
Running of the gravitational constant

Mohamed M. Anber1,* and John F. Donoghue2,3,†

1Department of Physics, University of Toronto, Toronto, Ontario, M5S1A7, Canada
2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

3Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej, 17 DK-2100 Copenhagen Denmark
(Received 21 February 2012; published 9 May 2012)

We show that there is no useful, universal definition of a running gravitational constant, GðEÞ, in the

perturbative regime below the Planck scale. By consideration of the loop corrections to several physical

processes, we show that the quantum corrections vary greatly, in both magnitude and sign, and do not

exhibit the required properties of a running coupling constant. We comment on the potential challenges of

these results for the asymptotic safety program.
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I. INTRODUCTION

The concepts of running coupling constants and the
renormalization group are of great utility in renormalizable
field theories. It is tempting to attempt a definition of a
running gravitational constant Gðq2Þ in the context of
quantum general relativity. As a simple example, one could
take the quantum correction to the gravitational potential
between heavy masses [1],1

VðrÞ ¼ �G
Mm

r

�
1þ 41

10�

G

r2

�
; (1)

and turn it into a running coupling

GðrÞ ¼ G

�
1þ 41

10�

G

r2

�
(2)

which would imply that the gravitational strength gets
stronger at short distances. We will return to the weak-
nesses of this particular definition in Sec. VIII below, but it
is only one of many attempted definitions that have been
suggested in the literature [3].

Moreover, there is an extensive approach to quantum
gravity that relies on the running of the gravitational cou-
pling. Within the hypothesis of asymptotic safety [4,5], a
suitably normalized version of the gravitational coupling is
proposed to run to an ultraviolet fixed point. In Euclidean
space, one treats the dimensionless combination g ¼ Gk2E,
where kE is a measure of the Euclidean energy, and the
fixed point is described by

g ¼ Gk2E ! g� as kE ! 1: (3)

This would imply that the running gravitational strength
itself vanishes at large energy,GðkEÞ ! 0. This behavior is
often summarized by a function

GðkEÞ ¼ GN

1þ �GNk
2
E

; (4)

where GN is the gravitational coupling at zero energy.
Gravitational corrections are calculable at low energy

using effective field theory [6]. However, the effective
field theory presents a very different picture of quantum
effects—one in which the gravitational constant does not
run. Because of the dimensional coupling, loops do not
lead to a renormalization of the leading gravitational
action R, i.e. the one that contains the gravitational
constant G, but rather renormalize higher order terms
in the action that come with higher derivatives, i.e. terms
such as R2 or R��R

��. Indeed, there is a power counting

theorem that says that each gravitational loop always
brings in two more powers of the energy. The content
of the renormalization group within effective field theory
has been explored by Weinberg and others [7]. While the
technique is useful for predicting some leading and sub-
leading logarithmic kinematic dependence, it does not
involve the running of the leading order coupling, and
in gravity does not predict the running of G. Efforts to
define a running coupling in the perturbative regime must
attempt something outside of the usual application of the
renormalization group.
The purpose of this paper is to explore explicit physical

calculations in Lorentzian spacetime to see if there is a
definition of running gravitational coupling which is physi-
cally useful and universal in the regime where we
can maintain control of our calculations. Our answer is
negative—no such definition is both useful and universal.

II. GRAVITATIONAL CORRECTIONS TO
COUPLING CONSTANTS

Ultraviolet divergences in field theories correspond to
counterterms in a local Lagrangian. In a theory with a
dimensional coupling constant with an inverse mass
dimension, such as general relativity, these local terms
are ones which have a higher mass dimension than the
original starting Lagrangian. For example, for gravitational
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1We do not display the classical correction to the potential, as

it is not relevant for our discussion. For an early attempt to
calculate the quantum correction to the gravitational potential
see [2].
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corrections to QED the divergences generated at one loop
have the form

L ct ¼ Gc1F
��@2F�� þGc2 �c��c @�F

��

þGc3 �c��D�cF��; (5)

when regularized dimensionally. (We will discuss regulari-
zation with a dimensionful cutoff in the next section.)
Equivalently, field redefinitions and/or equations of motion
can be used to rewrite some of these operators (and the
accompanying divergences) as contact interactions such as

L0
ct ¼ Gc4 �c��c �c��c : (6)

The divergences can be absorbed into renormalized pa-
rameters of these higher dimensional operators, as in stan-
dard effective field theory practice. The scale dependence
that arises in dimensional regularization will then be asso-
ciated with the coefficients of the higher order operators,
i.e. the set ci, rather than the original coupling constant,
which in the QED case would be the electric charge. Finite
remainders will also carry this higher order momentum
dependence; i.e. they will be of order Gq2 or Gq2 lnq2

higher than the original coupling.
Because loops generate these higher order effects in the

momentum expansion, attempts to have the loops contrib-
ute to the running of the original charge e require some
repackaging of the higher order effects into a revised
definition of the original charge. Logically, this is conceiv-
able by renormalizing the coupling at a higher energy
scale. The standard effective field theory treatment is
equivalent to renormalizing the operators near zero energy.
However, by choosing a renormalization condition that
defines the charge at a higher energy scale E, one would,
in general, include some of the higher momentum depen-
dence into the definition of the charge. For example, for a
given amplitude Ampi we would define

