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In Phys. Rev. D 84, 107301 (2011), we presented our results on using a general relativistic two-fluid

formalism to study the hydrostatic equilibrium configuration of an admixture of degenerate dark

matter and normal nuclear matter. In this work, we present more analysis to complement our

previous findings. We study the radial oscillation modes of these compact stars in detail. We find

that these stars in general have two classes of oscillation modes. For a given total mass of the star,

the first class of modes is insensitive to the dark-matter particle mass. They also reduce properly to

the oscillation modes of the corresponding ordinary neutron star, with the same total mass, when the

mass fraction of dark matter tends to zero. On the other hand, the second class of modes is due

mainly to the dark-matter fluid. In the small dark-matter mass fraction limit, these modes are

characterized purely by the oscillations of dark matter, while the normal matter is essentially at rest.

In the intermediate regime where the mass fractions of the two fluids are comparable, the normal

matter oscillates with the dark matter due to their coupling through gravity. In contrast to the first

class of modes, the frequencies of these dark-matter dominated modes depend sensitively on the

mass of dark-matter particles.

DOI: 10.1103/PhysRevD.85.103528 PACS numbers: 95.35.+d, 97.60.Jd

I. INTRODUCTION

Dark matter (DM) has gained more support for its ex-
istence from observations [1], such as galactic rotation
curves [2–4], stability of bars in spiral galaxies [5–7],
cosmological structure formation [8], and gravitational
lensing [9]. However, the properties of DM particles, in-
cluding their mass and interactions, are still largely un-
known. Recent data from the DAMA [10] and CoGeNT
[11] experiments are consistent with detecting light DM
particles with mass �10 GeV, which are incompatible
with the null results from CDMS [12] and XENON [13].
On the theoretical side, it has been suggested that isospin-
violating DM may be the key to reconciling these experi-
mental results [14,15].

Despite the uncertainties on DM properties, it is still
interesting to ask how DM would affect stellar structure
and whether one could in turn make use of stellar objects to
put constraints on DM. The role of DM in the first genera-
tion stars as stellar seeds, together with the possibility of
DM annihilation as the first phase in stellar evolution, are
examined in [16–19]. The impacts of DM on the evolution
and formation of main-sequence stars are also examined
[20–22]. The accretion and accumulation of non-self-
annihilating DM particles in the cores of planets in our
solar system and some pulsars are proposed to cause
changes in their orbits [23–25]. Similarly, the effects of
low-mass (� 5 GeV) asymmetric DM particles on the
solar composition, oscillations, and neutrino fluxes have
been considered recently [26–28].

Besides main-sequence stars, one may infer DM particle
properties through their effects on compact stars [29,30].
The effects of DM annihilation on the cooling curves of

compact stars are also studied in [31–33]. The response of
neutron stars (NS) under non-self-annihilating DM mod-
els, such as asymmetric matter [34] and mirror matter [35],
have recently been studied. Neutron stars with DM cores
are inherently two-fluid systems where the normal matter
(NM) and DM couple essentially only through gravity. The
technique used in recent studies of the structure of these
dark-matter admixed neutron stars (DANS) is based on an
ad hoc separation of the Tolman-Oppenheimer-Volkoff
equation into two different sets for the normal and dark
components inside the star [33,35,36]. This approach is
motivated by the similarity of the structure equations be-
tween the relativistic and Newtonian ones, but it is not
derived from first principle. In a previous paper [37], we
made use of a general relativistic two-fluid formulation to
study the equilibrium properties of DANS and proposed
the existence of a new class of compact stars which are
dominated by DM. These stars in general have a small NM
core with radius of a few kilometer embedded in a ten-
kilometer-sized DM halo. In the present work, we describe
the formulation of two-fluid DANS in greater detail.
We present additional analysis to study the equilibrium
properties and the radial oscillation modes of these stars
in detail.
The outline of this paper is as follows: In Sec. II we

present the relevant equations used to study the static
equilibrium structure, moment of inertia, and radial oscil-
lation modes of DANS. In Sec. III we study the static
equilibrium properties of DANS. Section IV discusses
the stability of DANS and their radial oscillation modes
in detail. Finally, we summarize our results in Sec. V. We
use units where G ¼ c ¼ 1 unless otherwise noted.
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II. TWO-FLUID FORMALISM FOR DANS

