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We propose a lattice counterpart of diffeomorphism symmetry in the continuum. A functional integral

for quantum gravity is regularized on a discrete set of space-time points, with fermionic or bosonic

lattice fields. When the space-time points are positioned as discrete points of a continuous manifold,

the lattice action can be reformulated in terms of average fields within local cells and lattice derivatives.

Lattice diffeomorphism invariance is realized if the action is independent of the positioning of the space-

time points. Regular as well as rather irregular lattices are then described by the same action. Lattice

diffeomorphism invariance implies that the continuum limit and the quantum effective action are invariant

under general coordinate transformations—the basic ingredient for general relativity. In our approach the

lattice diffeomorphism invariant actions are formulated without introducing a metric or other geometrical

objects as fundamental degrees of freedom. The metric rather arises as the expectation value of a suitable

collective field. As examples, we present lattice diffeomorphism invariant actions for a bosonic nonlinear

sigma model and lattice spinor gravity.
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I. INTRODUCTION

A quantum field theory for gravity may be based on a
functional integral. This is well defined, however, only if a
suitable regularization can be given. At this point major
obstacles arise. The central symmetry of general relativity
is diffeomorphism symmetry or invariance of the action
under general coordinate transformations. Using the metric
or the vierbein as basic fields, it has not been possible so far
to define a regularized functional measure that is diffeo-
morphism invariant. This applies, in particular, to lattice
regularizations where the space-time points are discrete for
the regularized theory, apparently merging to a continuous
manifold only in the ‘‘continuum limit’’ for distances very
large compared to the lattice distance. A second issue
concerns the unboundedness of the Euclidean action in
many formulations. Mathematical consistency of the func-
tional integral, either in a Euclidean or Minkowski setting,
is then hard to realize.

Different attempts for a lattice formulation of quantum
gravity have tried to circumvent this problem by using
degrees of freedom different from the metric or the vier-
bein. In Regge-Wheeler lattice gravity (cf. Ref. [1] for a
recent report) the lengths of edges of simplices are used as
basic degrees of freedom. A metric can be reconstructed
from these geometrical objects. Other formulations of
lattice gravity use different geometrical objects [2,3].
Lattice spinor gravity [4] proposes Grassmann variables
as basic degrees of freedom. (See Ref. [5] for a formulation
with additional link variables for the spin connection.) In
such approaches the metric emerges as the expectation
value of some suitable collective field.

For all these approaches the challenge consists in show-
ing that a continuum limit exists for which the effective
action for the metric is one of the Einstein-Hilbert type.

This property is strongly suggested if the continuum limit
is diffeomorphism invariant, contains a field with trans-
formation properties of the metric, and is ‘‘local’’ in the
sense that the first terms of an expansion in derivatives of
the metric give a reasonable description for the effective
gravity theory at long distances. Besides a possible cos-
mological constant, the curvature scalar is the leading term
in such a derivative expansion for the metric.
If regularized lattice quantum gravity with a suitable

continuum limit exists, this has an important consequence:
the quantum field theory for gravity must be nonperturba-
tively renormalizable. In the language of functional renor-
malization for some form of a scale-dependent effective
action there are only two ways how an arbitrarily large
separation of ‘‘macroscopic scales’’ (in our setting, typical
scales of particle physics such as the Fermi scale, or even
astronomical scales) from the microscopic scale character-
ized by the lattice distance can be achieved. Either there
exists an ultraviolet fixed point with a few relevant direc-
tions corresponding to free parameters (‘‘renormalized
couplings’’) of the effective macroscopic theory, or, alter-
natively, the macroscopic couplings reach infinite or
unphysical values when their running is extrapolated to
short distances. This case typically indicates that degrees
of freedom different from the macroscopic ones must be
used for the renormalizable microscopic theory. Recent
progress in functional renormalization for gravity [6,7],
based on the exact flow equation for the effective average
action or flowing action [8], suggests that the asymptotic
safety scenario [9] with an ultraviolet fixed point may be
viable.
The realization of some form of lattice diffeomorphism

invariance which entails diffeomorphism symmetry in
the continuum limit seems to be a major ingredient for
a successful formulation of lattice quantum gravity.
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A diffeomorphism invariant quantum effective action for
the metric already has the structure of general relativity. In
Regge-Wheeler lattice gravity a version of lattice diffeo-
morphism invariance is based on the invariance of the
action under a change of the lengths of edges of simplices
[10]. It is not clear, however, if the problem of boundedness
of the action can be overcome in this approach, and if a
suitable continuum limit exists. For this reason, here we
follow the alternative approach where geometrical objects
are not the ‘‘fundamental’’ degrees of freedom in the func-
tional integral. Geometrical objects are then not available
for a formulation of diffeomorphism invariance, and an
alternative has to be followed.

In this paper we propose a general form of lattice
quantum gravity where the functional integral is based on
lattice fields, i.e. variables H ð~zÞ for every point ~z of a
space-time lattice. The basic fields may be bosons or
fermions, and they behave as ‘‘scalars’’ with respect to
diffeomorphism symmetry. This makes the formulation of
the measure for the functional integral straightforward.
Lattice spinor gravity [4] belongs to this class of models.
What is needed is a lattice equivalent of diffeomorphism
symmetry of the action. This ‘‘lattice diffeomorphism
invariance’’ should be a special property of the lattice
action that guarantees diffeomorphism symmetry for the
continuum limit and the quantum effective action. Its
formulation is the key topic of this paper.

The types of models that we consider are not based on a
fluctuating geometry. The fluctuating degrees of freedom
are fields that ‘‘live’’ in some manifold. Since there is a
priori no geometry or metric, the manifold is a pure
coordinate manifold, and we choose Cartesian coordinates
x�. This coordinate manifold should not be confounded
with physical space-time—the latter emerges only once a
dynamical metric is found which determines geometry and
topology. In general, physical space-time will be curved,
and physical distances do not coincide with the coordinate
distances in Rd. As an example, the geometry of a sphere
can be described by an appropriate metric for Cartesian
coordinates, where the behavior for jxj ! 1 is related to
the pole opposite to the one at x ¼ 0. (A full description
can be achieved by a second coordinate patch covering the
missing pole. Knowing the metric everywhere except for
the missing pole, the completion of topology is unique—
we require that physics is not affected by removing or
adding a point of a manifold. Our setting resembles, in this
aspect, the emergence of geometry from correlation func-
tions discussed in Ref. [11].) Having at our disposal only
fields on a coordinate manifold, our setting is very close to
standard lattice field theories as lattice gauge theories or
scalar field theories where the metric does not fluctuate.

The issue of diffeomorphism symmetry in the absence of
a metric may be demonstrated for the continuum action
of an Abelian gauge theory. We may compare two
(Euclidean) actions involving the gauge field strength F��,

S1 ¼
Z
x
F��F���

����� (1)

and

S2 ¼
Z
x
’2F��F���

����: (2)

The first one involves a fixed inverse metric ��� and is not
diffeomorphism symmetric, while the second does not
involve any metric and is diffeomorphism symmetric. (A
squared scalar field ’2 is employed for preventing S2 from
being a total derivative.) The task of the present paper is to
find a lattice equivalent of diffeomorphism symmetry
for actions of the type S2. (In d dimensions those are
constructed as integrals over d-forms.) We will relate this
to different possibilities of positioning the abstract lattice
points ~z on the coordinate manifold.
In the continuum, the invariance of the action under

general coordinate transformations states that it should
not matter if fields are placed at a point x or some neigh-
boring point xþ �, provided that all fields are transformed
simultaneously according to suitable rules. In particular,
scalar fields H ðxÞ are simply replaced by H ðxþ �Þ.
After an infinitesimal transformation the new scalar field
H 0ðxÞ at a given position x is related to the original scalar
field H ðxÞ by

H 0ðxÞ ¼ H ðx� �Þ ¼ H ðxÞ � ��@�H ðxÞ: (3)

Diffeomorphism symmetry states that the action is the
same for H ðxÞ and H 0ðxÞ. Implicitly, the general coor-
dinate transformations assume that the same rule for form-
ing derivatives is used before and after the transformation.
We want to implement a similar principle for a lattice

formulation. For this purpose we associate the abstract
lattice points ~z ¼ ð~z0; ~z1; ~z2; ~z3Þ, with integer ~z�, with
points on a manifold. As mentioned before, we consider
here a piece of Rd with Cartesian coordinates x� ¼
ðx0; x1; . . . xd�1Þ, but we do not specify any metric a priori,
nor assume its existence. A map ~z ! x�p ð~zÞ defines the
positioning of lattice points in the manifold. We can now
compare two different positionings, as a regular lattice
x
�
p ð~zÞ ¼ ~z��, or some irregular one with different coordi-

nates x
0�
p ð~zÞ. In general, there are many different possible

positionings for the same abstract lattice points ~z. In par-
ticular, we can compare two positionings related to each

other by an arbitrary infinitesimal shift x
0�
p ¼ x

�
p þ �

�
p ðxÞ.

We emphasize that the notion of an infinitesimal neighbor-
hood requires a continuous manifold and cannot be formu-
lated for the discrete abstract lattice points ~z.
Positioning of the lattice points on a manifold is also

required for the notion of a lattice derivative. One can
define the meaning of two neighboring lattice points ~z1
and ~z2 in an abstract sense. (This involves some type of
‘‘incidence matrix’’ but no manifold.) A lattice derivative
of a field will involve the difference between field values at
neighboring sites,H ð~z1Þ �H ð~z2Þ. For the definition of a
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lattice derivative @̂�H we need, in addition, some quantity

with dimension of length. This is only provided by the
positioning on the manifold. For our Cartesian coordinates
we use a simple definition of the lattice derivative by
requiring, for suitable pairs ð~z1; ~z2Þ, the relation

H ð~z1Þ �H ð~z2Þ ¼ ðx�p ð~z1Þ � x�p ð~z2ÞÞ@̂�H ; (4)

with summation over repeated indices implied. We select
locally d pairs for a model in d dimensions, and solve
the system of d independent equations (4) for the d differ-

ent derivatives @̂�H . This yields the local derivatives

@̂�H ð~yÞ in terms of suitable Cartesian distances and dif-

ferences of lattice variables.
Finally, the positioning of ~z on a manifold is a crucial

ingredient for the formulation of a continuum limit, where
one switches from H ð~zÞ to H ðxÞ and derivatives thereof.

If the lattice action is originally formulated in terms of
H ð~zÞ only, its expression in terms of lattice derivatives
will, in general, depend on the positioning, since the rela-
tion between H ð~zÞ and lattice derivatives (4) depends on
the positioning. We can now state the principle of ‘‘lattice
diffeomorphism invariance.’’ A lattice action is lattice
diffeomorphism invariant if its expression in terms of
lattice derivatives does not depend on the positioning of
the lattice points. For infinitesimally close positionings the
lattice action is independent of �p. (For a mathematically

unambiguous definition of lattice diffeomorphism invari-
ance, we need a few further specifications. This is best
done by investigating particular examples below.)

In short, lattice diffeomorphism invariance has the sim-
ple intuitive meaning that it does not matter how the
abstract lattice points are placed on the manifold. A similar
interpretation is possible for diffeomorphism symmetry in
the continuum: it does not matter how (scalar) fields are
placed on a given coordinate manifold. This makes the
correspondence between lattice diffeomorphism invari-
ance and diffeomorphism symmetry in the continuum
rather natural. (Diffeomorphism symmetry in the contin-
uum can be viewed from different aspects, for example, as
a symmetry transformation among field variables. Not all
these aspects find a direct correspondence in lattice diffeo-
morphism invariance.)

The usual discussion of lattice theories considers im-
plicitly a given fixed positioning, for example, a regular
lattice. We investigate here a much wider class of position-
ings. Only the comparison of different positionings allows
the formulation of lattice diffeomorphism invariance in our
setting.