Amp i ¼ aig
2 þ big

2�2q2

¼ aig
2

�
1þ bi

ai
�2E2

�
þ big

2�2ðq2 � E2Þ

¼ aig
2ðEÞ þ big

2ðEÞ�2ðq2 � E2Þ; (7)

when renormalizing at the scale q2 ¼ þE2. Here G ¼
�2=ð32�Þ and ai, bi are process dependent constants.
This can certainly be done by explicit construction—
indeed, it can be done in multiple ways through different
choices of the renormalization condition. By construction,
this provides a gravitational contribution to the running of
the coupling with energy.

However, there are obstructions that will, in general,
keep any such construction from being useful and universal
in effective field theories such as general relativity. One is a
kinematic ambiguity. The higher order corrections are
proportional to Gq2, and q2 refers to a four-vector
which can take both positive and negative values. A

renormalization condition defined at one sign of q2 pro-
duces a charge definition that fails to be applicable in the
crossed reaction with the opposite sign of q2. We will refer
to this as the crossing problem. (In the above schematic
example, this is visible in the ambiguity between renorm-
alizing at q2 ¼ þE2 or q2 ¼ �E2.) The other obstruction
is process dependence or nonuniversality. Because there
are, in general, multiple higher order operators that are
possible, and because these enter into different processes in
different ways, the divergences and finite parts of different
reactions will not be the same. A definition of the charge
that is appropriate for one reaction will not work for
another. To be useful, a running coupling must capture at
least a significant or common portion of the quantum
corrections. (In the preceding schematic example, prob-
lems would arise if the ratio bi=ai is highly process
dependent.) We have demonstrated these obstacles in
Yukawa theories [8], and the same problems arise in the
attempts to define gravitational corrections to running
gauge charges.
In renormalizable theories these obstacles are not

present. For logarithmic running couplings, the kinematic
ambiguity is absent because the real part of lnq2 is the same
for both spacelike and timelike q2. The process depen-
dence is absent because the running is connected with the
actual renormalization of the charge—the lnðq2=�2Þ factor
that arises is tied to the 1=� divergence absorbed into the
renormalized charge. Because charge renormalization is
universal, the corresponding logarithmic corrections are
also universal.
In [8], we did find one case where a gravitational cor-

rection to a running coupling could be constructed pertur-
batively without obvious flaws. This was �	4 theory. In
this case, the unique higher order operator vanishes by
the equation of motion—the gravitational corrections are
one-loop finite. In addition, the complete permutation
symmetry of the 	4 interaction means that all reactions
are crossing symmetric and involve a unique crossing
symmetric combination of kinematic invariants. There is
no crossing problem. Because there is only one type of
vertex in this theory, there is also no nonuniversality prob-
lem. These allowed a reasonable definition of the gravita-
tional correction to the running of �. However, we will see
that these nice properties are not shared by the gravitational
self-interactions.

III. DIMENSIONAL CUTOFFS

The comments of the preceding section are reasonably
obvious when dimensional regularization is used. Indeed,
they are consistent with the portion of the literature con-
cerning gravitational corrections to gauge couplings that
employed dimensional regularization [9]. However, more
recently there has been another subset of this literature
which used dimensionful cutoffs in the analysis and which
reached the opposite conclusion, i.e. that there was a
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universal gravitational correction to the running of the
gauge charges [10,11]. This dichotomy appears to violate
a key principle that true physics is independent of the
renormalization scheme. In fact, there is no disagreement
between the schemes, and the apparent difference arises
from an incorrect interpretation of the dimensionful cutoff
schemes. It is important for us to demonstrate the flaw of
these cutoff calculations, because many attempts to define
a running gravitational constant, Gð�Þ, employ a similarly
incorrect reasoning.

If we rescale the vector field, A� ! A�=e0, then the
electric charge appears only in the photon part of the
Lagrangian,

L ¼ � 1

4e20
F��F

�� þ �c i 6Dc : (8)

After including graviton loops regularized with a dimen-
sional cutoff �, there is a quadratic cutoff dependence in
the leading term, as well as logarithmic cutoff dependence
with a high order operator,

L ¼ � 1þ a�2�2

4e20
F��F

�� þ b ln�2F��@
2F��: (9)

This demonstrates that, in contrast with dimensional regu-
larization, the lowest order charge e0 does get renormal-
ized (quadratically) by graviton loops when using a
dimensionful cutoff as a regularizer.

