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We investigate the effects of higher-order curvature corrections to Einstein’s gravity on the critical

phenomenon near the black hole threshold, namely, the Choptuik phenomenon. We simulate numerically

a five-dimensional spherically symmetric gravitational collapse of massless scalar field in Einstein-Gauss-

Bonnet gravity towards a black hole formation threshold. When the curvature is sufficiently large, the

additional higher-order terms affect the evolution of the whole system. Since high curvature characterizes

the region when the critical behavior takes place, this critical behavior is destroyed. Both the self-

similarity and the mass scaling relation disappear. Instead we find a different behavior near the black hole

threshold, which depends on the coupling constant of the higher-order terms. The new features include a

change of the sign of the Ricci scalar on the origin which indicates changes in the local geometry of

spacetime, and never occurs in classical general relativity collapse, and oscillations with a constant rather

than with a diminishing length scale.
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I. INTRODUCTION

Gravity is described by Einstein’s theory of general
relativity (GR), which predicts the existence of black
holes—trapped regions from which nothing can escape.
Black holes can form from regular initial data that do not
contain a black hole already. Isolated systems in GR can
end up in two qualitatively different states: Data that forms
a black hole in the evolution and data that does not and in
which the mass-energy disperses to infinity. A simplest
possible model for such a system is the collapse of a
spherically symmetric minimally coupled massless scalar
field. The final fate—whether it collapses or not—depends
on the ‘‘strength’’ of the initial data.

In a pioneering work, Choptuik [1] explored the tran-
sition between the two regimes. He discovered that the
black hole threshold shows both surprising structure and
surprising simplicity. Universality, power-law scaling of
the black hole mass, and scale echoing have given rise to
the term ‘‘critical phenomena’’ [2,3]. Choptuik [1] consid-
ered a one-parameter family of initial data describing a
collapsing scalar field (see Fig. 1 for the structure of space
time). He have shown that for each family of initial data
parametrized by p (for example, amplitude of the initial
pulse), there exists a critical value p�. For p > p�, we have
a supercritical collapse and a black hole forms. For p < p�
the collapse is subcritical and the field disperses to infinity
leaving a flat space. Choptuik gave highly convincing
numerical evidence that by fine-tuning the parameter p
to the threshold value p� an infinitely small black hole can
be created.

The critical solution itself is universal. For a finite time
in a finite region of space the spacetime converges to one
and the same solution independent of the initial data. The
critical solution is discretely self-similar (DSS), namely, it
is invariant under rescaling by a particular finite factor, or

its integer powers. Let Z�ðr; tÞ be the critical solution
(collectively for all the parameters—the scalar field and
the metric), the critical solution is the same when rescaling
space and time by factor e�

Z�ðr; tÞ ¼ Z�ðre�; te�Þ: (1)

The field and metric functions pulsate periodically with
ever decreasing temporal and spatial scales, until a black
hole forms in supercritical collapse, or the field disperses in
subcritical collapse (see Fig. 2). This universal phase ends
when the evolution diverges towards a black hole forma-
tion or towards dispersion, depending on whether p > p�
or not. In supercritical collapse above p�, arbitrary small
black holes are formed as p ! p� and the black hole mass
scales as a power law: M / ðp� p�Þ�, where � is univer-
sal. It depends on the type of collapsing matter (and on the
dimension) but it is independent of the initial data family.
Similar critical phenomena were found in many other types
of matter coupled to gravity, with spherical symmetry and
beyond it (See, e.g., [2] for a review). The echoing period
� and critical exponent � depend on the type of matter and
on the dimension, but the phenomenon appears to be
generic.
Einstein’s equations are derived from the Hilbert action,

which is linear in the Ricci scalar-R. It is natural to expect
that higher terms in R will appear in a more general theory
and it is interesting to explore their possible role. To do so,
we have to explore a high curvature regions of space time
where such terms are significant. Black hole formation is a
natural place to do so, as spacetime becomes highly curved
as the matter fields collapse. This behavior usually takes
place near the singularity, which is typically hidden
inside the black hole. However, they also appear near the
threshold for black hole formation when the Choptuik
phenomenon take place. Therefore, we explore here the
gravitational collapse of a spherically symmetric massless
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scalar field with higher-order corrections to the Hilbert
action.