A. Static equilibrium models

The general relativistic two-fluid formalism was devel-
oped by Carter and his collaborators (see, e.g., [38]). It has
been employed in the study of superfluid neutron stars
(e.g., [39–42]), where the two fluids are normal and super-
fluid nuclear matter. In this work, we adopt the formulation
in [39] to study DANS. Here we shall briefly summarize
the equations we used and refer the reader to [39] for more
details. To find the structure of a relativistic two-fluid star,
one needs Einstein’s equations G�� ¼ 8�T�� coupled

with a matter source. In the two-fluid formulation, the
matter source is governed by the master function
�ðn2; p2; x2Þ, which is formed by the scalars n2 ¼
�n�n

�, p2 ¼ �p�p
�, and x2 ¼ �n�p

�. The four vectors
n� and p� are the conserved NM and DM number density
currents, respectively.1 The master function is a two-fluid
analog of the equation of state (EOS) and�� is taken to be
the thermodynamics energy density.

For a static and spherically symmetric spacetime ds2 ¼
�e�ðrÞdt2 þ e�ðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ, the Einstein
equations and the fluid equations of motion reduce to the
following differential equations:

�0 ¼ 1� e�

r
� 8�re��ðn; pÞ; (1)

�0 ¼ � 1� e�

r
þ 8�re��ðn; pÞ; (2)

A0
0p

0 þ B0
0n

0 þ 1
2ðBnþ ApÞ�0 ¼ 0; (3)

C0
0p

0 þ A0
0n

0 þ 1
2ðAnþ CpÞ�0 ¼ 0; (4)

where the primes refer to derivative with respect to r and

A ¼ � @�

@x2
; B ¼ �2

@�

@n2
; C ¼ �2

@�

@p2
: (5)

The coefficients A0
0, B

0
0, and C0

0 are given by

A0
0 ¼ Aþ 2

@B

@p2
npþ 2

@A

@n2
n2 þ 2

@A

@p2
p2 þ @A

@x2
pn;

(6)

B0
0 ¼ Bþ 2

@B

@n2
n2 þ 4

@A

@n2
npþ @A

@x2
p2; (7)

C0
0 ¼ Cþ 2

@C

@p2
p2 þ 4

@A

@p2
npþ @A

@x2
n2: (8)

The generalized pressure � in Eq. (2) is computed by

�ðn; pÞ ¼ �þ�nþ �p; (9)

where � ¼ Bnþ Ap and � ¼ Cpþ An.
Using Eqs. (1)–(4), one may calculate numerically the

structure of a star by choosing suitable boundary condi-
tions, namely, the central densities of the two fluids nc and
pc, �ð0Þ ¼ �0ð0Þ ¼ 0 and �0ð0Þ ¼ 0. �ð0Þ is fixed by
matching the solution with the Schwarzschild metric at
the star surface r ¼ R. The surface of the NM at r ¼ RNM

is defined by the condition nðRNMÞ ¼ 0. Similarly, we have
the condition pðRDMÞ ¼ 0 to define the surface of the DM
fluid at r ¼ RDM. In practice we choose n or p ¼
10�5 fm�3 to define the surface of either fluid. It should
be noted that, in general, the two surfaces are different (i.e.,
RNM � RDM). The star surface r ¼ R, where a matching to
the Schwarzschild metric is performed, is defined to be the
larger one of RNM and RDM. The total mass of the star is
computed by

M ¼ �4�
Z R

0
drr2�ðrÞ; (10)

while the total particle masses (baryonic masses) of NM
and DM are computed by

MNM ¼ 4�mn

Z RNM

0
drr2e�=2n; (11)

MDM ¼ 4�mDM

Z RDM

0
drr2e�=2p; (12)

wheremn andmDM are the particle masses of NM and DM,
respectively. It should be noted that the sum of the baryonic
masses MNM þMDM is in general different from the total
mass M, which also includes the contributions from gravi-
tational and internal energies.

B. Choice of EOS

In the two-fluid formalism, the master function � plays
the role of the EOS information needed in the structure
calculation. In this work, we assume that DM couples with
NM only through gravity. Hence, the master function does
not depend on the scalar product x2 ¼ �n�p

� and is
separable in the sense that

�ðn; pÞ ¼ �NMðnÞ þ�DMðpÞ; (13)

�NMðnÞ and�DMðpÞ being the negative of energy densities
of NM and DM at a given number density, respectively.
These assumptions imply that the coefficients A ¼ A0

0 ¼ 0
in our study.
We choose the Akmal-Pandharipande-Ravenhall (APR)

EOS [43] for NM [and Baldo-Bombaci-Burgio (BBB)2
EOS [44] as well for comparison] and ideal degenerate
Fermi gas EOS for DM. As discussed earlier, DM candi-
dates in the mass range of a few GeV are of great interest

1In the original work for superfluid neutron stars [39], n�

stands for the superfluid neutron number density currents, while
p� is the number density current for a conglomerate of all other
charged constituents.
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recently. We shall thus consider fermionic DM particles in
this mass range.

