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In the system of a gravitatingQ ball, there is a maximum chargeQmax inevitably, while in flat spacetime

there is no upper bound on Q in typical models such as the Affleck-Dine model. Theoretically, the charge

Q is a free parameter, and phenomenologically it could increase by charge accumulation. We address a

question of what happens to Q balls if Q is close to Qmax. First, without specifying a model, we show

analytically that inflation cannot take place in the core of a Q ball, contrary to the claim of previous work.

Next, for the Affleck-Dine model, we analyze perturbation of equilibrium solutions with Q � Qmax by

numerical analysis of dynamical field equations. We find that the extremal solution with Q ¼ Qmax and

unstable solutions around it are ‘‘critical solutions,’’ which means the threshold of black-hole formation.
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I. INTRODUCTION

In a pioneering work by Friedberg et al. in 1976 [1],
nontopological solitons were introduced in a model with a
U(1)-symmetric complex scalar field coupled to a real
scalar field. In contrast with topological defects, they are
stabilized by a global U(1) charge, and their energy density
is localized in a finite space region without gauge fields. In
1985, Coleman showed such solitons exist in a simpler
model with an SO(2) [viz. U(1)] symmetric scalar field
only, and called them Q balls [2].

Q balls have attracted much attention in particle cos-
mology since Kusenko pointed out that they can exist in
all supersymmetric extensions of the standard model [3].
Specifically, Q balls can be produced efficiently in the
Affleck-Dine (AD) mechanism [4] and could be respon-
sible for baryon asymmetry [5] and dark matter [6].Q balls
can also influence the fate of neutron stars [7]. Since Q
balls are supposed to be microscopic objects, equilibrium
solutions and their stability have been intensively studied
in flat spacetime [8]. It was shown that catastrophe theory
is a useful tool for stability analysis of Q balls [9].

If Q balls are so large or so massive, on the other hand,
their size becomes astronomical and their gravitational
effects are remarkable [10,11]. Such gravitating Q balls,
orQ stars, are analogous to boson stars [12]. WhileQ balls
exist even in flat spacetime, boson stars are supported by
gravity and nonexistent in flat spacetime. Multamaki and
Vilja showed that the size of Q balls is bounded above
due to gravity [11]. Becerril et al. studied evolution of
unstable solutions by numerical analysis of dynamical field
equations [13].

In our previous work [14–16], we studied equilibrium
solutions and their stability for several models using
catastrophe theory to understand a comprehensive picture
of flat Q balls, gravitating Q balls, and boson stars. One of
the main results is summarized in Table I.
(i) In flat spacetime, as long as the absolute minimum of

the potential Vð�Þ is located at � ¼ 0, there is no
upper bound on charge. If we take self-gravity into
account, however, there is maximum chargeQmax (or
maximum energy Emax), at which stability changes,
regardless of models.

(ii) In flat spacetime, in some models such as the AD
gauge-mediated model [4], there is nonzero mini-
mum chargeQmin, whereQ balls withQ<Qmin are
nonexistent. If we take self-gravity into account,
however, there exist stable Q balls with arbitrarily
small mass and charge.

The above properties of gravitating solitons hold for gen-
eral models of Q balls and boson stars as long as the
leading-order term of the potential is a positive mass
term in its Maclaurin series.
Theoretically, the charge Q is a free parameter, and

phenomenologically it could increase by charge accumu-
lation. Therefore, a natural question could arise: what
happens to Q balls if Q is close to Qmax? In this paper,
we shall investigate what happens if we give perturbations
to equilibrium Q balls with Q � Qmax.
In connection with this question, Matsuda [17] claimed

that inflation occurs in the core of a Q ball if Q is large
enough. He assumed a kind of hybrid potential. In his sce-
nario, inflation takes place when the gravity-mediated term,
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dominates, wherem is the gravitino mass,K term a one-loop
correction, andM the renormalization scale. If this scenario
is true, it would have an important implication for infla-
tionarymodels. Therefore, the present study is also important
as a close examination of this scenario.

This paper is organized as follows. In Sec. II, we review
previous results of gravitating Q balls in the AD gravity-
mediated model. In Sec. III, we make analytic discussions
on general properties of Q-ball equilibrium solutions. In
Sec. IV, we discuss whetherQ-ball inflation can take place.
In Sec. V, we present dynamical field equations and our
computing method. In Sec. VI, by analyzing the dynamical
field equations, we investigate what happens ifQ is so large
in the AD gravity-mediated model. Section VII is devoted
to concluding remarks.