Addition of even the simplest R2 term induces fourth-
order derivatives of the metric in the resulting equations
of motion. The original Einstein equations are second
order in the metric and the additional generic fourth-order
correctionswill govern the equations and change completely
their character. To overcome this, we consider a special case.
Lanczos [4,5] found a generalization ofHilbert’s Lagrangian
which is quadratic in the Riemann tensor and its contrac-
tions, but its variation yields a system of equations that, like
Einstein’s, is second order in the metric derivatives. This
correction to the Lagrangian, called the Lanczos Lagrangian
or the Gauss-Bonnet term [6,7], is given by

LGB � R2 � 4R��R
�� þ R����R

����: (2)

The combined theory that includes the Hilbert Lagrangian
and the Gauss-Bonnet term is called Einstein-Gauss-Bonnet
(EGB) gravity. In four dimensions the Gauss-Bonnet term is
a pure divergence, just like Hilbert’s Lagrangian in two
dimensions, and it does not contribute to the field equations
in four dimensions. To overcome this we consider here
gravitational collapse in five-dimensional spacetime, which
is the simplest system in which the Gauss-Bonnet term
contributions can affect the evolution [8].
We present here the results of a numerical investigation

of the influence of higher-order curvature correction,
namely, the Gauss-Bonnet term, on the properties of
spherically symmetric scalar field collapse in five dimen-
sions. In particular, we focus on the behavior of the
Choptuik critical phenomenon. The structure of the paper
is as follows: in Sec. II we describe the overall model and
the basic equations. In Sec. III we discuss the numerical
structure and the numerical difficulties that arise in the
calculations. Simulation results and their discussion are
presented in Sec. IV.

II. THE MODEL AND THE BASIC EQUATIONS

We consider the collapse of a spherically symmetric
massless scalar field, � in five-dimensional space
time described by the metric g��. We use units in which

G ¼ c ¼ 1.

A. The metric

The scalar field is massless and it propagates along
the light cone. Hence we describe the five-dimensional
asymptotically flat spacetime in double null coordinates

ds2 ¼ �a2ðu; vÞdudvþ r2ðu; vÞd�2
3; (3)

where our coordinates are: ðu; v; ’; 	; �Þ and d�2
3 ¼

½sin2�ðd	2 þ sin2	d’2Þ þ d�2� is the metric on a three-
dimensional unit sphere (see [13,14] for an alternative
Hamiltonain formulation of this problem). The coordinate
u is the retarded time coordinate and a constant u describes
an outgoing null trajectory. Similarly v is the advanced
time coordinate and surfaces with a constant v are the
ingoing null trajectories. r � rðu; vÞ is the area coordinate
and r ¼ 0 is the origin of the spherical symmetry. This
definition of the metric is unique only up to a change of
variables of the form v ! ~vðvÞ, u ! ~uðuÞ. This gauge
freedom will be fixed later by the choice of the initial
conditions.

B. The scalar field

The Lagrangian density of the field is

L ¼ � 1

2
�;��

;�; (4)

FIG. 1 (color online). The Penrose diagram in GR of the space
time that is expected to form in a gravitational collapse of a shell
of in-falling scalar field to a black hole. When the shell is far
away from the origin, the self-gravitational effects are small.
When it comes closer to the origin, the gravitational field
becomes stronger. If the field does not collapses to a black
hole, the diagram remains Minkowski-flat, and the event horizon
or the singularity do not exist, of course. Light blue lines indicate
the numerical domain of integration used in the current work.
The initial hypersurface is a null ray. Since the field is massless,
it behaves lightlike and it moves along null rays.
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and the corresponding equation of motion is

�;�
;� ¼ 0: (5)

The energy-momentum tensor is given by

T�� ¼ �;��;� � 1

2
g���;��

;�

¼

Tuu Tuv 0 0 0

Tvu Tvv 0 0 0

0 0 T’’ 0 0

0 0 0 T		 0

0 0 0 0 T��

0
BBBBBBBB@

1
CCCCCCCCA

¼

�2
;u 0

0 �2
;v

sin2	T		

sin2�T��

2r2

a2
�;u�;v

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(6)

C. The equations of motion

The overall action that includes the Hilbert action and
the Gauss-Bonnet term is

S ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p �
1

16

ðRþ �LGBÞ

�
þ Smatter; (7)

where � is the coupling constant and it has dimensions of
ðlengthÞ2. The value of the coupling constant � is un-
known, we assume that 0<� � 1. We are interested in
� values that are significant and that influence the solution.

Therefore, we will look for values that are large enough so
that the correction term, which is of order �R2, is compa-
rable or larger then the Hilbert term R. Namely, we will be
interested in cases where �R> 1.
The corresponding gravitational field equations are

G�� þ �H�� ¼ �2
nT��; (8)

where G�� is Einstein tensor:

G�� ¼ R�� � 1

2
Rg��; (9)

T�� is the energy-momentum tensor given in (6), and

H�� � 2½RR�� � 2R��R
�
� � 2R��R����

þ R�
���R����� � 1

2
g��LGB: (10)

We convert the equations to a set of first-order differential
equations. To do so we define

s � ffiffiffiffiffiffiffiffiffiffi
4
G

p
� (11)

z � sv (12)

w � su (13)

d � av
a

(14)

f � ru (15)

g � rv; (16)

