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We construct quartic quasitopological gravity, a theory of gravity containing terms quartic in the

curvature that yields second-order differential equations in the spherically symmetric case. Up to a term

proportional to the quartic term in Lovelock gravity we find a unique solution for this quartic case, valid in

any dimensionality larger than 4 except 8. This case is the highest degree of curvature coupling for which

explicit black hole solutions can be constructed, and we obtain and analyze the various black hole

solutions that emerge from the field equations in (nþ 1) dimensions. We discuss the thermodynamics of

these black holes and compute their entropy as a function of the horizon radius. We then make some

general remarks about K-th order quasitopological gravity, and point out that the basic structure of the

solutions will be the same in any dimensionality for general K apart from particular cases.
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I. INTRODUCTION

The gauge/gravity idea is that gravitational dynamics in
a given dimensionality can be mapped onto some other
(nongravitational) field theory of a lower dimensionality.
The duality between central charges and couplings on the
nongravitational side and the parameters on the gravita-
tional side has been explored primarily through the trace
anomaly [1]. However Einstein gravity does not have
enough free parameters to account for the ratios between
central charges and therefore is only dual to those confor-
mal field theories for which all the central charges are
equal. To broaden the universality class of dual field theo-
ries which one can study with holography, one must extend
to more general theories of gravity which contain more free
parameters such as Lovelock theory [2] or quasitopological
gravity [3,4]. These additional central charges have re-
cently been investigated holographically [5,6].

Another point which is interesting in gauge/gravity dual-
ity is that the dual CFT should respect causality. This
creates a constraint on the coupling constants of the gravity
theory. In this analysis, one considers graviton fluctuations
that probe the bulk geometry in the presence of a black
hole. In general the dual CFT plasma may support super-
luminal signals, and so the gravitational couplings must be
constrained so as to avoid the appearance of such super-
luminal modes. For Lovelock gravity, while causality con-
straints precisely match those arising from requiring
positive energy fluxes [7,8], it has been shown that this
matching does not appear in general, specifically, for cases
where the gravitational equations of motion are not second

order [9]. However for cubic quasitoplogical gravity there
are three constraints that arise from requiring positive
energy fluxes, which determine the three coupling con-
stants. No evidence for causality violation was found
once the curvature-cubed coupling was chosen consistent
with these constraints [5].
Motivated by the success of holographic studies of

second- [7] and third-order Lovelock gravity [8,10] and
curvature-cubed, or cubic quasitopological, gravity
[5,6,11], we consider here adding a quartic curvature
term with a new coupling constant on the gravity side,
affording exploration of a larger space of field theories. In
quasitopological gravity, the linearized equations in a
black hole background are fourth order in derivatives and
so one does not expect causality constraints to match those
arising from requiring positive energy fluxes. In view of the
results for the cubic case [5], the simplest nontrivial case to
consider is the quartic case; with this new coupling con-
stant, we have four coupling constants and therefore the
constraints arising from causality may not match the three
constraints arising from requiring positive energy fluxes.
The first step in such an investigation is to construct the
quartic theory and analyze its basic properties. We shall
consider the more detailed considerations of positivity of
energy and causality in future work.
Progress with Lovelock gravity and cubic quasitopolog-

ical gravity relies on the fact that even though this is a
higher curvature theory of gravity, the holographic calcu-
lations in this model are still under control, at least in
spherically symmetric settings. This control in turn is
based on the two facts that the equations of motion are
only second order in derivatives (again, for spherical sym-
metry) and that exact black hole solutions have been con-
structed. Hence we want to introduce a quartic curvature
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topological gravity for which the equation of motions are
still second order and exact black hole solutions can be
constructed. In this context, fourth-order Lovelock and
quasitoplogical gravity is the largest order for which the
field equations can be solved analytically. Even in
Lovelock gravity, this largest analytic solution has not
yet been considered. Here we carry out the first steps along
these lines, studying the exact spherically symmetric solu-
tions and their properties.

To obtain the quartic case, a natural generalization would
be to add interaction terms quartic in curvature via fourth-
order Lovelock gravity. However, because of the topologi-
cal origin of the Lovelock terms the quartic interaction term
of Lovelock gravity only contributes to the equations of
motion when the bulk dimension is nine or greater. In the
context of gauge/gravity duality, thismeans that such a term
will be effective in expanding the class of dual field theory
in eight or more dimensions. Our key result in this paper is
to construct a new gravitational action with quartic curva-
ture interactions (quartic quasitopological gravity) valid in
lower dimensions, thereby providing a useful toy model to
study a broader class of four (and higher) dimensional
CFTs, involving four independent parameters.

Here we explicitly construct quartic quasitopological
gravity in any dimensionality except 8, beginning with the
five-dimensional case. Although an action quartic in curva-
ture terms has been previously constructed [3] (and from
which was proved a generalized Birkhoff theorem, namely,
that constant spherical/planar/hyperbolic transverse curva-
ture implies staticity [12]), the field equations in the spheri-
cally symmetric case vanish in less than seven space-time
dimensions. In contrast to this, the quartic topological ac-
tion we construct yields nontrivial second-order field equa-
tions in all space-time dimensionalities but 8. Indeed, our
quartic curvature action differs from that of Ref. [3] in terms
of its various coefficients, and insofar as it yields nontrivial
field equations in five dimensions and higher.

We also present and discuss exact black hole solutions of
this new theory for various asymptotic boundary condi-
tions. These solutions share a number of features in com-
mon with solutions from higher-order Lovelock theories in
greater dimensions. For example, in the spherically sym-
metric cases we consider, the field equations for the metric
function in our quartic theory in five dimensions are for-
mally the same as for fourth-order Lovelock theory in nine
dimensions, differing only by the power of r present in the
resultant quartic equation. We furthermore consider the
thermodynamic behavior of these objects for general di-
mensionality. We leave a detailed study of the properties of
the dual class of field theories for future investigation.