II. GRAVITATING Q BALLS IN THE AFFLECK-
DINE POTENTIAL

To begin with, we review previous results of equilibrium
solutions of gravitatingQ balls in the AD gravity-mediated
model (1.1) [15]. Consider an SO(2)-scalar field � ¼
ð�1; �2Þ coupled to Einstein gravity. The action is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�gp �

R
16�G

� 1

2
g��@�� � @��� Vð�Þ

�
;

(2.1)

where � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
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2

q
. We assume a spherically symmet-

ric and static spacetime,

ds2 ¼ ��2ðrÞdt2 þ A2ðrÞdr2 þ r2ðd�2 þ sin2�d’2Þ;
(2.2)

and homogeneous phase rotation,

� ðt; rÞ ¼ �ðrÞðcos!t; sin!tÞ: (2.3)

Then, the field equations become
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The boundary conditions are given by

�0ð0Þ ¼ �ð1Þ ¼ A0ð0Þ ¼ �0ð0Þ ¼ 0;

Að0Þ ¼ �ð1Þ ¼ 1: (2.7)

The charge and the Hamiltonian energy are defined
by [14]

Q �
Z

d3x
ffiffiffiffiffiffiffi�gp

g0�ð�1@��2 ��2@��1Þ;

E � lim
r!1

r2�0

2GA
¼ MS

2
; (2.8)

where MS is the Schwarzschild mass. To perform numeri-
cal calculations, we rescale the relevant quantities as

~� � �

M
; ~t � mt; ~r � mr ~! � !

m
;

� � GM2; ~Q � m2

M2
Q; ~E � m

M2
E: (2.9)

Figure 1 shows existing domain of equilibrium solutions
for K ¼ �0:01 in the Q-E space. In the case of flat space-
time (� ¼ 0), no upper bound onQ or E appears and all the

FIG. 1 (color online). Existing domain of equilibrium solu-
tions for K ¼ �0:01 in the Q-E space. We choose � ¼ 0, 0.01.

TABLE I. Comparison of maximum and minimum charge (or
gravitational mass) for flat Q balls, gravitating Q balls, and
boson stars.

Qmax Qmin

Flat Q balls 1 or finite Finite or 0

Gravitating Q balls Finite 0

Boson stars Finite 0
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solutions in this figure are stable [18]. In the case of
� ¼ 0:01, on the other hand, there appears a cusp A, which
corresponds toQmax andEmax. The lower branch represents
stable solutions, while the upper branch unstable ones.

In flat spacetime equilibrium solutions exist only if
K < 0. If we take self-gravity into account, however, equi-
librium solutions also exist even if K � 0 [15]. The solu-
tions for K ¼ 0 have been known as mini-boson stars [12].
Figure 2 shows existing domain of these equilibrium solu-
tions in the Q-E space. The result is similar to that for
K < 0. There appears a cusp, which corresponds to Qmax

and Emax, due to gravity. The lower branch represents
stable solutions, while the upper branch unstable ones.

One may wonder what happens to equilibrium solutions
if � is so large. In the case of topological defects, static
solutions are nonexistent if the vacuum expectation value
of the Higgs field is close to the Planck mass, and the
defects expand exponentially instead [19]. By analogy with
this topological inflation, one may conjecture that Q-ball
equilibrium solutions are nonexistent if � is larger than
some critical value of order one.

To examine this conjecture, for the case of K ¼ �0:01,
we analyze equilibrium solutions with � ¼ 0:1, 1, 10, 100,
1000, and 10 000, too. We show the existing domains of the
equilibrium solutions in Fig. 3(a). Contrary to the above
expectation, we find that equilibrium solutions exist even if
�� 1. Furthermore, Fig. 3(a) indicates

� ~Emax ¼ constant; (2.10)

where ~Emax denotes the maximum energy for each �.
Because the Schwarzschild mass of a Q ball is given by
MS ¼ 2E [14], the relation (2.10) means GMS ¼ constant.

Therefore, as long as (2.10) is satisfied, we expect that
static regular solutions can exist.
To confirm this argument, we present one of the metric

functions Að~rÞ of the extremal solutions with ~Emax in
Fig. 3(b). All configurations of Að~rÞ are virtually the
same, which is consistent with (2.10). We therefore con-
clude that equilibrium solutions exist no matter how
large � is.