The incorrect interpretation of this is to identify the
cutoff dependence with the running of the coupling.
Specifically, by writing

e2ð�Þ ¼ e20
1þ a�2�2

; (10)

the authors of [11] identify a beta function


ðeÞ ¼ �
@e

@�
¼ �ae�2�2 (11)

for the running of the coupling.
However, this interpretation is incorrect, because the

quadratic � dependence disappears from physical observ-
ables in the process of renormalization. For example,
the Coulomb potential at low energy, calculated from
Eq. (9), is

VðrÞ ¼ e20
4�ð1þ a�2�2Þ

1

r
: (12)

If we use this to identify the electric charge, we obtain

� ¼ e2

4�
¼ e20

4�ð1þ a�2�2Þ ¼
1

137
: (13)

When expressing predictions in terms of the measured
value of �, the quadratic � dependence is removed from
all observables at all energies. It does not indicate the

running of the electric charge. This analysis is supported
by explicit calculation [12].
These same comments apply to dimensionful cutoffs

and the gravitational coupling G. When using a scheme
with a dimensionful cutoff, one will generate corrections to
the gravitational constant G ¼ G0ð1þ aG0�

2Þ. If this is
done in a way that preserves general covariance, the same
correction will be obtained in any process that involves G.
This quadratic dependence will disappear from all observ-
ables once one identifies the physical renormalized pa-
rameter G to be equal to its Newtonian value.
Note that the logarithmic ln� dependence can be useful

in tracing the running of couplings. This is because at high
energies the logarithm must also contain kinematic varia-
bles, i.e. lnð�2=q2Þ. This is analogous to tracing the lnq2

behavior from the 1=� dependence in dimensional
regularization.
These features explain how dimensional regularization

and cutoff regularization can agree in calculations involv-
ing gravity. There are no quadratic divergences in dimen-
sional regularization, but we have seen that such
divergences in cutoff schemes disappear from observables
under renormalization. When considering gravitational
corrections, the logarithmic cutoff dependence and the
1=� dependence are both associated with higher order
terms of order �2q2, and the residual kinematic effects
will be in agreement when the calculations are properly
done. Dimensional regularization is a good regulator for
the gravitational interaction because it has a clear and
direct interpretation. For this reason, we use dimensional
regularization throughout this paper.

IV. PURE GRAVITY: THE GRAVITON
PROPAGATOR

Let us first consider the purely gravitational sector. At
one loop, pure gravity is finite for on-shell amplitudes,
because the higher order counterterms R2 and R��R

��

vanish by the equation of motion R�� ¼ 0. Finite one-

loop corrections do exist. These are higher order in the
momentum variables and do not have the same kinematic
dependence as the lowest order effects governed by the
gravitational constant G. However, by working at a high
energy renormalization scale, we will see if we can attempt
to package these loop effects as a running coupling GðEÞ.
Even though our primary focus in this paper involves on-

shell physical reactions, it is useful to start by considering
the vacuum polarization diagram and the graviton propa-
gator. The only quantum correction that is demonstrably
universal is that involving the vacuum polarization. Every
graviton exchange receives a correction from the vacuum
polarization. Because each end of the propagator carries a
factor of �, a modification of the propagator could be
interpreted as a modification of the coupling Gðq2Þ.
However, we will see that there still remains the crossing
problem because q2 can carry either sign.
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The graviton propagator at lowest order is given by

iD�
��
F ¼ iP�
��

q2 þ i�
; (14)

where

P �
�� ¼ 1
2½����
� þ �
���� � ��
����: (15)

The inclusion of the vacuum polarization diagram modifies
the propagator

iP �
�


q2
i��
��ðqÞ iP

����

q2
: (16)

The vacuum polarization diagram is divergent, and the
required counterterms have the form obtained by ‘t Hooft
and Veltman [13],

�L ¼
ffiffiffi
g

p
16�2�

�
1

120
R2 þ 7

20
R�
R

�


�
(17)

with � ¼ ðd� 4Þ=2. Because such terms appear in the
most general effective Lagrangian, one can absorb these

divergences into the renormalized values of their coeffi-
cients. Expressing R2 and R�
R

�
 in terms of the Fourier-

space momenta, we find upon symmetrizing the indices

ffiffiffi
g

p
R2 ¼ h��½q4��
��� � q2ð���q�q
 þ ��
q�q�Þ

þ q�q
q�q��h�
 (18)

and

ffiffiffi
g

p
R�
R

�
 ¼ 1

4
h��

�
q4��
��� � q2

2
ðq�q���


þ q�q���
 þ q
q���� þ q
q����Þ
� q2ð��
q�q� þ ���q�q
Þ
þ q4I�
;�� þ 2q�q
q�q�

�
h�
; (19)

where I�
;�� ¼ ð����
� þ ����
�Þ=2. In addition, one

can use the presence of the 1=� terms to read out the
dependence on lnq2,

��
;��ðqÞ ¼ � 2G

�
ln

�
� q2

�2
1

��
q4

60
��
��� � q2

60
ð���q�q
 þ ��
q�q�Þ þ 1

60
q�q
q�q�

�

� 2G

�
ln

�
� q2

�2
2

��
7

40
q4��
��� � 7

80
q2ðq�q���
 þ q�q���
 þ q
q���� þ q
q����Þ

� 7

40
q2ð��
q�q� þ ���q�q
Þ þ 7

40
q4I�
;�� þ 7

20
q�q
q�q�

�
; (20)

where we have assigned lnð�q2=�2
1Þ and lnð�q2=�2

2Þ for
R2 and R�
R

�
, respectively.
The polarization tensor can be written in the form [4]

