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In Ashtekar’s Hamiltonian formulation of general relativity, and in loop quantum gravity, Lorentz

covariance is a subtle issue that has been strongly debated. Maintaining manifest Lorentz covariance

seems to require introducing either complex-valued fields, presenting a significant obstacle to quantiza-

tion, or additional (usually second class) constraints whose solution renders the resulting phase space

variables harder to interpret in a spacetime picture. After reviewing the sources of difficulty, we present a

Lorentz covariant, real formulation in which second class constraints never arise. Rather than a foliation of

spacetime, we use a gauge field y, interpreted as a field of observers, to break the SO(3, 1) symmetry down

to a subgroup SOð3Þy. This symmetry breaking plays a role analogous to that in MacDowell-Mansouri

gravity, which is based on Cartan geometry, leading us to a picture of gravity as ‘‘Cartan geometrody-

namics.’’ We study both Lorentz gauge transformations and transformations of the observer field to show

that the apparent breaking of SO(3, 1) to SO(3) is not in conflict with Lorentz covariance.

DOI: 10.1103/PhysRevD.85.104013 PACS numbers: 04.20.Fy, 04.60.Ds, 11.15.Ex, 11.30.Cp

I. INTRODUCTION AND MOTIVATION

Lorentz symmetry is a slippery topic in Hamiltonian
formulations of general relativity and quantum gravity,
for a simple geometric reason. The standard first step in
Hamiltonian gravity is to pick a spacelike foliation, in
order to define time evolution. Such a foliation gives a
hyperplane distribution in the tangent bundle of spacetime,
specifying the ‘‘purely spatial’’ directions at each point.
However, if we then perform a Lorentz gauge transforma-
tion, the spatial hyperplanes rotate in such a way that the
resulting distribution is in general nonintegrable—it need
not be the tangent distribution of any foliation. Since the
property of being a spacelike foliation is preserved only
under very carefully chosen local Lorentz transformations,
it is little wonder that introducing a foliation tends to
obscure the behavior of a theory under local Lorentz
symmetry.

In this paper, we suggest an alternative approach: we
reformulate Hamiltonian gravity without any spacelike
foliation. Instead, we introduce a field of observers in
spacetime. Each observer naturally has an associated spa-
tial hyperplane, but these hyperplanes need not be tangent
to any foliation. Physically, one may imagine the observer
field as a cloud of dust filling all of space; our aim is then to
describe the dynamics of general relativity from the per-
spective of the cloud, regardless of whether its velocity
distribution is integrable. Our perspective is thus similar to
approaches such as the dust model of Brown and Kuchař
[1] or Einstein-æther models [2], though our observers
serve as idealized test particles, and do not couple to

gravity. While our methods could be applied to generalize
the ADM formulation [3], our focus here is rather on the
Ashtekar-Barbero approach [4,5], which is the starting
point for canonical quantization in loop quantum gravity.
Lorentz covariance in this framework has been a topic of
particular confusion and debate, which is why we direct
our attention here.
In fact, in the Ashtekar-Barbero approach, and in the

large body of work on quantum gravity that has stemmed
from it, there is an additional reason that Lorentz symmetry
is somewhat elusive: besides the local splitting of space-
time into space and time, there is a subtly related ‘‘internal’’
or algebraic splitting. From the Lagrangian perspective,
general relativity involves an SO(3, 1) connection describ-
ing the Lorentzian geometry of spacetime. Going over to a
Hamiltonian picture, part of this spacetime connection
should be viewed as an SO(3) connection describing the
Riemannian geometry of space. At least, this is the idea. In
practice, getting from SO(3, 1) down to SO(3) historically
required either complexifying the connection or maintain-
ing a real connection but explicitly breaking Lorentz
covariance by partial gauge fixing. Since the Ashtekar-
Barbero formulation is the version of Hamiltonian gravity
we propose to generalize, let us review these issues a bit
further.
In the original Hamiltonian formulation of Ashtekar [4],

general relativity in four dimensions is cast in a form
similar to SU(2) Yang-Mills theory, exploiting the role of
the Lorentz algebra soð3; 1Þ ffi slð2;CÞ as the self-dual
part of soð4;CÞ. However, Ashtekar’s formulation is
most directly a theory of complex general relativity. In
particular, the spatial connection lives in the Lie algebra
of complexified SU(2) and its conjugate momentum is a*derek.wise@gravity.fau.de
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triad that lives in C3 rather than R3. Recovering real
general relativity in the Ashtekar formulation means im-
posing ‘‘reality conditions’’ that are especially awkward to
handle in the quantum theory.

The alternative formulation given by Barbero [5] is
based on a real SU(2) connection and is thus more ame-
nable to quantization, but is not manifestly Lorentz cova-
riant. Unlike in Ashtekar’s version, the connection can no
longer be interpreted as a spacetime connection [6]. As
shown by Holst [7], Barbero’s formulation can be derived
from the action

S½!; e� ¼ 1

8�G

Z
�abcd e

a ^ eb ^ Rcd½!�; (1)

as a function of the coframe e and SO(3, 1) connection !
with curvature R. Here the indices a; b; c; . . . label the
standard basis of R3;1, and �abcd is a nondegenerate sym-
metric bilinear form on soð3; 1Þ,

�abcd ¼ 1
2�abcd þ 1

2�ð�ac�bd � �ad�bcÞ; (2)

invariant under SO(3, 1), where � is known as the Barbero-
Immirzi parameter. Up to an overall scale, (2) is the most
general quadratic form on soð3; 1Þ with these proper-
ties [8].