III. GENERAL PROPERTIES OF
EQUILIBRIUM SOLUTIONS

Our interest is perturbation of equilibrium solutions with
Q � Qmax. Before analyzing their evolution, however, it is

FIG. 2. Existing domain of equilibrium solutions for K ¼ 0 in
the Q-E space. We choose � ¼ 0:01.

(a)

(b)

FIG. 3 (color online). Dependence of equilibrium solutions on
�. We choose K ¼ �0:01 and � ¼ 0:01, 0.1, 1, 10, 100, 1000,
and 10 000. (a) Existing domain of equilibrium solutions. (b) The
metric function Að~rÞ of the extremal solutions for each �.
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important to understand general properties of equilibrium
solutions.

In the case of flat spacetime, the field equation is
given by

�00 þ 2

r
�0 þ!2� ¼ dV

d�
: (3.1)

This is equivalent to the field equation for a single static
scalar field with a potential V! � V �!2�2=2. If one
regards the radius r as ‘‘time’’ and the scalar amplitude
�ðrÞ as ‘‘the position of a particle,’’ one can understand
Q-ball solutions in words of Newtonian mechanics,
as shown in Fig. 4. Equation (3.1) describes a one-
dimensional motion of a particle under the conserved force
due to the ‘‘potential’’ �V!ð�Þ and the time-dependent
friction�2�0=r. If one chooses the ‘‘initial position’’�ð0Þ
appropriately, the static particle begins to roll down the
potential slope, climbs up, and approaches the origin over
infinite time. Because of the energy loss by the friction
term in Newtonian mechanics, one finds

� V! ¼ !2�2

2
� V > 0 at r � 0: (3.2)

Dominance of the kinetic energy over the potential energy
in the core is one of the important properties of Q balls, as
we shall discuss below.

We can extend the above argument to gravitating Q
balls by redefining the effective potential as V! � V �
!2�2=2�2 [15]. In this case, because ‘‘the potential of
a particle’’ is time-dependent, the above explanation in
Newtonian mechanics cannot apply. However, because
�ðrÞ is an increasing function, the potential �V!ð�Þ de-
creases as time. This means that some of the ‘‘mechanical
energy’’ is lost by this variation of the potential as well as
by the friction terms. Therefore, we obtain the relation,

� V! ¼ !2�2

2�2
� V > 0 at r � 0: (3.3)

We have confirmed that the inequality (3.3) holds for all
our numerical solutions.
The condition (3.3) is important because from it we can

draw a general conclusion that the Q-ball core is attractive
as follows. Because the regularity condition at r ¼ 0 is
given by (2.7), we can expand the metric functions as

�ðrÞ ¼ �ð0Þð1þ�ðrÞÞ; AðrÞ ¼ 1þ fðrÞ; (3.4)

with the boundary conditions

�ð0Þ ¼ �0ð0Þ ¼ fð0Þ ¼ f0ð0Þ ¼ 0: (3.5)

In the vicinity of r ¼ 0, we can expand the geodesic
equations and the Einstein equations up to first order of
� and f, which yields

1

�ð0Þ2
d2r

dt2
¼ ��0 at r � 0; (3.6)

�00 ¼ 8�G

3�ð0Þ
�
!2�2

�ð0Þ2 � V

�
at r � 0: (3.7)

Note that we have not introduced the weak-gravity
approximation.
Equations (3.6) and (3.7) correspond to an equation of

motion and Poisson equation, respectively, in Newtonian
mechanics. They lead to �00 > 0 at r � 0. Furthermore,
because of the boundary condition �0ð0Þ ¼ 0, one finds
�0 > 0 at r � 0, that is, the core region is attractive.

IV. IS Q-BALL INFLATION POSSIBLE?

It was argued that inflation can take place in the core of a
Q ball if Q evolves with time by absorbing other Q balls
and becomes large enough [17]. In the last section, how-
ever, we showed that Q balls have attractive nature, which
indicates thatQ-ball inflation is improbable. Here, we shall
discuss this issue more explicitly.
Inflation, or accelerated expansion of a local region, is

defined by the following conditions:
(1) Some local region is well approximated by the

Friedmann-Lemaitre-Robertson-Walker metric,

ds2 ¼ �d�2 þ að�Þ2fd	2 þ 	2ðd�2 þ sin2�’2Þg:
(4.1)

(2) d2a=d�2 > 0 in this region.
(3) The volume of this local region increases.

