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Classical electrodynamics in flat 3þ 1 space-time has a very special retarded propagator ��ðx2Þ
localized on the light cone, so that a particle does not interact with its past field. However, this is an

exception, and in flat odd-dimensional space-times as well as generic curved spaces, this is not so. In this

work, we show that the so-called self-force is not only nonzero, but it matches (in 2þ 1 dimensions) the

radiation reaction force derived from the radiation intensity.
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I. INTRODUCTION

This paper deals with a century-old issue, the so called
‘‘radiation reaction’’ force, in classical electrodynamics
and in general relativity. On one hand, it is clear that energy
and momentum carried away by radiation from an accel-
erated charge should be compensated by a force which is
going to reduce the energy and momentum of the particle
accordingly. On the other hand, the particle in 3þ 1 flat
space-time does not interact with its own field because it is
fully concentrated on the light cone.

The relation to the energy loss in the nonrelativistic
dipole radiation and its relativistic extension leads to the
well-known Abraham-Lorentz-Dirac force:

f
�
4D ¼ 2e2

3
ðx:::� � €x� €x� _x

�Þ; (1.1)

where the dot is a derivative over the proper time d=d�.
Its derivation comes from ‘‘the large-distance’’ discussion,
based on the amount of the energy/momentum fluxes
through some distant surface (large sphere, etc.).
Although, in principle, such an approach can be/was ap-
plied for scalar/electromagnetic/gravitational radiations, in
some cases it is technically difficult. In particular, the
radiation and its corresponding ultrarelativistic sources
move through nearby paths in curved spaces, making the
radiation calculation highly nontrivial (see, e.g., Ref. [1]).
It would be more satisfactory logically and much easier
practically to use some local derivation. In this paper, we
provide examples in support of a local derivation.

We stumbled on this issue while trying to assess the
braking force for a gravitational radiation of an ultrarela-
tivistic particle moving in a particular curved space (the so-
called thermal or black hole anti-de Sitter (AdS5) in 4þ 1
dimensions). This problem is related to the practically
important problem of jet quenching in the quark-gluon
plasma. Since the calculations are very different in AdS5,
we relegate the analysis of jet quenching by braking radia-
tion to the companion paper [2].

The issue we study in this paper is whether one can
define and calculate the self-interaction force, using only
the particle’s own field related to its past trajectory. This

question was first addressed by Dirac for electrodynamics
in flat 3þ 1 dimensions [3] and extended to curved 3þ 1
dimensions by Dewitt [4]. In this work, we show that this is
also possible for electrodynamics in odd-dimensional
space-times, namely 2þ 1 and 4þ 1 dimensions.
The idea that it is possible was inspired by the work of

Mino, Sazaki and Tanaka and also Quinn and Wald
(MSTQW) in a gravitational setting [5,6]. In it, the remark-
able ‘‘self-force’’ expression was suggested:

maa ¼ m2ubuc
Z ��

�1
d�0ua0ub0

�
1
2raGbca0b0 � rbG

a
ca0b0

� 1
2u

audrdGbca0b0

�
; (1.2)

in which the integral is done over proper time and the past
world line of the particle until the regulated present time
��. G is the retarded Green function for the Einstein
equation with the particle as the source. Note that the
bracket is just the Christoffel force for a gravity perturba-
tion, induced by the past gravity field of the particle itself.
Does this expression (or its simpler analogs) actually

work? The first obvious try, for electromagnetic radiation
in 3þ 1 flat space-time, produces zero because in flat 4-
dimensional space-time, the retarded propagator is totally
localized on the light cone ðx� � r�Þðx� � r�Þ ¼ 0. There
are simply no points on the particle path that can intersect
the past light cone sustained by its present location! (It
produces the well-known Lienard-Wiechert expression for
the retarded fields we all learned/were taught in classical
electricity and magnetism courses). This upset can be
remedied by realizing that such a form of the retarded
propagator is not the generic case, and, in fact, it is nonzero
inside the light cone in other space-times. Therefore, we
decided to calculate it for the nearby space-time dimen-
sions and see if the results make sense. We also calculate
the radiative losses by the standard large-distance method
for comparison.
We assume that the motion of the charge is prefixed by

some external nonelectromagnetic forces and do not dis-
cuss its origin. We will define and compute the local back-
reaction force on a particle originating from its own
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electromagnetic fields. (Of course, this force should be a
part of the total force that determines the given charge
trajectory, but we do not specify its effect on the path).

Although the self-force is, in general, expected to be
nonlocal in character, and given by the integral over the
past trajectory, the situation is simplified in the highly
relativistic limit, � ! 1. Indeed, we will see that in this
case, it is defined by a small range in the proper time
interval �� 1

�2 , so that the leading � contribution depends

only on the local data of the motion. The resulting leading
� behavior of the self-force takes a similar form as in
Eq. (1.1) in terms of local derivatives of the motion, which
would be the odd-dimensional analogue of the Abraham-
Lorentz-Dirac force in 3þ 1 dimensions. Another feature
is that the integrals with the retarded propagator diverge
and need to be correctly regulated: we will see this feature
explicitly in our analysis shortly.