Holst’s analysis used the ‘‘time gauge’’ condition
e0i ¼ 0, where i denotes a spatial coordinate index, and
defined

Aab :¼ !ab þ �

2
�abcd!

cd; (3)

finding that, because of the time gauge condition, only the
soð3Þ part of Aab—identified with Barbero’s connection—
has nonvanishing conjugate momentum.

Time gauge breaks manifest Lorentz invariance. The
Hamiltonian analysis can be performed without assuming
time gauge, but then one finds second-class constraints,
due to the mismatch that 18 momenta conjugate to the
components Aab

i are functions of just 12 components Ea
i

[9]. Second-class constraints are difficult to handle in the
quantum theory; one can solve them by introducing a Dirac
bracket, for which the connection in general does not self-
commute [10], although one can redefine variables choos-
ing certain parameters so that a self-commuting connection
appears [11,12]. One can also directly parametrize the
solution to the second-class constraints by new variables
[13] in which the Hamiltonian constraint takes a rather
complicated form. An interesting related formulation re-
cently given in [14] seems free of second-class constraints,
but features additional simplicity constraints. We take the
view that while quantization may therefore be as difficult
as in the absence of second-class constraints, the resulting
variables are somewhat harder to interpret in terms of
spacetime geometry.

The issues mentioned so far all arise from the classical
theory. But besides these, there have historically been
additional confusions in the quantum gravity literature,

especially with regard to the internal algebraic splitting
that is supposed to relate the Hamiltonian and Lagrangian
pictures. On the Hamiltonian side, one has loop quantum
gravity, based on the Barbero formulation with gauge
group SU(2). Quantum states in this theory are described
by spin networks: closed graphs in space, with edges
labeled by SU(2) representations:

While these spin networks nicely describe the quantum
geometry of space, viewing them as evolving in time
prompted the introduction of spin foam models [15].
Spin foams are state sum models proposed as the sum-
over-histories counterpart to loop quantum gravity, and are
described by 2-dimensional complexes with faces labeled
by representations:

The idea here is that a generic horizontal slice of such a
spin foam should look like a spin network, and the labeled
complex connecting two such slices is thought of as a
higher-dimensional Feynman diagram with spin networks
as initial and final states. However, heuristic derivations of
spin foam models start from the Lagrangian picture of
classical general relativity, and it follows that the labels
on spin foams come from the representation theory of SO
(3, 1), or rather its double cover SLð2;CÞ, not SU(2).
Evidently, slicing through a spin foam and getting a spin
network involves both kinds of splitting we have been
discussing: a geometric one that lowers the dimension of
the complex, and an algebraic one that cuts down from
SLð2;CÞ to SU(2) representation theory. For essentially

FIG. 1. A spin network with representation labels.

FIG. 2. A spin foam gives a possible history of spin networks.
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this reason, the precise correspondence between the spin
foam picture and the spin network picture was for a long
time rather mysterious.

Fortunately, it appears some headway has been made in
recent years in the quantum theory, starting with the in-
troduction of the EPR(L) and FK spin foam models [16].
Like their predecessors, these models are based on the
group SLð2;CÞ. However, they also involve a choice of
unit timelike vector in R3;1 for each edge in the spin foam,
effectively selecting some SU(2) subgroup of SLð2;CÞ.
This leads to ‘‘projected spin networks’’ [17] instead of
the usual SU(2) spin networks. SU(2) quantum states can
be embedded into a Hilbert space based on SLð2;CÞ in a
way that keeps Lorentz covariance manifest, while at the
same time clarifying the relationship to loop quantum
gravity. For a summary of this viewpoint see [18] and
references therein. The observer fields discussed in the
present paper may be thought of as the classical counter-
parts of the vectors attached to edges in spin foams or
vertices in projected spin networks.

Lorentz covariance continues to be investigated in high
precision tests, e.g. using the gamma ray burst GRB090510
[19] or neutrinos in the OPERA experiment [20], and any
serious theory of physics must prove itself consistent with
such tests. The consistency of a proposed quantum theory
of gravity with these is ultimately to be decided at the
quantum level by analyzing solutions to the dynamics.
While the EPRL/FK or other models may lead to a
Hamiltonian quantum theory with appropriate Lorentz
symmetry, it is hard to deny that one would feel safer
starting from a classical theory where this symmetry is
manifest.