FIG. 2 (color online). The field function s in classical GR in five dimensions, for a slightly subcritical collapse. The field oscillates
with a DSS pattern. The field pulsations decrease in temporal and spatial scales.
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where Z� � @Z
@x� . We obtain, using Eq. (8), four independent first-order equations:

fu ¼ 2f
au
a
� 2Gra2w2

3½a2 þ 4��� ; uu component; (17)

gv ¼ 2gd� 2Gra2z2

3½a2 þ 4��� ; vv component; (18)

fv ¼ gu ¼ � a2r�

2½a2 þ 4��� ; uv component; (19)

and

du ¼ �9a2�½ð4��Þ2 � 3a4� þ 4a2Gzw½�9ða2 þ 4��Þ2 þ 32a2Gzw��
36ða2 þ 4��Þ3 ;

a2

2r2
��þ uv components: (20)

The scalar field equation derived from (5) is

wv ¼ zu ¼ � 3

2r
ðgwþ fzÞ: (21)

We have defined here an auxiliary function �

� � a2 þ 4fg

r2
: (22)

This is useful to stabilize the numerical solution, as ex-
plained later in Sec. III. The evolution equation for � is

�v ¼ � 2�ðg� rdÞ
r

� 2a2ð3g�þ 4fz2Þ
3rða2 þ 4��Þ : (23)

Equations-(17)–(21) and (23)-together with (12)–(16)
are a set of 11 coupled first-order differential equations
that describe the system. Since there are only nine func-
tions—r, a, s, f, g, z, w, d and �—two equations are
redundant and are simply the usual constraint equations.
We choose those to be Eqs. (15) and (17). They are not
evolved in the integration, but they are monitored to verify
that they are indeed satisfied during the evolution.

The original GR equations are invariant under rescaling.
However, the coupling constant � has units of length
squared ½L2�. Its introduction to the system destroys this
scale invariance. Under the rescaling: r ! �r the equa-
tions behave as

fu ¼ 2f
au
a
� 2Gra2w2

3½a2 þ 4��� !
1

�
fu

¼ 1

�
2f

au
a
� 1

�

2Gra2w2

3½a2 þ 4��
�2 �

; (24)

gv ¼ 2gd� 2Gra2z2

3½a2 þ 4��� !
1

�
gv

¼ 1

�
2gd� 1

�

2Gra2z2

3½a2 þ 4��
�2 �

; (25)

fv¼� a2r�

2½a2þ4���!
1

�
fv¼�1

�

a2r�

2½a2þ 4��
�2 �

; (26)

du ¼ �9a2�½ð4��Þ2 � 3a4� þ 4a2Gzw½�9ða2 þ 4��Þ2 þ 32a2Gzw��
36ða2 þ 4��Þ3 ! 1

�2
du

¼ 1

�2

�9a2�½ð4��
�2 Þ2 � 3a4� þ 4a2Gzw½�9ða2 þ 4��

�2 Þ2 þ 32a2Gzw�
�2 �

36ða2 þ 4��
�2 Þ3

: (27)

Obviously, the scale invariance is broken. At smaller
scales (� ! 0) the noninvariant elements, which rescale as
��2, become dominant and govern the equations. This
leads to the deviations from the classical GRB behavior
that we demonstrate numerically later. In particular the
deviations from the GR behavior happen near the critical
point where the curvature is large and the non-scale-
invariant Gauss-Bonnet terms are large. These terms even-

tually destroy the classical Choptuik phenomenon both
when black holes form and when they do not. This happens
independently of the value of �.

D. The boundary conditions

Regularity and differentiability at the origin r ¼ 0 re-
quire the following boundary conditions
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g ¼ �f ¼ a

2
; @rs ¼ 0; @ra ¼ 0: (28)

These conditions imply

av ¼ au; w ¼ z;

� ¼ a

12�
ð�3aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 48�z2

p
Þ (29)

at the origin.
A second set of boundary conditions is set implicitly at

infinity. This is trivial in GR, where a Schwarzschild has

naturally an asymptotically flat spacetime. However, [15]
have shown that a Schwarzschild black hole in EGB grav-
ity can have either asymptotically flat or anti-de Sitter
structure. Since we consider only a finite region of space
time (see Fig. 1) we do not examine here to which to the
two branches the collapsing black hole will lead.

E. The ricci scalar

The Ricci scalar curvature, R, is given by

R ¼ 8
�9a6wzþ 432�4�3 þ 72a2�2ð�� 2wzÞ�2 þ a4ð32w2z2 � 72wz�� 27�2Þ�

9a2ða2 þ 4��Þ3 : (30)

The Ricci curvature describes the local geometry of the
spacetime. The value of the Ricci scalar at the origin is of
special interest

Rðr ¼ 0Þ ¼ 16z2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 48z2�

p þ 5

�

0
@ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 16
3 z

2�
q � 1

1
A:

(31)

If � ¼ 0, the Ricci scalar at the center is always negative:
� 8z2

a2
. For � � 0 the situation is more complicated. The

Ricci scalar is negative while the following condition is
satisfied:

�<
45a2

16z2
: (32)

The simulations show that, along the evolution of the
collapsing field system, the metric function aðu; vÞ ap-
proaches zero and zðu; vÞ, the field derivative, is growing
to a very big values, the closer we are to the critical
amplitude, the larger is the value that z approaches.
Therefore, the condition of Eq. (32) is violated at some
point and the Ricci scalar changes sign. This change of sign
heralds the deviation from the classical behavior.

