Þ to

1

�

Z
d4xg1=2g��ð�2 ~hþ�2P̂Þg��¼ 1

�

Z
d4xg1=2

�
hhh�2h��hh�����2Rþ2�ðC��Þ

�
h2���1

4
g��h

2

��

¼ 1

�

Z
d4xg1=2

��
1��

4

�
hhh�

�
2þ�

2

�
h��hh��þ�h2��

�
2C�8�

3

�
þ�

2
h2
�
�

3
�C

��
:

(A28)

Then collecting the local terms from (A17)–(A19) with the �R�� � �R��-terms given by (A21) together with the local

terms (A25) and (A28) we finally get the local part of (49).
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