��
;��ðqÞ ¼ q4Aðq2ÞL�
ðqÞL��ðqÞ � q2Bðq2Þ
� ½L��ðqÞL
�ðqÞ þ L��ðqÞL
�ðqÞ
� 2L�
ðqÞL��ðqÞ�; (21)

where L��ðqÞ ¼ ��� � q�q�=q2. Contracting ��
;��ðqÞ
with L�
ðqÞL��ðqÞ and L��ðqÞL
�ðqÞ, we obtain two
equations in Aðq2Þ and Bðq2Þ,
��
;��ðqÞL�
ðqÞL��ðqÞ ¼ 3q2½3q2Aðq2Þ þ 4Bðq2Þ�;
��
;��ðqÞL��ðqÞL
�ðqÞ ¼ 3q2½q2Aðq2Þ � 2Bðq2Þ�:

(22)

Hence, we find

Aðq2Þ ¼ � 1

30�
G ln

��q2

�2
1

�
� 7

10�
G ln

��q2

�2
2

�
;

Bðq2Þ ¼ 7

40�
Gq2 ln

��q2

�2
2

�
:

(23)

On the other hand, the bare propagator takes the general
form

iD�
;��ðq2Þ ¼ i

2q2
½L��L
� þ L��L
� � L�
L���;

(24)

while the quantum corrected propagator reads

iD0�
;�� ¼ iD�
;�� þ iD�
;��i���;��iD��;��

¼ i

2q2
ð1þ 2Bðq2ÞÞ½L��L
� þ L��L
�

� L�
L��� � i
Aðq2Þ
4

L�
L��: (25)

The first term above is a dressed propagator. Therefore, it is
appropriate to define the running coupling as

Gðq2Þ ¼ Gð1þ 2Bðq2ÞÞ ¼ G

�
1þ 7

20�
Gq2 ln

��q2

�2
2

��
:

(26)

On the other hand, the second term in Eq. (25) also
contributes comparably to gravitational amplitudes. For
example, nonrelativistic scattering involves the 00,00
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component ofD��;�
, and we can equally define a running
coupling from that component,

D 00;00 ¼ 1

2q2

�
1þ 2B� q2A

2

�
L00L00

¼ 1

2q2
Gðq2ÞL00L00; (27)

and hence,

Gðq2Þ ¼ G

�
1þ 1

60�
Gq2 ln

��q2

�2
2

�

þ 7

10�
Gq2 ln

��q2

�2
1

��
: (28)

This corresponds exactly to the vacuum polarization con-
tribution to the shift in the Newtonian interaction as calcu-
lated in [6], but it could be more widely applicable. Since
MP is the only scale in gravity, we expect �1 and �2 to be
of this order, and hence Eqs. (26) and (28) are valid for low
energies E<MP. For spacelike q2 this corresponds to an
increase in the strength of gravity, while for timelike values
it is a decrease. Of course, this sign ambiguity is a signal of
the crossing problem. It is present no matter which com-
ponents of the propagator are considered. If converted to
Euclidean space by the Wick rotation q2 ! ðiq4Þ2 � q2 ¼
�q2E, the effective strength increases.

At one-loop order, it would be hard to convincingly
favor one of the two definitions, Eqs. (26) and (28).
However, they do at least have a common sign.

However, we know ahead of time that this definition is
not going to enter into any physical one-loop processes in
pure gravity. Since on-shell processes are one-loop finite,
any reference to the higher order operators R2 or R��R

��

must drop out of physical observables at one loop. The
coefficients �1 and �2 are in this category and will not
appear in on-shell processes. On-shell reactions may have
logarithms such as lnðs=tÞ, but not lnðs=�2

1;2Þ.

V. PURE GRAVITY: GRAVITON SCATTERING

The simplest physical process in pure gravity is
graviton-graviton scattering. The lowest order scattering
amplitude involves a large number of individual tree dia-
grams but is given by the simple form

Atreeðþþ;þþÞ ¼ i
�2

4

s3

tu
; (29)

where the signsþ,� refer to helicity indices and s, t, u are
the usual Mandelstam variables. In power counting, this is
a dimensionless amplitude of order GE2. Our labeling of
momentum and helicities corresponds to the final state
particle being outgoing, in contrast to some conventions
in the literature which label all particles as ingoing.2

The one-loop amplitudes have been calculated by
Dunbar and Norridge [14]. These are of order G2E4 and
take the form

A1-loopðþþ;��Þ ¼ �i
�4

30 720�2
ðs2 þ t2 þ u2Þ;