F. The black hole mass

The analysis of mass scaling relation in the critical
phenomenon requires a function for a black hole mass.
The Arnowitt, Deser, Misner (ADM) mass of a black hole
in higher-dimensional GR [16] is

M ¼ ðD� 2ÞAD�2

16
GD

rD�3
s ; (33)

when rs is Schwarzschild radius,D is the dimension,GD is
the D-dimensional Newton constant and AD�2 is the area

of a unit sphere: AD�2 ¼ 2
ðD�1Þ=2
�ðD�1

2 Þ . However, in EGB there

is an additional term and for D ¼ 5 dimensions the ADM
mass is [15,17–19]

M ¼ 3


8G
r2s

�
1þ 2�

r2s

�
: (34)

The second term in this equation implies that, as the size of
the black hole decreases (rs ! 0), its mass in EGB ap-
proaches a constant positive value, M ! M0 ¼ 3
�=4G
[18,19]. This implies that there is a mass gap and all black
holes (for �> 0) must have an ADM mass larger thanM0.
One can resort to a different definition of the black hole’s
mass and, instead of using the ADM mass, one can calcu-
late the mass of the apparent (trapping) horizon using an
EGB quasilocal mass [20,21]. Avoiding this problem we
will consider, for simplicity, in the following the scaling of
the black hole’s radius instead of the scaling of the black
hole’s mass.
We define the critical exponent � such that jp� p�j�

has a dimension of length. Instead of examining the de-
pendence of the ADM mass on p we will examine the
dependence of the black hole’s radius, rs. We expect
following the GR case to find rs / ðp� p�Þ�.

G. Initial conditions

We turn to discuss the initial conditions. We consider
here the gravitational collapse of a shell of in-falling scalar
field. Figure 1 shows the domain of the current numerical
work embedded inside an expected Penrose diagram. The
u-v plane is covered by a two-dimensional grid, as de-
scribed in Fig. 3. The origin r ¼ 0 is included in the
domain, and it is chosen to be at u ¼ v. Therefore the
relevant part of u-v space is v > u. Our metric is defined
up to a coordinate transformation, as was mentioned in
Sec. II A. This gauge freedom is fixed by specifying the
metric functions on the initial hypersurface, an initial ray
with a constant retarded time u ¼ ui ¼ 0. In flat—
Minkowski—spacetime, the conventional definition of
the null coordinates is u ¼ t� r and v ¼ tþ r. Since
we are dealing with spherical shell, the spacetime is flat
in two regions—inside the shell and at asymptotically
large radii. The integration starts far away from the event
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horizon and therefore the metric is nearly flat. Thus we
define the area coordinate r along the initial null surface
u ¼ ui ¼ 0 as in a flat spacetime r � v

2 . The fact that the

spacetime is only approximately Minkowski is pronounced
by the deviation of the other metric function—aðu; vÞ—
from its flat-space value (a ¼ 1). In addition, we set a ¼ 1
at the origin, r ¼ 0, at one point u ¼ v ¼ 0. From here we
can obtain all the other functions on the initial hypersur-
face by integration from the origin.

The exact shape of the initial scalar field is unimportant,
as the Choptuik behavior is universal and independent of
this shape. We choose the initial scalar field profile along
an outgoing hypersurface u ¼ ui ¼ 0 to be a Gaussian

sðu ¼ 0; vÞ ¼ p exp

�
�
�
v� vc

�

�
2
�
; (35)

where the constants vc and � determine the initial position
and width of the shell and the constant p is the amplitude of
the pulse. p is the strength parameter of the initial data and
it is the dynamical parameter that we vary to explore the
Choptuik phenomenon.

Having specified the functions r and s on the initial
hypersurface, we can derive analytically z and g, which
are simply the derivatives z ¼ sv and g ¼ rv ¼ 1=2. All
the other functions on the initial hypersurface—f, a, w, d
and �—are obtained by integrating the appropriate equa-
tions from the origin.

III. NUMERICAL METHODS

We follow here the methods developed by Sorkin and
Oren [3]. However, as discussed later, further steps, includ-
ing the addition of the variable �, are needed here to
stabilize the code near the origin. The problem arises
because of the stronger nonlinear behavior of the Gauss-
Bonnet terms.