C. Moment of inertia

Besides global quantities like gravitational mass and
radius, it is also interesting to study the moment of inertia
of DANS since it is measurable and plays an important role
in the physics of ordinary neutron stars.

The moment of inertia of a rotating star in general
relativity is defined by I ¼ J=� in the slow rotation limit,
where J and � are, respectively, the angular momentum
and angular velocity. Here we follow the formulation
developed in [40] to calculate the angular momentum of
a two-fluid star in the slow rotation limit. First, we need to
compute the frame dragging of the star due to its rotation.
In general, DM and NM can rotate with different velocities,
�p and �n, respectively. The frame dragging ! is given

by [40]

1

r4
ðr4e�ð�þ�Þ=2L0

nÞ0 � 16�eð���Þ=2ð�0 ��0ÞLn

¼ 16�eð���Þ=2�0p0ð�n ��pÞ; (14)

where

Ln ¼ !��n; (15)

Lp ¼ !��p: (16)

It should be noted that Eq. (14) is formally identical to the
equation obtained by Hartle [45] for one-fluid stars except
for the nonzero source term on the right-hand side. In
particular, the corotating case (�n ¼ �p) reduces to the

one-fluid result. To integrate this equation with higher
accuracy, one defines a new variable

Tn ¼ ðr4e�ð�þ�Þ=2L0
nÞ: (17)

We can decompose Eq. (14) into two first-order equations:

T0
n ¼ 16�r4eð���Þ=2ð�0 ��0ÞLn

þ 16�r4eð���Þ=2�0p0ð�n ��pÞ; (18)

L0
n ¼ 1

r4
eð�þ�Þ=2Sn: (19)

We integrate the two variables Tn and Ln from the origin to
the surface subject to the boundary condition,

LnðRÞ ¼ ��n � R

3

�
dLn

dr

�
r¼R

: (20)

With Ln and Lp calculated above, the total angular

momentum of the star is given by

J ¼ � 8�

3

Z R

0
drr4eð���Þ=2ð�0n0Ln þ �0p0LpÞ: (21)

When the master function � is independent of the scalar
product x2 ¼ �n�p

� (as we assume in this work), the two
terms in the integral correspond to the NM and DM angular
momenta (Jn and Jp), respectively [40]. We can thus define

the moments of inertia In ¼ Jn=�n and Ip ¼ Jp=�p. In
and Ip depend on the nonrotating background quantities of

NM and DM separately. The total moment of inertia of
DANS is then defined by I ¼ In þ Ip.

D. Equations for radial oscillations

To study the stability and radial oscillation modes of
DANS, we use the set of equations for radial perturbations
of a two-fluid star derived in Sec. IV B of [39]. We shall
discuss our numerical scheme in solving the eigenvalue
problem in detail.
AssumingDMhas no interaction withNMexcept through

gravity (in the sense that the coefficient A ¼ A0
0 ¼ 0), and

adopting the notationSn ¼ rnWn andSp ¼ rpWp, the set of

equations governing radial oscillations is simplified to

!2

r2
eð���Þ=2ðBSnÞ ¼

�
� eð���Þ=2

r2
½B0

0S
0
n� þ 1

2

e�=2

r
½B0

0n�

� ½8�e�=2ð�Sp þ�SnÞ�
�0 þ 1

2
�H0

0;

(22)

!2

r2
eð���Þ=2ðCSpÞ ¼

�
� eð���Þ=2

r2
½C0

0S
0
p� þ 1

2

e�=2

r
½C0

0p�

� ½8�e�=2ð�Sp þ�SnÞ�
�0 þ 1

2
�H0

0;

(23)

where

H0
0 ¼ 4�re�=2þ�

�
p2C0

0 þ n2B0
0 � 2�� 1

4�r2

�
H2

� 8�eð�þ�Þ=2

r
ðpC0

0S
0
p þ nB0

0S
0
nÞ; (24)

H2 ¼ 8�e�=2

r
ð�Sp þ�SnÞ: (25)

Note that the quantities Wn and Wp are related to the radial

component of the Lagrangian displacement of both fluids by

	
r
n ¼ e��=2Wne

i!t=r and 	
r
p ¼ e��=2Wpe

i!t=r.