If any of these conditions are violated, we cannot say that
inflation takes place.
The two expressions (2.2) and (4.1) look very different.

In the case of topological inflation, however, the core of a
topological defect is described by de Sitter spacetime,

�2 ¼ A�2 ¼ 1�H2r2; a / eH�; (4.2)

which assures us of consistence between the two expressions.
If Q balls also trigger inflation, the core of the equilibrium
solutions should be well approximated by (4.1).

FIG. 4. Interpretation of Q-ball solutions by analogy with a
particle motion in Newtonian mechanics.
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Here, under the assumption that the first condition is
satisfied for the equilibrium solutions, we discuss whether
the second condition is satisfied. The Einstein equations for
the doublet scalar field yield

d2a

d�2
¼ 8�Ga

3

�
�
��������
d�

d�

��������
2þV

�
: (4.3)

Although the relation between the two coordinate sets,
ðt; rÞ and ð�; 	Þ, is not given explicitly, we find �dt ¼ d�
at the center (r ¼ 	 ¼ 0). Then, we can rewrite Eq. (4.3) as

d2a

d�2
¼ 8�Ga

3

�
�!2�2

�ð0Þ2 þ V

�
at r � 0: (4.4)

Because !2�2=�ð0Þ2 > 2V from (3.3), we find
d2a=d�2 < 0 in the core. Unless we give so large pertur-
bation that jd�=d�j2=V is more than double, d2a=d�2

remains negative.
If we chose initial values of �ðxÞ and d�=d�ðxÞ arbi-

trary, the right-hand side of (4.3) might be positive.
However, if the initial configuration is far from that of
the equilibrium solution, such inflation cannot be called
Q-ball inflation.

We should also note that we have not specified Q and a
potential type Vð�Þ. We therefore conclude that Q-ball
inflation cannot take place by charge accumulation regard-
less of Q and a potential type.

V. DYNAMICAL FIELD EQUATIONS AND
COMPUTING METHOD

Although we have shown that inflation cannot take place
even if Q>Qmax, it is still unclear what happens in this
case. To address this question, we have to solve dynamical
field equations. Here, in preparation for this, we present
dynamical field equations and our computing method.

We consider a spherically symmetric and dynamical
spacetime,

ds2 ¼ ��2ðt; rÞdt2 þ A2ðt; rÞdr2 þ r2ðd�2 þ sin2�d’2Þ:
(5.1)

Introducing dimensionless auxiliary variables,

$ � A

�
_� ¼ ð$1; $2Þ; � � @

@ðr2Þ� ¼ ð
1; 
2Þ;

a � A� 1

r2
; with _� @

@t
; (5.2)

we write down the field equations derived from the action
(2.1) as

� A2Gt
t � 4

A

@A

@ðr2Þ þ að1þ AÞ

¼ 8�G

�
$ �$

2
þ 2r2� � � þ A2V

�
; (5.3)

rAGtr � _a ¼ 8�G�$ � �; (5.4)

r�Grr � �0 � r�að1þ AÞ
2

¼ �

2
r�

�
$ �$

2
þ 2r2� � � � A2V

�
; (5.5)

�Ah� � � _$þ 4r2
@

@ðr2Þ
�
��

A

�
þ 6��

A
¼ �A�

�

dV

d�
:

(5.6)

We have regularized the dynamical equations at the center,
in the sense that all of them contain no diverging term like
1=r.
As for initial conditions, we assume

_að0; rÞ ¼ ð _A ¼Þ0; (5.7)

and the perturbed field configuration,

�ð0; rÞ ¼ ð�0ðrÞ þ ��ðrÞ; 0Þ;
_�ð0; rÞ ¼ ð0; !�0ðrÞÞ; (5.8)

where �0 is an equilibrium solution and �� is a small
perturbation. For definiteness, we adopt

��ðrÞ ¼ ��ð0Þ exp
�
� r2

L2

�
; (5.9)

where L is a length parameter. We rescale it as ~L � mL
and set ~L ¼ 2 in Sec. IV.
To obtain initial values of a (or A) and �, we integrate

(5.3) and (5.5) with respect to r. More precisely, to keep
better precision, only at the initial time we introduce
another auxiliary function as Y � A� 1 ¼ ar2 and rewrite
(5.3) as

Y0 þ YAðAþ 1Þ
2r

¼ �

2
rA3

� _� � _�

2�2
þ�0 ��0

2A2
þ V

�
: (5.10)