We will see that the continuum limit of a lattice diffeo-
morphism invariant action exhibits diffeomorphism sym-
metry. Also, the quantum effective action is invariant under
general coordinate transformations. This extends to the
effective action for the metric which appears in our setting
as the expectation value of a suitable collective field. We
will show that lattice diffeomorphism invariance implies

diffeomorphism symmetry for the quantum effective ac-
tion of the metric in the continuum limit. The gravitational
field equations are therefore covariant with a similar
general structure as in general relativity.
In order to show diffeomorphism symmetry of the con-

tinuum limit and the effective action, we use the concept of
interpolating functions. We define a version of partial
derivatives of interpolating functions that takes into ac-
count the lack of knowledge of details of the interpolation.
At the positions of lattice cells these derivatives equal the
lattice derivatives. For smooth interpolating fields they
coincide with the standard definition of partial derivatives.
In this view, the lattice does not reflect a basic discrete-

ness of space and time. Rather, it expresses the fact that
only a finite amount of information is available in practice,
and that arbitrarily accurate continuous functions are an
idealization since they require an infinite amount of infor-
mation. In a sense, we treat continuous functions similarly
to numerical simulations, where they have to be specified
by a finite amount of information. In our formulation
diffeomorphism transformations are nothing but the possi-
bility to move the lattice points, where the information
about the function is given by its value at these points,
within a manifold. Diffeomorphism invariance is realized
if the action in terms of fields and their derivatives does not
notice this change in positions.
This paper is organized as follows. In Secs. II, III, IV, V,

VI, VII, and VIII we discuss lattice diffeomorphism in-
variance in two dimensions. The particular features of two-
dimensional gravity do not play a role in the issue of
diffeomorphism invariance. The discussion in these sec-
tions can be extended in a straightforward way to four
dimensions. Notation and geometric visualization are sim-
plest in two dimensions, however. In Sec. II we introduce
our concept of lattice diffeomorphism invariance for a
scalar field theory, typically a nonlinear � model. In
Secs. III, IV, V, VI, and VII we show that lattice diffeo-
morphism invariance induces diffeomorphism symmetry
for the continuum limit of the ‘‘classical action’’ and, most
importantly, for the quantum effective action.
In Sec. III we introduce interpolating fields and a suit-

able definition of derivatives as a central tool for this
argument. The interpolation fields are used in Sec. IV in
order to establish the diffeomorphism symmetry of the
continuum limit of the classical action. Section V turns
to the quantum effective action for the scalar fields and
establishes its diffeomorphism symmetry in the continuum
limit. In Sec. VI we introduce the metric as the expectation
value of a collective field. The quantum effective action for
the metric, its diffeomorphism symmetry, and the covari-
ance of the gravitational field equations are discussed in
Sec. VII.
In Sec. VIII we extend our discussion to lattice spinor

gravity in two dimensions. Four-dimensional models, both
for fundamental scalars and fermions, are discussed in
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Sec. IX. This section is kept short since, besides a more
involved algebra, no new concepts are needed. We draw
our conclusions in Sec. X.

II. LATTICE DIFFEOMORPHISM INVARIANCE
IN TWO DIMENSIONS

Basic construction principles of a lattice diffeomor-
phism invariant action can be understood in two dimen-
sions. We label abstract lattice points by two integers,
~z ¼ ð~z0; ~z1Þ, with ~z0 þ ~z1 odd. We first consider models
with scalar fields. We will mainly be interested in continu-
ous fields, but the basic issue of positioning independence
can already be understood for discrete fields.

Our simplest example employs three real bosonic
discrete lattice fields H kð~zÞ ¼ �1, k ¼ 1, 2, 3. For the
formulation of the functional integral we define the mea-
sure as a product of independent sums,

Z
DH ¼ Y

~z

Y
k

X
H kð~zÞ¼�1

: (5)

This measure obviously does not depend on the position-
ing. For a finite number of lattice points the partition
function is a finite sum,

Z ¼
Z

DH expð�SÞ; (6)

and therefore well defined for finite S.
We define the action as a sum over local cells located at

~y ¼ ð~y0; ~y1Þ, with ~y� integer and ~y0 þ ~y1 even,

S ¼ X
~y

Lð~yÞ: (7)

Each cell consists of four lattice points that are nearest
neighbors of ~y, denoted by ~xjð~yÞ, j ¼ 1; . . . ; 4. Their

lattice coordinates are ~zð~x1ð~yÞÞ ¼ ð~y0 � 1; ~y1Þ, ~zð~x2ð~yÞÞ ¼
ð~y0; ~y1 � 1Þ, ~zð~x3ð~yÞÞ ¼ ð~y0; ~y1 þ 1Þ, and ~zð~x4ð~yÞÞ ¼ ð~y0 þ
1; ~y1Þ. The local term Lð~yÞ involves lattice fields on the
four sites of the cell that we denote byH kð~xjÞ. We choose

L ð~yÞ ¼ �

48
�klm½H kð~x1Þ þH kð~x2Þ þH kð~x3Þ

þH kð~x4Þ�½H lð~x4Þ �H lð~x1Þ�½H mð~x3Þ
�H mð~x2Þ� þ c:c:; (8)

such that the action specifies a general Ising-type model.
(The complex conjugate is omitted for real fields and is
needed only for the complex fields discussed later.) At this
point no notion of a manifold is introduced. We specify
only the connectivity of the lattice by grouping lattice
points ~z into cells ~y such that each cell has four points
and each point belongs to four cells. This defines neighbor-
ing cells as those that have two common lattice points.
Neighboring lattice points belong to at least one common
cell.

Our setting can be extended to continuous fields, for
example, by replacing the constraint H kðzÞ ¼ �1 by
�kH 2

kðzÞ ¼ 1. This is a generalized nonlinear sigma
model or Heisenberg model. The partition function is
symmetric with respect to global SOð3Þ rotations between
the three components H k, provided we replace the func-
tional measure (5) by the standard SOð3Þ-invariant mea-
sure for every ~z. A generalization to unbounded fields, e.g.
�1<H kð~zÞ<1, is more problematic because of the
unboundedness of the action (8) even for a finite number of
lattice sites. A further generalization uses complex fields
H k with constraint H �

kð~zÞH kð~zÞ ¼ 1. For a suitable

invariant measure the action and partition function are
invariant under unitary transformations of the group
SUð3Þ. The action (7) and (8) is real, and we concentrate
on real �.
We now proceed to an (almost) arbitrary positioning of

the lattice points on a piece of R2 by specifying positions
x
�
p ð~zÞ. This associates to each cell a ‘‘volume’’ Vð~yÞ,

Vð~yÞ ¼ 1
2���ðx�4 � x

�
1 Þðx�3 � x�2Þ; (9)

with �01 ¼ ��10 ¼ 1 and x�j shorthand for the positions of

the sites ~xj of the cell ~y, i.e. x
�
j ¼ x

�
p ð~zð~xjð~yÞÞÞ. The volume

corresponds to the surface enclosed by straight lines join-
ing the positions of the four lattice points ~xjð~yÞ of the cell in
the order ~x1, ~x2, ~x4, ~x3. For simplicity, we restrict the
discussion to ‘‘deformations’’ of the regular lattice, x�p ¼
~z��, where Vð~yÞ remains always positive and the path of
one point during the deformation never touches another
point or a straight line between two other points at the
boundary of the surface. We use the volume Vð~yÞ for
the definition of an integral over the relevant region of
the manifold,

Z
d2x ¼ X

~y

Vð~yÞ; (10)

where we define the region by the surface covered by the
cells appearing in the sum.
We next express the action (7) and (8) in terms of

average fields in the cell,

H kð~yÞ ¼ 1

4

X
j

H kð~xjð~yÞÞ; (11)

and lattice derivatives (4) associated to the cell,

@̂0H kð~yÞ ¼ 1

2Vð~yÞ fðx
1
3 � x12ÞðH kð~x4Þ �H kð~x1ÞÞ

� ðx14 � x11ÞðH kð~x3Þ �H kð~x2ÞÞg;
@̂1H kð~yÞ ¼ 1

2Vð~yÞ fðx
0
4 � x01ÞðH kð~x3Þ �H kð~x2ÞÞ

� ðx03 � x02ÞðH kð~x4Þ �H kð~x1ÞÞg: (12)

For the pairs ð~xj1 ; ~xj2Þ ¼ ð~x4; ~x1Þ and ð~x3; ~x2Þ the lattice

derivatives obey
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H kð~xj1Þ �H kð~xj2Þ ¼ ðx�j1 � x�j2Þ@̂�H kð~yÞ: (13)

In terms of cell average and lattice derivatives all quantities
in Lð~yÞ depend on the cell variable ~y or the associated
position of the cell x�p ð~yÞ that we take somewhere inside
the surface of the cell, the precise assignment being unim-
portant at this stage. In this form we denote Lð~yÞ by

L̂ð~y; xpÞ or L̂ðx; xpÞ, where L̂ðxÞ only depends on quanti-

ties with support on discrete points in the manifold corre-
sponding to the cell positions. We indicate explicitly the
dependence on the choice of the positioning by the argu-
ment xp.

The action appears now in a form referring to the posi-
tions on the manifold,

SðxpÞ ¼
Z

d2x �Lð~y; xpÞ ¼
Z

d2x �Lðx; xpÞ; (14)

with

�Lð~y; xpÞ ¼ �Lðx; xpÞ ¼
L̂ð~y; xpÞ
Vð~y; xpÞ : (15)

Lattice diffeomorphism invariance states that for fixed

H ð~yÞ and @̂�H ð~yÞ the ratio �Lð~y; xpÞ in Eq. (15) is inde-

pendent of the positioning, or independent of �p for infini-

tesimal changes of positions x0p ¼ xp þ �p,

�Lð~y; xp þ �pÞ ¼ �Lð~y; xpÞ; Sðxp þ �pÞ ¼ SðxpÞ:
(16)

This definition provides the necessary specification for the
precise meaning of lattice diffeomorphism invariance.

The �p independence of �Lð~y; xpÞ means that the depen-

dence of Vð~y; xpÞ and L̂ð~y; xpÞ on the positioning xp must

cancel. Inserting Eqs. (11) and (13) in Eq. (8) yields

L̂ð~yÞ¼ �

12
�klmVð~yÞH kð~yÞ���@̂�H lð~yÞ@̂�H mð~yÞþc:c:;

(17)

and we find indeed that the factor Vð~yÞ cancels in �Lð~yÞ ¼
L̂ð~yÞ=Vð~yÞ. Thus the action (7) and (8) is lattice diffeo-
morphism invariant. This property is specific for a certain
class of actions—for example, adding to �klm a quantity
sklm which is symmetric in l $ m would destroy lattice
diffeomorphism symmetry.

For all typical lattice theories the formulation of Lð~yÞ
only in terms of next neighbors and common cells (not
using a distance) does not refer to any particular position-
ing. However, once one proceeds to a positioning of the
lattice points and introduces the concept of lattice deriva-

tives, the independence on the positioning of �Lð~y; xpÞ for
fixed H ð~yÞ and @̂�H ð~yÞÞ is not shared by many known

lattice theories. For example, standard lattice gauge theo-
ries are not lattice diffeomorphism invariant. This is also
the basic difference of the actions S1 and S2 [Eqs. (1) and

(2)] mentioned in the Introduction: only for S2 is it possible
to find a lattice diffeomorphism invariant action such that it
is obtained in the continuum limit.
We may also introduce higher lattice derivatives and

express

H kð~x1Þ �H kð~x2Þ �H kð~x3Þ þH kð~x4Þ ¼ EH kð~yÞ
¼ c1ðxÞð@20 � @̂21ÞH kð~yÞ þ c2ðxÞ@̂0@̂1 ~H kð~yÞ: (18)

The functions c1 and c2 depend on the positions xj of the

cell points ~xj. (For the regular lattice one has c1 ¼ �2,

c2 ¼ 0.) Using Eqs. (11) and (13) we can write the lattice

fields H kð~zÞ in terms of Ks;kð~yÞ ¼ fH kð~yÞÞ; @̂0H kð~yÞ;
@̂1H kð~yÞ; ð@̂20 � @̂21ÞH kð~yÞ; @̂0@̂1H kð~yÞg, s ¼ 1; . . . ; 5.
One can therefore express an arbitrary Lð~yÞ in terms of
lattice derivatives. Lattice diffeomorphism invariance is
realized if Vð~yÞLð~yÞ, once expressed in terms of Ks;kð~yÞ,
does not depend on the positions xpð~zÞ. We note that the

lattice variables Ks;kð~yÞ are not independent. First, for a

given positioning only one particular linear combination of
K4 andK5 appears, and we may set the orthogonal one to
zero. Second, a given H ð~zÞ can be expressed in terms of
Ksð~yÞ for all four cells ~y to which ~z belongs. This con-
straint relates variables Ksð~yÞ in different cells to each
other. Imposing these constraints one may consider the
change from H ð~zÞ to Ksð~yÞ as a change of basis for the
lattice variables. For our particular action (8) the higher
derivatives K4 and K5 are absent. In this case we can
restrict s ¼ 1; . . . ; 3.
From this perspective we consider a family of basis

changes for the lattice variables H ð~zÞ ! Ksð~yÞ. The spe-
cific basisKsð~yÞ is determined by a specific positioning of
the lattice points. A repositioning of the lattice points can
be considered as a map between two members of this

family, Kð1Þ
s ð~yÞ ! Kð2Þ

2 ð~yÞ. Lattice diffeomorphism sym-

metry states that the action remains invariant with respect
to this map if the change of the cell volume is taken into
account properly. These aspects are discussed in more
detail in the appendix.