A. The integration scheme

Our domain of integration is an equilateral right triangle
in a u-v plane: 0 � u � umax, 0 � v � vmax and v � u.
vmax ¼ umax is chosen to cover the interesting relevant
region. An illustration of the domain is sketched in
Figs. 1 and 3. The simplest computational cell is square
with grid spacing hu ¼ hv ¼ h. Triangular cells near the
origin (u ¼ v) are treated separately.
The integration begins from the lower line of constant

u ¼ 0 and propagates to the next line. Once the solution
along an outgoing hypersurface with constant u value, u ¼
U� h, is known, d and z are propagated to the next line,
u ¼ U, using Eqs. (20) and (21) correspondingly. Then
Eqs. (21), (19), (18), (12), (16), (14), and (23) are inte-
grated using a fourth-order Runge-Kutta algorithm from
the origin outward along v to obtain the functions w, f, g,
s, r, a and �, respectively. The remaining equations are not
used directly, but they must be satisfied and are used to test
the numerical solution.
The first points near the origin are treated separately.

The region near the origin is unstable. The instability arises
near the origin where discretization errors are amplified,
especially in source terms that involve a division by r. To
resolve this problem we take several steps. First we intro-

duce the new variable � � a2þ4fg
r2

. This, unnecessary from

the first glance, variable is an algebraic combination of
others. It appears in every source function. It includes a
division by r2 which is very sensitive to errors near the
origin. The independent evolution of � using Eq. (23) help
stabilize the source functions. In addition, we have to take
a few more steps: We use at points near the origin a more
stable, second-order Runge-Kutta algorithm.
(i) Instead of integrating the function functions f and w

along v, we evaluate these functions using a Taylor
expansion, e.g. ,:

fðvÞ ¼ fðv0Þ þ dvfvðv0Þ þ ðdvÞ2
2

fvvðv0Þ
þOðdvÞ3; (36)

when v0 is the v value on the origin and dv �
v� v0.

(ii) Additionally we smooth the functions z and d. First
we evaluate the function, at some point P, then its
value is smoothed with the values of the same
function on points on the past light cone of P (see
Fig. 3). For example, for the function z at the point

FIG. 3 (color online). The domain of integration. The calcu-
lation employs the two previous lines, L1 and L2, in addition to
the line, L0, that is currently being solved. The boundary con-
ditions on r ¼ 0 involving @r are implemented using the three-
point derivatives along the diagonal line. Smoothing of some
functions near r ¼ 0 (at a point marked by cross) is done using
past light cone points (marked by circles). Figure taken from [3].
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marked by cross in Fig. 3, the new, smoothed, z is
calculated according to

znew ¼
�
!ze þ

X3
i¼i

zi

�
1

3þ!
; (37)

where ze is the value obtained from the evolution
equation, zi are the extrapolated values of z along
the three directions of the past light cone: ziðuÞ ¼
2zðu� hÞ � zðu� 2hÞ, and ! is a weight parame-
ter, which is varying for different functions and
different code parameters, but typically ! / 0:1.

Every one of those actions on its own stabilizes the
integration but is insufficient to keep the code completely
stable till the end. For the classical GR evolution, with � ¼
0, � is not needed; however, it is essential for the more
general evolution. This combination prevents the code
from crashing at least for low enough values of �.
However, a strong penalty is paid as the combination
and, in particular, the smoothing reduces the convergence
rate of the code to a linear order. Using this algorithm, we
are able to get a stable and convergent evolution for small
values of �. However, the code still becomes unstable for
large values of �, usually when the field amplitudes that
are close to the critical one.

B. Numerical tests

We performed a series of simulations with step sizes h,
h
2 , and

h
4 in order to determine the accuracy of the numerical

method. If the numerical solution converges, the relation
between the different numerical solutions and the real one
will be

Freal ¼ Fh þOðhnÞ; (38)

where n is the order of convergence and Fh is the numeri-
cal solution with step size h. For halved step sizes the

error is reduced correspondingly: Freal ¼ Fh=2 þOððh2ÞnÞ
and Freal ¼ Fh=4 þOððh4ÞnÞ. By defining (as in [22]): c1 �
Fh � Fh=2 and c2 � Fh=2 � Fh=4, we find the convergence
rate

n ¼ log2

�
c1

c2

�
: (39)

Figure 4(a) depicts n. The convergence rate is approxi-
mately linear n � 1 or higher for almost the whole domain.
However, n diverges at some points. This arises from
crossing of s ¼ const lines, as can be shown in Fig. 4(b).
The upper panel of this figure shows a one-dimensional
projection of n along constant u-ray: u ¼ 0:4, and the
lower panel shows the corresponding field function F ¼
sðu; vÞ along the same constant u ray for different grid
densities.

