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Current cosmological observations, when interpreted within the framework of a homogeneous and

isotropic Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) model, strongly suggest that the Universe is

entering a period of accelerating expansion. This is often taken to mean that the expansion of space itself

is accelerating. In a general spacetime, however, this is not necessarily true. We attempt to clarify this

point by considering a handful of local and nonlocal measures of acceleration in a variety of inhomoge-

neous cosmological models. Each of the chosen measures corresponds to a theoretical or observational

procedure that has previously been used to study acceleration in cosmology, and all measures reduce to the

same quantity in the limit of exact spatial homogeneity and isotropy. In statistically homogeneous and

isotropic spacetimes, we find that the acceleration inferred from observations of the distance-redshift

relation is closely related to the acceleration of the spatially averaged universe, but does not necessarily

bear any resemblance to the average of the local acceleration of spacetime itself. For inhomogeneous

spacetimes that do not display statistical homogeneity and isotropy, however, we find little correlation

between acceleration inferred from observations and the acceleration of the averaged spacetime. This

shows that observations made in an inhomogeneous universe can imply acceleration without the existence

of dark energy.
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INTRODUCTION

The question of if, and why, the expansion of the
Universe is accelerating is one of the foremost problems
in fundamental physics today. Observations of distant Type
Ia supernovae are well-fit by homogeneous and isotropic
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) solutions
of general relativity, but only if a substantial fraction of the
energy density in the Universe is in the form of a cosmo-
logical constant. For this constant to take the value required
by observations, however, requires an extraordinary degree
of fine-tuning. Many authors have attempted to remedy this
situation by proposing modifications to gravity, the exis-
tence of negative-pressure components of the cosmological
fluid, new scalar fields, and a host of other exotic mecha-
nisms. Others have sought to explain it by modifying
the basic assumptions of cosmology itself, such as the
Cosmological Principle.

Our aim here is to clarify what is meant by acceleration
in an inhomogeneous universe, and to study how different
types of acceleration can arise within the context of rela-
tivistic cosmology. We do not consider the existence of any
strange new matter fields or modifications to Einstein’s
equations, but we do allow for the Universe to be strongly
inhomogeneous below a certain scale. It is found that
observations made over large distances (e.g. using super-
nova and CMB observations) are best modeled using non-
local averages of geometric quantities. The acceleration

that one can infer from these large-scale probes of cosmol-
ogy is not necessarily similar to any locally defined mea-
sures of acceleration, and does not necessarily imply that
the expansion of space itself is accelerating at any point.
Following Hirata & Seljak [1] and Clarkson & Umeh [2],

we consider multiple different measures of acceleration:
(a) The local acceleration of nearby observers in a small

volume of space, as governed by the Raychaudhuri
equation;

(b) The acceleration inferred by fitting an FLRW
distance-redshift relation to Hubble diagrams
constructed from observations made over large
distances;

(c) The acceleration inferred by constructing a Hubble
diagram from local observations (i.e. at z ’ 0), as
described by Kristian and Sachs [3];

(d) The average acceleration of a large volume of space,
as calculated using Buchert’s scalar averaging pro-
cedure [4].

For an exactly homogeneous and isotropic FLRW model,
all of these measures are identical. In the general case,
however, they can be quite different, to the point that some
of them can show strong acceleration, while others show
deceleration.
Measures (a) and (c) are purely local, and depend only

on the curvature of spacetime within the neighborhood of a
point (in the limit of geometric optics). Measures (b) and
(d), however, are both inherently nonlocal in nature.
Measure (a) describes the actual, dynamical acceleration
of a volume of space, while measure (b) corresponds to
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what is measured in, for example, supernova surveys.
Measure (c) is a local measure of acceleration, based on
inferences made using the luminosity distance-redshift
relation within a very small region of spacetime. Measure
(d) corresponds to the theoretical procedure of fitting a
smooth effective model to the real, inhomogeneous
Universe (the question of how best to do this is still very
much an open one, but the simplest and best-known pro-
cedure is the scalar averaging formalism developed by
Buchert [5,6]). We will discuss all of these measures in
detail in what follows.