Our goal in this paper is to reformulate the canonical
analysis of the action (1) in such a way that:

(1) no foliation of space into spatial slices is needed, but
only an arbitrary field of observers;

(2) there is no need for second-class constraints or
complexification, while at the same time Lorentz
covariance is kept manifest;

(3) there is a clearer geometric relationship between the
external and internal splittings, providing an intui-
tive understanding of the apparent breaking of
SO(3, 1) to SO(3) at the classical, continuum level;

(4) the Ashtekar-Barbero formulation is recovered as a
special case, when the observer field comes from a
foliation.

The main new ingredient in our approach is the field
of observers in spacetime. Given the coframe field, this
can be turned into a field of ‘‘internal’’ observers: a field
yðxÞ taking values in the hyperbolic 3-space H3 ffi
SOð3; 1Þ=SOð3Þ at each point in spacetime. At each point
x, yðxÞ induces a splitting of soð3; 1Þ into a subalgebra
soð3Þy stabilizing y and a complement py. The four-

dimensional coframe field e can be expressed in terms of
y and a triad E which has only 9 independent components,

and this allows for a fully covariant way to split the con-
nection into spatial and temporal parts. Geometrically our
constructions are best understood using Cartan geometry,
describing the geometry of a spatial slice relative to a
‘‘model’’ H3. We detail this construction in Sec. VI.
To our knowledge the results presented here have not

been discussed before, but they might be subtly related to
the framework of [21] which was also an attempt at a fully
Lorentz covariant formulation of Ashtekar variables and
loop quantum gravity. One of our motivations was to
understand the results of [21] more clearly. For related
work drawing connections between SU(2) loop quantum
gravity and an SOð4;CÞ covariant formalism see also [11].

II. OBSERVERS

Our starting point in this paper is the action (1), so we
have a coframe field e: TM ! R3;1 given from the outset,
and we always assume it to be nondegenerate. Using
the standard basis of R3;1, the coframe gives us a basis of
1-forms ea, orthonormal with respect to the induced space-
time metric g�� ¼ �abe

a
�e

b
�.

A field of observers is a unit future-timelike vector field
u. Using the coframe, we get the associated dual observer
field, the unit timelike 1-form

û :¼ �ea eaðuÞ; (4)

where the Minkowski metric �ab is used to raise and lower
R3;1 indices. Physical fields given by differential forms
split into purely temporal and purely spatial parts (denoted
k and ? ), as seen by the observer, by

Xk :¼ û ^ �uX; X? :¼ X� û ^ �uX; (5)

where �u denotes interior multiplication by u: it annihilates
0-forms, acts as �uX ¼ XðuÞ on 1-forms, and is defined on
higher forms by requiring it to be a graded derivation:

�uðX ^ YÞ ¼ ð�uXÞ ^ Y þ ð�ÞpX ^ �uY; (6)

where X is a p-form. In components, ð�uXÞ�...	 ¼
u�X��...	. Since �2u ¼ 0 and �uû ¼ 1 by construction,

�uX
? ¼ 0 for any differential form X.

We think of û as specifying a local ‘‘time direction,’’ and
of the splitting of dynamical variables as generalizing the
splitting done in the usual Hamiltonian formalism. We say
the covector field û is hypersurface orthogonal if û ¼ gdf
for some functions f and g, or equivalently if û annihilates
any vector tangent to a hypersurface f ¼ constant. By
Frobenius’ theorem, û is hypersurface orthogonal if and
only if û ^ dû ¼ 0. In the usual Hamiltonian formalism,

f is a time function, û ¼ N dt where N ¼ 1=
ffiffiffiffiffiffiffiffiffiffi�gtt

p
is the

lapse, and u ¼ ð1=NÞð@=@tþ ðgit=gttÞ@=@xiÞ. One can for
convenience always choose u so that this is the case,
though we emphasize that this is not necessary.
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III. GENERALIZED HAMILTONIAN ANALYSIS OF
GENERAL RELATIVITY

From the dynamical variables !ab, a connection valued
in soð3; 1Þ, and ea, we define the observer-dependent fields
by projecting into temporal and spatial parts, as described
in the previous section:

�ab :¼ !abðuÞ; �ab :¼ !ab � û�ab;

ya :¼ eaðuÞ; Ea :¼ ea � ûya:
(7)

An immediate consequence we will use in the following is
that Ea satisfies both

EaðuÞ ¼ 0 and yaE
a ¼ 0: (8)

Therefore Ea is a purely spatial 1-form valued in the
3-dimensional subspace orthogonal to ya 2 R3;1.

In order to express the curvature of !ab in terms of
observer-dependent fields, it is useful to split the exterior
derivative as:

d ¼ d? þ dk: (9)

We think of d? and dk as ‘‘spatial’’ and ‘‘temporal’’ differ-
entials defined by the observer field. They are defined on
any differential form X by

d?X ¼ dX � û ^LuX; dkX ¼ û ^LuX; (10)

where Lu ¼ �udþ d�u is the Lie derivative.