A1-loopðþþ;þ�Þ ¼ � 1

3
A1-loopðþþ;��Þ;

A1-loopðþþ;þþÞ ¼ �2

4ð4�Þ2��

�2ð1� �Þ�ð1þ �Þ
�ð1� 2�Þ Atreeðþþ;þþÞðstuÞ

�
2

�

�
lnð�uÞ

st
þ lnð�tÞ

su
þ lnð�sÞ

tu

�

þ 1

s2
f

��t

s
;
�u

s

�
þ 2

�
lnð�uÞ lnð�sÞ

su
þ lnð�tÞ lnð�sÞ

tu
þ lnð�tÞ lnð�sÞ

ts

��
; (30)

where

f

��t

s
;
�u

s

�
¼ ðtþ 2uÞð2tþ uÞð2t4 þ 2t3u� t2u2 þ 2tu3 þ 2u4Þ

s6

�
ln2

t

u
þ �2

�

þ ðt� uÞð341t4 þ 1609t3uþ 2566t2u2 þ 1609tu3 þ 341u4Þ
30s5

ln
t

u

þ 1922t4 þ 9143t3uþ 14 622t2u2 þ 9143tu3 þ 1922u4

180s4
: (31)

Other amplitudes can be obtained from these by crossing.

2The amplitude in Eq. (29) is often referred to as the maximally helicity violating amplitude in the all-ingoing convention.
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The dimensional regularization parameter � ¼ ð4� dÞ=2 appears in the amplitude A1-loopðþþ;þþÞ. This is an
infrared divergence, and it is canceled as usual from the radiation of soft gravitons. An explicit calculation of the sum of
direct and radiative cross sections [15] yields the result

�
d�

d�

�
tree

þ
�
d�

d�

�
rad:

þ
�
d�

d�

�
nonrad:

¼

¼ �4s5

2048�2t2u2

�
1þ �2s

16�2

�
ln
�t

s
ln
�u

s
þ tu

2s2
f

��t

s
;
�u

s

�

�
�
t

s
ln
�t

s
þ u

s
ln
�u

s

��
3 lnð2�2Þ þ �þ ln

s

�2
þ

P
ij �i�jF ð1Þð�ijÞP
ij �i�jF ð0Þð�ijÞ

���
: (32)

Here � is an infrared scale related to the experimental
energy resolution and F ðiÞ are functions defined in [15]
related to the angles of emission of soft graviton radiation.

The last line of the cross section formula is related to
infrared physics and does not appear appropriate for the
inclusion in the definition of a running coupling. Instead,
we focus on the correction displayed in the preceding line.
We would like a renormalization point in the physical
region3 with a single energy scale E. We choose the central
physical point s ¼ 2E2, t ¼ u ¼ �E2. This leads to the
identification

G2ðEÞ ¼ G2

�
1þ �2E2ðln22þ 1

8 ð2297180 þ 63�2

64 ÞÞ
8�2

�
: (33)

We see that this definition leads to a growing running
coupling GðEÞ, as opposed to the expectation from asymp-
totic safety of a decrease in strength at high energy. It
works acceptably for this process because it absorbs the
main effects of the quantum corrections in the neighbor-
hood of the central point.

We could alternatively consider the crossed reaction
Aðþ;�;þ;�Þ which is obtained from Aðþ;þ;þ;þÞ
by the exchange s $ t. This makes the quantum correc-
tions somewhat different, with the corresponding kine-
matic factor being

1þ �2t

16�2

�
ln
�s

t
ln
�u

t
þ su

2t2
f

��s

t
;
�u

t

��

¼ 1þ �2E2ð2910 ln2� 67
45Þ

16�2
(34)

instead of the factor in Eq. (33). The quantum corrections
in this channel differ from those of the original reaction,
and they are not accurately summarized by the same run-
ning coupling. This is a manifestation of the crossing
problem.

VI. GRAVITATIONAL SCATTERING OFA
MASSLESS SCALAR PARTICLE

In renormalizable gauge theories, the running coupling
applies universally to all processes. As mentioned above,
this is because the running is tied to the renormalization of
the gauge charge. General covariance requires that a valid
definition of a running G also be universally applicable.
The gravitational coupling not only parametrizes the self-
interactions of gravitons, but it also describes the gravita-
tional coupling of matter. In this section, we look at the
effects of loops on the gravitational interactions of a scalar
particle.
We consider a scalar particle that has only gravitational

interactions. The scattering 	þ	 ! 	þ	 via graviton
exchange at tree level has s, t, and u channel poles, with
amplitude

M tree ¼ i
�2

4

�
st

u
þ su

t
þ tu

s

�
: (35)

We note that this amplitude, and the loop amplitudes to
follow, has a permutation (crossing) symmetry such
that all channels are governed by the same amplitude.
This will eliminate the crossing problem that arises
in most other reactions. However, we can test for
universality by testing whether the interactions lead to
a similar running coupling as suggested in the purely
gravitational sector.
In this theory there is a higher order operator which is

required at one loop. Divergences proportional to

L 2 ¼ 203

320�
ðD�	D�	Þ2 (36)

arise at one loop. In matrix elements, this operator gener-
ates a contribution proportional to s2 þ t2 þ u2. The one-
loop amplitudes, up to rational terms in the kinematic
variables, have been given in [16]. However, the rational
terms are constrained by the permutation symmetry to also
be proportional to s2 þ t2 þ u2, and we will absorb them
into the higher order Lagrangian L2.