Our dynamical field variables are �, a, �, �, and $.
Among them, the lapse function � is determined by inte-
gration of (5.5) with respect to r at each time step. The rest
of the dynamical variables are determined by integration of
(5.4) and (5.6) together with

_� ¼ �$

A
; _� ¼ @

@ðr2Þ
�
�$

A

�
; (5.11)

which is given by the definition (5.2). The Hamiltonian
constraint (5.3) is not solved except for the initial values,
but it is used to check numerical accuracy of the above time
integration.
To perform integration of the dynamical variables with

respect to t, we discretize a space with a mesh with an equal
size �r,

ri ¼ ði� 1Þ�r; i ¼ 1; . . . ; N; (5.12)

and label a dynamical variable Fðt; riÞ as FðtÞi . Here, Fðt; riÞ
represents �, a, �, �, and$ collectively. We choose N ¼
3001. A derivative with respect to r2 is approximated as
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@F

@ðr2Þ ðriÞ ¼
1

2ri

@F

@r
ðriÞ � 1

2ri

Fiþ1 � Fi�1
2�r

¼ Fiþ1 � Fi�1
r2iþ1 � r2i�1

: (5.13)

For each FðtÞi , we integrate with respect to t by the second-
order Runge-Kutta method, or the so-called ‘‘predictor-
corrector’’ method.

As for the boundary conditions of the center and the
outer edge, we follow Hayley and Choptuik [20] as fol-
lows. For �, �, and $ at r ¼ 0, we employ a ‘‘quadratic
fit,’’

Fðtþ�tÞ1 ¼ 4Fðtþ�tÞ2 � Fðtþ�tÞ3

3
: (5.14)

For � and $ at the outer boundary, we employ

Fðtþ�tÞN

¼
�
4FðtÞN �Fðt��tÞN

�t
þ4Fðtþ�tÞN�1 �Fðt��tÞN�2

�r

�
=

�
3

�t
þ 3

�r
þ 2

rN

�
:

(5.15)

To suppress numerical errors further, we apply numeri-
cal dissipation to �, �nn, and $n, following Hayley and

(a)

(b)

FIG. 5 (color online). Perturbation of a stable solution A.
(a) Field configuration of the equilibrium solution and a per-
turbed initial configuration, which is given by (5.8) with
��ð0Þ=�0ð0Þ ¼ 0:1 or �0:1 and ~L ¼ 2. (b) Time variation of
~�ð~t; ~r ¼ 0Þ.

(a)

(b)

FIG. 6 (color online). Perturbation of an unstable solution
B: ��ð0Þ=�0ð0Þ ¼ 0:01 and ~L ¼ 2. (a) Time variation of
~�ð~t; ~r ¼ 0Þ. (b) Snapshots of the metric functions A and � at
~t ¼ 0, 4, 5, 5.4.
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Choptuik [20]. After the next value Fðtþ�tÞi is evaluated,
we set

Fðtþ�tÞi  Fðtþ�tÞi � �

16
ðFðtÞiþ2 � 4FðtÞiþ1 þ 6FðtÞi

� 4FðtÞi�1 þ FðtÞi�2Þ; (5.16)

where � is an adjustable parameter in the range 0< �< 1,
and we choose � ¼ 0:5.

VI. WHAT HAPPENS IF Q IS SO LARGE?

In the analysis method devised in the last section, we
shall discuss what happens to Q balls with the potential

(1.1) ifQ is so large. Because ordinaryQ balls exist only if
K < 0, we concentrate on the case of K < 0. Specifically,
we analyze dynamical field equations by giving perturba-
tions to equilibrium solutions A, B, and C in Fig. 3.
First, we consider perturbation of a stable solution A.

Figure 5(a) shows the field configuration of the equilibrium
solution A and perturbed initial configurations, which is
given by (5.8) with ��ð0Þ=�0ð0Þ ¼ 0:1 or �0:1 and
~L ¼ 2. (b) shows the time-variation of �ð~t; ~r ¼ 0Þ, which
indicates that the field continues to vibrate around the
equilibrium configuration. These results assure us that
stable solutions indicated by energetics or by catastrophe

theory are really stable. The mean values of ~�ðt; 0Þ for the

(a)

(b)

FIG. 7 (color online). Perturbation of an unstable solution B:
��ð0Þ=�0ð0Þ ¼ �0:01 and ~L ¼ 2. (a) Time variation of
~�ð~t; ~r ¼ 0Þ. (b) Snapshots of the metric functions A and � at
~t ¼ 0, 40, 80, 120, 160.