II. QUARTIC TOPOLOGICAL ACTION
IN FIVE DIMENSIONS

Motivated by considerations of the AdS/CFT correspon-
dence, we want to consider a curvature-quartic theory of

gravity in five dimensions. We are interested in a gravity
theory which produces a second-order equation of motion
and can have exact solutions. A natural candidate that has
these properties is the fourth-order Lovelock gravity with
action

IG ¼ 1

16�

Z
dnþ1x

ffiffiffiffiffiffiffi�g
p ½�2�þL1 þ �2L2

þ �3L3 þ �4L4�; (1)

where � ¼ �nðn� 1Þ=2l2 is the cosmological constant
for AdS solutions, and the �i’s are Lovelock coefficients
with dimensions ðlengthÞ2i�2 and [2]

L i ¼ 1

2i
��1�2����2i
�1�2����2i

R�1�2

�1�2 � � �R�2i�1�2i

�2i�1�2i : (2)

A key property of this action is that the term proportional to
�k contributes to the equations of motion in dimensions
with n � 2k. Hence the above action with interaction
terms quartic in the curvature tensor contribute to the
equations of motion only in nine and higher dimensions
and hence will not contribute in the desired five
dimensions.
While Lovelock’s Lagrangian yields second-order equa-

tions of motion for an arbitrary space-time, we limit our-
selves to the case of spherically symmetric spacetimes. The
metric of five-dimensional spherically symmetric space-
time may be written as

ds2 ¼ �N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2d�2
k;3; (3)

where d�2
k;3 represents the metric of a three-dimensional

hypersurface with constant curvature 6k and volume V3.
The first three terms in the action (1) contribute to the field
equation in five dimensions, while the third- and fourth-
order Lovelock terms do not.
Our aim is to include in the action terms quartic in the

curvature that contribute to the field equations in five
dimensions and yield second-order equations of motion
for spherically symmetric spacetimes. We find that this
action may be written as

IG ¼ 1

16�

Z
dnþ1x

ffiffiffiffiffiffiffi�g
p ½�2�þL1 þ�2L2

þ�3X3 þ�4X4�; (4)

where L1 ¼ R is just the Einstein-Hilbert Lagrangian,
L2 ¼ RabcdR

abcd � 4RabR
ab þ R2 is the second-order

Lovelock (Gauss-Bonnet) Lagrangian, and X3 is the
curvature-cubed Lagrangian
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X3 ¼ RabcdR
bedfRe

a
f
c þ 1

ð2n� 1Þðn� 3Þ
�

�
3ð3n� 5Þ

8
RabcdR

abcdR� 3ðn� 1Þ
� RabcdR

abc
eR

de þ 3ðnþ 1ÞRabcdR
acRbd

þ 6ðn� 1ÞRabR
bcRc

a

� 3ð3n� 1Þ
2

RabR
abRþ 3ðnþ 1Þ

8
R3

�
. . . (5)

obtained previously [4].
In eight dimensions, there are 26 distinct scalar func-

tions that are quartic in the curvature tensor [13]. However,
one may construct the fourth-order Lagrangian of
Lovelock gravity by combining the following 25 terms

R4; R2RabR
ab; R2RabcdR

abcd; RRb
aRc

bRa
c;

RRc
aRd

bRab
cd; RRb

aRde
bcRac

de; RRcd
abRef

cdRab
ef;

RRce
abRaf

cdRbd
ef; Rb

aRa
bRd

cRc
d;

Rb
aRc

bRd
cRa

d; Rb
aRd

bRe
cRac

de;

Rb
aRa

bRef
cdRcd

ef; Rb
aRc

bRef
cdRad

ef;

Rc
aRd

bRef
cdRab

ef; Rc
aRe

bRaf
cdRbd

ef;

Rc
aRe

bRbf
cdRad

ef; Rb
aRad

bcRfg
deRce

fg;

Rb
aRde

bcRfg
deRac

fg; Rb
aRdf

bcRag
deRce

fg;

ðRabcdRabcdÞ2; RabcdRabc
eRfgh

dRfghe;

RabcdRefcdR
efghRabgh; Rcd

abReg
cdRah

efRbf
gh;

Rce
abRag

cdRbh
efRdf

gh; Rce
abRag

cdRdh
efRbf

gh:

in a particular way [14].
Since the �3 Lagrangian contains no derivatives of the

curvature tensor, we shall construct the �4 term in the
action using only the above 25 terms. For the metric (3)
the function NðrÞ performs the role of the lapse function,
making it possible to write the action as a functional of fðrÞ
and its derivatives, with NðrÞ appearing linearly in the
action.
Since the Riemann tensor has at most two derivatives of

the metric functions we find that there are at most eight
derivatives in any term for the quartic curvature action.
We require all terms in the Lagrangian to vanish that have
more than two derivatives. For the metric ansatz (3) not
all 25 terms above are needed to ensure the resultant
equations of motion are second-order differential equa-
tions. Remarkably we find that we can choose

X 4 ¼ c1RabcdR
cdefRhg

efRhg
ab þ c2RabcdR

abcdRefR
ef þ c3RRabR

acRc
b þ c4ðRabcdR

abcdÞ2 þ c5RabR
acRcdR

db

þ c6RRabcdR
acRdb þ c7RabcdR

acRbeRd
e þ c8RabcdR

acefRb
eR

d
f þ c9RabcdR

acRefR
bedf þ c10R

4

þ c11R
2RabcdR

abcd þ c12R
2RabR

ab þ c13RabcdR
abefRefg

cRdg þ c14RabcdR
aecfRgehfR

gbhd; (6)

without loss of generality. We must then choose the coefficients ci to yield only a second-order contribution to the field
equations. We find that

c1 ¼ �1404; c2 ¼ 1848; c3 ¼ �25536; c4 ¼ �7422; c5 ¼ 24672;

c6 ¼ �5472; c7 ¼ 77184; c8 ¼ �85824; c9 ¼ �41472; c10 ¼ �690;

c11 ¼ 1788; c12 ¼ 6936; c13 ¼ 7296; c14 ¼ 42480

(7)

is the unique solution up to a term proportional to the
quartic Lovelock Lagrangian.