III. INTERPOLATING FIELDS

As a key result of this paper we state that the continuum
limit of both the action and the quantum effective action is
diffeomorphism symmetric if the lattice action is lattice
diffeomorphism invariant. We will specify the precise
meaning of this statement and detail our argument in the
following. A central ingredient is the observation that
diffeomorphism transformations can be realized by repo-
sitionings of the lattice variables, without transforming the
lattice variables themselves.
We first want to show that the continuum limit of a

lattice diffeomorphism invariant model exhibits diffeomor-
phism symmetry. The continuum limit will be defined in
terms of interpolating functions. Consider a system of
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functions fðxÞ that are completely determined by their
values fn ¼ fðxnÞ at N points xn in R2, while they
interpolate in some specified way in between those points.
We takeN to be equal to the number of lattice points. We
further define which points are neighbors in a way that
allows a two-dimensional ordering similar to the lattice
points ~z. Beyond the notion of neighborship the position of
the points xn in R2 is arbitrary. We identify the points xn
with the arbitrary positions xpð~znÞ of the N lattice points

~zn in R2. The information contained in some lattice field
~fð~zÞ is equivalent to the values ffng, with fn ¼ ~fð~znÞ.
The map between the lattice functions ~fð~zÞ and the

interpolating fields fðxÞ depends both on the choice of
interpolation and on the selection of points xn ¼ xpð~znÞ.
This reflects the fact that a complete specification of the
interpolating function fðxÞ requires the specification of
(i) the points xn, (ii) the values fðxnÞ, and (iii) an interpo-
lation description. Even for a given prescription of inter-
polation the function fðxÞ depends on the locations xn,
where it takes the values fn. For a given lattice function
~fð~zÞ two different positionings of the lattice points in R2

will lead to two different interpolating functions fðxÞ.
In contrast to the values of f at the points xn the

information about the behavior of fðxÞ for x � xn is not

contained in the values of the lattice field ~fð~znÞ. It depends
on the specific interpolation which is chosen. This inter-
polation may be continuous and differentiable, or only
piecewise differentiable in cells or parts of cells. For the
lattice regularized theory nothing should depend on the
particular choice of interpolation since the latter involves
information not available in the lattice model. In this sense
space becomes ‘‘fuzzy.’’ All interpolations should repre-
sent the same physics.

For a given choice of interpolation we next define
the notion of an ‘‘interpolation derivative’’ for an interpo-
lating function fðxÞ. We select two vector fields 	�

1 ðxÞ,
	�
2 ðxÞ that are nowhere parallel or nonvanishing,

���	
�
1 ðxÞ	�

2ðxÞ � 0. Furthermore, we introduce two addi-

tional fields 
�1 ðxÞ, 
�2 ðxÞ. Interpolation derivatives at x are
defined by the two relations (a ¼ 1, 2)

fðxþ
aðxÞþ	aðxÞÞ�fðxþ
aðxÞÞ¼	
�
a ðxÞ@̂�fðxÞ: (19)

This definition becomes the usual definition of partial
derivatives for infinitesimal 	a and 
a. [In this limit 

drops out since @�fðxÞ and @�fðxþ 
Þ are not different

for infinitesimal 
 .] In contrast to the usual differentiation
we do not take the vectors 	a, 
a to be infinitesimal here
but keep their values finite. This is justified by the ‘‘fuzzi-
ness’’ of space, since for infinitesimal 	a, 
a the deriva-
tives would strongly depend on the chosen interpolation.

Of course, the interpolation derivatives @̂�fðxÞ will now
depend on the particular choice of 	aðxÞ and 
aðxÞ.

Let us consider the particular case where for each posi-
tion of a lattice cell x ¼ xpð~yÞ the vectors 	a correspond to

the diagonals in the associated cell ~y. More specifically, we
consider

	1ðxÞ ¼ xpð~zð~x4ð~yÞÞÞ � xpð~zð~x1ð~yÞÞÞ;
	2ðxÞ ¼ xpð~zð~x3ð~yÞÞÞ � xpð~zð~x2ð~yÞÞÞ;

1ðxÞ ¼ xpð~zð~x1ðyÞÞÞ � xpð~yÞ;

2ðxÞ ¼ xpð~zð~x2ð~yÞÞÞ � xpð~yÞ: (20)

With this choice the interpolation derivatives at x ¼ xpð~yÞ
can be expressed in terms of two differences of values of
the lattice field in the cell ~y, namely, between positions ~x4
and ~x1 or ~x3 and ~x2, respectively. By virtue of Eq. (13) the
interpolation derivatives are given by the lattice derivatives

@̂ �fðxÞ ¼ @̂� ~fð~yÞ; (21)

where ~y denotes the cell associated to x. Equation (20)
fixes the vectors 	a and 
a for all positions yn ¼ xpð~ynÞ of
the N cells ~yn. For values of x in between the points yn,
we may again choose some interpolation for 	aðxÞ, 
aðxÞ.
The values of @̂�fðxÞ for x � yn will depend on the

interpolation.
We choose (20), in particular, since only information

contained in a lattice field is required for the computation
of interpolation derivatives at the points yn. On the other
hand, there are other choices for 	aðxÞ which allow the

computation of @̂�fðxÞ in terms of the information con-

tained in a lattice function ~fð~zÞ. For example, we may
replace 	1ðxÞ by
	0
1ðxÞ ¼ xpð~zð~x4ð~y0ÞÞÞ � xpð~zð~x1ð~yÞÞÞ; ~y0 ¼ ~yþ ð2; 0Þ:

(22)

In fact, whenever both vectors 	aðxÞ join two pairs of
points xn ¼ xpð~znÞ (and are not parallel), the derivatives

@̂�fðxÞ can be expressed in terms of the lattice field ~fð~zÞ
associated to fðxÞ. [We discuss here x ¼ xpð~yÞ and keep

the same 
aðxÞ as before.]
We will now focus on smooth lattice fields ~fð~zÞ charac-

terized by the property that the lattice derivatives @̂� ~fð~yÞ
are the same for all cells ~y within a region R, up to small
higher order corrections. (This can be realized for the
generalized nonlinear � model, not for the generalized
Ising model.) In this case the interpolation derivatives

@̂�fðxÞ become independent of the choice of 	a, again

up to small corrections. [This holds provided that x, xþ 
a,
and xþ 
a þ 	a all belong to the region R. We concen-

trate here on those x and 	a for which @̂�f can be ex-

pressed in terms of the lattice fields ~fð~zÞ as discussed
above.) Indeed, we note for 	0

1 in Eq. (22) the relation

	0
1ðxÞ ¼ 	1ðxÞ þ 	1ðxþ 	1ðxÞÞ: (23)

Defining the derivatives with the set of vectors 	0
1, 	2

amounts to using, for Eq. (19) [with xþ 	1 ¼ xþ 	1ðxÞ,
~x ¼ xþ 
1ðxÞ],
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fð~xþ 	1ðxÞ þ 	1ðxþ 	1Þ � fð~xÞ
¼ ð	�

1 ðxÞ þ 	�
1 ðxþ 	1ÞÞ@̂�fðxÞ

¼ fð~xþ 	1ðxÞ þ 	1ðxþ 	1ÞÞ � fð~xþ 	1Þ
þ fð~xþ 	1Þ � fð~xÞ

¼ 	
�
1 ðxþ 	1Þ@̂�fð~y0Þ þ 	

�
1 ðxÞ@̂�fð~yÞ

� ð	�
1 ðxÞ þ 	�

1 ðxþ 	1ÞÞ@̂�fð~yÞ: (24)

We conclude that the relation (21) also holds, up to small
corrections, for the derivative formed with ð	0

1; 	2Þ, which
is therefore the same as the one formed with ð	1; 	2Þ. This
can easily be generalized to other vectors 	a linking points

xn within the region R. The corrections �@̂� ~fð~y0Þ �
@̂� ~fð~yÞ can be linked to higher derivatives as @̂�@̂�fðxÞ,
but we will not discuss this issue here.

Our definition of interpolation derivatives (19) adapts
the notion of a derivative to a situation where only limited
information about a function is available—in our case the
points xn and the values fn ¼ fðxnÞ. Our notion of smooth
functions adapts the concept of differentiability to this
situation. On a large enough scale of coordinate distances
in R2, the vectors 	a can be considered as infinitesimal,
and the independence on the choice of 	a reflects the
independence on the limiting procedure for differentiable
functions. On distance scales of the order j	aj, however,
this view is no longer possible and particular vectors such
as the ones in Eq. (20) have to be selected in order to retain
the computability of the derivatives in terms of the pairs
ðxn; fnÞ.

With this perspective the lattice regularization may not
be considered as a sign of a discrete nature of space and
time. Rather, it reflects the fact that only a limited amount
of information is available for the specification of continu-
ous functions. In short, our definitions of interpolating
fields and their interpolation derivatives are chosen such
that they coincide with the lattice field and lattice deriva-
tives for all cell locations. Away from the cell locations

both fðxÞ and @̂�fðxÞ are no longer computable in terms of

the lattice function ~fð~zÞ and the positions xn ¼ xpð~znÞ.
They depend on the specific choice of an interpolation.

The definition of interpolation derivatives (19) can also
be used for discrete lattice variables, as fn ¼ �1. In this
case, however, the notion of smooth lattice fields is no
longer available for the microscopic degrees of freedom.
This will be different for the expectation values of the
discrete variables which are continuous real numbers.

In summary of this section, we have defined interpolat-
ing functions and their interpolation derivatives with the
following properties: (i) The interpolating functions coin-
cide with the lattice functions for all positions xn of lattice
points. (ii) The interpolation derivatives of the interpolat-
ing functions coincide with the lattice derivatives for all
cell positions yn. (iii) The interpolation derivatives coin-
cide with the usual definition of partial derivatives for

smooth functions. (iv) The functional integral over inter-
polating functions involves integrals over the values fn ¼
fðxnÞ. The precise interpolating function fðxÞ that is speci-
fied by the set ffng depends on the positions xn and on the
details of the interpolation prescription. (v) For a given
interpolation prescription a change of positions fxng re-
sults, for a given ffng, in a change of the function fðxÞ.
Such changes will be associated in Sec. IV with fuzzy
diffeomorphism transformations.