(a)

(b)

FIG. 8 (color online). Perturbation of the extremal solution C:
��ð0Þ=�0ð0Þ ¼ 0:01 and ~L ¼ 2. (a) Time variation of ~�ð~t; ~r ¼
0Þ. (b) Snapshots of the metric functions A and � at ~t ¼ 0, 20,
30, 37.
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two solutions are slightly different from each other because
Q is slightly changed by the perturbed field ��.

Secondly, we consider perturbation of an unstable solu-
tion B. We give two types of perturbations. Figure 6 shows
the case of positive perturbation, ��ð0Þ=�0ð0Þ ¼ 0:01.
(a) indicates that the field � diverges in the center.
(b) tells us that � approaches to zero and A diverges. In
the coordinate system (2.2), this behavior means a black
hole is formed. Figure 7 shows the case of negative per-
turbation, ��ð0Þ=�0ð0Þ ¼ �0:01. We find that the Q ball
diffuses most of mass and charge but not all. It becomes a
thick-wall Q ball with much smaller charge.

Thirdly, we consider perturbation of the extremal solu-
tion C with Qmax. Again, we give two types of perturba-
tions. Figure 8 shows the case of positive perturbation,
��ð0Þ=�0ð0Þ ¼ 0:01. Like the unstable solution B, this
Q ball collapses and becomes a black hole. Figure 9 shows
the case of negative perturbation, ��ð0Þ=�0ð0Þ ¼ �0:01.
The behavior in this situation is not analogous to that for B
in Fig. 7. The Q ball continues to oscillate without diffus-
ing mass or charge. The above results are also seen even if
we take other values of ~L and ��ð0Þ=�0ð0Þ as long as they
are not so large.
Finally, we ascertain that the dynamics is virtually un-

changed even if we choose � ¼ 10 000. Figure 10 shows
an example of the dynamical solutions, where except for �
the parameters are the same as in Fig. 8. We see that the Q
ball collapses and becomes a black hole in the same way as
in Fig. 8.
Thus, our numerical analysis has provided confirmation

of our analytic argument that inflation cannot take place in
the core of a Q ball. Furthermore, it indicates that the
extremal solution and unstable solutions near it are critical
solutions of black-hole formation [21]. In fact, this critical
phenomenon was already found for mini-boson stars
(K ¼ 0 in the model (1.1) by Hawley and Choptuik [20].
It is reasonable that Q balls with K < 0 and with K ¼ 0
share the same property in the case that Q ¼ Qmax, or
gravitational effects are so large.

VII. CONCLUDING REMARKS

We have addressed a question of what happens to Q
balls if Q is close to Qmax. First, without specifying a

(a)

(b)

FIG. 9 (color online). Perturbation of the extremal solution C:
��ð0Þ=�0ð0Þ ¼ �0:01 and ~L ¼ 2. (a) Time variation of
~�ð~t; ~r ¼ 0Þ and max½Að~t; ~rÞ�. (b) Snapshots of the metric func-
tions A at ~t ¼ 0, 40, 80, 120, 160, 200.

FIG. 10 (color online). Perturbation of the extremal solution
for � ¼ 10 000 and K ¼ �0:01. We choose ��ð0Þ=�0ð0Þ ¼
0:01 and ~L ¼ 2. The figure shows snapshots of the metric
functions A and � at ~t ¼ 0, 20, 30, 35.5.
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model, we have shown analytically that the core of an
equilibrium Q ball has attractive nature and inflation
cannot take place there. Next, for the Affleck-Dine model,
we have analyzed perturbation of equilibrium solutions
with Q � Qmax by numerical analysis of dynamical field
equations. We have found that the extremal solution with
Q ¼ Qmax and unstable solutions around it are critical solu-
tions, which means the threshold of black-hole formation.

Specifically, for initial data (5.8) with (5.9), a black hole is
formed if��> 0. If��< 0, a black hole is not formed, and
there are two types of evolutions. If the initial configuration is
very close to the extremalQ ball withQ ¼ Qmax, theQ ball
continues to oscillate without diffusing mass or charge. In

other cases, theQ ball diffuses most of mass and charge, and
becomes a thick-wall Q ball with much smaller charge.
Further study is necessary to understand detailed behav-

ior of these critical solutions. It is also interesting to
investigate how such behavior of critical solutions depends
on models Vð�Þ.
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