Defining the dimensionless parameters �̂0 . . . �̂4 to be

�̂0 ¼ � l2

6
�; �̂2 ¼ 2

l2
�2;

�̂3 ¼ 4

7l4
�3 �̂4 ¼ 21024

l6
�4

(8)

and integrating by parts, we find that the action (4) per unit
volume V3 reduces to the rather simple form

IG ¼ 3

16�l2

Z
dtdrNðrÞfr4ð�̂0 þ c þ �̂2c

2

þ �̂3c
3 þ �̂4c

4Þg0; (9)

where prime denotes the derivative with respect to r and
c ¼ l2r�2ðk� fÞ.

III. GENERALIZATION TO nþ 1 DIMENSIONS

In this section we consider the action (4) in nþ 1
dimensions for the spherical metric

ds2 ¼ �N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2d�2
k;n�1; (10)

where d�2
k;n�1 represents the metric of an (n� 1)-

dimensional hypersurface with constant curvature
ðn� 1Þðn� 2Þk and volume Vn�1. Using the same proce-
dure as in the preceding section for five dimensions, we can
obtain the coefficients ci’s in Eq. (6). The results are
somewhat cumbersome so we list them in the Appendix.
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As before, we find that after integrating by parts and defining the dimensionless parameters �̂0, �̂2, �̂3 and �̂4 to be

�̂ 0 ¼ � 2l2

nðn� 1Þ�; �̂2 ¼ ðn� 2Þðn� 3Þ
l2

�2; �̂3 ¼ ðn� 2Þðn� 5Þð3n2 � 9nþ 4Þ
8ð2n� 1Þl4 �3;

�̂4 ¼ nðn� 1Þðn� 2Þ2ðn� 3Þðn� 7Þðn5 � 15n4 þ 72n3 � 156n2 þ 150n� 42Þ
l6

�4;

the action per unit volume reduces to

IG ¼ ðn� 1Þ
16�l2

Z
dtdrNðrÞ½rnð�̂0 þ c þ �̂2c

2

þ �̂3c
3 þ �̂4c

4Þ�0; (11)

where again c ¼ l2r�2ðk� fÞ. Note that in the absence of
a cosmological constant �̂0 ¼ 0, while in the presence of a
positive/negative cosmological constant we take �̂0 ¼ �1.

We pause to comment that �̂4 is zero in eight dimen-
sions, suggesting that X4 yields another topological in-
variant in eight dimensions besides the eight-dimensional
Euler density (given by L4 in Eq. (2)). However it is
straightforward to show that X4 has eighth-order deriva-
tive terms for nontrivial eight-dimensional geometries and
therefore is not a topological invariant. Hence we refer to
this theory of gravity as quartic quasitopological gravity.
Note that our construction does not yield a nontrivial
quartic interaction term in nþ 1 � 4 as well.

Varying the action (9) with respect to NðrÞ, we obtain
½rnð�̂0 þ c þ �̂2c

2 þ �̂3c
3 þ �̂4c

4Þ�0 ¼ 0 (12)

for the equations of motion. Formally this equation is the
same as that obtained from nine-dimensional fourth-order
Lovelock gravity in the spherically symmetric case.
However the power of r differs in (12) from this case, since

n � 5 can have any integer value except 8. The black hole
solutions to this equation will consequently have analo-
gous properties. They will be asymptotically flat, AdS, or
dS depending on the choice of parameters (as we will
discuss below) and they will have a scalar curvature sin-
gularity at r ¼ 0 cloaked by an event horizon.
The solutions (12) are the real roots of the following

quartic equation

c 4 þ �̂3

�̂4

c 3 þ �̂2

�̂4

c 2 þ 1

�̂4

c þ 1

�̂4

� ¼ 0; (13)

where

� ¼ �̂0 � m

rn
; (14)

and m is an integration constant which is related to the
mass of the space-time.
The geometrical mass of black hole solutions is

m ¼
�
�̂0 þ k

l2

r2þ
þ �̂2k

2 l4

r4þ
þ �̂3k

3 l6

r6þ
þ �̂4k

4 l8

r8þ

�
rnþ

(15)

in terms of the horizon radius rþ. Before considering the
properties of particular solutions, we compute the Hawking
temperature

T ¼ 1

4

n�̂0r
8þ þ ðn� 2Þkl2r6þ þ ðn� 4Þk2�̂2l

4r4þ þ ðn� 6Þk3�̂3l
6r2þ þ ðn� 8Þk4�̂4l

8

ðr6þ þ 2k�̂2l
2r4þ þ 3k2�̂3l

4r2þ þ 4�̂4k
3l6Þ�l2rþ

(16)

for the general black hole solution given by Eq. (19).
Clearly, T is always positive for k ¼ 0, and therefore there
is no extreme black hole. However, for k ¼ �1, extremal
black hole solutions exist with horizon radius rext, where
rext is the largest real root of

n�̂0r
8
ext þ ðn� 2Þkl2r6ext þ ðn� 4Þk2�̂2l

4r4ext

þ ðn� 6Þk3�̂3l
6r2ext þ ðn� 8Þk4�̂4l

8: (17)

Equation (17) has at least one real solution in the absence
of a cosmological constant (�̂0 ¼ 0). Hence there exist
black holes with inner and outer horizons, extreme black
holes or naked singularities, depending on the choice of
parameters.

However for nonzero cosmological constant, extreme
black holes appear as solutions provided

� ¼ A3 þ B2

2
> 0;

where

A ¼ 3ðn� 2Þðn� 6Þ�̂3 � 12nðn� 8Þ�̂0�̂4

� ðn� 4Þ2�̂2
2;

B ¼ �9ðn� 4Þ�̂2½8nðn� 8Þ�̂0�̂4 þ ðn� 2Þðn� 6Þ�̂3�
þ 27ðn� 2Þ2ðn� 8Þ�̂4 þ 27nðn� 6Þ2�̂0�̂

2
3

þ 2ðn� 4Þ3�̂3
2:

The mass of the extreme black hole may be obtained by
using Eq. (15) and computing mext ¼ mðrextÞ. Then, our
solution corresponds to a black hole with inner and outer
horizons provided m>mext, an extreme black hole if
m ¼ mext, and a naked singularity for m<mext
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IV. SPECIAL SOLUTIONS

We consider in this section special solutions of Eq. (13).
Eliminating the cubic term in Eq. (13) by use of the trans-
formation

c ¼ �� �̂3

4�̂4

; (18)

yields

�4 � ��2 þ ��� 	 ¼ 0; (19)

where

� ¼ 3�̂2
3

8�̂2
4

� �̂2

�̂4

; � ¼ �̂3
3

8�̂3
4

� �̂2�̂3

2�̂2
4

þ 1

�̂4

;

	 ¼ 3�̂4
3

256�̂4
4

� �̂2�̂
2
3

16�̂3
4

þ �̂3

4�̂2
4

� �̂0

�̂4

þ m

�̂4r
n :

(20)

The most general solution of (19) will yield the most
general metric solution for quartic quasitopological gravity
with constant curvature horizons. However special solu-
tions will emerge for particular choices of the coefficients;
we first examine these.