IV. DIFFEOMORPHISM SYMMETRY OF
CONTINUUM ACTION

Coming back to the lattice model (7) and (8) we asso-
ciate interpolating fieldsH kðxÞ to the lattice fieldsH kð~zÞ.
With the choice of interpolation derivatives (19), (20), and
(17) we can define the continuum action as a functional of
the interpolating fields

S ¼ �

12

Z
d2x�klm���H kðxÞ@̂�H lðxÞ@̂�H mðxÞ þ c:c:

(25)

For smooth fields we replace @̂� ! @�. In this limit we

associate the continuum action (25) to the continuum limit
of the lattice action (7) and (8).
We consider the lattice action as the basic object since it

is computable in terms of the available information en-
coded in H kð~zÞ. The continuum action should mainly be
considered as a very useful approximation for smooth
enough fields. In a certain sense the usual role of space
as a manifold is realized only on distance scales that are
large compared to the distance between lattice points.
Interpolating fields and the value of the continuum action
(25) for these fields are formally defined for arbitrarily
small coordinate distances jx1 � x2j in R2. However, the
dependence on the choice of interpolation introduces
physical ambiguity on very small distance scales if no
information on a particular ‘‘physical interpolation pre-
scription’’ is available.
We observe that the continuum limit of the action (25) is

diffeomorphism symmetric in the usual sense if the fields
H kðxÞ transform as scalars under general coordinate trans-
formations (3). Then @�H kðxÞ transforms as a vector, and

the contraction with the � tensor implies an invariant
action. The usual notion of diffeomorphism transforma-
tions can be realized for smooth enough ‘‘macroscopic
fields,’’ where the derivatives @�H ðxÞ coincide with the

standard definition of partial derivatives, while 	aðxÞ as
well as the displacements ��ðxÞ in Eq. (3) can be consid-
ered effectively as arbitrary infinitesimal functions of x.
In a more microscopic approach the notion of indepen-

dent infinitesimal displacements ��ðxÞ for every point x is
no longer meaningful in view of the limited amount
of information available for the interpolating functions
and the associated fuzziness of space. Since the lattice
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information concerns only a finite number of points xn, we
should only consider the N infinitesimal displacements
�ðxnÞ ¼ �n as independent parameters of general coordi-
nate transformations. The associated interpolating func-
tions �ðxÞ can be constructed with the same interpolation
prescription as for H ðxÞ. The infinitesimal displacements
�n can then be identified with a change of positioning of the
lattice points xpð~zÞ ! xpð~zÞ þ �pð~zÞ, with �n ¼ �pð~znÞ.
The displacements specified in this way by the points xn
and �n ¼ �ðxnÞ are associated to fuzzy diffeomorphism
transformations. Wewill establish in this section the invari-
ance of the continuum action under fuzzy diffeomorphisms.
Before doing so, we will further specify our choice of
interpolation.

For smooth enough fields the continuum action (25)
coincides with the lattice action (7) and (8) or (14) and
(17). The derivative @�H kðxÞ can be identified with

@̂�H kð~yÞ for all x in a neighborhood of xpð~yÞ, and

H kðxÞ is well approximated by the cell average H kð~yÞ.
Only for fields varying on a length scale comparable to a
typical coordinate distance between lattice points will the
relation between the continuum action and the lattice
action depend on details of the interpolation prescription.
For any specific interpolation one may express the lattice
action as a functional of the interpolating fields. This
‘‘interpolating action,’’ which may be rather complicated,
typically differs from the continuumaction (25) for strongly
varying fields. Its precise form will depend on the interpo-
lation. It will not be relevant for smooth fields for which the
difference to the continuum action disappears.

We will discuss next a specific class of interpolations for
which the interpolating action and the continuum action
coincide. For this choice the functional (25) for the inter-
polating fields equals precisely the lattice action (7) and (8)
. For our purpose we impose the condition

Z
cell

d2x�klm���H kðxÞ@̂�H lðxÞ@̂�H mðxÞ
¼ �klm���Vð~yÞH kð~yÞ@̂�H lð~yÞ@̂�H mð~yÞ: (26)

Interpolations obeying the condition (26) are called ‘‘con-
gruent action interpolations.’’ It is straightforward to see
that for congruent action interpolations the continuum
action (25) equals precisely the lattice action (7) and (8)
for arbitrary configurations of the lattice fields H kð~zÞ. In
this case the continuum action is computable in terms of
the information contained in the lattice fields without the
need to know additional details of the interpolation pre-
scription. We notice that, despite its appearance, the con-
tinuum action is not invariant under continuous rotations.
The interpolation derivatives in Eq. (25) are the ones that
we have defined for interpolating fields by specific vectors
	
�
a , 


�
a . Continuous rotation symmetry arises effectively

only for smooth fields. Even though the use of congruent
action interpolations is not crucial for the properties of
smooth fields, it can be used as a convenient tool for later

proofs of diffeomorphism invariance of the quantum effec-
tive action. We will use this class of interpolation functions
in the following.
It may be instructive to discuss briefly a particular

example for a congruent action interpolation. We choose
the value of f at the cell position y ¼ xpð~yÞ to be equal

to the cell average ~fð~yÞ ¼ �j
~fð~xjÞ=4, i.e. fðyÞ ¼ ~fð~yÞ.

Drawing straight lines between the cell position y and the
positions xj of the four lattice points belonging to the cell,

we cut the cell into four triangles. For each triangle we now
have three values of f at the corners, e.g. fðx1Þ, fðx2Þ, and
fðyÞ for the triangle ðx1; x2; yÞ. For all values of x within
this triangle, we interpolate fðxÞ by a plane in the three-
dimensional space spanned by the coordinates ðx0; x1; fÞ.
The orientation and position of this plane are fixed by the
three values of fðxÞ at the corners of the triangle. We apply
this procedure to all four triangles of the cell. For this
interpolation the values of fðxÞ on each edge of a triangle
are given by a linear interpolation between the values of
fðxÞ at the two corners bounding a given edge. Since on
each boundary of the triangle fðxÞ depends only on those
two values, the interpolating function fðxÞ is continuous on
the edges of each triangle, taking the same value for
neighboring triangles. This includes the edge joining two
neighboring cells. Thus fðxÞ is continuous, while @�fðxÞ is
typically discontinuous for this type of interpolation.
Our procedure fixes the interpolation prescription up to

the choice of the cell position y ¼ xpð~yÞ. Fixing the cell

position amounts to two conditions for the values of y0 and
y1. As a first condition we impose the relation (26). Since
the integral over interpolating functions depends on the cell
position xpð~yÞ, the relation (26) can indeed be seen as a

condition for xpð~yÞ. Besides the condition (26) we may

impose one further condition for determining xpð~yÞ. For
example, we may require that the sum of the surfaces of
two triangles within the cell that do not share a common
side equals half the surface of the cell or comes as close as
possible to this value.
There are many other possible prescriptions for congru-

ent action interpolations. In the following we will assume
that the interpolation is continuous and differentiable
everywhere in R2. This has the advantage that standard
partial derivatives @�H ðxÞ are defined for the interpolat-

ing functions. (This contrasts with our example of a piece-
wise continuous and differentiable interpolation for which
@�H is discontinuous at the boundaries of triangles, while

@̂�H is always well defined.) The choice of differentiable

lattice congruent interpolations is not important for the
continuum limit, but it will facilitate some of the formal
proofs in the following.
A condition of the type (26) can be imposed for

interpolating functions for rather arbitrary lattice actions,
not necessarily being lattice diffeomorphism invariant.
However, the diffeomorphism symmetry of the continuum
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action is a direct consequence of lattice diffeomorphism
invariance. More precisely, we will see that if the lattice
action is not lattice diffeomorphism invariant, the contin-
uum action is not diffeomorphism symmetric. Thus lattice
diffeomorphism invariance is a necessary condition for
exact diffeomorphism symmetry of the continuum action.
For the continuum limit of smooth fields this condition
may be weakened. It is sufficient that possible violations of
exact diffeomorphism symmetry of the continuum action
vanish in the continuum limit.

On the other hand, we will show that lattice diffeomor-
phism invariance implies the invariance of the continuum
action under ‘‘fuzzy diffeomorphisms.’’ Fuzzy diffeomor-
phisms are characterized by parameters ��

f ðxÞ that are a

subset of the arbitrary displacements ��ðxÞ that character-
ize the general coordinate transformations. Every smooth
displacement ��ðxÞ can be well approximated by a suitable
fuzzy diffeomorphism transformation ��

f ðxÞ. For the con-

tinuum limit of smooth fields and smooth displacements,
lattice diffeomorphism invariance therefore implies diffeo-
morphism symmetry of the continuum action.

We recall in this context that ‘‘smooth’’ relates to weak
variations on the scale of the lattice distance. The latter
may be associated to the Planck length or even a smaller
length scale. Seen from a description of a larger physical
scale, arbitrarily varying fields and displacements are
smooth. We prove the statements of the preceding para-
graph in the following.

Fuzzy diffeomorphisms are defined as interpolating
functions for infinitesimal repositionings of lattice points
��
p ð~zÞ. Similar to the interpolating fields, the fuzzy diffeo-

morphisms are specified at a discrete set of lattice points.
At these points they equal the infinitesimal repositioning of
lattice points

�
�
f ðxnÞ ¼ �

�
p ðxnÞ ¼ x

�
p;2ð~znÞ � x

�
p;1ð~znÞ; (27)

where xp;2ð~znÞ and xp;1ð~znÞ are two infinitesimally close

positions of a particular lattice point ~zn. In between the
points xn the fuzzy displacements are interpolated accord-
ing to some suitable interpolation description that we may
choose to be the same one as for the interpolating fields.
Different interpolation prescriptions lead to different
�
�
f ðxÞ for x � xn. This explains why they are called fuzzy

diffeomorphisms.
A given positioning of the lattice points, together with a

given interpolation prescription, results in a map from the
lattice field H ð~zÞ to a continuous interpolating function
H ðxÞ. A general lattice action (not necessarily lattice
diffeomorphism invariant) can be expressed in terms of

H ðxÞ and the interpolation derivatives @̂�H ðxÞ,
S½H ð~zÞ� ¼ S½H ðxÞ; gðxÞ�: (28)

In general, the coefficients in front of the different terms
will depend on the positions xpð~zÞ. These ‘‘position-

dependent couplings’’ are denoted in Eq. (28) by gðxÞ.
Let us now consider two infinitesimally close positionings
leading to two sets of fields and couplings ðH 1ðxÞ; g1ðxÞÞ
and ðH 2ðxÞ; g2ðxÞÞ. From Eq. (28) one infers

S½H 1ðxÞ; g1ðxÞ� ¼ S½H 2ðxÞ; g2ðxÞ�: (29)

The two fieldsH 2ðxÞ andH 1ðxÞ are related by a fuzzy
diffeomorphism transformation

H 2ðxÞ �H 1ðxÞ ¼ �fH ðxÞ ¼ H ðx� �fÞ �H ðxÞ:
(30)

In other words, a fuzzy coordinate transformation maps an
interpolating field H 1ðxÞ to another interpolating field
H 2ðxÞ which corresponds to the same lattice field H ð~zÞ.
The two interpolating fields H 1ðxÞ and H 2ðxÞ have the
same values H n at the points xn, but the position of the
points xn in the manifold differs. (They also obey the same
interpolation prescription.) Fuzzy diffeomorphisms are
maps in the space of all interpolating functions for arbitrary
sets of points fxng. For differentiable interpolating func-
tions H ðxÞ one has the usual relation

�fH ðxÞ ¼ ���
f ðxÞ@�H ðxÞ; (31)

where @� denotes here the usual partial derivative (not the

interpolation derivative). Arbitrary smooth displacements
��ðxÞ are approximated by a suitable ��

f ðxÞ, and we re-

cover Eq. (3).
A repositioning of the lattice points also changes the

coupling functions gðxÞ,
g2ðxÞ � g1ðxÞ ¼ ~�fgðxÞ ¼ gðx� �fÞ � gðxÞ: (32)

According to Eq. (29) the continuum action is invariant
under the simultaneous variation of fields and couplings,

�fS½H ðxÞ; gðxÞ� þ ~�fS½H ðxÞ;gðxÞ� ¼ 0; (33)

with

�fS½H ðxÞ;gðxÞ� ¼ S½H ðx� �fÞ; gðxÞ� � S½H ðxÞ; gðxÞ�;
~�fS½H ðxÞ;gðxÞ� ¼ S½H ðxÞ; gðx� �fÞ� � S½H ðxÞ; gðxÞ�:

(34)

Fuzzy diffeomorphisms act only on the fields, not on the
couplings, similar to general coordinate transformations.
We conclude that the continuum action is invariant under
fuzzy diffeomorphisms precisely if the couplings do not

depend on the positioning, ~�fS ¼ 0.