The radial oscillation modes can be solved by specifying
the boundary conditions at the core, and the correct eigen-
values can be obtained by checking whether the boundary
conditions at the surfaces of both fluids are satisfied. In
this problem, we have 4 degrees of freedom at the core,
namely Snð0Þ, Spð0Þ, S0nð0Þ, and S0pð0Þ. Note that the four

variables cannot be set arbitrarily, otherwise the boundary
conditions of both fluids at the surfaces cannot be satisfied
simultaneously.
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The boundary condition at the surface of each fluid is
given by the vanishing of the Lagrangian density variation
of the fluid. The Lagrangian density variations are given
by [39]

�n

n
¼ e��=2

�
Wn

r2
þW 0

n

r

�
� 1

2
H2; (26)

�p

p
¼ e��=2

�
Wp

r2
þW 0

p

r

�
� 1

2
H2: (27)

Hence, we require the boundary conditions �n=n ¼ 0 at
r ¼ RNM and �p=p ¼ 0 at r ¼ RDM.

To find the correct boundary conditions at the core, we
first choose Sn to be unity. S

0
nð0Þ is chosen according to the

Taylor expansion of SnðrÞ and the regularity condition of
Sn near the center. Namely, we have

SnðrÞ ¼ Snð0Þr3 þOðr5Þ; (28)

from which we have S0nð0Þ ¼ 3Snð0Þ [similarly, we have
S0pð0Þ ¼ 3Spð0Þ]. Spð0Þ is chosen such that the boundary

condition of the inner surface of a DANS model can be
satisfied. In practice, we first choose a trial eigenvalue !
and a trial Spð0Þ (without loss of generality, we assume

RDM < RNM in this discussion). Then, we integrate up to
the inner surface of the DANS model. If the boundary
condition at the inner surface is not satisfied, a new trial
of Spð0Þ is used and the integration is repeated. Once a

correct trial of Spð0Þ is found to satisfy the boundary

condition at the inner surface, we continue the integration
up to the outer surface and check whether the boundary
condition at the outer surface is satisfied. We obtain the
eigenvalue if the trial ! can satisfy the boundary condition
of the outer surface.

III. STATIC EQUILIBRIUM PROPERTIES OF DANS

A. General properties of DANS

In Fig. 1(a), we show the mass-radius relations of DANS
for different DM mass fractions defined by

� ¼ MDM

MNM þMDM

: (29)

The NM is modeled by the APR EOS and the DM particle
mass is mDM ¼ 1 GeV.

The case � ¼ 0 corresponds to ordinary NS without
DM. For increasing �, representing DANS with higher
DM proportion, we observe two results: first, the maximum
stable mass decreases and the stars also have smaller radii.
For example, for � ¼ 0:2, the mass and radius of the
maximum stable mass configuration are decreased by
35% and 9% respectively, compared to the case with
� ¼ 0. Second, the M-R curve flattens as � increases,
such as the one shown for � ¼ 0:8. For intermediate DM
mass fraction, such as � ¼ 0:4, the curves are made of two

parts: The curve is flat at large R, but at small R, it is
qualitatively similar to the curve for ordinary NS. The
above patterns suggest that a new class of compact stars
exists, when � is sufficiently large. We will show that these
DM dominated stars are qualitatively different from ordi-
nary NS in many aspects.
We plot in Fig. 1(b) the density profiles of the DANS

models marked as point X in Fig. 1(a). The upper panel is
for the case � ¼ 0 while the lower one is for the case � ¼
0:8. Although both models have the same total mass and
radius, the mass in the upper one is contributed only by
NM, while the mass in the lower one is mainly contributed
by DM. For the case � ¼ 0:8, it is seen that a small NM
core is embedded in a larger DM halo.
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FIG. 1. Upper plot (a): Mass-radius relations of DANS for
different DM mass fraction �. The NM is modeled by the
APR EOS and the DM particle mass is 1 GeV. Masses are in
unit ofM�. Lower plot (b): Density profiles of the star models at
the point X in Fig. 1(a) for an ordinary NS (� ¼ 0, upper panel)
and a DM dominated star (� ¼ 0:8, lower panel). Both star
models have mass 0:475M� and R ¼ 11:25 km. For the
DM dominated star (lower panel), MNM ¼ 0:0981M�, MDM ¼
0:3923M�, and RNM ¼ 6:29 km.
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Next we plot in Fig. 2 two distinctive models for the case
� ¼ 0:4 [marked with triangles in Fig. 1(a)]. One star is
chosen from the part of the M-R curve which is similar to
that of ordinary NS, while another star is chosen from the
other side. We choose one model (upper panel in Fig. 2)
to have M ¼ 0:780M�, R ¼ 8:10 km, RDM ¼ 6:60 km
and the other (lower panel) to have M ¼ 0:332M�, R ¼
9:42 km, RNM ¼ 8:84 km. For the former model (upper
panel), we see that the DM is engulfed by NM. However,
the situation is reversed for the latter model (lower panel).