A. � ¼ 0, � ¼ 0

In this case �̂3 and �̂4 are

�̂ 3 ¼ 4�̂2
2

9
�̂4 ¼ 2�̂3

2

27

and the asymptotically AdS solution is

fðrÞ ¼ kþ 3

2�̂2

r2

l2

�
1�

�
1� 8�̂2

3

�
�̂0 � m

rn

��
1=4

�
: (21)

Requiring nonsingular real solutions implies that
0< �̂2 < 3�̂0=8.

For �̂0 ¼ 1, the minus branch corresponds to an asymp-
totically AdS black hole solution with two horizons pro-
vided m>mext, an extreme black hole if m ¼ mext, and a
naked singularity for m<mext (see Fig. 1). The plus
branch always yields a naked singularity for k ¼ 0, 1.
However for k ¼ �1 it corresponds to a black hole with
a single horizon. The event horizon is located at

�̂0x
nþ4�xnþ2þ�̂2x

n�4�̂2
2

9
xn�2

þ2�̂3
2

27
xn�4�ml�nx4¼0 (22)

where x ¼ rþ=l. In this case the mass parameter can even
be negative above a certain lower bound [15]. A similar
situation holds for �̂0 ¼ �1.

Although such solutions do not have a smooth general
relativistic limit as �̂2 ! 0, it is possible that phase tran-
sitions to this branch from the minus branch could occur.
This phenomenon has been demonstrated to take place in
Gauss-Bonnet gravity [16]. Despite both branches having
positive mass [17], the plus branch is perturbatively

unstable. Quantum transitions can occur between the two
vacua, and neither the empty Einstein vacuum, nor the
empty Gauss-Bonnet vacuum provide a good description
of the stable quantum vacuum, since each becomes popu-
lated with bubbles of the other [16]. Whether or not a
similar phenomenon takes place in quasitopological grav-
ity remains an interesting topic for future investigation.
With this in mind, we will henceforth consider only the
minus branch of the solutions.
For �̂0 ¼ �1 and k ¼ 1 asymptotically de Sitter solu-

tions are present for the minus branch. These correspond to
black holes with two horizons, an extremal black hole with
one horizon, or a naked singularity, depending on the
relative size of m. Asymptotically dS black holes exist
provided mext � m<mcrit, where mext and mcrit are the
values of the mass parameter for the smaller and larger root
of T ¼ 0 respectively. We illustrate in Fig. 2, the behavior
of the metric function fðrÞ for the various cases. In the
absence of a cosmological constant (�̂0 ¼ 0), the case
k ¼ 1 yields an asymptotically flat black hole with metric
function

fðrÞ ¼ 1þ 3

2�̂2

r2

l2

�
1�

�
1þ 8�̂2

3

m

rn

�
1=4

�
: (23)

This solution corresponds to a black hole with two horizons
providedm>mext, an extreme black hole ifm ¼ mext, and
a naked singularity for m<mext (see Fig. 3).

B. � ¼ 0:

Another special solution of Eq. (19) corresponds to the
case of � ¼ 0, for which Eq. (19) is quadratic in �2 and

�̂ 2 ¼ �̂3
3 þ 8�̂2

4

4�̂3�̂4

:

The metric function fðrÞ can be written as

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3
r

FIG. 1. The asymptotically anti–de Sitter case (A): fðrÞ vs r
for k ¼ 1, n ¼ 4,�̂0 ¼ 1, �̂2 ¼ :2, l ¼ 1 and m<mext, m ¼
mext and m>mext from up to down, respectively.
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fðrÞ ¼ kþ r2

l2

�
�̂3

4�̂4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂3

3 � 16�̂2
4

16�̂3�̂
2
4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂2

4 � �̂0�̂
2
3

�̂2
3�̂

2
4

þ m

�̂4r
n

svuut �
: (24)

Since we are interested in black hole solutions, we choose
the minus branch of fðrÞ for k ¼ 0, 1. For �̂0 ¼ 1, the
minus branch of this solution corresponds to an asymptoti-
cally AdS black hole with two horizons, an extreme black
hole or a naked singularity provided m>mext, m ¼ mext,
and m<mext, respectively. In Fig. 4 we illustrate the
various cases. For �̂0 ¼ �1 and k ¼ 1, the solution cor-
responds to an asymptotically de Sitter black hole with two
horizons if mext <m<mcrit, an extremal black hole with
one horizon if m ¼ mext, or a naked singularity otherwise.
We illustrate the different possibilities in Fig. 5.

For a zero cosmological constant and k ¼ 1, the metric
function for the asymptotically flat black hole solution is
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FIG. 3. The asymptotically flat case (A) :fðrÞ vs r for k ¼ 1,
n ¼ 4, �̂0 ¼ 0, �̂2 ¼ :5, l ¼ 1 and m<mext, m ¼ mext and
m>mext from up to down, respectively.
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FIG. 2. The asymptotically de Sitter case (A): fðrÞ vs r for
k ¼ 1, n ¼ 5, �̂0 ¼ �1, �̂2 ¼ :4, l ¼ 1 and m<mext, m ¼
mext, mext <m<mcrit, m ¼ mcrit, and m>mcrit from up to
down, respectively.
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FIG. 4. The asymptotically anti–de Sitter case (B): fðrÞ vs r
for k ¼ 1, n ¼ 4, �̂0 ¼ 1,�̂2 ¼ :2,�̂3 ¼ :015, l ¼ 1 and m<
mext, m ¼ mext and m>mext from up to down, respectively.
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FIG. 5. The asymptotically de Sitter case (B): fðrÞ vs r for
k ¼ 1, n ¼ 5,�̂0 ¼ �1, �̂2 ¼ :4, �̂3 ¼ :08, l ¼ 1 and m<
mext, m ¼ mext, mext <m<mcrit ,m ¼ mcrit, and m>mcrit

from up to down, respectively.
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FIG. 6. The asymptotically flat case (B): fðrÞ vs r for k ¼ 1,
n ¼ 4,�̂0 ¼ 0,�̂2 ¼ :2, �̂3 ¼ :015, l ¼ 1 and m<mext, m ¼
mext and m>mext from up to down, respectively.
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shown in Fig. 6 for various mass parameters. For k ¼ �1
we also find black hole solutions with a single horizon for
the plus branch; we have not illustrated the metric function
here. We note, as per our earlier discussion, that this plus
branch has no smooth Einsteinian limit.