II. THE SELF-FORCE IN 2þ 1 DIMENSIONS

The case of 2þ 1 dimensions is the simplest one to
consider. (Below, we will see that it contains all the basic
features of the radiation reaction force in any odd space-
time dimensions because of some recursive relations be-
tween the propagators involved). As already mentioned in
the introduction, the main new feature in odd space-times
compared to the conventional flat 3þ 1-dimensional
space-time is that the massless retarded propagator from
a given source has support inside the light cone. This
implies that at a given moment/position of the charge,
the electromagnetic field acting on it obtains some contri-
butions from the past trajectory of the charge.

A moving charge e with a given trajectory x�ð�Þ gives a
relativistic current

j�ðxÞ ¼ e
Z

d��ð3Þðx� xð�ÞÞ _x�ð�Þ; (2.1)

where � is the proper time normalized as _x� _x� ¼ þ1. In

the covariant gauge @�A
� ¼ 0, the Maxwell equation

becomes

hA� ¼ j�; h � @�@
�; (2.2)

which has a formal retarded solution as

A�ðxÞ ¼
Z

d3x0�Rðx� x0Þj�ðx0Þ

¼ e
Z

d�0�Rðx� xð�0ÞÞ _x�ð�0Þ; (2.3)

using Eq. (2.1). �RðxÞ is the massless retarded propagator
in 2þ 1 dimensions, which is given by

�RðxÞ ¼ �ðx0Þ
2�

�ðx2Þffiffiffiffiffi
x2

p ; x2 � x�x�; (2.4)

which has support in the entire forward light cone. It is
clear that only the past trajectory contributes to the elec-

tromagnetic field at a given moment, and we are interested
in the self-force acting on the moving charge itself. This
amounts to computing the covariant Lorentz force

f�3D ¼ eF��ðxð�ÞÞ _x�ð�Þ; (2.5)

where F��ðxð�ÞÞ are the field strengths of the retarded
electromagnetic field (2.3) at proper time �, induced by
the past trajectory of the charge, x�ð�0Þ with �0 < �.
As usual, one encounters local divergences in computing

Eq. (2.5) coming from the region near �0 ¼ �, and one has
to regularize and absorb divergences by renormalizing
physical parameters of the moving charge such as its
mass. In this section, we regularize divergences covariantly
by cutting off proper time integral

Z �

�1
d�0 !

Z ��	

�1
d�0; (2.6)

with a small 	 > 0, and let 	 ! 0 after renormalizing the
particle mass. In the appendix, we will present another
regularization by averaging Eq. (2.5) over a small sphere
around xð�Þ of radius r ¼ 	 and taking 	 ! 0 after renor-
malization. The results are identical, which is at least a
useful consistency check of our results.
From Eqs. (2.3) and (2.5), and using the fact that

@��RðxÞ ¼ 2x��0
RðxÞ þ ��0 �ðx0Þ

2�

�ðx2Þffiffiffiffiffi
x2

p ; (2.7)

where

�0
RðxÞ ¼

�ðx0Þ
2�

�
�ðx2Þffiffiffiffiffi
x2

p � 1

2

�ðx2Þ
x2

ffiffiffiffiffi
x2

p
�
; (2.8)

the unregularized bare Lorentz force is

f
�
3D ¼ 2e2

Z
d�0�0

RðXÞX½�ð�; �0Þ _x��ð�0Þ _x�ð�Þ

þ e2�½�0
Z

d�0
�ðX0Þ
2�

�ðX2Þffiffiffiffiffiffiffi
X2

p _x��ð�0Þ _x�ð�Þ; (2.9)

where X�ð�; �0Þ � x�ð�Þ � x�ð�0Þ and ½�; �� ¼
��� ��. To identify the local divergences near �0 ¼ �,
we expand the quantities in terms of ð�� �0Þ � 	 as

X�ð�; �0Þ ¼ 	 _x�ð�Þ � 	2

2
€x�ð�Þ þ 	3

6
x
:::�ð�Þ þOð	4Þ;

_x�ð�0Þ ¼ _x�ð�Þ � 	 €x�ð�Þ þ 	2

2
x
:::�ð�Þ þOð	3Þ;

X2 ¼ 	2 � 	4

12
€x� €x� þOð	5Þ; (2.10)

using the identities such as _x� €x� ¼ 0 and _x�x
:::
� ¼ � €x� €x�.

From these, one obtains after some algebra

X½�ð�; �0Þ _x��ð�0Þ _x�ð�Þ ¼ 	2

2
€x�ð�Þ � 	3

3
ðx:::� þ €x� €x� _x

�Þð�Þ
þOð	4Þ (2.11)
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and

�0
RðXÞ ¼ ��ð	Þ

4�

�
1

	3
� �ð	Þ

	2

�
þO

�
1

	

�
; (2.12)

so that the proper time integral of the first term in Eq. (2.9)
near the 	 ¼ 0 region becomes