The scaled moment of inertia ~I � I=MR2 of DANS is
plotted as a function of the compactness (M=R, in the unit
solar mass/km) in Fig. 3. In [46], Bejger and Haensel found
an approximate universal relation between ~I and compact-
ness (z � ðM=M�Þ=ðkm=RÞ):

~I ¼ z

0:1þ 2z
; z < 0:1; (30)

~I ¼ 2
9ð1þ 5zÞ; z > 0:1: (31)

This formula is shown as the dashed line in Fig. 3. The
vertical lines (with arrows) at z ¼ 0:05, 0.1, and 0.15
represent the range of values of ~I obtained by a large set
of EOS models which were used to obtain the formula.
They can be regarded as the error bars of Eqs. (30) and (31)
at those values ofM=R. The circles in the figure correspond
to an ordinary neutron star (� ¼ 0) and DM dominated star
(� ¼ 0:8) at the point X in Fig. 1(a). While the scaled
moment of inertia of ordinary neutron stars can be modeled
approximately by Eqs. (30) and (31), Fig. 3 shows that ~I of
DANS depends sensitively on the amount of DM. In par-
ticular, for the DM dominated sequence � ¼ 0:8, the value
of ~I is significantly smaller than that allowed for ordinary
neutron stars with the same compactness.

B. Linear response of DANS

Here we study the effects of DM in the core on the
structure of DANS at the small MDM limit. In the linear
regime, namely a DANS with small MDM, the radius and
moment of inertia of the star vary linearly with MDM. But
the slope of the linear variation depends on the stiffness of
the NM EOS. The stiffer the NM EOS is, the smaller the
contraction results.
In Fig. 4(a) we plot R=R0 against MDM, where R0 is the

radius without DM (i.e., an ordinary NS), for MNM ¼ 1:4,
1.6, and 1:8M�. We see that the relative changes in radii are
linear in MDM. For a fitting in the form

R

R0
¼ 1þ a1MDM; (32)

we find that a1 � �0:5 for the APR EOS and a1 � �0:7
for the BBB2 EOS. The larger magnitude of a1 for BBB2
EOS is due to the fact that this EOS is softer than the APR
EOS. We also see that a1 is essentially independent of
MNM. The effect from DM is no longer linear for large
MDM.
In Fig. 4(b) we plot I=I0 against MDM, where I0 is the

moment of inertia of a NS without DM, for three different
values of MNM as above. The change in I is almost the
same for the three cases:

I

I0
¼ 1þ a2MDM; (33)

with a2 � �0:6 for the APR EOS and a2 � �0:9 for the
BBB2 EOS. Again, the value of a2 does not depend
strongly on MNM.
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FIG. 2. Density profiles for two star models with � ¼ 0:4 with
the APR EOS for NM and ideal degenerate gas EOS for DM
with DM particle mass ¼ 1 GeV. The solid (dashed) lines are
for NM (DM). Upper plot: M ¼ 0:780M�, R ¼ 8:10 km,
RDM ¼ 6:60 km. Lower plot: M ¼ 0:332M�, R ¼ 9:42 km,
RNM ¼ 8:84 km.
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the point X in Fig. 1(a)
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C. Effects of DM particle mass

As discussed in Sec. I, DM candidates in the mass range
a few GeV is of great interest recently. We shall thus study
the effects of DM particle mass mDM in this range. We
shall compare the equilibrium properties of DANS with
different mDM. In this part, we use the APR EOS to model
the NM.