3The scattering amplitudes quoted are only valid on shell. An
off-shell evaluation would involve divergences.
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The total scattering amplitude of this process, apart from a polynomial in s, t, and u, is given by4

M 1�loop ¼ i
�4

ð4�Þ2
�ðs4 þ t4Þ

16
I4ðs; tÞ þ ðs4 þ u4Þ

16
I4ðs; uÞ þ ðu4 þ t4Þ

16
I4ðt; uÞ � sðs2 þ 2t2 þ 2u2Þ

8
I3ðsÞ

� tðt2 þ 2s2 þ 2u2Þ
8

I3ðtÞ � uðu2 þ 2t2 þ 2s2Þ
8

I3ðuÞ þ ð163u2 þ 163t2 þ 43tuÞ
960

I2ðsÞ

þ ð163u2 þ 163s2 þ 43usÞ
960

I2ðtÞ þ ð163s2 þ 163t2 þ 43tsÞ
960

I2ðuÞ
�
; (37)

where I4ðs; tÞ, I3ðsÞ, and I2ðsÞ are, respectively, the scalar box, triangle, and bubble integrals:

I4ðs; tÞ ¼ 1

st

�
2

�2
½ð�sÞ�� þ ð�tÞ��� � ln2

��s

�t

�
� �2

�
¼ 1

st

�
4

�2
� 2 lnð�sÞ þ 2 lnð�tÞ

�
þ 2 lnð�sÞ lnð�tÞ þ finite

�
;

I3ðsÞ ¼ 1

�2
ð�sÞ�1�� ¼ � 1

s

�
1

�2
� lnð�sÞ

�
þ ln2ð�sÞ

2

�
; I2ðsÞ ¼ 1

�ð1� 2�Þ ð�sÞ�� ¼
�
1

�
� lnð�sÞ þ finite

�
: (38)

We follow Ref. [16] in removing the infrared divergences by using

M IR ¼ �2

2ð4�Þ2
ðð�sÞ1�� þ ð�tÞ1�� þ ð�uÞ1��Þ

�2
Mtree; (39)

where the residual hard part is defined via

M h ¼ M1�loop �MIR: (40)

With the renormalization of the higher order operator, the one-loop hard amplitude is

M h ¼ i
�4

ð4�Þ2
�ðs4 þ t4Þ

8st
lnð�sÞ lnð�tÞ þ ðs4 þ u4Þ

8su
lnð�sÞ lnð�uÞ þ ðu4 þ t4Þ

8tu
lnð�tÞ lnð�uÞ

þ ðs2 þ 2t2 þ 2u2Þ
16

ln2ð�sÞ þ ðt2 þ 2s2 þ 2u2Þ
16

ln2ð�tÞ þ ðu2 þ 2t2 þ 2s2Þ
16

ln2ð�uÞ þ 1

16

�
st

u
þ tu

s
þ us

t

�

�ðsln2ð�sÞ þ tln2ð�tÞ þ uln2ð�uÞÞ þ
�
�ð163u2 þ 163t2 þ 43tuÞ

960
ln

��s

�2

�
� ð163u2 þ 163s2 þ 43usÞ

960

� ln

��t

�2

�
� ð163s2 þ 163t2 þ 43tsÞ

960
ln

��u

�2

�
þ dren1 ð�Þðs2 þ t2 þ u2Þ

��
; (41)

where � is an infrared scale. In this result, we have grouped the single logs with the higher order operator, because those
logs are the ones that pick up the scale dependence when you shift the scale associated with the higher order operator
dren1 ð�Þ.

We again evaluate the matrix element at the central kinematic point s ¼ 2E2, t ¼ u ¼ �E2. The result is

M total ¼ Mtree þMh ¼ i
9�2E2

8

�
1� �2E2

360ð4�Þ2
�
609 ln

E2

�2
þ ð340�2 þ ð123� 340 ln2Þ ln2Þ

��
: (42)

If we were to use this to identify a running coupling the result would be

4We correct for a few typos found in Eq 4.12 of [16]. We verified Eq. (37) by directly computing the whole set of the one-loop
Feynman diagrams.
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GðEÞ ¼ G

�
1� �2E2

360ð4�Þ2
�
609 ln

E2

�2
þ ð340�2 þ ð123� 340 ln2Þ ln2Þ

��
: (43)

The single log term which appears in Eq. (43) could
reasonably be associated with the higher order operator
d1, and perhaps should be removed from this expression.
The most serious flaw of this result in comparison to
Eq. (33) is that it has the opposite sign. The leading
corrections to graviton scattering and to scalar scattering
go in the opposite direction. This fact cannot be accounted
for by a common definition of a running coupling, an
obvious lack of universality.