� e2

4�

Z
d	�ð	Þ

�
1

	
� �ð	Þ

�
€x�ð�Þ þOð	1Þ; (2.13)

which is logarithmically divergent. This divergence is
proportional to the covariant acceleration €x� and is readily
absorbed by renormalizing the mass

mren ¼ mbare � e2

4�
logð	Þ; (2.14)

where 	 here means a cutoff with a slight abuse of notation.
This is equivalent to having a counterterm added to
Eq. (2.9) so that the renormalized self-force now takes a
form

f�3D ¼ � e2

2�
lim
	!0þ

Z
d�0�ð�� �0 � 	Þ

�
�
X½�ð�; �0Þ _x��ð�0Þ _x�ð�Þ

ðX2Þð3=2Þ � 1

2

€x�ð�Þ
ð�� �0Þ

�
; (2.15)

considering only the first term in Eq. (2.9).
The finite contribution coming from the piece propor-

tional to �ð	Þ in Eq. (2.13) is ambiguous up to the value of
�ð0Þ. In fact, the second term in Eq. (2.9) gives rise to a
divergence which is also proportional to �ð0Þ. One can
choose to have �ð0Þ ¼ 0, removing these ambiguities as
a choice of regularization. Alternatively, once we introduce
a cutoff �� �0 > 	 they simply do not appear for any finite
	 > 0, and hence the limit 	 ! 0þ, after taking care of the
logarithmic divergence via Eq. (2.14), is insensitive to
them.

Unlike in 3þ 1 dimensions where the self-force is the
local Abraham-Lorentz-Dirac force (1.1), in 2þ 1 dimen-
sions, the self-force (2.15) is nonlocal and receives contri-
butions from the entire past tail of the charged particle.
This nonlocality is due to the peculiar fact that the retarded
propagator (2.4) has support on the entire forward part of
the light cone, as we noted earlier.

However, for ultrarelativistic motion, we now show that
the leading � behavior of Eq. (2.15) is completely local.
Let us denote the nth derivative of x� with respect to
proper time � as x�ðnÞ � dnx�

d�n . In the large-� limit, x�ðnÞ is
of order Oð�nÞ. In general, for any combinations of x

�
ðnÞ,

the powers of � simply add up:

�ixðniÞ � Oð�
P
i

niÞ; (2.16)

where we allow the inequality due to exceptions of some
lowest contractions such as _x� _x� ¼ 1 and _x� €x� ¼ 0.

These exceptions will not affect our derivation and con-

clusion because what will be important is that the maxi-
mum powers of � is

P
ini. We will prove that the leading �

behavior of Eq. (2.15) is coming from the proper time
interval �� �0 � 	� 1

�2 : we will first assume this and

expand Eq. (2.15) in small 	, then show the consistency
of the assumption in our final results.
Using Eqs. (2.10) and (2.16), one can show the

expansion

X½�ð�; �0Þ _x��ð�0Þ _x�ð�Þ ¼ 	2

2
€x�ð�Þ � 	3

3
ðx:::� þ €x� €x� _x

�Þð�Þ
þOð	4�6Þ; (2.17)

X 2 ¼ 	2 � 	4

12
€x� €x� þOð	5�5Þ: (2.18)

Inserting the expansion into Eq. (2.15) yields

1

2	

�
1

ð1� 	2

12
€x� €x�Þð3=2Þ

� 1

�
€x� � 1

3ð1� 	2

12
€x� €x�Þð3=2Þ

� ðx:::� þ €x� €x� _x
�Þ þOð�4Þ: (2.19)

In estimating Oð�4Þ, we already used the assumption
	� 1

�2 . This is justified because of the expression in the

denominator which effectively cuts off the 	 integral and
confines it to 	� ð €xÞ�1 � 1

�2 . The dominant contribution in

the large-� limit then comes from the second line, which is
Oð�5Þ, while others are all Oð�4Þ, so that the leading self-
force becomes

f�3D � e2

6�

�Z 1

0

d	

ð1� 	2

12
€x� €x�Þð3=2Þ

�
€x� €x� _x

� þOð�2Þ

¼ � e2ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi� €x� €x�
p

_x� þOð�2Þ; (2.20)

which is Oð�3Þ. This is our 2þ 1-dimensional version of
the Abraham-Lorentz-Dirac force.
We apply our result to the ultrarelativistic circular

motion:

x�ð�Þ ¼ ð��; 
 cosð�!�Þ; 
 sinð�!�ÞÞ; (2.21)

where 1
�2 ¼ ð1� v2Þ � 1 with v ¼ 
! � 1. Because

€x� €x� ¼ �
2!4�4 � �!2�4, the proper time integral is
confined to

j�0 � �j � 1

!�2
� 1; (2.22)

as discussed before, and the leading covariant self-force is

f�3D ¼ � e2ffiffiffi
3

p
�
!�2 _x�; (2.23)

which is longitudinal. The common (noncovariant) longi-
tudinal drag force is
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~f L � � e2ffiffiffi
3

p
�
!�2 ~v: (2.24)

Therefore, the external force that is needed to maintain the
circular motion is

~f ext ¼ mren

d2 ~x

dt2
� ~fL; (2.25)

and the rate of work done to the particle is given by

P ¼ ~fext 	 ~v � e2ffiffiffi
3

p
�
!�2; (2.26)

where we used d2 ~x
dt2

	 ~v ¼ 0 for the circular motion.