Constructing relativistic models of the real, inhomoge-
neous Universe is difficult, but a number of attempts have
met partial success in addressing the problem. Realistic
density fields can be described using perturbations to exact
FLRW solutions. However, at least to quadratic order in
perturbations, the effect of inhomogeneities on the overall
behavior of the spacetime often turns out to be small, with
the average evolution and optical properties of the model
remaining close to the unperturbed background values
[1,7–17]. There have been suggestions that effects at
higher orders in perturbations could be important [2,12],
and recent studies of nonlinear collapse which make use of
a gradient expansion also find potentially significant ef-
fects [18,19]. These claims require further analysis if they
are to be confirmed, however. The main drawback of the
perturbative approach is that the solutions obtained are not
exact, and so it is unclear if we are neglecting or incorrectly
estimating aspects of the fully-relativistic behavior of the
spacetime.

An alternative approach involves studying exact, inho-
mogeneous solutions to Einstein’s equations. As the
geometry of spacetime is known from the outset, the non-
linear evolution of space, and light rays within it, can be
calculated in a fully rigorous manner, without recourse to
perturbative analyses. This approach tends to require a
high degree of symmetry, however, placing strong restric-
tions on what it is possible to model [20]. For example,
backreaction effects in Swiss Cheese models (constructed
by joining together spherically-symmetric inhomogeneous
regions with a FLRW solution) are known to be small [21].
This is confirmed by ray-tracing studies through a variety
of similar exact solutions [21–28]. Additionally, inhomo-
geneous models with general fluid content are difficult to
work with [29–31], and so most modeling attempts make do
with a dust-only stress-energy tensor. This is itself problem-
atic, as high-density regions tend to rapidly collapse in
inhomogeneous pressureless fluids, forming singularities
and resulting in unrealistic, pathological behavior.

Finally, more heuristic analyses have been attempted
[21,32–38]. These often employ disjoint regions of differ-
ent exact solutions. The dynamical evolution within each
region is therefore well defined, but the ensemble as a
whole does not satisfy Einstein’s equations at the bounda-
ries between regions. This approach relaxes the restrictive

symmetry requirements that are necessary when using
exact solutions, but introduces its own ambiguities.
Indeed, the chosen boundary conditions can sometimes
dominate the behavior of the model [33], and it is not clear
whether the resulting spacetime approximates any actual
solution of Einstein’s equations or not.
In this paper, we consider the latter two of these

approaches, as the situation of small perturbations
around an exact FLRW geometry is well-studied already
[9,16,39–42]. The format of the paper is as follows. In
Sec. II, we discuss in detail the different measures of
acceleration summarized above, and how they can be
calculated in a general spacetime. The conditions for these
measures to show acceleration, and their relation to ob-
servable quantities (if any), is discussed. Section III sets
out three different inhomogeneous models: the spherical
collapse model, constructed from disjoint FLRW regions;
the Kasner-EdS model, an exact solution with alternating
expanding vacuum and collapsing dust regions along a line
of sight [43–47]; and the Lemaı̂tre-Tolman-Bondi model,
an exact, spherically-symmetric dust solution [48–50]. The
volume of space in all of these models is locally decelerat-
ing everywhere, and yet we find that observations made
within them can still exhibit acceleration.
In Secs. IV, V, and VI, we present our results for each of

the models. We find that the acceleration inferred by ob-
servers from the Hubble diagram, constructed over large
distances, is most closely correlated with the dynamical
behavior of the averaged spacetime, and not with its local
acceleration. The local acceleration, however, is well mod-
eled by Hubble diagrams that are constructed locally, using
the Kristian-Sachs formalism. This result suggests that we
should use nonlocal averages of the geometry to interpret
observations made over large distances, and local geome-
try to interpret observations made locally. Interpreting
observations within the wrong framework can lead to in-
correct inferences about what is causing the acceleration.
This appears to us to provide some insight into the question
of whether the apparent acceleration we observe is neces-
sarily caused by the presence of a nonzero cosmological
constant, or whether it could be caused by some back-
reaction effect within the inhomogeneous spacetime.
Finally, in Sec. VII we discuss our results in the context
of previous claims involving backreaction and the nature of
the apparent acceleration of the Universe.