IV. RESULTS

The first feature of the collapsing field is the formation,
or not, of a black hole. To examine this, we plot a diagram
of v vs r, the area coordinate, for different values of u (See
Fig. 5). Each line represents an outgoing null ray of a

FIG. 4 (color online). Convergence for a slightly subcritical run with � ¼ 10�4. The convergence rate—n—in panel (a) is derived
from the field function sðu; vÞ, with 216, 217 and 218 grid points in u and v directions [blue, red and green lines, respectively, in s plot on
panel (b)]. In panel (b), the divergence of n around v	 0:46 and v	 0:63 is caused by s lines crossing, as shown in the zoom window.
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constant u, namely, a trajectory of a photon emitted from
the origin at u. Rays with u small enough show a flatlike
spacetime behavior, for which v � uþ 2r. For small val-
ues of u, at early times, the rays do not encounter a strong
gravitational field and they escape to infinity. At later
times, the gravitational field becomes stronger and the
outgoing rays are bent more and more before they even-
tually manage to escape. Once a black hole forms, these
rays are trapped. For subcritical initial configuration, the
field disperses and all outgoing null rays reach infinity [see
Fig. 5(a)]. For a supercritical initial configuration, a hori-
zon appears when an outgoing null ray does not escape and
does not reach future null infinity but rather remains in the
same radius r for all values of v. Later rays that emerge
from the origin collapse back to the origin (see Fig. 5(b)).

While, as expected, the Gauss-Bonnet terms do not
change the overall classical GR behavior, the critical be-
havior is lost. For classical GR in D ¼ 5 dimensions, the
black hole radius scales as R / ðp� p�Þ�. Figure 6 depicts
the black hole radius as a function of jp� p�j for super-
critical evolutions with � ¼ 10�4. Note that we use here
the scaling relation of the Schwarzschild radius instead of
the mass (see Sec. II F). The dependence of the black hole
radius on the initial amplitude is monotonic, i.e., for larger
values of p the black hole radius is larger. However, in the
EGB gravity we do not observe the classical power-law
relation. The existence of the scaling relation is related to
the self-similar properties of the classical solution [2,23].
Since self-similarity is not preserved in EGB gravity we
expect that the scaling relation will also be violated.

In classical GR, the solution is discretely self-similar
just below the black hole threshold. The field reaches the

origin, oscillates, and then disperses or collapses, depend-
ing on whether it is subcritical or supercritical. These
oscillations do not depend on initial conditions and they
decay in a DSS pattern (see Fig. 2(a)). The addition of the
Gauss-Bonnet terms destroys this behavior. With these
terms the field still oscillates, but the self-similarity dis-
appears (See Fig. 7). The oscillations grow at first as if the
additional terms in the Lagrangian amplify the field, pre-
vent it from decaying, and keep the oscillations alive for a
longer time. Eventually, the oscillations decay and the field
disperses.
In the classical GR solution, we observe more and

more self-similar transients when approaching the critical
amplitude from both sides. In the EGB solution, while
approaching the critical amplitude, more and more oscil-
lations are also observed. However, these oscillations are
not self-similar and their scale does not decrease. Figure 7
depicts the contours of the scalar field s for a set of
subcritical solutions [panels (a–d)], with � ¼ 10�5, with
growing amplitudes approaching the critical one, and a set
of supercritical solutions [panels (e–h)] with amplitudes
decreasing towards the critical one. An increasing number
of oscillations is observed as p approaches p�. The inserts
in the supercritical solution, Figs. 7(e)–7(h), depict the
v� r diagram, demonstrating black holes formation. A
cutoff in field diagram is a sign for a singularity (see the
scheme in Fig. 1).
Obviously, the self-similarity disappears not only in the

field functions, but in all metric functions and their deriva-
tives. Particularly interesting is the behavior of the Ricci
scalar [Eq. (31)] as seen in Fig. 8 panels (a3) and (b3), and
Fig. 9 panels (c3) and (d3). This figures show the Ricci
scalar at the origin, Rðr ¼ 0Þ, as a function of u for differ-
ent values of �. Purple color indicates negative values and
red indicates positive values of the Ricci scalar. Figure 8
(a3) shows the classical solution, i.e., � ¼ 0. In classical

FIG. 5 (color online). Outgoing null rays: v vs r. Both plots
have the same parameters except for the initial field amplitude:
� ¼ 10�5, vmax ¼ 0:768, the grid density is 215 points in each
direction.