In Sec. (IV), we will compute the far-field radiation of
this synchrotron motion and find an agreement between the
total power radiated at large distance and the work done
locally to the charge (2.26).

III. LOCAL SELF-FORCE IN 4þ 1 DIMENSIONS

In this section, we will perform similar computations as
in the previous section but in 4þ 1 dimensional space-
time. We will, therefore, be brief in explaining the details
of the derivation while presenting our results. The
Maxwell’s equations sourced by a charge e in the radiative
gauge are solved as before,

A�ðxÞ ¼ e
Z

d�0�Rðx� xð�0ÞÞ _x�ð�0Þ; (3.1)

where the retarded propagator in 4þ 1 dimensions is

�RðxÞ ¼ ��ðx0Þ
2�2

�
�ðx2Þffiffiffiffiffi
x2

p � 1

2

�ðx2Þ
x2

ffiffiffiffiffi
x2

p
�
: (3.2)

Note the analogy with Eq. (2.4), which, in fact, stems from
the generic relationship

�4þ1ðxÞ ¼ � 1

�

d

dx2
�2þ1ðxÞ; (3.3)

which is readily shown from the momentum space
representation of the retarded propagators and the recur-
sive property of the integer Bessel functions. Modulo
normalizations, Eq. (3.3) extends to all odd space-time
dimensions.

From Eqs. (3.1) and (3.2), one easily writes down the
unregularized self-force similar to Eq. (2.9) before as

f�5D ¼ 2e2
Z

d�0�0
RðXÞX½�ð�; �0Þ _x��ð�0Þ _x�ð�Þ; (3.4)

where in 4þ 1 dimensions, we have

�0
RðxÞ ¼ � �ðx0Þ

2�2

�
�0ðx2Þffiffiffiffiffi

x2
p � �ðx2Þ

ðx2Þð3=2Þ þ
3

4

�ðx2Þ
ðx2Þð5=2Þ

�
: (3.5)

In Eq. (3.4), we have dropped terms that are proportional to
�ðX0Þ due to our regularization scheme that we explain in
the following. However, we should caution the readers

that we have not checked the regularization scheme inde-
pendency of our results, contrary to the previous 2þ
1-dimensional case.
Wewill regularize the divergences appearing in Eq. (3.4)

by replacing �0
RðxÞ with

�0	
R ðxÞ ¼ ��ðx0Þ

2�2

�
�0ðx2 � 	2Þffiffiffiffiffi

x2
p � �ðx2 � 	2Þ

ðx2Þð3=2Þ

þ 3

4

�ðx2 � 	2Þ
ðx2Þð5=2Þ

�
; (3.6)

and taking the 	 ! 0 limit after removing divergences by
renormalization. To identify the divergences in Eq. (3.4),
the necessary small 	 expansion reads as

X½�ð�; �0Þ _x��ð�0Þ _x�ð�Þ

¼ 	2

2
€x�ð�Þ � 	3

3
ðx:::� þ €x� €x� _x

�Þð�Þ

þ 	4

8

�
x
::::� � x

::::� _x� _x
� þ 2

3
€x� €x� €x

�

�

� 	5

30

�
xð5Þ� � xð5Þ� _x� _x� � 5

4
x
::::� _x� €x

�

�
þOð	6�8Þ;

(3.7)

where xð5Þ � d5x
d�5

. Upon inserting Eq. (3.7) into Eq. (3.4),

the divergences of the self-force are found to be

f
�
5D � e2

16�2

1

	2
€x� þ 3e2

32�2
logð	Þ

�
�
x
::::� � x

::::� _x� _x
� þ 2

3
€x� €x� €x

�

�
: (3.8)

The first leading divergence can readily be absorbed into
the renormalized mass

mren ¼ mbare � e2

16�2

1

	2
; (3.9)

whereas the nature of the second term of logarithmic
divergence is unclear to us. We will simply choose our
regularization scheme to remove it minimally. We expect
this minimal subtraction to be consistent with the far-field
radiation formulae, although wewill only check this for the
2þ 1-dimensional case below.
After removing the divergences, the finite contribution

can be computed in the leading � approximation. One finds
that the �ðX2Þ and �0ðX2Þ terms in �0

RðXÞ in Eq. (3.4) give
us the leading �6 contributions to the self-force,

f�5D � e2

8�2
ðx::::� þ €x� €x� €x

� � x
::::� _x� _x

�Þ þOð�5Þ; (3.10)

which is completely local. In deriving the above, one has to
expand

X 2 ¼ 	2 � 	4

12
€x� €x� � 	5

12
ðx::::� _x� þ 2€x�x

:::
�Þ þOð	6�6Þ:
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However, for the circular motion that we are interested in,
the longitudinal component of the above force that is
related to the rate of work done simply vanishes.
Therefore, we are led to seek the next leading term
in Oð�5Þ.