II. MEASURES OF ACCELERATION

In this section we discuss the four measures of accel-
eration that were listed in Sec. I. Each measure has asso-
ciated with it a deceleration parameter. For each definition,
we set out its theoretical basis and physical interpretation,
list the conditions necessary for acceleration to occur, and
describe the relation of the deceleration parameter associ-
ated with this measure to observable quantities. The mea-
sures are summarized in Table I, at the end of the section.
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A. Local volume acceleration

A congruence of timelike geodesics, ua, describing the
world-lines of a set of observers comoving within a cos-
mological fluid can be decomposed such that [51]

ua;b ¼ 1

3
�hab þ �ab þ!ab; (1)

where subscript ; denotes a covariant derivative, and hab ¼
gab þ uaub is the projection tensor. The kinematic quanti-
ties in this equation are the expansion scalar, �, the shear,
�ab, and the vorticity, !ab, which correspond to the trace,
symmetric trace-free, and antisymmetric parts of ua;b,
respectively. This decomposition is a fully covariant pro-
cedure, valid for any spacetime.

For irrotational flows (!ab ¼ 0), the fluid flow becomes
hypersurface orthogonal, with the projection tensor be-
coming the induced metric of the orthogonal 3-spaces.
The field equations then give (with 8�G ¼ 1)

_� ¼ � 1

3
�2 � 1

2
ð�þ 3pÞ þ�� 2�2; (2)

where the over-dot denotes a derivative with respect to
proper time along ua, and where �2 ¼ 1

2�ab�
ab, and �,

p and � are the energy density, pressure and cosmological
constant, respectively. The Gauss embedding equation for
these hypersurfaces is

1

3
�2 ¼ �þ�þ �2 � 1

2
ð3ÞR; (3)

where ð3ÞR is the Ricci scalar constructed from hab.
By analogy with the deceleration parameter in an FLRW

spacetime, one can then define a local volume deceleration
parameter,

q� ¼ �1� 3
_�

�2
¼ 3

�2

�
1

2
ð�þ 3pÞ ��þ 2�2

�
; (4)

corresponding to the monopole of the deceleration of the
expansion rate of a set of neighboring particles following
ua. This measure is said to be accelerating when q� < 0,
which from Eq. (4) can be seen to occur if and only if
p <� 1

3� or �> 0.

Now, q� is a local measure of acceleration, defined only
in the neighborhood of a point in spacetime. Determining
q� from observations therefore requires � (and its first
derivative) to be determined using observations within the

neighborhood of a single point in spacetime only. These
observations need to be of the rate of change of proper
distance between particles in their own rest-frame, which is
not necessarily the same as the angular diameter distance
or luminosity distance (for these see measure (c), below).
The Universe is extremely inhomogeneous on small scales,
and so this measure of acceleration is likely to display
considerable spatial variation. A local measurement of
q� need not, then, be representative of the mean local
volume acceleration.

B. Observed acceleration (as inferred from the
Hubble diagram)

To date, the strongest observational evidence for an
accelerating universe comes from the distance-redshift
relation, which is measured using ‘‘standardizable can-
dles’’ (such as Type Ia supernovae), as well as the CMB.
By fitting this data to the relations derived from the FLRW
solutions of Einstein’s equations, one finds that models
with �� > 0 are strongly favored, while those with
�� ¼ 0 are ruled out to a high degree of confidence.
Under the assumption that spacetime is well-described by
FLRW, this constitutes strong evidence for accelerating
expansion.
A key step in this procedure is the fitting of the FLRW

distance-redshift relation to data. Performing a series ex-
pansion in the angular diameter distance about z ¼ 0 gives

dAðzÞ ¼ cz

H0

�
1� 1

2
ð3þ q0ÞzþOðz2Þ

�
; (5)

whereH0 is the inferred Hubble rate at z ¼ 0, and q0 is the
inferred deceleration parameter. The value of q0 can be
found in a purely observational manner by taking deriva-
tives of the fitted distance-redshift relation [52],

q0 ¼ �d00A
d0A

j0 � 3; (6)

where primes denote derivatives with respect to redshift,
and where subscript 0 denotes that a quantity is evaluated
at the observer. Note that this measure of deceleration is
inferred from observations over large distances, and so
assigns information to a point in spacetime based on in-
formation obtained from the entire extended region over
which observations have been made. This is a highly non-
local process.
Equation (6) is derived from the distance-redshift rela-

tion in FLRW geometry, but one should note that the
existence of such a geometry is not required in order to
infer q0 from observations. What we are doing here should
instead be considered simply as a fitting procedure.
Equation (6) is then an observable in any spacetime (after
averaging over the celestial sphere), and so anyone can
measure q0 if they are willing to interpret their observa-
tions within the framework of an FLRWmodel. We call the
acceleration inferred by this fitting of FLRW relations to

TABLE I. Summary of the different measures of acceleration
defined in Sec. II.