V. GENERAL SOLUTIONS

We consider first asymptotically (A)dS solutions, for
which we have two real solutions provided � at infinity
(� ! �̂0) is positive where

� ¼ C3

27
þD2

4

and

C ¼ 3�̂3 � �̂2
2

3�̂2
4

� 4�

�̂4

(25)

D ¼ 2

27

�̂3
2

�̂3
4

� 1

3

�
�̂3

�̂2
4

þ 8
�

�̂4

�
�̂2

�̂4

þ �̂2
3�

�̂3
4

þ 1

�̂2
4

: (26)

The real solutions of Eq. (13) are

fðrÞ ¼ kþ r2

l2

�
�̂3

4�̂4

þ 1

2
R� 1

2
E

�
(27)

where

R ¼
�
�̂2

3

4�̂2
4

� 2�̂2

3�̂4

þ
�
q

2
þ

ffiffiffiffi
�

p �
1=3 þ

�
q

2
�

ffiffiffiffi
�

p �
1=3

�
1=2

;

(28)

E ¼
�
3�̂2

3

4�̂2
4

� 2�̂2

�̂4

� R2 � 1

4R

�
4�̂2�̂3

�̂2
4

� 8

�̂4

� �̂3
3

�̂3
4

��
1=2

(29)

describing the two physical branches of the solution.

Again we are interested in black hole solutions that have
a smooth Einsteinian limit. Therefore we choose the minus
branch of fðrÞ

fðrÞ ¼ kþ r2

l2

�
�̂3

4�̂4

þ 1

2
R� 1

2
E

�
: (30)

Figure 7 shows the metric function fðrÞ for different values
of mass parameters with �̂0 ¼ þ1. For k ¼ �1 the solu-
tion yields a black hole with one horizon.
For �̂0 ¼ �1 and k ¼ 1, the solution is that of an

asymptotically de Sitter black hole with two horizons if
mext <m<mcrit, an extremal black hole with one horizon
if m ¼ mext, or a naked singularity otherwise (see Fig. 8).
Second, we consider asymptotically flat solutions. These

are present only if �̂0 ¼ 0 (the cosmological constant
vanishes), implying that Eq. (13) reduces to

c1
�
c 31 þ �̂3

�̂4

c 21 þ �̂2

�̂4

c1 þ 1

�̂4

�
¼ 0 (31)
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FIG. 7. The general asymptotically anti–de Sitter case: fðrÞ vs
r for k ¼ 1, n ¼ 4,�̂0 ¼ 1, �̂2 ¼ :2, �̂3 ¼ :1,�̂4 ¼ :06, l ¼ 1
and m<mext, m ¼ mext and m>mext from up to down, respec-
tively .
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FIG. 8. The general asymptotically de Sitter case: fðrÞ vs r for
k ¼ 1, n ¼ 5,�̂0 ¼ �1, �̂2 ¼ :4, �̂3 ¼ :1,�̂4 ¼ :002, l ¼ 1 and
m<mext, m ¼ mext, mext <m<mcrit m ¼ mcrit, and m>mcrit

from up to down, respectively.
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FIG. 9. The general asymptotically flat case: fðrÞ vs r for
k ¼ 1, n ¼ 4,�̂0 ¼ 0,�̂2 ¼ :2, �̂3 ¼ :1,�̂4 ¼ :06, l ¼ 1 and
m<mext, m ¼ mext and m>mext from up to down, respectively.
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in the large-r limit. We see from Eq. (31) that one can have
an asymptotically flat solution with c1 ¼ 0. This asymp-
totically flat solution can be written down by substituting
�̂0 ¼ 0 in Eq. (30). It corresponds to a black hole with
inner and outer horizons provided m>mext, an extreme
black hole if m ¼ mext, and a naked singularity for m<
mext where mext can be calculated numerically. The metric
functions for these black holes are shown in Fig. 9.

VI. ENTROPY DENSITY

The entropy of the black hole solutions can be calculated
through the use of the formula [18]

S ¼ �2�
I

dn�1x
ffiffiffi
~g

p @L
@Rabcd

"̂ab"̂cd;

where L is the Lagrangian, ~g is the determinant of the
induced metric on the horizon, and "̂ab is the binormal to
the horizon. For the static black holes considered here

Y ¼ @L
@Rabcd

"̂ab"̂cd

is constant on the horizon and so the entropy density is
s ¼ S=Vn�1 ¼ �2�rn�1þ Y. For the Einstein Lagrangian,
Y1 ¼ �1=ð8�Þ and the resulting entropy density is the
expected Bekenstein-Hawking entropy s ¼ 1=4rn�1þ [19].
Applying this formalism to Gauss-Bonnet and cubic terms,
one obtains [4]

s2 ¼ �̂2l
2rn�1þ

2ðn� 2Þðn� 3Þ ðR� 2ðRt
t þ Rr

rÞ þ 2Rtr
trÞ ¼ ðn� 1Þl2

2ðn� 3Þr2þ
k�̂2r

n�1þ (32)