The next leading term is quasilocal; that is, it comes
from the region 	� 1

�2 as was the case in 2þ 1 dimensions

before. It is given by

� e2

40�2

�Z 1

0
d	

1

ð1� 	2

12
€x� €x�Þð5=2Þ

�

�
�
xð5Þ� _x� _x�þ35

8
x
::::� _x� €x

�þ25

4
€x�x
:::
� €x

�

�

¼� e2

10
ffiffiffi
3

p
�2

ðxð5Þ� _x� _x�þ35
8 x
::::� _x� €x

�þ25
4
€x�x
:::
� €x

�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi� €x� €x�
p : (3.11)

Applying the above to the ultrarelativistic synchrotron
motion, we see that only the first term contributes, and we
obtain the leading longitudinal force as

f�5D �� e2

10
ffiffiffi
3

p
�2

�4!3 _x�; (3.12)

which leads to the rate of work done to the system,

P ¼ e2

10
ffiffiffi
3

p
�2

�4!3: (3.13)

IV. FAR-FIELD SYNCHROTRON RADIATION IN
2þ 1 DIMENSIONS

In this section, we compute the far-field radiation of the
ultrarelativistic circular motion and check that the resulting
total rate of radiation matches the rate of work done locally
to the charge (2.26), which is our first nontrivial consis-
tency check for the self-force approach and the subtrac-
tions we have applied.

The retarded gauge field from a pointlike charge
motion is

A�ðt; ~xÞ ¼ e

2�

Z t
ðt; ~xÞ

�1
dt0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2 � ð ~x� ~x0ðt0ÞÞ2p dx0�

dt0
;

where t
ðt; ~xÞ< 0 is determined by the intersection be-
tween the past light cone from ðt; ~xÞ and the particle
trajectory

ðt� t
Þ2 � ð ~x� ~x0ðt
ÞÞ2 ¼ 0: (4.1)

For the synchrotron motion, we are interested in

x� ¼ ðt; 
 cosð!tÞ; 
 sinð!tÞÞ
¼ ð��; 
 cosð�!�Þ; 
 sinð�!�ÞÞ; (4.2)

the field strengths can be written explicitly as in the ap-
pendix. We will start our discussion with the formulae
(A10)–(A12). We are interested in the far-field asymptotics

at r ! 1, where we introduce a polar coordinate system
ðr; �Þ on the spatial 2-dimensional plane. The expression
for the total far-field radiation is

dE

dt
¼ lim

r!1r
Z 2�

0
d�T0in̂

i

¼ lim
r!1r

Z 2�

0
d�F12ðF01 sin�� F02 cos�Þ; (4.3)

where n̂ ¼ ðcos�; sin�Þ is the unit radial vector.
To compute the leading large r asymptotics of the field

strengths, it is useful to note

t0
 ¼ �rþOð1Þ; @t0

@t

¼ 1

1þ v sinð!t0
 ��Þ ;
@t0

@x1

¼ � cos�

1þ v sinð!t0
 ��Þ ;
@t0

@x2

¼ � sin�

1þ v sinð!t0
 ��Þ ;

(4.4)

in the r ! 1 limit. These quantities appear in the numer-
ators of the field strength expressions, and one can see from
the structure of the denominators in the above that in the
limit v ! 1, these quantities are highly peaked around the
angle �c determined by the condition

�c ¼ !t0
ð�cÞ þ �

2
: (4.5)

We note that !t0
ð�Þ is the azimuthal angle of the particle
at the intersection of the past light cone from ðr;�Þ. This
condition has a simple geometrical meaning: the light
pulse emitted from one moment of the trajectory is highly
collimated in the direction of the instant velocity and
travels with the speed of light.
Below, we will see that the leading � contribution is

indeed confined in the small angular range ��� 1
�3 around

�c. For that purpose, it will be useful to have the formula

@t0

@�

¼ 
 sinð!t0
 ��Þ
1þ v sinð!t0
 ��Þ ; (4.6)

so that defining a new convenient angular variable a in-
stead of �,

a � !t0
ð�Þ ��þ �

2
; (4.7)

we have a relation

da

d�
¼ � 1

1þ v sinð!t0
 ��Þ ¼ � 1

1� v cosa
; (4.8)

which can be integrated as

a� v sina ¼ �ð���cÞ; (4.9)

using the boundary condition (4.5). As � runs in the range
ð0; 2�Þ, a also runs one cycle ð0; 2�Þmonotonically with a
very steep gradient of order Oð�2Þ around a small region
near a ¼ 0 (� ¼ �c) which can be seen in Eq. (4.8).
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Therefore, the width �a of the collimated light pulse near
a ¼ 0 will translate to the width in �:

��� �a

�2
; (4.10)

near the center � ¼ �c. We will see shortly that �a� 1
� ,

leading to ��� 1
�3 .