Measure Local Support Observable

Local volume, q� Yes Spacetime point In principle

Observational, qobs No Null geodesic Yes

Kristian-Sachs, qKS Yes Spacetime point In principle

Buchert average, qD No Spatial domain No
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the monopole of the distance-redshift relation the observed
acceleration.

The distance-redshift relation can be calculated in a
general spacetime by solving the Sachs optical equations
for bundles of null geodesics. With vanishing vorticity,
these are

d�

d�
þ �2 þ j�̂j2 ¼ � 1

2
Rabk

akb (7)

d�̂

d�
þ 2��̂ ¼ Cabcdðt�Þakbðt�Þckd; (8)

where � is an affine parameter along the bundle, Rab and
Cabcd are the Ricci and Weyl tensors of the spacetime, �
and �̂ are the expansion and (complex) shear scalars of the
null geodesics, ka is a tangent vector to the null curves, and
ta are (complex) vectors spanning a two-dimensional
screen space orthogonal to ka. The expansion scalar is
related to the angular diameter distance measured along
the bundle by � ¼ dðlnðdAÞÞ=d�. Substituting this into
Eq. (7) yields

d2ðdAÞ
d�2

¼ �dAðj�̂j2 þ 1

2
Rabk

akbÞ: (9)

The luminosity distance is related to the angular diameter
distance by the reciprocity theorem [53], which gives dL ¼
ð1þ zÞ2dA.

The affine distance-redshift relation for a general space-
time is given by [54]

dz

d�
¼ �ð1þ zÞ2HjjðzÞ; (10)

whereHjj ¼ 1
3�þ �abe

aeb is the expansion rate along the

line of sight, ea. Eqs. (8)–(10) can be solved to give the
angular diameter distance-redshift relation, dAðzÞ, in any
given direction, at any given point in spacetime. This
procedure can be repeated for every direction on the sky,
and an FLRW model can be fitted to the monopole of the
resulting angular distribution. The best-fit model can then
be used to find q0. We denote the result of this procedure in
a general spacetime as qobs.

We consider this definition of acceleration to correspond
most closely to the one used by observers. It is a nonlocal
measure, since it depends on solutions to the Sachs equa-
tions, which describe bundles of null geodesic curves that
extend through the spacetime. In effect, the measurement
of qobs depends on finding the entire past null cone of an
observer out to some z, and fitting some distance-redshift
relation to it. The conditions for a spacetime to have
qobs < 0 are therefore complicated, in general. As we
will see below, it is possible to find spacetimes that are
quite different from simple �-dominated FLRW models
that nevertheless have qobs < 0.

C. Acceleration from local observations (using the
Kristian-Sachs formalism)

The measure of acceleration we just described has the
disadvantage of requiring solutions to the Sachs equations
to be found, as a function of redshift and angle on the
observer’s sky. This can be a difficult task in general, as it
requires detailed knowledge of the geometry of spacetime.
Instead, one can use the Kristian-Sachs formalism [3] to
obtain a fully general and covariant series expansion of the
distance-redshift relation about an observer without need-
ing to consider solutions to the geodesic equations at all.
Furthermore, the expansion can be decomposed directly
into covariant spherical harmonics about the observer,
allowing the monopole term to be calculated straight
away [2].
This procedure has been spelled out in detail by

Clarkson and Umeh [2]. The generalized form of Eq. (5) is

dA¼ z

½KaKbraub�0
�
1�

�
KaKbKcrarbuc
2ðKdKerdueÞ2

�
0
zþOðz2Þ

�
;

(11)

where the past-pointing null direction can be written in
terms of the tangent vector to a comoving observer’s
worldline, ua, and a direction on their sky, ea, as

Ka ¼ ka

½ubkb�0
¼ �ua þ ea: (12)