Both d? and dk are graded derivations, just as d is. They
do not in general square to zero:

ðd?Þ2X¼�d?û^LuX; ðdkÞ2X¼ dkû^LuX; (11)

though these clearly vanish on any form X that is static
from the observer’s perspective (i.e.LuX ¼ 0). In fact, we
do have ðd?Þ2 ¼ 0 whenever the Frobenius condition is
satisfied. To see this, note that from û ^ dû ¼ 0 it follows
that

d?û ¼ dû� û ^Luû ¼ �uðû ^ dûÞ ¼ 0: (12)

Conversely, if d?û ¼ 0 then û ^ dû ¼ û ^ d?û ¼ 0,
so the Frobenius condition can be rewritten simply as
d?û ¼ 0.

With these definitions, the curvature of ! is

Rab½!� ¼ Rab þ ðd?ûÞ�ab þ û ^ ðLu�
ab

þ ðLuûÞ�ab � d?��
abÞ; (13)

where we have defined a ‘‘spatial curvature’’ Rab :¼
d?�ab þ�a

c ^�cb and a ‘‘spatial covariant differential’’
d?� acting on an soð3; 1Þ-valued p-form X by

d?�X
ab :¼ d?Xab þ�a

c ^ Xcb � ð�ÞpXa
c ^�cb: (14)

The spatial and temporal parts of Rab are apparent.
Furthermore,

ea ^ eb ¼ Ea ^ Eb þ û ^ ðyaEb � EaybÞ; (15)

and one finds that

�abcd e
a^eb^Rcd ¼ dð�abcd�

cdðû^Ea^EbÞÞ
þ�abcdû^½Ea^Eb^Lu�

cd

þ�cdd?�ðEa^EbÞ
þ2yaEb^ðRcdþd?û�cdÞ�: (16)

We can then rewrite the action (1) as

S ¼ 1

8�G

Z
�abcdû ^ ½Ea ^ Eb ^Lu�

cd

þ�abd?�ðEc ^ EdÞ þ 2yaEb ^ ðRcd þ d?û�cdÞ�
(17)

plus a boundary term which can be neglected if we are only
interested in determining the local dynamics. In the usual
canonical formalism, where û ¼ Ndt, the first term speci-
fies the symplectic structure and the other two terms give
the Gauss, Hamiltonian, and diffeomorphism constraints of
vacuum general relativity, enforced by the Lagrange multi-
pliers �ab and ya [7].
The action (17) defines a variational principle for gen-

eral relativity in the following sense. The dynamical fields
are Ea, ya, �ab, and �ab, where ya is a function valued in
hyperbolic space H3 � R3;1 and one imposes yaE

a ¼ 0
everywhere. We view û as a fixed background structure and
u :¼ yaea, where ea is the frame field defined by eaðebÞ ¼

a
b for ea :¼ Ea þ ûya. It then follows that

EaðuÞ ¼ EaðebÞyb ¼ yað1� ûðebÞybÞ ¼ 0 (18)

since û ¼ �yae
a. Finally, one imposes the additional con-

straint that �abðuÞ ¼ 0 to restrict the allowed configura-
tions �ab.
The field equations resulting from variation of (17) with

respect to the dynamical fields under those constraints
must be the Einstein equations implying vanishing of
torsion and the Ricci tensor since we have just redefined
variables in (17).
It is worth mentioning that the spatial differentials d?

appearing in (17) can be replaced by the usual differential
d, as û ^ d?X ¼ û ^ dX for any X. While d is the natural
operation on differential forms on spacetime, we view d?
as more natural from the observer viewpoint emphasized
here. Using d? also clarifies the relation to the usual
Hamiltonian formalism, since e.g. Gab :¼ d?�ðEa ^ EbÞ
is the analog of the usual Gauss constraint which only
involves spatial derivatives (cf. Sec. VII).

IV. INTERNAL OBSERVERS

The coframe field lets us easily switch between the
observer field u and ya, a choice of unit timelike vector
in R3;1 at each point in spacetime:

u � ya :¼ eaðuÞ; ya � u :¼ yaea: (19)
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We think of ya as the ‘‘internal’’ version of the observer
field, as it plays a similar role: just as u splits differential
forms into spatial and temporal parts, ya splits SO(3, 1)
representations in an analogous way. If SOð3Þy is the

stabilizer of y 2 R3;1, representations of SO(3, 1) decom-
pose into direct sums of SOð3Þy representations.

For the fundamental representation and the adjoint rep-
resentation, we have

R 3;1 ¼ R3
y � R1

y; soð3; 1Þ ¼ soð3Þy � py: (20)

Explicitly, if Ya and Zab are fields living inR3 and soð3; 1Þ,
respectively, then

Y a :¼ Ya þ yaybY
b;

Zab :¼ Zab þ ðyaycZcb � ybycZ
caÞ (21)

are valued, respectively, in R3
y and soð3Þy. Note that

yaY
a ¼ yaZ

ab ¼ 0. In general, this ‘‘internal’’ splitting
will not be related to the spacetime splitting. One case
where they are related is the frame field itself: the spatial
coframe Ea already lives in R3

y, thanks to (8).