Another important large-r expansion is the one for the
proper distance,

ðt0Þ2 � ð ~x� ~x0Þ2 ¼ ðt0Þ2 � r2 þ 2r
 cosð!t0 ��Þ � 
2;

which appears in the denominators in the field-strength
expressions. Since the t0 integration starts from t0
 to �1,
it is more convenient to shift t0 integration by

t0 ! �tþ t0
; (4.11)

upon which t 2 ð0;1Þ, and the proper distance becomes

t2 � 2t0
tþ 2r
 sinða�!tÞ � 2r
 sina; (4.12)

where we used Eq. (4.7) and the definition of t0
 (4.1). Note
that t
 ¼ �rþOð1Þ in r ! 1, and one can consider two
parametric regions of the t integral: (1) t � jt0
j � r and
(2) t � jt0
j � r. For (1), one can clearly neglect the t2 term
in Eq. (4.12), and the proper distance is OðrÞ. For (2), the
proper distance becomes of order Oðr2Þ, and considering
that this enters the denominators of the field-strength ex-
pressions, we see that the region (2) of t integral gives us a
subdominant large-r behavior of field strengths. One con-
cludes that the leading large-r value of field strengths
arises only from the range (1), and, therefore, we can
neglect the t2 term in Eq. (4.12) when computing the
leading large r asymptotics, and the proper distance can
simply be replaced by

2rðtþ 
 sinða�!tÞ � 
 sinaÞ; (4.13)

for this purpose. We note that the large-r limit is indepen-
dent of the large-� limit.

It is straightforward to use Eqs. (A10)–(A12) to compute
the large-r asymptotics of the field strengths. After some
algebra, one finds that

F12 ¼ ðF01 sin�� F02 cos�Þ (4.14)

at leading order in r ! 1, and

F12 ! e

2�

v!ð1=2Þffiffiffiffiffi
2r

p 1

1� v cosa

�
Z 1

0
dt

� � cosða� tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ v sinða� tÞ � v sina

p þ 1

2

� v sinða� tÞðcosða� tÞ � cosaÞ
ðtþ v sinða� tÞ � v sinaÞð3=2Þ

�
; (4.15)

where we have rescaled t by!t ! t. The above expression
is a general result for arbitrary velocity v ¼ 
! and the
angle a (or equivalently �).

Now, we need to find the leading � behavior of the total
radiated power (4.3),

dE

dt
¼ lim

r!1r
Z 2�

0
da

��������
da

d�

��������
�1jF12j2; (4.16)

where we changed the angle integration from � to a for
convenience. By careful inspection of the above integral, it
can be shown that the leading � behavior of Oð�2Þ arises
from the narrow range of ð�t; �aÞ � 1

� around ðt; aÞ ¼ 0,

and one can, for example, expand the denominator as

tþ v sinða� tÞ � v sina � 1

2

�
1

�2
þ a2

�
t� 1

2
at2 þ 1

6
t3;

up to the relevant order. One also expands��������
da

d�

��������¼
1

1� v cosa
� 2

1
�2 þ a2

; (4.17)

as well as the numerator, and by rescaling the integration
variables ðt; aÞ ! 1

� ðt; aÞ, the leading � piece can easily be

shown to reduce to

dE

dt
¼ e2

ð2�Þ2 �
2!

Z 1

�1
da

1

1þ a2
jfðaÞj2; (4.18)

where

fðaÞ ¼ @a

�Z 1

0
dt

ða� tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð1þ a2Þt� 1

2at
2 þ 1

6 t
3

q
�
: (4.19)

The integral

Z 1

�1
da

1

1þ a2
jfðaÞj2 (4.20)

is ð2�Þ 2ffiffi
3

p up to 4 digits numerically. Assuming this nu-

merical result to be exact, we obtain for the total power
radiated

10 5 5 10
a

0.5

1.0

1.5

2.0

2.5

3.0

3.5

dP

da

FIG. 1 (color online). The angular distribution of radiated
power in the leading � approximation. See Eq. (4.9) for the
relation between a (more precisely a

� ) and �.
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dE

dt
¼ e2ffiffiffi

3
p

�
!�2; (4.21)

which agrees precisely with the rate of work done locally
by the self-force (2.26) derived in Sec. II.

For completeness, in Fig. 1, we plot the angular distri-
bution of the radiation power, dPda ¼ 1

1þa2
jfðaÞj2, as a func-

tion of a (recall that the true a is given by a
� ). The plot can

be translated to the angular distribution in � using the
relation (4.9).

V. SUMMARY

We have shown that, unlike in the 3þ 1-dimensional
space-time, the self-force can be defined to be nonzero in
odd-dimensional space-times, as the retarded propagators
in these cases contain a theta-function part or inside-the-
light-cone contributions.

Furthermore, in the ultrarelativistic case, it can be put in
local form, depending only on the instantaneous deriva-
tives of the particle motion. We have explicitly derived
such expressions for the self-force, in 2þ 1 and 4þ 1
dimensions. In the former case, we have also calculated
the radiation intensity at large distances and checked that it
matches the work done by the self-force numerically. We
expect the same in 4þ 1 dimensions with minimal
subtraction.