FIG. 6 (color online). The black hole’s Schwarzschild
radius-rs vs the difference between the amplitude and the critical
one-jp� p�j, for supercritical cases with � ¼ 10�4. In the
classical GR solution this relation is a power law. Here, in
EGB gravity, a power law is not observed.
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FIG. 7 (color online). Contours of the scalar field function s in EGB gravity with a coupling constant � ¼ 10�5, grid density 215,
vmax ¼ 0:768, vc ¼ 0:22. The initial field amplitude increases or decreases towards the critical amplitude: p ! p�. Plots (a–d)—
subcritical collapse: p < p�. Plots (e–h)—supercritical collapse p > p�. The inserts demonstrate the formation of black holes as seen
in the v� r diagram. The initial values of the field amplitude are: p ¼ 0:1654ðaÞ, 0:16557ðbÞ, 0:1657ðcÞ, 0:165723ðdÞ, 0:1676ðeÞ,
0:166ðfÞ, 0:1658ðgÞ, 0:16573ðhÞ.
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FIG. 8 (color online). A slightly subcritical collapse with different values of the coupling constant �. Panels (a1–3) correspond to a
classical GR solution, � ¼ 0. A self-similar behavior can be observed. Panels (b1–4) correspond to EGB gravity with � ¼ 10�6. The
first row, panels (a1) and (b1), presents contour plots of the field function s. The second row, panels (a2) and (b2), shows the field
function s at the origin (r ¼ 0) vs u. The third row, panels (a3) and (b3), shows the Ricci scalar on the origin vs u in a logarithmic scale.
A red color indicates positive values and a purple color negative values of R. Panel (b4), displays contour plot of j�Rj, showing the
regions where the higher order terms are significant, i.e., j�Rj> 1.
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FIG. 9 (color online). A continuation of Fig. 8 with larger values of � in a slightly subcritical collapse. Panels (c1–4) correspond to
EGB gravity solution with � ¼ 10�5. Panels (d1–4) correspond to EGB gravity solution with � ¼ 10�4.
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GR, the condition �< 45a2

16z2
[Eq. (32)] is always satisfied,

thus Rðr ¼ 0Þ is always negative and it never changes sign.
On the other hand, for EGB gravity, this condition is
inevitably violated for amplitudes close enough to the
critical one [see Figs. 8 (b3), 9 (c3) and 9 (d3)]. As p
approaches p�, the metric function a tends to zero and the
derivative of the field z grows. At some point the condition
(32) is violated and the Ricci scalar changes sign, indicat-
ing a change in the local geometry. This demonstrates that
near the black hole threshold for �> 0 the local geometry
is different from the classical GR geometry.

Figs. 8 and 9 compare slightly subcritical solutions with
different values of the coupling constant, � ¼ 0, 10�6,
10�5, 10�4 in each column (columns a, b, c and d). The
first, upper row of each figure (panels a1, b1, c1 and d1)
shows contours of the field function s. The second and the
third rows (panels a2–3, b2–3, c2–3 and d2–3) show the
field function s and the Ricci scalar on the origin (r ¼ 0) vs
u. The fourth row (panels b4, c4 and d4) shows a contour
plot of j�Rj. It indicates the regions where the additional
curvature terms are significant, i.e., regions where j�Rj �
1. Naturally with larger values of � this region grows and
j�Rj reaches larger values.

The plots of the field function—s—on the origin (b2,
c2 and d2) nicely show a ‘‘beat‘‘-like pattern, increasing

and then decreasing, in the field pulsation’s strength.
However, for small values of �, [see Fig. 8 (b2)], the
field behavior on the origin resembles, at least initially, a
self-similar behavior in regular GR. This could be ex-
plained by the low and insignificant values of the higher-
order terms in these regions (see Fig. 8 (b4)). At the
same time, a comparison of the field s and the Ricci
scalar at the origin for different values of � [panels
(a2–3), (b2–3), (c2–3) and (d2–3)] reveals that the new
’’beat‘‘ form of the field oscillations appears at the same
retarded time u at which Ricci curvature changes sign
and becomes positive.
The scalar field oscillations (Figs. 7, 7, and 9) show a

typical wavelength, which depends on the value of � (see
Fig. 10). All the lengths are measured in the simulation
length units ½u�. As expected from a dimensional analysis
the typical wavelength of the oscillations is proportional
to

ffiffiffiffi
�

p
.

V. SUMMARY

We have developed a numerical scheme for simulating
the dynamical collapse of a spherically symmetric mass-
less scalar field in EGB gravity. This model for gravity
includes higher (quadratic)-order curvature corrections to
the Hilbert action. These corrections induce changes in
Einstein equations, which govern the evolution of the
system when the curvature is large.
We find that the addition of higher-order curvature cor-

rection destroys the classical Choptuik phenomenon. The
introduction of the dimensional coupling constant �,
which has a units of length2, destroys the scale invariance
of the system. As a consequence the self-similar behavior,
which is an integral part of the critical phenomena in
regular GR, disappears. Instead, the solution shows a dif-
ferent pattern of pulsations with a typical wavelength,
which is proportional to

ffiffiffiffi
�

p
, as expected from a dimen-

sional analysis. The changes in the oscillations pattern are
accompanied by changes in the sign of the Ricci scalar at
the origin, indicating a change in the local geometry of the
spacetime.