In general, applying both spacetime and internal split-
tings gives four different components. For the connection,
one has the two splittings,

!ab ¼
�
�ab þ û�ab; ðspace timeÞ
wab � ðyayc!cb � ybyc!

caÞ ðinternalÞ: (22)

The spacetime and internal projections commute, so we
can find the part of� that is both spatial and soð3Þy-valued
in either of two ways:

�ab ¼
��abþðyayc�cb�ybyc�

caÞ ðsoð3Þypart of�Þ
wab� ûwabðuÞ ðspatial part ofwÞ

¼!abþðyayc!cb�ybyc!
caÞ

� û�ab�ðyaycû�cb�ybycû�
caÞ: (23)

Then by construction �abðuÞ ¼ 0 ¼ ya�
ab, so that one

can think of � as a spatial SOð3Þy connection.
Similarly, the complement of �,

Kab ¼ �ab ��ab; (24)

is a spatial py-valued 1-form.

V. SYMMETRIES

We can now consider two kinds of transformations:
(i) Observer transformations: Make a new choice of

spacetime observers, u � u0, with a corresponding
change in internal observers y ¼ eðuÞ. The fields !
and e are not affected.

(ii) Gauge transformations: Perform a Lorentz gauge
transformation in the usual spacetime sense. The
fields! and e transform as usual. The observer field
u does not change, but its internal description
y ¼ eðuÞ changes because e changes.

The first of these arises because general relativity clearly
does not depend on an arbitrarily chosen observer field.
Behavior under the second kind of transformation is what
is usually meant by ‘‘Lorentz covariance’’ in the quantum
gravity literature. We discuss each type of transformation
in turn.
A change in observers can be achieved by a local

Lorentz transformation, both internally and externally.
This works because the invertible coframe e: TxM !
R3;1 at each point x turns TxM into a representation of
SO(3, 1). In particular, if ya � ðy0Þa ¼ �b

ayb represents a
change the internal observer field, then � 2 SO(3, 1) acts
on u 2 TxM by u � �u, where � ¼ e�1�e. This gives a
corresponding change û � û��1, so that ûðuÞ is invariant.
All timelike vector fields u0 are related to u by some such
transformation. While the fields ! and e are not changed,
their splittings into temporal and spatial pieces of course do
transform:

ðE0Þa ¼ Ea þ ûya � ðû��1Þ�b
ayb;

ð�0Þab ¼ �abð�uÞ þ ûð�uÞ�ab;

ð�0Þab ¼ �ab þ ½û� ðû��1Þûð�uÞ��ab

� ðû��1Þ�abð�uÞ: (25)

The action (17) is invariant under such transformations
since it can be written as the action functional (1) of the
fields ! and e. In general, for a given theory written in
terms of observer-dependent quantities, invariance under
(25) is a nontrivial property which is the analog in our
framework of showing independence of foliation in stan-
dard Hamiltonian approaches. The transformations here
form a much wider class since, as noted in the introduction,
general changes of observer do not take foliations to folia-
tions. One example of a framework not expected to be
covariant under the change in local observer is the gravity
theory proposed by Hořava [22].
We now turn to gauge transformations in the sense of

SO(3, 1) gauge theory. Under local Lorentz transforma-
tions, a connection transforms as !ab � �c

a!cd�d
b þ

�c
ad�cb, and so

�ab � �c
a�cd�d

b þ�c
ad?�cb: (26)

This looks like the formula for an ordinary gauge trans-
formation of a spatial connection, given the interpretation
of d? as a spatial differential. The SOð3Þy connection �

transforms as �ab � ð�0Þab, where
ð�0Þab ¼ �c

a�cd�d
b þ�c

að�cd þ ycydÞðd?�Þdb
¼ �c

a�cd�d
b þ ð�ac þ ðy0Þaðy0ÞcÞ�d

cðd?�Þdb;
(27)

where ðy0Þa ¼ �b
ayb. Note that �cd þ ycyd is the induced

metric on H3 embedded into Minkowski space R3;1, and a
projector onto soð3Þy, so that �0 annihilates y0.
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Similarly, we see that under a Lorentz transformation

Kab � ðK0Þab ¼ �c
aKcd�d

b ��c
aycydðd?�Þdb; (28)

so that K0 is in the complement py0 of soð3Þy0 and every-

thing is covariant under SO(3, 1). Under SOð3Þy trans-

formations, � transforms as a connection while K lives
in the representation py, which is isomorphic to the funda-

mental representation of SOð3Þy.
We have obtained a generalized Hamiltonian formalism

where the local choice of vector in SO(3, 1)/SO(3) can be
changed freely, similar to the one derived in [13], but
where we do not view ya as phase space variables. In
components, if u ¼ ð1=NÞð@=@tþ ðgit=gttÞ@=@xiÞ,

ya ¼ ffiffiffiffiffiffiffiffiffiffi�gtt
p ðeat þ ðgti=gttÞeai Þ ¼ ð1=NÞðeat � Nieai Þ;

(29)

where N and Ni are the usual lapse and shift of canonical
general relativity familiar from the ADM formalism [3].
Here we follow the conventional treatment of lapse and
shift, and hence the components of y, as Lagrange multi-
pliers. We note that [13] parametrizes the choice of gauge
by a 3-dimensional vector �I ¼ �eIt=e0t, presumably us-
ing Beltrami coordinates on H3, whereas [10] defines
e0i ¼: �Ie

I
i . Clearly one could use any set of coordinates

on H3 but in general the action of SO(3, 1) will take a
more complicated form in such coordinates. (Compare
with the discussion for SO(4, 1) in MacDowell-Mansouri
gravity [23]).