We think it is perhaps the first instance of an entirely
local and consistent derivation of the radiation-braking
force. Although the MSTQW approach [5,6] is 15 years
old and it had inspired our work, we are not aware of its
explicit tests in the gravitational setting either. Needless to
say, much more work is needed in order to find the exact
applicability domain of the self-force approach in flat and
curved space-times. In Ref. [2], we have suggested that the
MSTQWequation when adapted to thermal AdS may be of
relevance to jet quenching in ultrarelativistic collisions
such as Relativistic Heavy Ion Collider and LHC.
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APPENDIX: ALTERNATIVE REGULARIZATION
OF THE SELF-FORCE IN 2þ 1 DIMENSIONS

In this appendix, we present another way of regularizing
the self-force in 2þ 1 dimensions, by averaging the
Lorentz force

f
�
3D ¼ eF��ðxð�ÞÞ _x�ð�Þ (A1)

around a small circle of radius r and taking the r ! 0 limit
after renormalizing the diverging mass. We will restrict
ourselves to the case of ultrarelativistic circular motion for
simplicity,

x�ð�Þ ¼ ð��; 
 cosð�!�Þ; 
 sinð�!�ÞÞ; (A2)

where v ¼ 
! � 1, and will find that the leading � result
of the finite self-force agrees with the one in Sec. II, which
is a confirming check for our results.
Starting from the expression of retarded gauge

potential (2.3),

A�ðxÞ ¼ e
Z

d�0�Rðx� xð�0ÞÞ _x�ð�0Þ; (A3)

with

�RðxÞ ¼ �ðx0Þ
2�

�ðx2Þffiffiffiffiffi
x2

p ; x2 � x�x�; (A4)

we need to compute field strengths at radius r from the
position of the charge at � ¼ 0 in the 2-dimensional spatial
plane ~x ¼ ðx1; x2Þ. Let us show the computation F01 ¼
@0A1 � @1A0 in some detail to set up notations and proce-
dures, and we will present other components of F�� at the

end without much details. The expression (A3) gives us

A0ðt; ~xÞ ¼ e

2�

Z t0
ðt; ~xÞ

��

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2 � ð ~x� ~x0Þ2p ; (A5)

where ~x0 � ~xðt0Þ is the past trajectory (A2) parameterized
here in terms of regular time t0 ¼ ��0, and the integration
starts from t0
ðt; ~xÞ< 0, which is determined by the inter-
section between the past light cone from the position ðt; ~xÞ
and the particle trajectory,

ðt� t0
Þ2 ¼ ð ~x� ~x0ðt0
ÞÞ2: (A6)

The expression itself is infrared-divergent, and we intro-
duced a cutoff�, but the field strengths which are physical
are completely IR-finite as one takes � ! 1 at the end, as
will be clear in the following. To compute @1A0, one needs
to evaluate the variation of Eq. (A5) with respect to x1 !
x1 þ �x1. The variation will shift both the integration
range through t0
 and the integrand. The former variation
naively gives us the contribution which is proportional to
the value of the integrand at t0 ¼ t0
, which happens to be
divergent due to Eq. (A6). The variation of the integrand
also gives us an integral which is divergent near t0 ¼ t0
.
However, since the original (A5) is completely finite near
t0 ¼ t0
, these divergences are mere artifacts of improper
manipulations, and, in fact, the two divergences cancel
with each other. A better way of handling them is the
following. From the expression of A0 at ~xþ �~x,

A0ð ~xþ�~xÞ¼ e

2�

Z t0
þð@t0
=@~xÞ	�~x

��

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt� t0Þ2�ð ~xþ�~x� ~x0Þ2p ;

(A7)

one shifts the t0 integral by t0 ! t0 þ @t0

@~x 	 �~x so that the new

t0 integral starts at the same t0
 while the integrand gets
additional contributions:
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A0ð ~xþ �~xÞ ¼ e

2�

Z t0


��

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt� t0 � @t0


@~x 	 �~xÞ2 � ð ~xþ �~x� ~x0 � @~x0
@t0

@t0

@~x 	 �~xÞ2

q ; (A8)

which is free from the divergence near t0 ¼ t0
. There is
also a shift in the IR cutoff

� ! �� @t0

@~x

	 �~x; (A9)

but it can be easily shown that it becomes irrelevant in the
final results, and we omit it in Eq. (A8).

Taking the difference between Eqs. (A8) and (A5) to

first order in �~x, one readily computes ~@A0 as (after putting
t ¼ 0)

~@A0 ¼ �e

2�

Z t0


�1
dt0

@t0

@~x t

0 � ð ~x� ~x0Þ þ ð ~x� ~x0Þ 	 @~x0@t0
@t0

@~x

ððt0Þ2 � ð ~x� ~x0Þ2Þð3=2Þ ;

(A10)

where we removed � to infinity as the final integral is
finite.

By similar steps, one obtains

@0 ~A ¼ �e

2�

Z t0


�1
dt0

� @2 ~x0
@t02

@t0

@tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt0Þ2 � ð ~x� ~x0Þ2p

þ
@~x0
@t0 ðð1� @t0


@t Þt0 � ð ~x� ~x0Þ 	 @~x0@t0
@t0

@t Þ

ððt0Þ2 � ð ~x� ~x0Þ2Þð3=2Þ
�
: (A11)

The above Eqs. (A10) and (A11) give us the field strength

F0i ¼ @0Ai � @iA0, i ¼ 1, 2. The expressions for
@t0

@t and

@t0

@~x

that appear in the above can be easily obtained from the
relation (A6). Finally, F12 ¼ @1A2 � @2A1 is written as

F12 ¼ e

2�

Z t0


�1
dt0

� 	ij
@2 ~x0i
@t02

@t0

@xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt0Þ2 � ð ~x� ~x0Þ2p

� 	ij
@ ~x0i
@t0 ð@t

0

@xj

t0 � ðxj � x0jÞ þ ð ~x� ~x0Þ 	 @~x0@t0
@t0

@xj
Þ

ððt0Þ2 � ð ~x� ~x0Þ2Þð3=2Þ
�
;

(A12)

where 	12 ¼ �	21 ¼ þ1. We will apply the above formu-
lae to our case of circular motion (A2).