First, we plot in Fig. 5(a) the total mass M against the
minimum radius Rmin of stable stars allowed for a given
mDM. We present the results for three different cases
mDM ¼ 1, 4, and 7 GeV. We also plot theM-R curve (solid
line) for ordinary NS without DM for comparison. For
fixed M and mDM, the radius of the star decreases as the
mass fraction of DM increases (i.e., the star becomes more
compact). We define Rmin to be the minimum radius below
which the star becomes unstable. For example, Fig. 5(a)
shows that the minimum radius allowed for a DANS
with total mass M ¼ 1M� and DM particle mass

mDM ¼ 2 GeV is about 10 km. We also see that Rmin

increases with mDM for a given M.
In Fig. 5(b), we plot the density profiles of two stars with

the same M ¼ 1:4M� and MDM ¼ 0:01M�, but with dif-
ferent DM particle mass mDM ¼ 1 GeV (upper panel) and
7 GeV (lower panel). In Fig. 5(b), we see that with a higher
DM particle massmDM ¼ 7 GeV, the DM core shrinks to a
very small size of about 0.3 km, compared to 4.3 km for the
case mDM ¼ 1 GeV. Also, the density of the DM core is
much higher than that of the NM for mDM ¼ 7 GeV.
Finally, in Fig. 6 we plot the maximum stable mass for

DANS models with � ¼ 0:1 but with mDM ranging from 1
to 5 GeV. The maximum stable mass decreases with mDM.
The reason is as follows: the NM and DM are assumed to
be noninteracting (except through gravity), and the DM

0 0.02 0.04 0.06
M

DM
 (solar mass)

0.96

0.97

0.98

0.99

1

R
/R

0

M
NM

 = 1.4 solar mass

M
NM

 = 1.6 solar mass

M
NM

 = 1.8 solar mass

APR

BBB2

(a)

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06

M
DM

 (solar mass)

0.94

0.95

0.96

0.97

0.98

0.99

1

I/
I 0

M
NM

 = 1.4 solar mass

M
NM

 = 1.6 solar mass

M
NM

 = 1.8 solar mass

APR

BBB2

FIG. 4. Upper plot (a): R=R0 is plotted against MDM (in M�)
for the APR and BBB2 EOS for NM and ideal degenerate Fermi
gas EOS for DM, with DM particle mass of GeV. R0 is the NS
radius without DM. Lower plot (b): I=I0 againstMDM (inM�). I0
is the moment of inertia without DM.

9 10 11
R

min
 (km)

1

1.5

2

M
 (

so
la

r 
m

as
s)

m
DM

= 2 GeV

m
DM

= 4 GeV

m
DM

= 7 GeV

(a)

(b)

0.001

0.01

0.1

1

NM
DM

0 5 10
r (km)

0.1

1

10

100
nu

m
be

r 
de

ns
ity

 (
fm

-3
)

FIG. 5. Upper plot (a): Total mass M is plotted against the
minimum radius Rmin of stable stars allowed for a given DM
particle mass mDM. The solid line is the M-R curve for ordinary
NS without DM for comparison. Lower plot (b): Number density
profiles of NM (solid lines) and DM (dashed lines) for two stars
with the same M ¼ 1:4M� and MDM ¼ 0:01M�, but with
mDM ¼ 1 GeV (upper panel) and 7 GeV (lower panel).

S.-C. LEUNG, M.-C. CHU, AND L.-M. LIN PHYSICAL REVIEW D 85, 103528 (2012)

103528-6



core is supported only by its own degenerate pressure. It is
well known that the maximum mass limit for a self-
gravitating Fermi gas decreases as the particle mass in-
creases. Hence, the onset of the collapse of a degenerate
DM core is responsible for the dependence of Mmax on
mDM as seen in Fig. 6. Furthermore, the allowed mass
fraction of DM inside a stable DANS decreases signifi-
cantly as mDM increases. For example, stable DANS mod-
els with MDM � 0:1M� can only be formed by DM
particles of mass less than about 3 GeV.

IV. RADIAL OSCILLATIONS OF DANS

In this section we study the radial oscillation eigenfre-
quencies and eigenfunctions of DANS. We show that all
DANS with central energy density less than that of the
maximum mass configuration, regardless of the mass frac-
tion � of DM, are stable. We also study the effect of � and
DM particle mass mDM on the radial oscillation modes. In
this section, we use the APR EOS to model the NM. Unless
otherwise noted, the DM particle massmDM is chosen to be
1 GeV.