VI. CARTAN GEOMETRODYNAMICS

In the ‘‘internal’’ picture, the field of observers simply
picks a point yðxÞ in hyperbolic space SO(3, 1)/SO(3),
at each spacetime point, thus splitting our fields into vari-
ous pieces, as we have seen. This strongly resembles
MacDowell-Mansouri gravity [24], especially in its gen-
eralization by Stelle and West [25], where (for positive
cosmological constant) the enlarged gauge group SO(4, 1)
is spontaneously broken to SO(3, 1) by picking a point in
de Sitter space SO(4, 1)/SO(3, 1), at each spacetime point,
thus splitting an SO(4, 1) connection into a Lorentz con-
nection and a coframe field, to recover the action (1).

Geometrically, MacDowell-Mansouri gravity and its
Stelle-West reformulation are best understood in terms of
Cartan geometry. Since we have explained this in detail
elsewhere [8,23,26], we review here just enough to com-
pare to the present situation. In this section, we show
how our formalism can be viewed as Cartan geometrody-
namics: a system of evolving spatial Cartan geometries,
transforming equivariantly under gauge and observer
transformations.

In Cartan geometry, the geometry of an n-dimensional
manifold M is described relative to an n-dimensional
homogeneous manifold called the ‘‘model space.’’ The
geometry of M is then described via ‘‘rolling’’ the model

space along paths in M without slipping—a process that is
more strongly path-dependent the more the local geometry
of M deviates from that of the homogeneous model. More
precisely, if the model space has isometry group G, this
‘‘rolling without slipping’’ is described via holonomy of
the Cartan connection on M, a g-valued 1-form mapping
tangent vectors to elements of the Lie algebra g of ‘‘infini-
tesimal isometries’’ of the model space. This can be inte-
grated along a path inM to give a path in the configuration
space of ways to place the model space tangent toM. This
path describes rolling without slipping.
Essential to this ‘‘rolling’’ interpretation, however, is

that Cartan geometry is invariant under gauge transforma-
tions of the Cartan connection—but only under those
gauge transformations that live in the stabilizer of the point
of tangency between M and the model space. If y is the
point of tangency in the model and Hy is its stabilizer, the

algebra g is reducible as a representation ofHy. In all cases

of interest here, G=Hy is a symmetric space (see e.g. [8])

and hence g splits into a direct sum

g ¼ hy � py (30)

as Hy representations. This can be viewed as splitting the

infinitesimal isometries g into those that preserve y and
those that translate y. But translating y is strictly forbidden
if we are to roll the model geometry without slipping. The
no-slipping requirement thus breaks G gauge symmetry
down toHy. In the Stelle-West formulation with�> 0, the

splitting (30), induced dynamically by a de Sitter space-
valued gauge field yðxÞ, is what splits the SO(4, 1) con-
nection into the SO(3, 1) connection ! and coframe e.
In the same way, in our Hamiltonian formulation, the

hyperbolic space-valued field yðxÞ gives us a splitting:
s oð3; 1Þ ffi soð3Þy � py: (31)

We have used this already to split the ‘‘spatial’’ connection
as�ab ¼ �ab þ Kab, but this is not the Cartan connection
we are interested in. Rather, we note that the ‘‘triad’’ Ea

can equivalently be viewed as a py-valued 1-form Eab,

where

Eab :¼ yaEb � ybEa; Eb ¼ �yaE
ab: (32)

One can check that Eab lives in py, and that under a pure

rotation � 2 SOð3Þy,
�c

a�d
bEcd ¼ yað�c

bEcÞ � ybð�c
aEcÞ; (33)

so that the correspondence Ea $ Eab gives an equivalence
of SOð3Þy representations R3

y and py.

� and E are natural ingredients for Cartan geometry
modeled on three-dimensional hyperbolic space SO(3, 1)/
SO(3). However, even though they are purely spatial,
meaning that �u� and �uE both vanish, they do live on
four-dimensional spacetime and, as we have seen, there
need not be any extended notion of ‘‘space’’ in our
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observer-based framework. Because of this, a precise
Cartan-geometric understanding of the theory we have
presented here requires a bit of care.

When û ^ dû ¼ 0, we know that ker û can be integrated
to a foliation, and in this case, ð�; EÞ becomes a (reduc-
tive) Cartan connection on each spacelike slice. In cases
where û ^ dû � 0, while the spatial distribution is non-
integrable, we can still interpret ð�; EÞ as giving a slight
generalization of Cartan geometry. Even without a folia-
tion into spacelike hypersurfaces, one can always draw a
curve tangent to the spatial distribution, starting out in any
spatial direction. Following such a totally spatial curve, the
holonomy still describes rolling of hyperbolic space from
one spatial hyperplane to another. However, we must think
of this as a spatial Cartan connection living on spacetime:
since the notion of ‘‘space’’ itself is not integrable, attempt-
ing to come back to ‘‘the same’’ spatial point will generally
give a timelike displacement.