s3 ¼ 4�̂3l
4rn�1þ

ðn� 2Þðn� 3Þðn� 5Þð3n2 � 9nþ 4Þ
�
3ðn� 3Þð2n� 1Þ

2
ðRtm

tnR
rn

rm � Rtm
rnR

r
mt

nÞ

� 3ðn� 1Þ
n� 3

ðRtr
tmRr

m � Rtr
rmRt

m þ 1

4
ðRmnprR

mnpr þ RmnptR
mnptÞ

�
þ 3ð3n� 5Þ

8ðn� 3Þ
�
2RRtr

tr þ 1

2
RmnpqR

mnpq

�

þ 9ðn� 1Þ
2ðn� 3Þ ðR

rmRrm þ RtmRtmÞ þ 3ðnþ 1Þ
2ðn� 3Þ ðR

t
tR

r
r � Rt

rR
r
t þ Rr

mrnR
mn þ Rt

mtnR
mnÞ

� 3ð3n� 1Þ
4ðn� 3Þ ðRmnR

mn þ RðRr
r þ Rt

tÞÞ þ 9ðnþ 1Þ
16ðn� 3ÞR

2

�

¼ 3ðn� 1Þl4
4ðn� 5Þr4þ

k2�̂3r
n�1þ ; (33)

respectively. We can use the same formalism to obtain the entropy of the quartic term (6). It is a matter of calculation to
show that Y4 reduces to

Y4 ¼ � 1

16�

�̂4l
6

ðn� 7Þnðn� 1Þðn� 2Þ2ðn� 3Þðn5 � 15n4 þ 72n3 � 156n2 þ 150n� 42Þ
� ½16c1RrtefRhg

efRhgrt þ 2c2ð4RefR
efRtr

tr þ RabcdR
abcdðRr

r þ Rt
tÞÞ

þ c3ð2RabR
acRc

b þ 3RðRarRar þ RatRatÞÞ þ 16c4RabcdR
abcdRtr

tr þ 4c5ðRabðRa
rR

br þ Ra
tR

btÞÞ
þ 2c6ðRðRt

tR
r
r � Rt

rR
r
tÞ þ RRacðRa

r
cr þ Ra

t
ctÞ þ RabcdR

acRbdÞ þ c7ðRr
rR

teRte þ Rt
tR

reRre � Rt
rR

reRte

� Rr
tR

teRre þ RbeRd
eðRr

brd þ Rt
btdÞ þ 2RarcdR

acRdr þ 2RatcdR
acRdtÞ þ c8ðRr

refRteR
t
f þ Rt

tefRreR
r
f

� 2RtrefRreRtf þ 2RrbtdðRbrRdt � RbtRdrÞ þ 2Rd
eðRarcdR

arce þ RatcdR
atceÞÞ þ 2c9RefðRr

rRt
etf þ Rt

tRr
erf

� 2RtrR
retf þ RbedfðRr

brd þ Rt
btdÞÞ þ 8c10R

3 þ 8c11ð2R2Rtr
tr þ RRabcdRabcdÞ

þ 2c12ðR2ðRr
r þ Rt

tÞ þ 2RRabR
abÞ þ c13ð4RabtrðRabtdR

d
r � RabrdR

d
tÞ þ 4RtrcdRtrcgRd

g

þ ðRabcrRef
cr þ RabctRef

ctÞRabefÞ þ 8c14ðRr
erfRgehfR

gth
t � RterfRgehfR

g
r
h
tÞ�; (34)

where the ci’s are given in Appendix. Now integrating over the horizon and dividing by Vn�1, the entropy density
reduces to

M.H. DEHGHANI et al. PHYSICAL REVIEW D 85, 104009 (2012)

104009-8



s4 ¼ ðn� 1Þl6
ðn� 7Þr6þ

k3�̂4r
n�1þ :

Combining all of these expressions, the entropy density for
quartic quasitopological gravity becomes

s ¼ rn�1þ
4

�
1þ 2k�̂2

ðn� 1Þl2
ðn� 3Þr2þ

þ 3k2�̂3

ðn� 1Þl4
ðn� 5Þr4þ

þ 4k3�̂4

ðn� 1Þl6
ðn� 7Þr6þ

�
: (35)

A simple method of finding the energy per unit volume
Vn�1 is through the use of first law of thermodynamics,
dM ¼ Tds, which gives [18]

M ¼
Z rþ

T

�
@s

@rþ

�
drþ

¼ ðn� 1Þrnþ
16�

�
�̂0 þ k

l2

r2þ
þ �̂2k

2 l4

r4þ

þ �̂3k
3 l6

r6þ
þ �̂4k

4 l8

r8þ

�
: (36)

The energy density can be written in term of the geomet-
rical mass by use of Eq. (15) as

M ¼ n� 1

16�
m:

We pause to comment that for k ¼ �1 it is possible to
have negative mass and/or entropy for certain values of the
couplings. The phenomenon was originally noted for the
Einstein anti–de Sitter case a number of years ago [15]. In
this case the mass can be negative up to a certain extremal
value; the entropy is always positive. This situation also
can happen in Einstein-Gauss-Bonnet gravity. However the
quasitopological terms allow for both quantities to be
negative for certain values of the parameters (a situation
that can also occur for third order Lovelock gravity [20]). If
the entropy is negative it is not clear what solution is
suitable as a reference state vacuum solution.

One approach to treating this problem is to add an
overall constant to the entropy such that s � 0 [21]. This
approach assumes that M � 0, from which a minimal
value for rþ is then obtained using (36). If �̂3 and �̂4

both vanish, such a minimal value is assured, and a mini-
mal value of the entropy is obtained. While having the
peculiar feature that the entropy vanishes despite the non-
vanishing surface area of the minimal rþ ¼ rþmin black
hole, an ambiguity in the Noether charge approach makes
such an assignment possible [21]. However if �̂3 � 0 and/
or �̂4 � 0 there will be several possible minima for rþ, and
it is no longer completely clear what assignment should be

made in order to ensure the entropy remain positive. This
situation will also hold in all Lovelock theories third order
and higher, and we leave a complete treatment of this
subject for future study.
A general thermodynamic treatment of these black holes

can be carried out along lines similar to that recently
carried out for Lovelock black holes [22].