The subscript 0 again denotes evaluation at the observer’s
location. The terms in Eq. (11) can be expanded using a
covariant decomposition in spherical harmonics. In order
to facilitate this expansion, it is useful to invert Eq. (11) to
give

z ¼ ½KaKbraub�0dA þ 1

2
½KaKbKcrarbuc�0d2A þOðd3AÞ:

(13)

All of the terms that we wish to expand are now in the
numerator. Comparing the monopoles of the coefficients in
Eq. (13) with the corresponding FLRW relation (with
8�G ¼ 1) then gives

qKS ¼ 3

�2

�
1

2
ð�þ 3pÞ ��þ 6�2

�
0
; (14)

where we have used H0 ¼ 1
3�, which corresponds to the

monopole of this term, rather than its full spherical har-
monic expansion. This corresponds most closely with the
way that H0 is typically used in observational studies; the
monopole of H0 tends to be determined separately from
other quantities. From Eq. (14), it can be seen that qKS � 0
unless p <� 1

3� or �> 0. That is, acceleration of this

measure can only occur if there is a cosmological constant,
or if an exotic fluid with negative pressure is present.
There is clearly some similarity between the decelera-

tion parameter of the local volume, q�, and that which is
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obtained from the local distance-redshift relation, qKS.
Both measures of acceleration are local (depending only
on quantities defined within the neighborhood of the ob-
server), and both are given by expressions that differ only
by a term involving the shear scalar. This does not, how-
ever, mean that these two measures of acceleration are the
same. They correspond to different physical quantities.

The relation between the Kristian-Sachs and observatio-
nal acceleration measures is less clear. This has to do with
the nonlocality of the latter; if the Hubble diagram could be
measured precisely at z ¼ 0 (i.e. in the limit of geodesics
of zero affine length), we would find qobs ¼ qKS. But,
because real observations necessarily cover a range of
redshifts, the process of fitting a curve to the data and
extrapolating that back to z ¼ 0 means that in general we
will have qobs � qKS. This phenomenon has been inves-
tigated using real data in [55]. As we shall see in what
follows, even the signs of qobs and qKS can be different.
That is, a locally-decelerating spacetime can still have a
Hubble diagram that implies acceleration.

D. Acceleration of the average (using
Buchert’s formalism)

One method of constructing a homogeneous and iso-
tropic ‘‘effective’’ model within which observations can be
interpreted involves taking averages of geometrical quanti-
ties over spacelike hypersurfaces. The hope is then that the
behavior of the averaged model will capture some aspects of
the real spacetime, both in terms of its dynamics, and the
observational quantities that are calculated within it. Many
such averaging procedures exist [56], but here we will
concentrate on the Buchert scalar averaging formalism [4].
This is the most widely used formalism in the literature.

Buchert’s method proceeds as follows. First of all, the
spacetime is filled with a congruence of (irrotational)
curves. It is then foliated with a set of spacelike hyper-
surfaces orthogonal to these curves. The proper 3-volume
of a domain, D, on a given hypersurfaces is

VD ¼
Z
D

ffiffiffiffiffiffiffi�h
p

d3x; (15)

where hij is the induced metric on the hypersurface, and

h ¼ det hij. In general, the induced metric will be a func-

tion of time, and so the volume is time-dependent as well.
The proper volume-weighted average of a scalar quantity,
S, over a spatial domain, D, can then be written as

hSi ¼ V�1
D

Z
D
Sð ~x; tÞ ffiffiffiffiffiffiffi�h

p
d3x: (16)

Spatial averaging and time evolution do not, in general,
commute. They instead obey the commutation relation

@thSi � h@tSi ¼ h�Si � h�ihSi: (17)

An ‘‘effective’’ homogeneous model can be constructed by
averaging over domain sizes greater than the statistical

homogeneity scale of the underlying inhomogeneous
spacetime. An effective scale factor for the resulting model
can then be defined as

aDðtÞ ¼
�
VDðtÞ
VDðt0Þ

�
1=3

; (18)

where t0 is some fiducial time. For geodesic curves, and
pressure-free matter, we can use this formalism to
construct analogues to the Friedmann and Raychaudhuri
equations,

3H2
D ¼ 8�Gh�i þ�� 1

2
ðQD þ hð3ÞRiÞ

3
€aD
aD

¼ �8�Gh�i þ�þQD;

(19)

where HD ¼ _aD=aD. Over-dots denote partial differen-
tiation with respect to t, the proper time along curves
orthogonal to the 3-space. The kinematical backreaction
scalar is defined to be