The possibility to express the continuum action in terms
of H ð~xÞ without coordinate-dependent couplings reflects
the property of lattice diffeomorphism invariance. If �Lð~yÞ
shows an explicit dependence on coordinates, this would
show up in the continuum action [with interpolation (26)].
In analogy to the lattice action the coordinate dependence
in the definition (19) of interpolation derivatives cancels
against the coordinate dependence in the volume factor.
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This concludes the proof of our statements concerning the
relation between lattice diffeomorphism invariance and
diffeomorphism symmetry of the continuum action.

V. EFFECTIVE ACTION

In this section we discuss the quantum effective action
for scalar fields that correspond to the expectation values of
the interpolating fields hH kðxÞi. We establish the (fuzzy)
diffeomorphism invariance of the effective action. This

follows a simple basic idea: If �Lð~yÞ or the associated
continuum action does not notice where the lattice points
are placed on the manifold, this property will also hold for
the effective action. In other words, if no information on

the positioning is contained in �Lð~yÞ, the effective action
will not involve such information either. Or, in an equiva-
lent view, if the continuum action S½H ðxÞ� does not in-
volve position-dependent couplings, there is no way that a
position dependence of couplings could arise on the level
of the effective action. This simple result is crucial since it
guarantees diffeomorphism symmetry of the quantum
effective action in the continuum limit. We will show in
Sec. VII that it generalizes to the effective action for the
metric, thereby providing the basic ingredient for general
relativity.

The generating functional for the connected Greens
functions of lattice variables is defined in the usual way
by introducing sources

W½Jð~zÞ� ¼ ln
Z

DH expf�SþX
~z

ðH kð~zÞJ�kð~zÞ þ c:cÞg;

(35)

with

@W

@J�kð~zÞ ¼ hH kð~zÞi ¼ hkð~zÞ: (36)

(We omit the complex conjugate source term for realH k.)
In the continuum limit the source term becomes

X
~z

H kð~zÞJ�kð~zÞ ¼
Z
x
H kðxÞj�kðxÞ: (37)

One also may define

�½h; J� ¼ �W½J� þX
~z

ðhkð~zÞJ�kð~zÞ þ c:c:Þ; (38)

which becomes the usual quantum effective action �½h�
(generating functional of 1PI-Greens functions) if we solve
Eq. (36) for J�ð~zÞ as a functional of hð~zÞ and insert this
solution into Eq. (38),

�½h� ¼ �½h; J½h��: (39)

The (‘‘functional’’) derivative of the effective action with
respect to h yields the exact quantum field equation

@�

@hkðzÞ ¼ J�kðzÞ: (40)

We next use an interpolating field jðxÞ that coincides
with jn ¼ jðxnÞ ¼ jð~zÞ for all positions of lattice points
xn ¼ xpð~znÞ. Here the relation between jð~zÞ and Jð~zÞ in-
volves an approximate volume factor according to Eq. (10)
. The interpolation prescription for jðxÞ is chosen such that
Eq. (37) holds for arbitrary interpolating fields and sources
(not necessarily smooth), similar to Eq. (26). The expec-
tation value hðxÞ is given by the same congruent action
interpolation for the lattice field hð~zÞ as used for relating
H ðxÞ to H ð~zÞ, such that

X
~z

hzð~zÞJ�kð~zÞ ¼
Z
x
hkðxÞj�kðxÞ: (41)

We are interested in �½hðxÞ� as a functional of the inter-
polating fields hðxÞ. The lattice field equation (40) is then
transmuted to an equation for continuous fields which
involves a functional derivative

��

�hkðxÞ ¼ j�kðxÞ: (42)

We next want to show that the quantum effective action
�½hðxÞ� is invariant under fuzzy diffeomorphisms,

�f�½hðxÞ� ¼ �½hðx� �fÞ� � �½hðxÞ� ¼ 0: (43)

For smooth differentiable fields hðxÞ and smooth displace-
ments ��ðxÞ this implies diffeomorphism symmetry of the
effective action under the transformation (3). For this
purpose we write

expf��½hðxÞ; jðxÞ�g ¼
Z

DH ð~zÞ expf�S½H ðxÞ�

þ
Z
x
ðH kðxÞ � hkðxÞÞj�kðxÞ þ c:cg;

(44)

with S½H ðxÞ� the diffeomorphism symmetric continuum
action (25). The integrand on the right-hand side is diffeo-
morphism symmetric if hðxÞ and H ðxÞ transform as sca-
lars and jðxÞ as a scalar density. The functional measureR
DH ð~zÞ is invariant under diffeomorphisms, such that

�½hðxÞ; jðxÞ� is diffeomorphism symmetric, and this ex-
tends to �½hðxÞ�.
In more detail, we consider fuzzy diffeomorphisms and

define the transformation of the source functions �fjðxÞ
such that the right-hand side of Eq. (37) is invariant,

�fjðxÞ ¼ �@��
�
f ðxÞjðxÞ � �

�
f ðxÞ@�jðxÞ: (45)

In the continuum limit jðxÞ transforms as a scalar density
with respect to the usual general coordinate transforma-
tions. With

�fhðxÞ ¼ ���
f ðxÞ@�hðxÞ (46)
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we compute the variation of the effective action

�f�½hðxÞ; jðxÞ� ¼ �½hðxÞ þ �fhðxÞ; jðxÞ þ �fjðxÞ�
� �½hðxÞ; jðxÞ�: (47)

In Eq. (44) the term �R
x hj

� is invariant under this

fuzzy coordinate transformation, while the term
R
x H j�

also remains invariant if we shift simultaneously H ðxÞ !
H ðxÞ þ �fH ðxÞ. The shift inH affects the term involv-

ing S½H ðxÞ�. However, for any given lattice fieldH ð~zÞwe
can achieve the shiftH ðxÞ ! H ðx� �fÞ by a reposition-
ing of the lattice points, without changing the lattice field
H ð~zÞ. (This holds precisely for �

�
f , being realized as

interpolations of repositionings.) Since S is diffeomor-
phism invariant, �fS½H ðxÞ� ¼ 0, we conclude that the

integrand, and therefore the integral, remains invariant
under the transformation of the fields h ! hþ �fh, j !
jþ �fj. This means that � is invariant if only the fields h

and j are transformed. It is therefore a diffeomorphism
invariant functional, �f�½hðxÞ; jðxÞ� ¼ 0.

The same argument applies to W½jðxÞ�,
W½jðxÞ� ¼ ln

Z
DH ð~zÞ expf�S½H ðxÞ�

þ
Z
x
ðH kðxÞj�kðxÞ þ c:cÞg; (48)

which is diffeomorphism symmetric when only jðxÞ is
transformed as a scalar density. This transformation prop-
erty is compatible within

�W½j�
�j�kðxÞ

¼ hkðxÞ; (49)

such that the solution of Eq. (49), jðxÞ½hðxÞ�, transforms
indeed as a scalar density if hðxÞ is transformed as a scalar.
Thus �½hðxÞ� is invariant when one transforms only the
field hðxÞ to hðxÞ þ �fhðxÞ.

The last step involves the continuum limit of smooth
functions. Since an arbitrary general coordinate transfor-
mation ��ðxÞ is well approximated by a suitable fuzzy
coordinate transformation �

�
f ðxÞ, we conclude that the

quantum effective action is diffeomorphism symmetric in
the continuum limit.

In turn, the lattice version of the effective action,

�½hð~zÞ� ¼ X
~y

Vð~yÞ �L�½hð~yÞ; @̂�hð~yÞ . . .�; (50)

is lattice diffeomorphism invariant. If not, �L� would in-
volve x-dependent couplings. The x dependence of the
couplings would remain if we express �L� in terms of
interpolating fields hðxÞ. This is in contradiction to the
diffeomorphism symmetry which only transforms hðxÞ,
and the general invariance with respect to repositioning if
both couplings and lattice derivatives are transformed. The
two invariances are compatible only for x-independent
couplings.

VI. METRIC

So far we have used the coordinates x� only for
the parametrization of a region of a continuous two-
dimensional manifold. We have not used the notion of a
metric and the associated ‘‘physical distance.’’ (The physi-
cal distance differs from the coordinate distance jx� yj,
except for the metric g�� ¼ ���.) The notion of a metric

and the associated physical distance, topology, and geome-
try can be inferred from the behavior of suitable correlation
functions [11]. Roughly speaking, for a Euclidean setting
the distance between two points x and y gets larger if a
suitable, properly normalized, connected two-point func-
tionGðx; yÞ gets smaller. This is how one world ‘‘measure’’
distances intuitively.
For the nonlinear � model we may consider the two-

point function

Gðx; yÞ ¼ hH kðxÞH kðyÞic; (51)

with H kðxÞ suitable interpolating fields. Following
Ref. [11] the metric is related to the behavior of Gðx; yÞ
for x ! y and can be defined as

g��ðxÞ ¼ 1

2
hG��ðxÞ þG�

��ðxÞi;
G��ðxÞ ¼ ��2

0

X
k

@̂�H kðxÞ@̂�H kðxÞ: (52)

The real normalization constant ��1
0 has dimension of

length such that G�� and g�� are dimensionless. For real

H k one has for the diagonal elements g�� � 0. We gen-

eralize here the setting of Ref. [11] and also admit complex
H k where g�� can be negative. The signature of the

metric is not defined a priori. Points where detðg��ðxÞÞ ¼
0 indicate singularities—either true singularities or coor-
dinate singularities. More generally, the geometry and
topology (e.g. singularities, identification of points, etc.)
of the space can be constructed from the metric [11]. We
also adapt to the lattice formulation and use in Eq. (52)
interpolation derivatives.
The metric is the central object in general relativity and

appears in our setting as the expectation value of a suitable
collective field. In practice, we do not need its relation to
the behavior of correlation functions, and we can simply
take Eq. (52) as the definition of a metric.
For x coinciding with the position of one of the cells

yn ¼ xpð~ynÞ, the interpolation derivative @̂�H kðxÞ is

given by the lattice derivative @̂�H kð~yÞ. For these values
of x the field G��ðxÞ ¼ G��ð~yÞ can be expressed by lattice
quantities

G��ð~yÞ ¼ ��2
0

X
k

@̂�H kð~yÞ@̂�H kð~yÞ

¼ ��2
0 a ~�

�ðxÞa~�
�ðxÞGðLÞ

~� ~�; (53)

with the ‘‘lattice metric’’
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GðLÞ
~� ~� ¼ 1

3pk; ~�pk;~� (54)

and

pk;0 ¼ H kð~x4Þ �H kð~x1Þ;
pk;1 ¼ H kð~x3Þ �H kð~x2Þ:

(55)

Here the functions a
~�
�ðxÞ are defined implicitly by

@̂ �H kð~yÞ ¼ a
~�
�ðxÞpk;�ð~yÞ: (56)

They depend on the positions xj of the points of a cell and

are described in more detail in the Appendix.
On the other hand, for x � yn the field G�� and there-

fore the metric g�� will depend on the specific interpola-

tion prescription. This is again an expression of the
fuzziness of space due to the lack of information beyond
the lattice fields H kð~zÞ.

Similar to the lattice derivatives, the x dependence of the

metric arises only through the functions a ~�
�ðxÞ which re-

flect the positioning of the lattice points. For interpolating
functions H kðxÞ transforming as scalars under fuzzy gen-
eral coordinate transformations, the metric (52) transforms
as a covariant second rank symmetric tensor with respect to
fuzzy diffeomorphisms. In the continuum limit the inter-
polation derivatives in Eq. (52) are replaced by partial
derivatives, and the metric has the standard transformation
property under general coordinate transformations.

As a particular positioning we can use the regular lattice
x�ð~zÞ ¼ �~z�. This corresponds to a fixed choice of coor-
dinates in general relativity. With this choice one has
Vð~yÞ ¼ 2�2 and

a
~�
�ðxÞ ¼ 1

2�
�

~�
�: (57)

Choosing ��2
0 ¼ 4�2=3, the collective field G�� in

Eq. (53) coincides with the lattice metric GðLÞ
�� in Eq. (54).