VII. STABILITY OF THE SOLUTIONS

An investigation of the full stability of the solutions we
have obtained is beyond the scope of this paper. As a first
step, we here consider the stability of the solutions against
a class of small nonspherical perturbations.
The metric of a slowly rotating solution in five dimen-

sions may be written as

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ 2agðrÞhð
Þdtd’þ r2d�2;

(37)

where d�2 is the metric of a 3-sphere and a is the rotation
parameter, which is assumed to be small. The first three
terms of the action are stable against a nonspherical per-
turbation, while the fourth one (the cubic quasitoplogical
term) is stable against small nonspherical perturbations [4].
Here, we consider the stability of the solutions for the

quartic quasitopological term against the above class of
small nonspherical perturbations. Consider the first scalar
term in the Lagrangian (19). We find for the slowly rotating
metric (37) that

RabcdR
abefRefghR

cdgh

¼ f004 þ 6

r4
f04 þ 48

r8
½1� fðrÞ�2 þOða2Þ;

where the prime denotes the derivative with respect to the
coordinate r. This shows that a Lagrangian containing only
the first term has no stable solution against a nonspherical
small perturbation. Upon further investigation we find this
happens for all the other terms of the quartic quasitopo-
logical term given in (6).
Consider next the Lagrangian (6) with the coefficients

given in Eq. (7). To first order in awe find that it reduces to

X4 ¼ 84096

r8
fð1� fÞ3r2f00 � 3½ð1� fÞ þ rf0�2g þOða2Þ;

and so the perturbed quartic Lagrangian contains most
second-order derivatives. Therefore the field equation is a
second-order differential equation to linear order in a, and
so the spherical solutions are stable.

BLACK HOLES IN (QUARTIC) QUASITOPOLOGICAL GRAVITY PHYSICAL REVIEW D 85, 104009 (2012)

104009-9



VIII. HOLOGRAPHIC HYDRODYNAMICS

As a first step in understanding the role of our theory in
the context of the AdS/CFT correspondence, we compute
the ratio of shear viscosity to entropy, �=s, leaving other
subjects such as the holographic trace anomaly and holo-
graphic computation of energy fluxes for future study.

The first computations of �=s from an AdS/CFT per-
spective appeared in [23] for Einstein gravity, and leading
corrections for strongly coupled N ¼ 4 super-Yang-Mills
theory subsequently followed [6,24]. These computations
have been carried out for second- [7] and third-order
Lovelock theories [8] and quasitopological gravity [5].
Further investigations also provided increasingly efficient
techniques for these calculations [25,26]. Here, we use the
pole method [26], for the planar class of metrics

ds2 ¼ r2

l2
ðc ðrÞdt2 þ dx21 þ dx22 þ dx23Þ �

l2dr2

r2c ðrÞ ; (38)

where c ðrÞ is the root of Eq. (13) with �̂0 ¼ 1.

Employing the transformation z ¼ 1� r�2m1=2, the
metric (38) becomes

ds2 ¼ m1=2

l2ð1� zÞ ðc ðzÞdt2 þ dx21 þ dx22 þ dx23Þ

� l2dz2

4ð1� zÞc ðzÞ ; (39)

where c ðzÞ has a simple zero at the horizon located at
z ¼ 0. Thus c ðzÞ may be expanded as

c ðzÞ ¼ c ð1Þ
0 zþ c ð2Þ

0 z2 þ c ð3Þ
0 z3 þ c ð4Þ

0 z4 þ . . . ; (40)

where c ðiÞ
0 is the i th derivative of c ðzÞ at z ¼ 0. Using

Eq. (13) and the Taylor expansion (40), the expansion
coefficients can be obtained as

c ð1Þ
0 ¼�2;

c ð2Þ
0 ¼2ð1�4�̂2Þ;

c ð3Þ
0 ¼24ð�̂2�4�̂2

2þ2�̂3Þ;
c ð4Þ

0 ¼24½�̂2�24�̂2
2þ80�̂2ð�̂3��̂2

2Þ�12�̂3�16�̂4�:
(41)

We perturb the metric (39) by the shift

dxi ! dxi þ "e�iwtdxj; (42)

and we calculate the Lagrangian density. Because of the
off-shell perturbation (42), there exists a pole at z ¼ 0 in
the (otherwise) on-shell action. The shear viscosity is [26]

� ¼ �8�T lim
!;"!0

Resz¼0L
!2"2

;

where Resz¼0L denotes the residue of the pole in the
Lagrangian density, and T is the Hawking temperature

give in Eq. (16) as T ¼ rþð�l2Þ�1 ¼ m1=4ð�l2Þ�1. It is a
matter of calculation to show that the shear viscosity
reduces to

� ¼ m3=4

16�l3
f1� 4�̂2 � 36�̂3ð9� 64�̂2 þ 128�̂2

2

� 48�̂3Þ � 96

73
�̂4ð1491� 10800�̂2 þ 28864�̂2

2

� 6240�̂3 þ 10752�̂2�̂3 � 25088�̂3
2Þg:

Now, using the fact that the entropy density of the black

brane is s ¼ m3=4ð4l3Þ�1, the ratio of shear viscosity to
entropy is

�

s
¼ 1

4�
f1� 4�̂2 � 36�̂3ð9� 64�̂2 þ 128�̂2

2 � 48�̂3Þ

� 96

73
�̂4ð1491� 10800�̂2 þ 28864�̂2

2 � 6240�̂3

þ 10752�̂2�̂3 � 25088�̂3
2Þ:

The last term is the effect of the quartic quasitopological
term on �=s. Clearly it can be either positive or negative;
the investigation of the allowed values of this term will be
given elsewhere.