VII. GRAVITATIONAL SCATTERING OF
NONIDENTICAL PARTICLES

Here we consider a different situation for the matter
couplings—the scattering of nonidentical particles. We
will neglect the particle masses, so this corresponds to
scattering at s > >m2. This situation demonstrates both
the crossing problem and the nonuniversality problem.

The example of the last section has more crossing sym-
metry than most gravitational reactions. Processes involv-
ing nonidentical particles, or with fermions, will typically
involve dominantly only one of the s, t, u channels. Typical

gravitational scattering of very massive particles will in-
volve primarily t-channel exchange. Such distinctions
highlight the difficulty of any given definition of a running
G being applicable to all processes.
By a direct computation of the appropriate set of

Feynman diagrams, we find that the tree and one-loop
amplitudes of the reaction Aþ B ! Aþ B are

Mtree¼i�2su

4t
;

M1�loop¼i
�4

ð4�Þ2
�
1

16
ðs4I4ðs;tÞþu4I4ðu;tÞÞ

þ1

8
ðs3þu3þtsuÞI3ðtÞ�1

8
ðs3I3ðsÞþu3I3ðuÞÞ

� 1

240
ð71us�11t2ÞI2ðtÞþ 1

16
ðs2I2ðsÞþu2I2ðuÞÞ

�
:

(44)

Then, we use Eq. (39) in removing the IR divergences. The
resulting hard amplitude reads

Mh ¼ i
�4

ð4�Þ2
�
1

8

�
s3

t
lnð�sÞ lnð�tÞ þ u3

t
lnð�uÞ lnð�tÞ

�
� 1

16t
ðs3 þ u3 þ tsuÞ lnð�tÞ þ 1

16
ðs2ln2ð�sÞ þ u2ln2ð�uÞÞ

þ us

16t
ðsln2ð�sÞ þ tln2ð�tÞ þ uln2ð�uÞÞ þ 1

240
ð71us� 11t2Þ lnð�tÞ � 1

16
ðs2 lnð�sÞ þ u2 lnð�uÞÞ

�
; (45)

and the total amplitude at the center kinematic point s ¼ 2E2, t ¼ u ¼ �E2 is

M total ¼ i�2E2

2

�
1� �2E2

10ð4�Þ2
�
ð19þ 10 ln2Þ ln

�
E2

�2

�
þ 5ð�2 � ðln2� 1Þ ln2Þ

��
: (46)

On the other hand, the amplitude of the reaction Aþ
A ! Bþ B is given by Eq. (44) with the exchange s $ t,
and has the amplitude

Mtotal ¼ i�2E2

8

�
1þ �2E2

10ð4�Þ2
�
9 ln

�
E2

�2

�

� 5�2 þ ð19þ 5 ln2Þ ln2
��

: (47)

The crossing problem is obvious here. The loop corrections
are in opposite directions in the two reactions, largely
because of the change in sign of the kinematic variables
under crossing. Any definition of a running G cannot
capture this behavior—the coupling must either increase
with energy scale or decrease with energy. The processes
also illustrate the nonuniversality problem. Even two
reactions that are this closely related have a different

magnitude for the one-loop correction when evaluated in
the physical region.

VIII. GRAVITATIONAL SCATTERING OF HEAVY
MASSES

Finally, we consider the quantum corrections to the
scattering of heavy objects—let us call them planets. Are
the gravitational corrections here similar to those of mass-
less scalars or gravitons? This tests the universality prop-
erty of a running coupling. This scattering amplitude is
closest to the situations that we are familiar with defining
the running couplings in QED or QCD.
The gravitational interaction at one loop is the result of

several Feynman diagrams that vary in magnitude and sign.
Written in coordinate space, the total loop correction
changes the interaction to that quoted above in Eq. (1).
Written in its original momentum space, this corre-
sponds to
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VðqÞ ¼ �4�
GMm

q2

�
1þ 41

20�
Gq2 ln

�
�2

q2

��
: (48)

Note that, in this case, we have written this result in terms
of the spatial part of q2, i.e. q2 ¼ �q2, because the results
were derived in the nonrelativistic approximation. We
should not consider crossing this amplitude to timelike
q2 because the planet masses could be well above the
Planck scale. This result corresponds to an increase
in the gravitational strength with increasing energy.
Ascribing it to a running G would yield Eq. (2), or equiv-
alently the momentum factor in square brackets in Eq. (48).
Note that the parameter � does not enter the coordinate
space potential at finite r because the Fourier transform of
a constant is a delta function. We keep��MP for the low
energy validity of the effective theory.