We then consider a small circle of radius r from the
position of the charge at t ¼ 0; that is, ð
; 0Þ. We let
the azimuthal angle of the circle be �, so that a point on
the circle has the coordinate ~x ¼ ð
þ r cos�; r sin�Þ. We
will compute the Lorentz force on the points in the circle
and take an average over � before taking the limit r ! 0.
Noting the 3-velocity dx�

d� � u� ¼ �ð1; 0; vÞ at t ¼ 0 (re-

call v ¼ 
!), let us first look at the transverse component
of the self-force:

f1 ¼ e�ðF01 � vF12Þ: (A13)

Near r ! 0, the useful expansions of some quantities are

t0
 ¼�2xrþOðr2Þ; x��ðvsin�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2cos2�

q
Þ;

@t0

@x1

¼ cos�

xþvsin�
;

@t0

@x2

¼ sin���2vx

xþvsin�
;

@t0

@t

¼ �2x

xþvsin�
; (A14)

and from these, one can derive that the �-averaged trans-
verse force has a divergence near r ! 0 from the term

f1 � e2�2v!

2�

Z �2xr
dt0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt0 � �2rxÞðt0 � �2rx0Þp

� e2�2v!

2�
log

�
1

r

�
¼ � e2

2�
log

�
1

r

�
€x1; (A15)

where x0 ¼ �ðv sin�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2cos2�

p Þ> 0. In deriving
this, we have used an important expansion:

ðt0Þ2 � ð ~x� ~x0Þ2 � 1

�2
ðt0 � �2rxÞðt0 � �2rx0Þ; (A16)

near the r ! 0, t
0
r �Oð1Þ limit, which gives 1 factor of � in

Eq. (A15). This divergence is precisely of the same char-
acter of the mass renormalization we encountered in
Sec. II, and one can absorb it by

mren ¼ mbare þ e2

2�
log

�
1

r

�
: (A17)

We are more interested in the leading � behavior of
longitudinal self-force,

f2 ¼ e�F02; (A18)

and using Eq. (A14), averaging over � and taking the
r ! 0 limit, one arrives at a finite expression,

f2 ¼ � e2�3

2�

Z 1

0
dt0

�
v! sinð!t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt0Þ2 � 4
2sin2ð!t0
2 Þ

q

þ 
ð1� v2 cosð!t0ÞÞðsinð!t0Þ �!t0Þ
ððt0Þ2 � 4
2sin2ð!t0

2 ÞÞð3=2Þ
�
; (A19)

where we changed the variable t0 ! �t0 in the integration.
The last step is to find a leading � behavior of Eq. (A19).
Rescaling !t0 ! t, we have

f2 ¼ � e2�3v!

2�

Z 1

0
dt

�
sintffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � 4v2sin2ðt2Þ
q

þ ð1� v2 costÞðsint� tÞ
ðt2 � 4v2sin2ðt2ÞÞð3=2Þ

�
: (A20)
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To study the large-� behavior of the integral in Eq. (A20)
replacing v2 ¼ 1� 1

�2 , one writes the integral after some

manipulations:

Z 1

0
dt@t

� ð1� costÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 4sin2ðt2Þ

q
�
þ 1

�2

�
Z 1

0
dt

4 sintsin2ðt2Þ þ ðsint� tÞ cost
ðt2 � 4sin2ðt2Þ þ 4

�2 sin
2ðt2ÞÞð3=2Þ

; (A21)

neglecting additional Oð��2Þ contributions. The first inte-
gral is completely localized at t ¼ 0, giving a value of

� ffiffiffi
3

p
. In the second integral, one can show that a leading

Oð1Þ result comes from a range of small t�Oð1�Þ, and one
has an approximation in the denominator,

t2 � 4sin2
�
t

2

�
þ 4

�2
sin2

�
t

2

�
� t2

�2
þ 1

12
t4; (A22)

where higher-order terms can be shown to be irrelevant in
the leading � contributions. The t4 term in Eq. (A22)

effectively cuts off the t integral to be t � 1
� , which we

have seen before in Sec. II (recall the proper time is � ¼
t
� ). The small t expansion for the numerator up to relevant

order is

4 sintsin2
�
t

2

�
þ ðsint� tÞ cost � 5

6
t3; (A23)

giving us the second integral

1

�2

Z 1

0
dt

5
6 t

3

ð t2
�2 þ 1

12 t
4Þð3=2Þ ¼

5

3

ffiffiffi
3

p
: (A24)

In total, the integral in Eq. (A20) gives us ð�1þ 5
3Þ

ffiffiffi
3

p ¼
2ffiffi
3

p þOð��2Þ, so that the leading � result of f2 is

f2 �� e2!�3ffiffiffi
3

p
�

�� e2!�2ffiffiffi
3

p
�

_x2; (A25)

which agrees precisely with Eq. (2.23) in Sec. II.
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