IX. CONCLUDING REMARKS

We have explicitly constructed the Lagrangian for
quartic quasitopological gravity (up to a term proportional
to the Lovelock term) for all dimensions D � 5 except for
D ¼ 8, and shown specifically what its black hole solu-
tions are. This is the highest-degree case for which it is
possible to find explicit solutions.
It is possible to make some general remarks about

quasitopological gravity even though the specific
Lagrangian has not been found for an arbitrary power K
of the curvature. Since all derivative terms higher than 2
must be eliminated from the Lagrangian, which itself must
be linear in the lapse function, it is reasonable to conjecture
that the action in the spherically symmetric case will be
reduced to

IG ¼
Z

dtdrNðrÞ
�
rn

XK
k¼0

�̂kc
k

�0
(43)

up to terms proportional to the transverse volume Vn�1, for
K-th order quasitopological gravity in (nþ 1) dimensions,
where c ¼ l2r�2ðk� fÞ and the �̂k parameters are re-
scaled coefficients of the k-th powered curvature term. For
a given K this action should be valid for all dimension-
alities (nþ 1) larger than 4, except for particular choices
where n ¼ 2K � 1.
A similar conjecture was formalized by considering the

invariant [12,27]
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N ðKÞ ¼ ��1�1����K�K

�1�1����K�K
ðR�1�1

�1�1 � � �R�K�K

�K�K

� C�1�1

�1�1 � � �C�K�K

�K�K Þ (44)

where ��1�1����K�K

�1�1����K�K
is the generalized Kronecker-delta

tensor and C��
��. When rewritten in terms of Riemann

invariants, N ðKÞ factorizes with a common factor of
ðn� 2K þ 2Þ; for n < 2K � 2 it vanishes. Taking the
action to be of the form

I ¼
Z

dnþ1x
ffiffiffiffiffiffiffi�g

p �
�ðKÞ
0

n� 1

2Kðn� 2K þ 2ÞN
ðKÞ

þ XNðKÞ
n

j¼1

�ðKÞ
j WðKÞ

j

�
(45)

where fWðKÞ
1 ; . . . ;WðKÞ

NðKÞ g is a set of linearly independent

K-th order Weyl invariants, it is possible to prove a gener-

alized Birkhoff’s theorem provided �ðKÞ
0 is an appropri-

ately chosen linear combination of the �ðKÞ
j coefficients

[12]. All the contractions of K Weyl tensors are propor-
tional on spherical/planar/hyperbolic symmetric space-
times, with no static assumption required.

For n � 2K � 1 the invariantN ðKÞ can be expressed as
a linear combination of the 2K-dimensional Euler density
and all conformal invariants. In general this action will
yield field equations greater than second order, but for the

aforementioned linear combination of the �ðKÞ
j coefficients

they reduce to second order in the spherical/planar/hyper-
bolic cases [12]. For n < 2K � 2 the action (45) yields a
set of fourth-order field equations for an arbitrary metric
but a set of vanishing field equations on spherical/planar/
hyperbolic symmetric spacetimes [12].

In view of our results for the quartic case, we propose
that there exists K-th order quasitopological gravity in any
dimension except for n ¼ 2K � 1. For the spherical/pla-
nar/hyperbolic ansatz (3) we conjecture that the nonvan-
ishing action is given in (43), which yields the field
equations

�
rn

XK
k¼0

�̂kc
k

�0 ¼ 0 (46)

for the metric function fðrÞ. In general the field equations
will be of fourth order, since the variation of the action will

produce terms proportional to second derivatives of varia-
tions of metric functions multiplied by powers of the
Riemann curvature. Upon integration by parts the largest
number of derivatives that could act on any term will be 4.
This equation has the same form as the corresponding

situation in Lovelock gravity [22], the difference being that
K � ½n2� in the Lovelock case, whereasK is not restricted in

the quasitopological case. The solutions to (46) are given
by the solutions to the equation

XK
k¼0

�kc
k ¼ m‘n

rn
(47)

which for K � 5 cannot be written explicitly in general.
The analysis of the black hole solutions for this case
completely parallels that of the Lovelock case [22] and
we shall not repeat it here.
While the quartic Lagrangian (5) we have constructed is

unique (up to a term proportional to the Euler density)
insofar as it yields second-order differential equations for
spherically symmetric metrics, its geometrical origins re-
main somewhat obscure. Since all spherically symmetric
metrics reduce to effective theories of gravitation in two
space-time dimensions, it may be that some kind of theo-
rem of principle will single out the choice (5) with coef-
ficients given in the Appendix. This remains an interesting
topic for future study.
Quasitopological gravity provides a much broader range

of parameter space for holographic duality. It would be
interesting to see what constraints are placed on the
entropy-to-viscosity ratio for this class of theories, and
how they modify their condensed matter duals in asymp-
totically Lifshitz gravity.
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APPENDIX

Here we present the coefficients of quartic curvature
terms in Eq. (6) in nþ 1 dimensions. Using spherically
symmetric metric (3), one can show that the Lagrangian (6)
with the following ci’s

c1 ¼ �ðn� 1Þðn7 � 3n6 � 29n5 þ 170n4 � 349n3 þ 348n2 � 180nþ 36Þ;
c2 ¼ �4ðn� 3Þð2n6 � 20n5 þ 65n4 � 81n3 þ 13n2 þ 45n� 18Þ;
c3 ¼ �64ðn� 1Þð3n2 � 8nþ 3Þðn2 � 3nþ 3Þ;
c4 ¼ �ðn8 � 6n7 þ 12n6 � 22n5 þ 114n4 � 345n3 þ 468n2 � 270nþ 54Þ;
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c5 ¼ 16ðn� 1Þð10n4 � 51n3 þ 93n2 � 72nþ 18Þ;
c6 ¼ �� 32ðn� 1Þ2ðn� 3Þ2ð3n2 � 8nþ 3Þ;
c7 ¼ 64ðn� 2Þðn� 1Þ2ð4n3 � 18n2 þ 27n� 9Þ;
c8 ¼ �96ðn� 1Þðn� 2Þð2n4 � 7n3 þ 4n2 þ 6n� 3Þ;
c9 ¼ 16ðn� 1Þ3ð2n4 � 26n3 þ 93n2 � 117nþ 36Þ;
c10 ¼ n5 � 31n4 þ 168n3 � 360n2 þ 330n� 90;

c11 ¼ 2ð6n6 � 67n5 þ 311n4 � 742n3 þ 936n2 � 576nþ 126Þ;
c12 ¼ 8ð7n5 � 47n4 þ 121n3 � 141n2 þ 63n� 9Þ;
c13 ¼ 16nðn� 1Þðn� 2Þðn� 3Þð3n2 � 8nþ 3Þ;
c14 ¼ 8ðn� 1Þðn7 � 4n6 � 15n5 þ 122n4 � 287n3 þ 297n2 � 126nþ 18Þ;

reduces to the Lagrangian given in Eq. (11).
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