As an illustration, we may consider a particular configu-
ration of lattice fields, where for a given cell ~y one has

H 1ð~x1Þ ¼ H 1ð~x2Þ ¼ H 1ð~x3Þ ¼ H 1ð~x4Þ ¼ H1ð~yÞ;
H 2ð~x4Þ �H 2ð~x1Þ ¼ H2ð~yÞ; H 2ð~x3Þ ¼ H 2ð~x2Þ;
H 3ð~x3Þ �H 3ð~x2Þ ¼ H3ð~yÞ; H 3ð~x4Þ ¼ H 3ð~x1Þ:

(58)

For this configuration the lattice metricGL
��ð~yÞ is diagonal,

G00 ¼ 1
3H

2
2 ; G11 ¼ 1

3H
2
3 ; G01 ¼ G10 ¼ 0; (59)

while the cell action (8) is given by

L ð~yÞ ¼ �

12
H1H2H3 þ c:c: (60)

For appropriate choices of H1, H2, H3 the combination
�H1H2H3 can be real and negative, thus giving a substan-
tial contribution to the functional integral. For example,

this can be achieved for �> 0, real positiveH3, and purely
imaginaryH1 andH2 withH1H2 < 0. In this case one finds
a Minkowski signature of the lattice metric G00 < 0,
G11 > 0. The Euclidean signature is obtained, for example,
for real positive H2 and real negative H1.
For the nonlinear � model an SOð3Þ rotation of the

components H k yields the same GL
�� and Lð~yÞ. There

are, of course, many other configurations. For example, a
cell with H kð~x4Þ ¼ H kð~x1Þ ¼ �H kð~x3Þ ¼ �H kð~x2Þ
for one value of k does not contribute to GL

��ð~yÞ or Lð~yÞ.
If configurations of the type (58) dominate, one may expect
an expectation value for the metric g�� of the type (59).

Properties of the metric can often be extracted from
symmetries. If the expectation values preserve lattice trans-
lation symmetry, the metric g��ðxÞ will be independent of
x. Invariance under a parity reflection implies g01 ¼ g10 ¼
0. Symmetry of the expectation values under lattice rota-
tions would imply a flat Euclidean metric g00 ¼ g11. A
Minkowski metric g�� ¼ 	�� requires that the expecta-

tion values violate the Euclidean rotation symmetry.

VII. EFFECTIVE ACTION FOR GRAVITYAND
GRAVITATIONAL FIELD EQUATIONS

The quantum effective action for the metric, �½g���, can
be constructed in the usual way by introducing sources for
the collective field,

W½ ~T� ¼ ln
Z

DH expf�Sþ
Z
x
GR

��ðxÞ ~T��ðxÞg;

GR
�� ¼ 1

2
ðG�� þG�

��Þ; �W½ ~T�
� ~T��ðxÞ ¼ g��ðxÞ: (61)

Solving formally for ~T�� as a functional of g��, the

effective action obtains, by a Legendre transform,

�½g��� ¼ �W þ
Z
x
g��ðxÞ ~T��ðxÞ: (62)

The metric obeys the exact quantum field equation

��

�g��ðxÞ ¼ ~T��ðxÞ; (63)

and we realize that ~T�� can be associated to the energy
momentum tensor T�� by ~T�� ¼ 1

2

ffiffiffi
g

p
T��, g ¼ j detg��j.

The effective action �½g��ðxÞ� is invariant under fuzzy
diffeomorphisms. This can be shown in analogy to the
effective action for scalar fields in Sec. V. We only sketch
the proof here for the continuum limit of smooth fields.
Under a general coordinate transformationH kðxÞ trans-

forms as a scalar,

��H kðxÞ ¼ ���@�H kðxÞ: (64)

This implies that @�H k and GR
�� transform as covariant

vectors and second rank symmetric tensors, respectively. In
consequence, ~T�� transforms as a contravariant tensor
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density, with T�� a symmetric second rank tensor. ThusR
x G

R
��

~T�� and
R
x g��

~T�� are diffeomorphism invariant,

and �½g��� is diffeomorphism invariant if W½ ~T� is diffeo-
morphism invariant. This is indeed the case for ~T�� trans-

forming as a tensor, since in Eq. (61) the continuum action
S½H ðxÞ� is diffeomorphism invariant. For arbitrary inter-
polating fields (not necessarily smooth) the invariance of
�½g��ðxÞ� under fuzzy diffeomorphisms follows if ~T�� is

transformed such that
R
x G

R
��

~T�� remains invariant.

For a given positioning of the lattice points and a given
prescription for the interpolation procedure, the functional
integral (61) is well defined and regularized for a finite
number of lattice points. [This holds for arbitrary functions
~T��ðxÞ provided the exponent in Eq. (61) remains
bounded.] Therefore, �½g��ðxÞ� is also a well-defined func-
tional that is, in principle, unambiguously calculable.
[More precisely, this holds for all metrics for which the
second equation (61) is invertible.] A key question con-
cerns the general form of the effective action �½g���. If � is

diffeomorphism invariant and sufficiently local in the sense
that an expansion in derivatives of g�� yields a good

approximation for slowly varying metrics, then only a
limited number of invariants such as a cosmological con-
stant or Einstein’s curvature scalar R contribute at long
distances. The signature of the metric is not fixed a priori.
For g � 0 the inverse metric g�� is well defined. The
existence of g�� opens the possibility that �½g��� also

involves the inverse metric.
This concludes our discussion of lattice diffeomorphism

invariance for two-dimensional nonlinear � models. Two
dimensions are special for gravity, since the graviton does
not propagate. However, all our constructions generalize to
four dimensions, as we will discuss in Sec. IX. Before
doing so, we will investigate lattice spinor gravity in two
dimensions as a second type of model with a lattice diffeo-
morphism invariant action.

VIII. LATTICE SPINOR GRAVITY

We next formulate quantum gravity in two dimensions
based on fundamental fermions instead of bosons. The
problem of boundedness of the action is completely absent
for fermionic theories, where the partition function be-
comes a Grassmann functional integral. We may use for
every lattice point two species, a ¼ 1, 2, of two-
component complex Grassmann variables ’a

�ð~zÞ, � ¼ 1,
2, or equivalently eight real Grassmann variables c a

�ð~zÞ,
� ¼ 1; . . . ; 4, with ’a

1ð~zÞ ¼ c a
1ð~zÞ þ ic a

3ð~zÞ; ’a
2ð~zÞ ¼

c a
2ð~zÞ þ ic a

4ð~zÞ. The functional measure (5) is replaced by

Z
Dc ¼ Y

~z

Y
�

ðdc 1
�ð~zÞdc 2

�ð~zÞÞ: (65)

We introduce the bilinears (with Pauli matrices �k)

H kð~zÞ ¼ ’a
�ð~zÞð�2Þ�
ð�2�kÞab’b


ð~zÞ; (66)

such that the action (8) now contains terms with six
Grassmann variables. We keep the definitions (11) and
(12) and conclude that this fermionic action is lattice
diffeomorphism invariant, leading to Eq. (25) in terms of
Grassmann fields ’a

�ðxÞ. In terms of c a
� the action is an

element of a real Grassmann algebra.
The lattice derivatives for the Grassmann variables are

defined similarly to Eq. (13) by the two relations

’a
�ð~xj1Þ � ~’a

�ð~xj2Þ ¼ ðx�j1 � x�j2Þ@̂�’a
�ð~yÞ (67)

for ðj1; j2Þ ¼ ð4; 1Þ and (3, 2). With

H kð~xj1Þ �H kð~xj2Þ ¼ ð’a
�ð~xj1Þ þ ’a

�ð~xj2ÞÞð�2Þ�

�ð�2�kÞabð’b


ð~xj1Þ � ’b

ð~xj2ÞÞ;

(68)

and using reordering of the Grassmann variables, one
obtains from Eq. (8)

L ðyÞ ¼ �8i�Að~yÞð’a
�ð~x4Þ � ’a

�ð~x1ÞÞð�2Þ�
ð�2Þab
�ð’b


ð~x3Þ � ’b

ð~x2ÞÞ þ . . . ; (69)

with

Að~yÞ ¼ �’1
1ð~yÞ �’1

2ð~yÞ �’2
1ð~yÞ �’2

2ð~yÞ; (70)

and �’a
�ð~yÞ the cell average. The dots indicate terms that do

not contribute in the continuum limit. In terms of lattice

derivatives (67) one finds the action S ¼ R
d2x �Lð~yÞ,

�Lð~yÞ¼�8i�Að~yÞ���@̂�’
a
�ð~yÞð�2Þ�
ð�2Þab@̂�’b


ð~yÞþ . . . :

(71)

For fixed spinor lattice derivatives (67) the leading term
(71) is again lattice diffeomorphism invariant.
The continuum limit (25) can be expressed in terms of

spinors using @�H kðxÞ ¼ 2’ðxÞ�2 	 �2�k@�’ðxÞ, where
the first 2� 2 matrix E in E 	 F acts on spinor indices �,
and the second F on flavor indices a. With

F�� ¼ �A@�’�2 	 �2@�’ (72)

one obtains

S ¼ 4i�
Z

d2x���F�� þ c:c:; (73)

in accordance with Eq. (71). Two comments are in order:
(i) For obtaining a diffeomorphism invariant continuum
action it is sufficient that the lattice action is lattice diffeo-
morphism invariant up to terms that vanish in the contin-
uum limit. (ii) The definition of lattice diffeomorphism
invariance is not unique, differing, for example, if we
take fixed lattice derivatives (12) for spinor bilinears or
the ones (67) for spinors. It is sufficient that the action is
lattice diffeomorphism invariant for one of the possible
definitions of lattice derivatives kept fixed.
We finally note that A and F�� are invariant under

SOð4;CÞ transformations. This symmetry group rotates
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among the four complex spinors ’a
�, with complex infini-

tesimal rotation coefficients. For real coefficients, one has
SOð4Þ, whereas other signatures such as SOð1; 3Þ are real-
ized if some coefficients are imaginary. The continuum
action (73) or (25) exhibits a local SOð4;CÞ gauge sym-
metry. A subgroup of SOð4;CÞ is the two-dimensional
Lorentz group SOð1; 1Þ. The action (8) is therefore a
realization of lattice spinor gravity [4] in two dimensions.

IX. LATTICE DIFFEOMORPHISM INVARIANCE
IN FOUR DIMENSIONS

We generalize the lattice to four dimensions with inte-
gers ð~z0; ~z1; ~z2; ~z3Þ andP�~z

� odd. Each cell located at ~y ¼
ð~y0; ~y1; ~y2; ~y3Þ, with

P
�~y

� even, contains eight lattice

points, located at the nearest neighbors of ~y at ~y�
v0; . . . ~y� v3, with ðv�Þ� ¼ ��

�. We double the number

of degrees of freedom with bosons Hþ
k and H�

k , or

fermions ’aþ�, ’
a��, using

H �
k ¼ ’�C� 	 �2�k’�; C� ¼ ��2: (74)

We further introduce

F�
��ð~yÞ ¼ 1

12
�klm �H�

k ð~yÞ½H�
l ð~yþv�Þ

�H�
l ð~y�v�Þ�½H�

mð~yþv�Þ�H�
mð~y�v�Þ�;

(75)

with �H ð~yÞ the cell average. [Note that LðyÞ in Eq. (8)
obeysL ¼ �F 01 þ c:c:.] A lattice diffeomorphism invari-
ant action in four dimensions can be written as

S ¼ ~�

24

X
~y

�����Fþ
��F�

�� þ c:c: (76)

We define the lattice derivatives by the four relations

H ð~yþ v�Þ �H ð~y� v�Þ ¼ ðxþ� � x�� Þ�@̂�H ð~yÞ;
(77)

where x�� ¼ xpð~y� v�Þ. With �� ¼ ðxþ� � x�� Þ=2 the cell

volume amounts to

Vð~yÞ ¼ 2������
�
0 �

�
1�

�
2�

�
3

¼ 1

12
������

�0�0�0�0
�

�
�0��

�0�
�
�0��

�0 : (78)

Using
R
d4x ¼ P

~yVð~yÞ one finds indeed that the action

does not depend on the positioning of the lattice points,

S ¼ ~�

3

Z
d4x�����F̂þ

��F̂
�
�� þ c:c:; (79)

with

F̂ �
��ð~yÞ ¼ 1

12
�klm �H�

k ð~yÞ@̂�H�
l ð~yÞ@̂�H�

mð~yÞ: (80)

The continuum limit �H ! H , @̂� ! @�, is diffeomor-

phism invariant due to the contraction of the partial deriva-
tives with the � tensor.