A. One-fluid limit

We first present some tests to check the validity of the
numerical code. We calculate the oscillation modes of
ordinary NS modeled by the APR EOS in the one-fluid
limit using our two-fluid code. In practice, this is achieved
by setting the central density of DM to a sufficiently small
number so that the star is essentially composed of NM
only. In Fig. 7(a) we plot the total mass (upper panel) and
fundamental mode frequency squared (lower panel)
against the central energy density. We set the central
number density of DM to be 8 orders of magnitude smaller
than that of NM in the calculations. As expected from the
study of ordinary NS, Fig. 7(a) shows that the fundamental
mode frequency passes through zero at the central energy
density corresponding to the maximum mass configura-
tion. The point !2 ¼ 0 marks the onset of instability.

Beyond this critical density, the stars are unstable against
radial perturbations.
We compare in Fig. 7(b) the frequencies of the first three

modes calculated separately by the two-fluid code (dashed
lines) and a different code (solid lines) based on the stan-
dard one-fluid formulation [47]. We see that the two sets of
mode frequencies agree very well.

B. Oscillation modes of DANS

In Fig. 8(a), we plot the total mass (upper panel) and the
fundamental mode frequency squared (lower panel)
against the central energy density for � ¼ 0:2. Similar to
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FIG. 6. Maximum stable mass Mmax is plotted against the DM
particle mass mX for a fixed amount of DM specified by � ¼ 0:1.
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the ordinary NS (one-fluid) case, the mode frequency
passes through zero at the central energy density corre-
sponding to the maximum mass configuration. The stars
are unstable beyond this critical density. For DANS with
central density lower than the critical density, they are
stable against radial perturbations. In Fig. 8(b) we show
the case � ¼ 0:8 for the DM dominated sequence. Our
results confirm the stability of DANS. In particular, the
new class of DM dominated compact stars with a NM core
embedded in a ten-kilometer sized DM halo are shown to
be stable.

In Fig. 9(a) we plot the first four mode frequency
squared of DANS as a function of �. The total mass
M ¼ 1:4M� is fixed. We can see from the frequency of
the fundamental mode (n ¼ 1) that increasing � (i.e., the
mass fraction of DM) has the effect of decreasing the
stability of the star. The fundamental mode frequency

drops sharply to zero for � slightly above 0.2, hence
indicating the onset of instability. We also see that the
frequencies of the higher order modes (n ¼ 2; 3; 4) in
general increase with �. It is interesting to notice that the
second (n ¼ 2) and third (n ¼ 3) modes are missing in
the one-fluid limit when � ¼ 0. In Fig. 9(b), we show the
Lagrangian variations of NM [Eq. (26)] and DM [Eq. (27)]
for the first four modes of a star with � ¼ 0:005. The solid
(dashed) lines are the profiles of NM (DM). Note that the
DM core extends to about 0:4R, where R is the radius of the
star.
First, let us consider the n ¼ 1 and n ¼ 4 modes. They

have proper limits at � ¼ 0. For the fundamental mode
(n ¼ 1), in the DM core where the two fluids coexist,
the density variations of NM and DM are in phase. For
the n ¼ 4 mode, the density variation of NM (DM) is
larger (smaller) than zero in the DM core. Hence, the
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two fluids are countermoving in this case. On the other
hand, for the n ¼ 2 and n ¼ 3 modes, we see that the
density variation of NM is much smaller than that of
DM. These modes are dominated by DM motion in the
DM core. They do not exist when there is no DM (i.e., � ¼
0). However, they emerge even for a very small mass
fraction of DM.

To further study the oscillation modes of DANS, we
choose the two stellar models at the point Y in Fig. 1(a).
The stars have the same mass M ¼ 0:541M� and radius
R ¼ 9:68 km, but with different mass fraction of DM. The
model with � ¼ 0:1 is an ordinary DANS. The model with
� ¼ 0:8 is a DM dominated compact star with a small NM
core embedded in a ten-kilometer sized DM halo. The
Lagrangian variations of the first four oscillation modes
for the model with � ¼ 0:1 are plotted in Fig. 10. For the
n ¼ 1 and n ¼ 4 modes, the general patterns of the modes
are qualitatively the same as the case � ¼ 0:005 in
Fig. 9(b). The two fluids are in large part comoving (coun-
termoving) for the n ¼ 1 (n ¼ 4) mode. For the n ¼ 2 and
n ¼ 3 modes, which are dominated by DM motion in the
case � ¼ 0:005, we now see that there are significant
density variations of NM near the stellar surface. This
can be understood by the fact that the two fluids are
coupled through gravity. For a very small �, the motion
of a small amount of DM basically has no effect on the
NM. Hence, the NM essentially decouples from the DM
and does not move in the n ¼ 2 and n ¼ 3 DM dominated
modes. However, when the mass fraction of DM is com-
parable to NM, the coupling between the two fluids be-
comes stronger and, hence, we can see a large density
variation of NM.