The scattering amplitude leading to the result in Eq. (48)
includes all diagrams, including box and crossed-box dia-
grams and some triangle diagrams. In QED or QCD we do
not use the full set of diagrams for the running charge, as
we include only the vertex corrections and vacuum polar-
ization. In these theories, this is appropriate because it is
these diagrams that renormalize the gauge charge. In grav-
ity, none of these diagrams renormalizeG at low energy, so
the rationale for including only a subset is not clear.
Moreover, in gravity, this subset of diagrams does not, by
itself, form a gauge invariant set. Nevertheless, we can look
at this subset of diagrams in a particular gauge. In har-
monic gauge, the inclusion of both vertex and vacuum
polarization would be

GðqÞ ¼ G

�
1� 167

60�
Gq2 ln

�
�2

q2

��
; (49)

i.e. it carries the opposite sign from the full result. Even
within this subset, one potentially might like to exclude the
vertex diagrams because there is no Ward identity that
indicates that these must be the same for all particles (i.e.
photons vs planets). The vacuum polarization is, however,
universal. Including only this would yield

GðqÞ ¼ G

�
1þ 43

60�
Gq2 ln

�
�2

q2

��
; (50)

as can be seen from Sec. IV. Overall, the nonrelativistic
scattering amplitude is made up of many large contribu-
tions that differ in sign and magnitude. Identifying a subset
as the running charge would not capture the leading quan-
tum effects. Moreover, we see that even the sign of the
potential definition is not obvious, as vertex and vacuum
polarization diagrams have opposite signs. The sign of the
vacuum polarization correction in Eq. (50) agrees with that
of the total scattering amplitude in Eq. (48), but the mag-
nitude is different by a factor of 3.

IX. LESSONS

We have explored one-loop calculations in general rela-
tivity in the region where there is perturbative control over
the theory. There emerges no definition of a running G that
is both useful and universal. The nature of the energy
expansion of the effective field theory of gravity implies
that quantum corrections are associated with the renormal-
ization of higher order operators rather than the original
Einstein action. This implies that the usual theoretical
framework for running couplings, the renormalization
group, does not, by itself, define a running G. And while
a definition generally can be made that is useful within a
given process, the quantum effects are so nonuniversal that
this definition will not be usefully applied to other
reactions.
We have illustrated a series of reactions with one-loop

corrections which differ significantly. Perhaps lost in the
variety of signs and magnitudes is the key point that
quantum corrections do not organize themselves into a
running coupling. This is the expected behavior of an
effective field theory. The relevant higher order operators
are process dependent and decoupled from the renormal-
ization of the lowest order operator. The kinematic varia-
tions of the one-loop corrections are more complex than
just mirroring the leading behavior. This is because they
involve higher powers of the momentum invariants, and
there are many allowed kinematic factors present at higher
order. Attempts to repackage this larger kinematic varia-
tion as if it were a modification of the lowest order ampli-
tude, i.e. a running coupling, will then, in general, fail
because the running coupling cannot mimic the richer
kinematics of the higher order terms. This leads directly
to the crossing problem and the nonuniversality problem,
both of which occur when one tries to define a running G.
Our work also provides cautions for the asymptotic

safety program, which employs a running gravitational
coupling in the nonperturbative regime beyond the
Planck scale. Let us mention some of the obstacles. The
process of defining the running coupling requires a trunca-
tion of the operator basis, and the effects of the infinite set
of higher order operators get repackaged as if they were
contained in a small set of low order operators. This raises
the issues that appears in our calculations—will this re-
packaging be universal? Will the matter couplings in the
theory—which provide one definition of G—have the
same quantum corrections as the pure gravity sector—
which provide another definition of G? Will two-point,
four-point, and eight-point functions, for example, have
the same behavior? Because of the presence of all the
higher order operators, general covariance by itself does
not require these functions to have the universal behavior
expected from a running coupling constant. Our calcula-
tions showed highly nonuniversal behavior. It is possible
that once one is beyond the Planck scale a particular set of
diagrams dominates all calculations. However, this is yet
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unknown, and it would be interesting to attempt to identify
this key diagram. Another issue is the continuation back to
physical Lorentzian spacetime. In asymptotic safety, the
running coupling defined in Euclidean space must be con-
tinued to physical spacetimes when applied to the real
world. Lorentzian spacetimes have momentum variables
of both signs, and the analytic continuation of power
corrections must be more complicated. We have seen
examples of reactions where the crossing problem made
any running coupling useless. A naive continuation of a
function such as Eq. (4) raises the possibility of poles for
certain kinematic configurations.

The best candidate for a universal contribution to a
running G comes from the vacuum polarization amplitude.
The correction to the graviton propagator will occur any-
time a graviton is exchanged, either at tree level or within
loops. However, here the perturbative result has the wrong
sign when Euclideanized—the gravitational strength in-
creases. There is also the crossing problem in Lorentzian
spacetime. Even if the vacuum polarization could be
summed to a function with a good high energy behavior,
for example, a form such as

P �
��

q2 þ �Gq4
; (51)

such functions often have trouble with ghosts when used at
high energy or within loop diagrams.5

The potential problems of gravity treated beyond the
Planck scale need not be problematic if the effective theory
gets modified at that scale by new degrees of freedom and a
change in the description of the theory. General relativity
would still form a quantum effective field theory with
calculable quantum effects below the Planck energy.
However, in such effective field theories with a dimen-
sional coupling, it has not proven useful to employ running
coupling constants. We have shown the difficulties of try-
ing to define a running G in gravity.
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