ACKNOWLEDGMENTS

We thank Shahar Hod and Nathalie Deruelle for many
helpful discussions, Stanley Deser and Hideko Maeda for
useful remarks, and Yonatan Oren and Evgeny Sorkin for
assistance with the numerical calculations.

[1] M.W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).
[2] C. Gundlach, Phys. Rep. 376, 339 (2003).
[3] E. Sorkin and Y. Oren, Phys. Rev. D 71, 124005 (2005).

[4] C. Lanczos, Z. Phys. 73, 147 (1932).
[5] N. Deruelle and J. Madore, ‘‘On the quasi-linearity of the

Einstein-’Gauss-Bonnet’ gravity field equations," (2003),

FIG. 10 (color online). The typical wavelength of scalar field
oscillations in EGB gravity near the black hole threshold vs the
coupling constant �. Red line indicates a linear fit with a slope:
m ¼ 0:54
 0:05. Namely, the wavelength is proportional to

ffiffiffiffi
�

p
as expected from the dimensional analysis.

SVETA GOLOD AND TSVI PIRAN PHYSICAL REVIEW D 85, 104015 (2012)

104015-12

http://dx.doi.org/10.1103/PhysRevLett.70.9
http://dx.doi.org/10.1016/S0370-1573(02)00560-4
http://dx.doi.org/10.1103/PhysRevD.71.124005
http://dx.doi.org/10.1007/BF01351210


http://www.citebase.org/abstract?id=oai:arXiv.org:gr-qc/
0305004.

[6] S. Kobayashi and K. Nomizu, Foundations of Differential
Geometry, 2 (Interscience Publishers, New York, 1969).

[7] J. L. E.M. Paterson, J. Lond. Math. Soc. s2-23, 349 (1981).
[8] Interestingly, the Gauss-Bonnet term in the Lagrangian,

defined in Eq. (2), is the higher-curvature correction to
general relativity that naturally arises as the next leading
order of the �0 expansion of heterotic superstring theory,
where �0 is the inverse string tension [9–12].

[9] D. J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987).
[10] M.C. Bento and O. Bertolami, Phys. Lett. B 368, 198

(1996).
[11] B. Zwiebach, Phys. Lett. B 156, 315 (1985).
[12] R. R. Metsaev and A.A. Tseytlin, Nucl. Phys. B293, 385

(1987).

[13] G. Kunstatter, T. Taves, and H. Maeda, arXiv:1201.4904
[Classical Quantum Gravity (to be published)].

[14] T. Taves, C.D. Leonard, G. Kunstatter, and R. B. Mann,
Classical Quantum Gravity 29, 015012 (2012).

[15] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656
(1985).

[16] F. Tangherlini, Nuovo Cimento A 27, 636 (1963).
[17] J. T. Wheeler, Nucl. Phys. B268, 737 (1986).
[18] R.-G. Cai, Phys. Rev. D 65, 084014 (2002).
[19] T. Torii and H. Maeda, Phys. Rev. D 71, 124002 (2005).
[20] H. Maeda, Phys. Rev. D 73, 104004 (2006).
[21] H. Maeda and M. Nozawa, Phys. Rev. D 77, 064031

(2008).
[22] E. Sorkin and T. Piran, Phys. Rev. D 63, 084006

(2001).
[23] S. Hod and T. Piran, Phys. Rev. D 55, 3485 (1997).

CHOPTUIK’s CRITICAL PHENOMENON IN EINSTEIN- . . . PHYSICAL REVIEW D 85, 104015 (2012)

104015-13

http://www.citebase.org/abstract?id=oai:arXiv.org:gr-qc/0305004
http://www.citebase.org/abstract?id=oai:arXiv.org:gr-qc/0305004
http://dx.doi.org/10.1112/jlms/s2-23.2.349
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://dx.doi.org/10.1016/0370-2693(95)01519-1
http://dx.doi.org/10.1016/0370-2693(95)01519-1
http://dx.doi.org/10.1016/0370-2693(85)91616-8
http://dx.doi.org/10.1016/0550-3213(87)90077-0
http://dx.doi.org/10.1016/0550-3213(87)90077-0
http://arXiv.org/abs/1201.4904
http://dx.doi.org/10.1088/0264-9381/29/1/015012
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://dx.doi.org/10.1007/BF02784569
http://dx.doi.org/10.1016/0550-3213(86)90268-3
http://dx.doi.org/10.1103/PhysRevD.65.084014
http://dx.doi.org/10.1103/PhysRevD.71.124002
http://dx.doi.org/10.1103/PhysRevD.73.104004
http://dx.doi.org/10.1103/PhysRevD.77.064031
http://dx.doi.org/10.1103/PhysRevD.77.064031
http://dx.doi.org/10.1103/PhysRevD.63.084006
http://dx.doi.org/10.1103/PhysRevD.63.084006
http://dx.doi.org/10.1103/PhysRevD.55.3485