From the viewpoint of Cartan geometry, a metric ge-
ometry arises from the ‘‘rolling’’ motion itself, by declar-
ing the rolling to be isometric. The image to keep in mind
is that of a ball rolling over a surface: the point of contact
between the two traces out a path on each, and these paths
clearly have the same length at any time. In the present
case, the length of a spatial path in spacetime can be
measured via the corresponding path, or development, in
hyperbolic space. This works because the spatial metric
induced from E is just the spatial metric restricted to the
spatial distribution. In particular, for any spatial vectors v
and w, i.e. ûðvÞ ¼ ûðwÞ ¼ 0, we have

qðv;wÞ :¼ �abE
aðvÞEbðwÞ ¼ �abe

aðvÞebðwÞ ¼ gðv;wÞ:
(34)

Finally, let us consider the symmetries discussed in the
previous section. A change of observers, ya � �b

ayb cor-
responds to changing the field of basepoints in Cartan
geometry. At each point, (30) is a direct sum of Hy repre-

sentations, but it is also G-equivariant:

h gy ¼ AdðgÞðhyÞ; pgy ¼ AdðgÞðpyÞ; (35)

are the corresponding representations of the conjugate
subgroup Hgy ¼ gHg�1, for any g 2 G. Such a change

is an act of violence in ordinary Cartan geometry: it mixes
up pieces in the ‘‘connection’’ and ‘‘coframe’’ parts of the
Cartan connection and (in cases where the coframe induces
a metric) deforms the metric geometry, possibly even
causing it to become singular [27]. It will also generically
map a torsion-free geometry to one with torsion, as ob-
served in [23].

In our case, however, the basepoint change y � y0 also
gives a corresponding change u � u0 in the observer field
and hence in the definition of space itself. Thus, while
components of the spatial Cartan connection ð�; EÞ are
mixed up, we are also changing our minds about which
space the geometry is supposed to describe. The fields �

and E transform in a coherent way to describe, simulta-
neously for each choice of observer field u, the spatial
geometry seen by u.
Lorentz gauge transformations, the second kind of trans-

formation discussed in the previous section, also mix up
the parts of the Cartan connection according to (35), this
time without changing the observer field. This would again
seem like the sort of gauge transformation that is forbidden
in a Cartan-geometric interpretation. In our case, however,
the spatial coframe E is derived from the spacetime co-
frame e, which also responds to a Lorentz gauge trans-
formation. In particular, it is easy to see that the spatial
metric (34) is invariant under such transformations.

VII. CONSTRAINTANALYSIS

To understand the dynamical structure of general rela-
tivity in our formalism, we focus on the first term in (17)
determining the symplectic form in the Hamiltonian
theory,

S ¼ 1

8�G

Z
�abcd û ^ Ea ^ Eb ^Lu�

cd þ . . . (36)

Since Ea ^ Eb is valued in soð3Þy, only the components of
�cd in a 3-dimensional subalgebra of soð3; 1Þ have
nonvanishing conjugate momentum. For � ¼ 1, where
�abcd ¼ 1=2�abcd, the momentum conjugate to the
soð3Þy part � is constrained to vanish, and only K is

dynamical.
In general case, one can make the subalgebras (31)

explicit by choosing local bases JabI (I ¼ 1, 2, 3) for
soð3Þy and Bab

I for the complement py, so that

�abcdJ
ab
I JcdJ ¼ 1

�

IJ; �abcdJ

ab
I Bcd

J ¼ 
IJ; (37)

satisfying the algebra

½JI; JJ� ¼ ��IJKJ
K; ½JI; BJ� ¼ ��IJKB

K;

½BI; BJ� ¼ �IJKJ
K:

(38)

(By SO(3, 1) invariance, (37) may be verified for y ¼
ð1; 0; 0; 0Þ). Then the combination appearing in (36) as
conjugate to Ea ^ Eb ¼: ðE ^ EÞIJabI is

AI :¼ �I þ �KI; �ab ¼: �IJabI ;

Kab ¼: KIBab
I :

(39)

AI is the Barbero connection taking values in a local
3-dimensional subalgebra of soð3; 1Þ and transforming as
a connection under SOð3Þy by the remarks below (28). py
transformations will not affect the components AI, but
merely change the components of JabI and Bab