For bosons one may employ real or complex fieldsH�
k

and define a nonlinear � model by the condition

ðH�
k Þ�H�

k ¼ 1: (81)

For complex fields the nonlinear � model is invariant
under a global SUð3Þþ � SUð3Þ� symmetry acting on
the index k of Hþ

k and H�
k , respectively. For complex

bosons it is possible to identify ðHþ
k Þ� with H�

k or

ðH�
k Þ�, thus reducing the ‘‘flavor symmetry’’ to SUð3Þ.

For real bosons H k the symmetry is reduced to SOð3Þ �
SOð3Þ.
For spinor gravity one uses Eq. (74) and defines

F�
�� ¼ A�D�

��; (82)

with A� defined as in Eq. (70) and

D�
�� ¼ �@�’��2 	 �2@�’�: (83)

This yields, for the continuum limit,

F̂ �
�� ! �4iF�

��: (84)

The lattice action for spinor gravity proposed in Ref. [4]
corresponds to Eq. (76) if we replace in Eq. (75) the cell

average �H ð~yÞ by the plane average ½H ð~yþ v�Þ þ
H ð~y� v�Þ þH ð~yþ v�Þ þH ð~y� v�Þ�=4. The differ-

ence vanishes in the continuum limit.
For spinor gravity Fþ

�� is invariant under SOð4;CÞþ
transformations acting on ’þ, while F�

�� is invariant under

SOð4;CÞ� transformations acting on ’�. Since AþA� al-
ready involves the maximal number of eight different com-
plex spinors’aþ�, ’

a�� at a given point, all inhomogeneous
terms vanish for local transformations [4]. Thus the action
(79) is invariant under local SUð2;CÞþ � SUð2;CÞ� �
SUð2;CÞL � SUð2;CÞR transformations, where ’þ trans-
form as (2, 1, 2, 1) and’� as (1, 2, 1, 2). Here SOð4;CÞþ ¼
SUð2;CÞþ � SUð2;CÞL and SOð4;CÞ� ¼ SUð2;CÞ� �
SUð2;CÞR, and SUð2;CÞ denotes the SUð2Þ transforma-
tions with three arbitrary complex infinitesimal parameters,
equivalent to six real parameters. We can identify the gen-
eralized Lorentz group with SOð4;CÞ ¼ SUð2;CÞþ �
SUð2;CÞ�, such that ’þ and ’� transform as two inequi-
valent Weyl spinors with opposite handedness. The stan-
dard Lorentz group is the SOð1; 3Þ subgroup of SOð4;CÞ.
Choosing real transformation parameters, the subgroup
SUð2ÞL � SUð2ÞR can be identified with a local gauge
symmetry.
The continuum limit of the action of lattice spinor

gravity, as defined by Eqs. (79) and (84), namely,

S ¼ 16~�

3

Z
d4xAþA�Dþ c:c:; D ¼ �����Dþ

��D
�
��;

(85)

differs from earlier versions of spinor gravity [12,13], and
also from first attempts to formulate a diffeomorphism
invariant action in terms of spinors without employing a
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metric [14–16]. It realizes local Lorentz symmetry and has
the property that the difference of signature between time
and space only arises from the dynamics, rather than being
imposed in the action. In this respect it resembles the
higher dimensional model of Ref. [17].

The action (85) can be expressed in terms of suitable
vierbein bilinears,

~Em
� ¼ ’Cþ�m

M 	 V@�’� ’C��m
M 	 V@�’; (86)

with ’ ¼ ð’þ; ’�Þ, �m
M the usual 4� 4 Dirac matrices

and V suitable 2� 2 flavor matrices. (This reformulation
will be described in a separate publication; see Ref. [18]
for conventions.) The vierbein bilinears are vectors with
respect to general coordinate transformations and vectors
with respect to global Lorentz transformations. Dif-
feomorphism symmetry and local Lorentz symmetry of
the action guarantee that only invariants similar to
Cartan’s formulation of general relativity in terms of vier-
beins [19] can appear in this expression of the continuum
action. The presence of several vierbein-type objects (e.g.
for different V) induces, however, new interesting features
of a mixing between geometrical and flavor aspects. For a
suitable choice of the fermion bilinear ~Em

�, one may asso-

ciate its expectation value with the vierbein of general
relativity.

From the vierbein bilinear we can construct a collective
field for the metric as

G�� ¼ ��2
0

~Em
�
~En
�	mn: (87)

[The special role of the symmetry SOð1; 3Þ suggested by
the presence of 	mn ¼ diagð�1; 1; 1; 1Þ is only apparent.
One could define a Euclidean vierbein by multiplying ~E0

�

by a factor i, thus replacing �m
M by Euclidean Dirac matri-

ces. In terms of those, Eq. (87) involves �mn instead of
	mn.] We may again define the metric by Eq. (52) and
define the diffeomorphism invariant effective action
�½g��� similarly to Eqs. (61) and (62). We note, in this

respect, that there are several collective fields transforming
as symmetric second rank tensors which are candidates for
the metric. First, we have different possible choices V. We
could also use g�� ¼ ��2

0 h ~Em
�ih ~En

�i	mn instead of Eq. (87)

. Finally, we could employ a lattice metric of the type (54),
with a suitable choice of �1, �2 ¼ ðþ;�Þ,

GðLÞ
~� ~� ¼ 1

6ðp�1

k; ~�p
�2

k;~� þ ð� $ �ÞÞ; (88)

with

p�
k; ~� ¼ H �

k ð~yþ v ~�Þ �H �
k ð~y� v ~�Þ: (89)

The metric is then obtained by a generalization of Eq. (53).
This metric can be employed for bosons as well. (For
fermions the different candidates are not all independent,
due to the possibility of reordering the fermions.) We could
even discuss effective models with several distinct metrics.
We expect, however, that, in general, only one particular

linear combination will remain massless, whereas the
others are massive. The massless mode can be associated
with the physical metric and the graviton.
For a vanishing energy momentum tensor one expects

that the expectation values of fields are invariant under
some of the symmetries of the action, but not under all of
them. (Certain symmetries will be spontaneously broken.)
The conserved symmetries determine the form of the met-
ric to a large extent. This may be illustrated by a discussion
of the consequences of discrete symmetries in the case of
spinor gravity or for complex bosons H k. Let us distin-
guish a ‘‘time coordinate’’ x0 from the three ‘‘space coor-
dinates’’ xk. A reflection of one of the space coordinates,
xk ! �xk, has to be accompanied by a transformation
H ! PH acting on the ‘‘internal indices’’ of H . This
is needed in order to leave the action invariant. The re-
quired condition S½PH � ¼ �S½H � can be achieved by
changing the sign of an odd number of components H k,
for example, H�

k ! �H�
k , H

þ
k ! Hþ

k . The transfor-
mation H ! PH leaves g�� invariant, such that invari-

ance under space reflections, @k ! �@k, implies that the
metric is diagonal. If we further assume that the expecta-
tion values are invariant under �=2 rotations among the
space coordinates, one infers gkl ¼ a�kl. Lattice transla-
tion symmetry of expectation values implies that a is
independent of x. Furthermore, the action is also invariant
under ‘‘diagonal reflections’’ x0 $ xk which are accompa-
nied by an internal transformation H ! DH , with
S½DH � ¼ �S½H �. An example is DH ¼ iH , which
changes the sign of the metric. Then invariance under the
diagonal reflections, @0 $ @k, implies g00 ¼ �gkk. The
combined symmetries therefore lead to flat Minkowski
space, g�� ¼ a	��. It remains to be seen if the nonlinear

�model or spinor gravity with action (76) leads indeed to a
‘‘ground state’’ of this type.

X. CONCLUSIONS

We have formulated the property of lattice diffeomor-
phism invariance for lattice models of quantum gravity that
do not involve a fundamental metric or geometric degrees
of freedom. The functional integrals are defined in terms of
variables at discrete lattice points which behave as scalars
under diffeomorphisms. We have constructed lattice
diffeomorphism invariant actions for discrete bosons,
continuous bosons, and fermions, both for two and four
dimensions. We have shown that lattice diffeomorphism
invariance implies diffeomorphism symmetry of the
continuum action and the quantum effective action.
The metric g�� arises as the expectation value of a

suitable collective field. The effective action for the metric
is diffeomorphism invariant, which implies that the gravi-
tational field equations are covariant with respect to gen-
eral coordinate transformations. For a finite number of
lattice points the functional integral is fully regularized.
The effective action �½g��� (62) for the metric is then well
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defined. The correlation functions of the metric are, in
principle, computable—even though this may be hard in
practice. This also holds for the quantum field equations
which are obtained from the variation of the effective
action. Consistent geometries correspond to solutions of
these field equations with an energy momentum tensor as a
source.

The bosonic Ising-type or nonlinear � models are suit-
able for numerical lattice simulations. Of key interest is a
computation of the expectation value and correlation func-
tions of the metric. These can be compared to the ones that
follow from a diffeomorphism invariant action in a deriva-
tive expansion. In particular, in four dimensions one ex-
pects the long range correlations appropriate for a massless
graviton. For real fields H k the signature of the metric is
necessarily Euclidean. For the nonlinear � model with
complex bosons H k, we may investigate the case of
Minkowski signature as well. A numerical evaluation of
Grassmann integrals is more involved, in particular, for the
non-Gaussian action (76). Analytical approximations for
the quantum effective action could be based on the 2PI
formulation [20] for the bosonic effective action [21], as
sketched in Ref. [22]. This requires the solution of gap
equations in the presence of bosonic background fields as
the metric.

A priori, all solutions of the gravitational field equation
(63) are viable if we include appropriate sources and
boundary terms in the definition of the functional integral.
This includes cosmological solutions. For an effective
action �½g��� that is invariant under general coordinate

transformations and sufficiently local, one expects for long
distances the validity of a derivative expansion with a
cosmological constant, Einstein’s curvature scalar, and
higher order terms. If this turns out to be the case the
lattice diffeomorphism invariant actions realize the con-
struction of regularized quantum gravity.

APPENDIX A: RESTRICTED LATTICE
DIFFEOMORPHISMS

In the main text we have discussed diffeomorphism
transformations on the level of interpolating functions.
Differentiable interpolating fields obey the usual rules for
transformations of scalars, densities, covariant vectors,
tensors, and so on. The lattice regularization imposes the
restriction that we consider only those infinitesimal dis-
placements �

�
f ðxÞ that can be obtained as interpolating

functions of a repositioning of the lattice points on the
manifold. In the continuum limit of smooth fields this
restriction plays no role. The lattice functions H ð~zÞ are
not affected by diffeomorphism transformations. This
guarantees the diffeomorphism invariance of a functional
measure defined in terms of H ð~zÞ. General coordinate
transformations act only on the interpolating fields and
correspond to a change of positioning of lattice points xn
in R2.

In this appendix we investigate lattice diffeomorphism
transformations that act directly on the discrete lattice
variables, rather than on interpolating functions. For
simplicity of the presentation we concentrate on two
dimensions. Again, infinitesimal lattice diffeomorphism
transformations correspond to an infinitesimal change
xpð~zÞ ! xpð~zÞ þ �pð~zÞ of the positioning of the lattice

points. We study here the change of the discrete lattice

derivatives @̂�H ð~yÞ resulting from such a repositioning.