The Lagrangian variations of the first four oscillation
modes for the DM dominated model with � ¼ 0:8 are
plotted in Fig. 11. We see that for the ‘‘ordinary’’ n ¼ 1
and n ¼ 4 modes the maximum density variations of the

two fluids near their surfaces are comparable. Note that the
surface of the NM core is at about 0:6R, where the radius of
the star R is defined by the radius of the DM halo in this
model. However, for the n ¼ 2 and n ¼ 3 DM dominated
modes, the maximum density variation of DM is much
larger than that of NM.

C. Effects of DM particle mass

To end this section, we study the effects of DM particle
mass on the mode frequencies. In Fig. 12 we show the
frequencies of the first five modes of a DANS with M ¼
1:4M� and MDM ¼ 0:01M� as a function of DM particle
massmDM. FormDM ¼ 1 GeV, the second and third modes
correspond to the n ¼ 2 and n ¼ 3 DM dominated
modes studied above. We see that the frequencies of these
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modes increase with mDM, while the other modes are
essentially independent of mDM. It is known that the radial
oscillation mode frequency (squared) scales with the den-
sity of the star. Also, for a fixed DM core mass, the DM
core becomes denser as mDM increases [see Fig. 5(b)].
Hence, the frequencies of the DM dominated modes de-
pend strongly on mDM.

It is also interesting to notice that, while the second and
third modes are DM dominated modes in the case mDM ¼
1 GeV, this is in general not true for other mDM. For
example, in the case mDM ¼ 3 GeV, it is the second and
fourth modes that are DM dominated modes. For mDM ¼
5 GeV, the DM dominated mode first appears only in the
third mode.

V. CONCLUSIONS

In this paper, we have studied the equilibrium properties
and radial oscillation modes of DANS using a general
relativistic two-fluid formalism. We model the NM by
realistic nuclear matter EOS. The DM particles are as-
sumed to be non-self-annihilating and described by an
ideal degenerate Fermi gas. Our results suggest that the
structure of these stars depends strongly on the DM fluid.
In particular, we found a new class of compact stars which
are dominated by DM. These stars in general have a small
NM core with radius a few km embedded in a larger ten-
kilometer-sized DM halo. Since only the NM core can emit
thermal radiation, the detection of a compact star with a
thermally radiating surface of such a small size could
provide strong evidence for the existence of DANS.
Furthermore, these DM dominated stars also have rather
different mass-radius relations and scaled moment of iner-
tia compared to ordinary NS without DM. We have also
studied how the radius R and moment of inertia I of a star
with fixed NM baryonic massMNM change as the DM core
massMDM increases. In the smallMDM limit, we see that R
and I decrease linearly asMDM increases. The slopes of the
linear variations depend essentially only on the NM EOS,
but not on the value of MNM.

We have performed a radial perturbation analysis and
studied the oscillation modes of DANS in general. The
stability of DANS is shown explicitly by calculating the
frequency of the fundamental mode. For a sequence of
stars with a fixed DM mass fraction, we see that the
fundamental mode frequency passes through zero at the
central energy density corresponding to the maximum
mass configuration. Similar to the analysis of ordinary
NS, this point marks the onset of instability.
Besides the fundamental mode, we have also studied the

first few higher order oscillation modes. We see that DANS
in general have two classes of oscillation modes. The first
class of modes has proper limit when the DMmass fraction
tends to zero, namely these modes reduce to the same set of
modes for ordinary NS without DM. On the other hand, the
second class of modes is due mainly to DM. In the limit of
a small DM mass fraction, these modes are characterized
purely by the oscillations of DM. The NM fluid is essen-
tially at rest. In the intermediate case where the mass
fractions of NM and DM are comparable, the NM fluid
oscillates with the DM fluid due to their coupling through
gravity. On the other hand, the amplitude of DM oscilla-
tions is much larger than that of NM in the case of DM
dominated stars. We also see that the frequencies of these
oscillation modes depend strongly on the DM particle
mass.
Finally, it should be pointed out that the formation

mechanism of DANS is not clear. However, our main focus
in this work is to study the properties of these theoretical
objects, if they exist. The formation process of these com-
pact dark-matter compact objects cannot yet be modeled in
current N-body simulations, which mainly focus on the
structure formation in galactic or cosmological scales.
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