I , i.e. of the
subalgebras soð3Þy and py embedded into soð3; 1Þ.
As in time gauge, (39) does not transform as an SO(3, 1)

connection. This property is directly connected to the use
of the Hamiltonian formalism. A local choice of time
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direction induces a spontaneous breaking of Lorentz sym-
metry down to a local SO(3) group; general relativity is not
just a gauge theory but also includes the coframe field, a
soldering form which translates between the fibers over the
manifold acted on by Lorentz group and the tangent spaces
to each point. We stress again that the issue of Lorentz
covariance of the quantum theory can only be decided by
analyzing the symmetries of a ‘‘ground state’’ solution.
What we have shown here is that there is no conflict
between the apparent necessity to break SO(3, 1) down
to SO(3) and Lorentz covariance; the breaking can be done
in a fully covariant way using a gauge field encoding lapse
and shift. Formulations involving second-class constraints
as in [9,10] seem to add unnecessary complications to the
Hamiltonian formalism; the coframe field can be expressed
in terms of a nondynamical gauge field y and a triad Ea

with only 9 independent components.
Completing the Hamiltonian analysis of (17), the appar-

ent six constraints resulting from variation with respect to
�ab, normally interpreted as Gauss constraints correspond-
ing to local SO(3, 1) symmetry, split into two sets. Their
projection onto soð3Þy is

û ^ d?�ðEa ^ EbÞ � 0; (40)

(where only � appears); the component in py is

û ^ ðKac ^ Ec ^ Eb � Kbc ^ Ec ^ EaÞ � 0: (41)

(40) determines � to be the Levi-Civita connection of Ea,
while (41) is an algebraic constraint on K. Substituting
�KI ¼ AI ��I

Levi-Civita½E� into (41), one is left with three
first-class constraints on ðA; EÞ. This agrees completely
with the derivation of Ashtekar variables in [28], where
K is identified with the extrinsic curvature.

Together with the constraints imposed by ya there are
seven first-class constraints on 9 degrees of freedom, just as
in the usual presentation in time gauge, which we did not
find necessary to impose here.

VIII. OUTLOOK

In deriving a set of variables for Hamiltonian general
relativity that transform covariantly under SO(3, 1), we
have introduced a classical formulation based on a local
notion of ‘‘time direction,’’ interpreted as a local observer,
and not necessarily related to any foliation of spacetime.
The result is very much in line with the formalism in
current spin foam models, where an embedding of SO(3)
into SO(3, 1) is specified locally by a choice of unit normal.
We feel this lends weight to the claim that loop quantum
gravity is compatible with local Lorentz covariance.

A similar construction was recently given [29] in the
context of group field theory, including a unit normal
vector as an argument in the quantum field that represents
a vertex of a projected spin network. The precise relation-
ship of our classical theory to these spin foam and group
field theory proposals deserves further study. Although we
have focused on the case of four spacetime dimensions, our
formalism does not essentially depend on the number of
dimensions and should straightforwardly generalize to
higher-dimensonal frameworks such as [14].
One reason we find the observer-based formulation ap-

pealing is its flexibility. For example, since observer fields
exist in any time-oriented Lorentzian manifold, a formu-
lation like the one presented here can be used to describe
local time evolution even in the absence of global hyper-
bolicity, where no spacelike foliation is even possible.
We must admit that classical or quantum Hamiltonian
dynamics for a general observer field without a foliation
leads into uncharted territory, and may lead to difficulties
not present in standard foliation-based formulations. On
the other hand, we emphasize that one may always perform
an observer transformation, at least locally, such that the
spatial distribution is integrable. At the same time, the
inclusion of nonintegrable cases makes behavior under
Lorentz transformations manifest, which was our main
purpose.
These methods could also be applied to situations not

covariant under the change in local observer, such as the
gravity theory proposed by Hořava [22]. In fact, while our
observer field u has served simply as a convenient way to
describe time evolution of vacuum general relativity, in a
more complete theory such a field may well play a physical
role. The observer field might conceivably be replaced by
some dynamical matter field that couples in such a way as
to select preferred local notions of space and time. Several
current approaches to understanding quantum gravity in-
volve preferred spatial slicing, including not only Hořava
gravity, but also causal dynamical triangulations [30] and
shape dynamics [31]. Methods like those presented here
may be a good way to understand how, from a spacetime
perspective, the local anisotropy in such theories may arise
dynamically. Work on such ideas is in progress.
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[13] N. Barros e Sá, Int. J. Mod. Phys. D 10, 261 (2001).
[14] N. Bodendorfer, T. Thiemann, and A. Thurn,

arXiv:1105.3703; N. Bodendorfer, T. Thiemann, and
A. Thurn, arXiv:1105.3704.

[15] J. C. Baez, in Geometry and Quantum Physics, edited by
H. Gausterer and H. Grosse, Lecture Notes in Physics 543
(Springer, Berlin, 2000), pp. 25–93.

[16] J. Engle, R. Pereira, and C. Rovelli, Phys. Rev. Lett. 99,
161301 (2007); J. Engle, E. Livine, R. Pereira, and C.
Rovelli, Nucl. Phys. B 799, 136 (2008); L. Freidel and K.
Krasnov, Classical Quantum Gravity 25, 125018 (2008).

[17] M. Dupuis and E. R. Livine, Phys. Rev. D 82, 064044
(2010).

[18] C. Rovelli and S. Speziale, Phys. Rev. D 83, 104029
(2011).

[19] A. A. Abdo et al., Nature (London) 462, 331
(2009).

[20] T. Adam et al. (OPERA Collaboration), arXiv:1109.4897.
[21] F. Cianfrani and G. Montani, Phys. Rev. Lett. 102, 091301

(2009).
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