For ‘‘restricted lattice diffeomorphisms’’ we keep the cell
averagesH ð~yÞ fixed. If we keep also the positions xpð~yÞ of
the cells fixed [for example, on a regular lattice xpð~yÞ ¼
�~y] the geometric meaning of the restricted diffeomor-
phisms can be visualized as moving the positions of
the lattice points ~z at a fixed position for ~y. This changes
the shape and volume of each cell, but not its position. (The
cell position discussed in this appendix may differ from the
one used for some given interpolating description.)
The transformation of the lattice derivatives follows

from the change of positions x
�
j in Eq. (12), while the

cell average (11) is kept fixed. Similar to the usual general
coordinate transformations, one can define the notion of
‘‘lattice vectors’’ and ‘‘lattice tensors’’ with respect to
these restricted transformations. For a scalar lattice func-

tion ~fð~zÞ the lattice derivatives transform as a lattice vector.
Defining

p0ð~yÞ ¼ ~fð~x4Þ � ~fð~x1Þ; p1ð~yÞ ¼ ~fð~x3Þ � ~fð~x2Þ (A1)

and

d
�
0 ¼ x

�
4 � x

�
1 ; d

�
1 ¼ x

�
3 � x

�
2 ; (A2)

we can write the lattice derivative as

@̂ �fð~yÞ ¼ a
~�
�ðxÞp ~�; (A3)

with

a ~�
�ðxÞ ¼ 1

2Vð~yÞ ����
~� ~�d�~�: (A4)

The lattice derivative depends on the positions of the lattice

points through the xj-dependent coefficients a
~�
�ðxÞ which

multiply the differences of lattice variables p ~�. We observe

the relations

Vð~yÞ ¼ 1
4����

~� ~�d
�
~�d

�
~�; ���d

�
~�d

�
~� ¼ 2V� ~� ~�; (A5)

and

a
~�
�d

�
~� ¼ 2; ���a

~�
�a~�

� ¼ 1

4V2
����

~� ~��~� ~�d
�
~�d

�
~�;

���� ~� ~�a
~�
�a~�

� ¼ 1

V
: (A6)

With respect to infinitesimal repositionings one has

�pd
�
0 ¼ �

�
p ð~x4Þ � �

�
p ð~x1Þ; �pd

�
1 ¼ �

�
p ð~x3Þ � �

�
p ð~x2Þ;
(A7)
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and infers, for the change of the cell volume,

�pVð~yÞ ¼ @̂��
�
p ð~yÞVð~yÞ: (A8)

Here @̂��
�
pð~yÞ is formed with the standard prescription

(A3) for lattice derivatives, using for p ~� differences of

��
pð~zÞ. For the functions a

~�
�ðxÞ a change of positioning

results in

�pa
~�
�ðxÞ ¼ �@̂��

�
pð~yÞa ~�

� ðxÞ: (A9)

Since p ~� does not depend on the positioning, one obtains

from Eq. (A3)

�p@̂�fð~yÞ ¼ �@̂��
�
pð~yÞ@̂�fð~yÞ: (A10)

The transformation property �pv�ð~yÞ¼�@̂��
�
pð~yÞv�ð~yÞ

defines a lattice vector with respect to restricted lattice
diffeomorphism transformations. For smooth enough
lattice functions v�ð~yÞ and ��

pð~yÞ the lattice derivatives

become standard partial derivatives of interpolating func-
tions. If we extend the discussion beyond the restricted
transformations, the repositioning also associates to the
cell ~y a new position xpð~yÞ þ �pð~yÞ. From ��v�ðxÞ ¼
�pv�ð~yÞ þ v�ðx� �Þ � v�ðxÞ one recovers for the asso-

ciated interpolating functions the standard transformation
property of a covariant vector with respect to general
coordinate transformations

��v� ¼ �@��
�v� � ��@�v�: (A11)

We conclude that the transformation of lattice vectors
under restricted lattice diffeomorphism transformations
translates, for the associated interpolating functions, to
the transformation law of covariant vectors under general
coordinate transformations. This holds in the continuum
limit of smooth v� and ��.

Tensors with respect to restricted lattice diffeomor-
phisms (‘‘lattice tensors’’) can be obtained in a standard
way from multiplication of lattice vectors. For example,

@̂�fð~yÞ@̂�gð~yÞ þ @̂�fð~yÞ@̂�gð~yÞ transforms as a second

rank symmetry lattice tensor. This is the transformation
of the metric field G�� in Eq. (53). The antisymmetric

lattice tensor

A��ð~yÞ ¼ @̂�fð~yÞ@̂�gð~yÞ � @̂�fð~yÞ@�̂gð~yÞ
¼ ����

��@̂�fð~yÞ@̂�gð~yÞ (A12)

transforms in the same way as 1=Vð~yÞ,
�pð���@̂�fð~yÞ@̂�gð~yÞÞ ¼ �@̂��

�
p ð���@̂�fð~yÞ@̂�gð~yÞÞ;

(A13)

such that Vð~yÞA��ð~yÞ is invariant.
As a consequence, the ‘‘cell action’’ L̂ð~yÞ in Eq. (17) is

invariant under restricted lattice diffeomorphisms. This is
another facet of lattice diffeomorphism invariance. In fact,
every lattice action can be expressed in terms of suitable

cell averages and lattice derivatives. In general, however,
the couplings multiplying different terms will depend on
the coordinates x

�
p ð~zÞ of the lattice points. Since the origi-

nal lattice action does not ‘‘know’’ about the positioning,
the expression of the action in terms of cell averages and

derivatives, L̂ð~yÞ, is invariant under a repositioning if both
the cell averages and associated cell derivatives are trans-
formed by lattice diffeomorphism transformations, and the
couplings are transformed according to their dependence

on xp. For a lattice diffeomorphism invariant model L̂ð~yÞ
transforms as 1=Vð~yÞ if only the fields H ð~yÞ and associ-

ated derivatives @̂�H ð~yÞ are transformed. In this case L̂ð~yÞ
has to transform as Vð~yÞ if the couplings are transformed,

while H ð~yÞ and @̂�H ð~yÞ are kept fixed. One can then

write L̂ð~yÞ ¼ Vð~yÞ �Lð~yÞ and conclude that �Lð~yÞ does not
involve any couplings that depend on xp. This is precisely

the characterization of lattice diffeomorphism invariance
in Sec. II.
At this point a general principle for the construction of

lattice diffeomorphism invariant actions becomes visible.
Since �pH ð~yÞ ¼ 0, all lattice actions with

�Lð~yÞ ¼ fðH ð~yÞÞ���@̂�H lð~yÞ@̂�H mð~yÞ (A14)

transform�Vð~yÞ�1 under lattice diffeomorphism transfor-
mations for arbitrary functions f. The associated contin-
uum limit replaces H ð~yÞ by the interpolating field H ðxÞ,
and @̂�

~H ð~yÞ ! @̂�H ðxÞ. The expression of the associ-

ated L̂ð~yÞ ¼ �Lð~yÞVð~yÞ in terms of the lattice fieldH ð~zÞ is
straightforward and does not involve the positions of the
lattice points. This construction is easily generalized to
four dimensions or any other number of dimensions. In d
dimensions it formulates a diffeomorphism invariant
action as an integral over a d-form. It is not known if other
forms of lattice diffeomorphism invariant actions exist that
do not follow this construction.
We conclude that lattice diffeomorphism invariant

actions are those for which �Lð~yÞ transforms as

�p
�Lð~yÞ ¼ �@̂��

�
p ð~yÞ �Lð~yÞ (A15)

under restricted lattice diffeomorphism transformations.
Here we recall that �p is taken for fixed ~y, such that

�pH ð~yÞ ¼ 0, while @pð@̂�H Þ is given by Eq. (A10).

Using the congruent action interpolation one obtains the
continuum action

S ¼
Z
x

�LðxÞ; (A16)

where the lattice derivative @̂�fð~yÞ is replaced by the

‘‘interpolation derivative’’ @̂�fðxÞ defined by Eq. (19)

and obeying the relation (21), and H ð~yÞ is replaced by
H ðxÞ. This continuum action coincides with the lattice
action. For the continuum action we have to take into
account the volume factor in Eq. (26) such that, with
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Eq. (A8), the variation under a (restricted) repositioning of
lattice points becomes

�pS ¼
Z
x
ð@���

p ðxÞ �LðxÞ þ �p
�LðxÞÞ: (A17)

For a lattice diffeomorphism invariant action obeying
Eq. (A15) the continuum action is invariant, �pS ¼ 0. We

emphasize that �p
�LðxÞ is a well-defined operation for any

�LðxÞ that can be written as a sum of terms for which each

term is a polynomial in derivatives @̂�fðxÞ, multiplied by

an arbitrary function of fðxÞ. [Generalizations to several
functions faðxÞ are obvious.] It simply transforms all de-
rivatives of functions according to Eq. (A10), without any
further change,

�pð@̂�fðxÞÞ ¼ �@̂��
�
pðxÞ@�fðxÞ: (A18)

For congruent action interpolations the use of (continu-
ous) functions H ðxÞ that are defined for all points of a
continuous manifold is a simple rewriting of the lattice
model in a different picture. In this picture the action is
given as a functional of H ðxÞ. In general, different posi-
tionings of the lattice points result in different pictures,
characterized by different continuum actions. Restricted
lattice diffeomorphism transformations correspond to a
repositioning of lattice points on a manifold and therefore
to a switch between different pictures. For a lattice diffeo-
morphism invariant action all pictures for arbitrary posi-
tionings are the same.

We next turn to the restricted lattice diffeomorphism
transformations of sources. We start with sources for cell
averages, Jð~yÞ ¼ 1

4 �jJð~xjð~yÞÞ. If Jð~yÞ transforms as a

scalar, the ratio jð~yÞ ¼ Jð~yÞ=Vð~yÞ transforms as a scalar
density, with

�pjð~yÞ ¼ �@̂��
�
pð~yÞjð~yÞ; (A19)

or, for smooth lattice fields,

��jðxÞ ¼ �@�ð��ðxÞjðxÞÞ: (A20)

Lattice diffeomorphism invariance is realized if �L
transforms as a scalar density when only @̂�H ð~yÞ are

transformed according to restricted lattice diffeomor-
phisms. This extends to a source term for cell averages,

�L jð~yÞ ¼ �ðH �
kð~yÞjkð~yÞ þH kð~yÞj�kð~yÞÞ; (A21)

provided the sources transform according to Eq. (A19).

We further notice that we can consider a ~�
�ðxÞ as a regular

2� 2 matrix, since the definition implies deta ¼
1=2V > 0. The inverse matrix b�~�ðxÞ obeys

a
~�
�b�~� ¼ ��

�; b
�
~�a

~�
� ¼ �~�

~�; (A22)

and transforms as

�pb
�
~�ðxÞ ¼ b�~�ðxÞ@̂���

p ð~yÞ: (A23)

This is the transformation property of a contravariant
vector. Contraction with any invariant object ~w ~�ð~yÞ yields
a contravariant vector

w�ð~yÞ ¼ b
�
~�ðxÞ ~w ~�ð~yÞ; (A24)

which transforms as

�pw
�ð~yÞ ¼ w�ð~yÞ@̂���

p ð~yÞ: (A25)

The product of a covariant and a contravariant vector is
invariant,

�pðv�w
�Þ ¼ 0: (A26)

With ~w0 ¼ Jð~x4Þ � Jð~x1Þ, ~w1 ¼ Jð~x3Þ � Jð~x2Þ, and
v� ¼ @̂�H ð~yÞ ¼ a

~�
�p ~�; w� ¼ @̂�Jð~yÞ ¼ b

�
~� ~w ~�;

(A27)

one finds

@̂ �H @̂�J ¼ ~p ~� ~w ~�

¼ ½H ð~x4Þ �H ð~x1Þ�½Jð~x4Þ � Jð~x1Þ�
þ ½H ð~x3Þ �H ð~x2Þ�½Jð~x3Þ � Jð~x2Þ�:

(A28)

Contravariant lattice vectors @�̂Jð~yÞ related to sources
introduce new possibilities for constructing lattice diffeo-
morphism invariants in �½h; j� and therefore also for the
effective action �½h�.
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