QD ¼ 2

3
ðh�2i � h�i2Þ � 2h�2i: (20)

A deceleration parameter for the averaged hypersurfaces
can then be defined, by analogy with FLRW cosmological
models, as

qD ¼ � 1

H2
D

€aD
aD

: (21)

An effective distance-redshift relation can also be found
for the averaged model by assuming that light rays follow
null geodesics of the averaged spacetime, and that geodesic
observers are comoving in the average geometry.
In general, the deceleration parameter qD is nonlocal,

and not directly observable, as it depends on averages over
extended spacelike hypersurfaces. From Eq. (19), one can

see that if the averaged spatial Ricci curvature, hð3ÞRi, and
backreaction, QD, behave in a certain way, then it is
possible to have qD < 0 without having �> 0 or h�i< 0.
In particular, spacetimes consisting of collapsing regions in
an expanding background can exhibit this behavior, which
has led some to claim that the apparent cosmic acceleration
inferred from supernova observations could instead be
explained as a consequence of the variance of the inhomo-
geneous expansion rate that enters into the definition of
QD [5,6,36,39,57,58]. We will examine this claim in detail
later on, but for now will just note that it is possible for the
Buchert averaged model to accelerate, even if q� > 0
everywhere.
Quantities of particular interest are the deceleration

parameters that observers in a given region of spacetime
should expect to infer, rather than the actual values of these
parameters at single points (which may not be representa-
tive). To this end, we also use Eq. (16) to average our
various measures of acceleration. For example, hqKSi will
be taken to correspond to the value of the Kristian-Sachs
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deceleration parameter that a typical observer would ex-
pect to measure in a given region. Unless specified other-
wise, the averaging domain is taken to be larger than the
homogeneity scale of the model.1

III. INHOMOGENEOUS COSMOLOGICAL
MODELS

We now consider a number of different relativistic mod-
els, and how the measures of acceleration defined in Sec. II
can be calculated in each of them. We will primarily be
interested in cases with vanishing cosmological constant,
as a nonzero � generically results in accelerating expan-
sion in all of the measures discussed above. The models we
consider are chosen as illustrative examples, as they are
capable of showing acceleration in some measures, while
displaying deceleration in others.

A. Spherical collapse model

In this section we consider the spherical collapse model,
which consists of an ensemble of disjoint FLRW regions
[59–62]. It is not an exact solution to Einstein’s equations
(distinct FLRW models cannot satisfy the appropriate
junction conditions on their shared boundary), but provides
a useful toy model of collapsing structures in an otherwise
expanding universe. By virtue of each individual region
being homogeneous, spatial averages take a particularly
simple form in spherical collapse models. A scalar quantity
Smay be averaged simply by taking the sum of its values in
the different regions weighted by the proper 3-volume of
each region, V, at a given time [7,34],

hSi ¼
P

i SiViP
i Vi

: (22)

We wish to model the collapse of structures in an expand-
ing background, as this configuration is known to lead to
acceleration of the Buchert averaged spacetime, qD < 0
[7,34]. To this end, we select alternating regions of collaps-
ing, spatially closed and dust-dominated regions, and
expanding, spatially open vacuum regions, as illustrated
in Fig. 1. We model the regions using FLRW geometry
(with � ¼ 0), and refer to them as Regions I and II,
respectively. The collapsing regions are chosen so that
they have a comoving size of order 10% of the vacuum
regions at the present time. As we look further back in
time, the collapsing regions increasingly dominate the
proper spatial volume.

In what follows we will use the following form for the
FLRW metric,

ds2 ¼ dt2 � a2ðdX2 þ dY2 þ dZ2Þ
½1þ k

4 ðX2 þ Y2 þ Z2Þ�2 ; (23)

and take the individual domains to have depth XD. The
proper volume of each domain is

Vi ¼
Z
Di

a3i dXdYdZ

½1þ ðki=4ÞðX2 þ Y2 þ Z2Þ�3 ; (24)

and the comoving depth of a domain is

�i ¼
Z XDi

0

dX

1þ ðki=4ÞðX2 þ Y2 þ Z2Þ : (25)

The effective scale factor, defined in Eq. (18), is

aDðtÞ ¼
�P

i ViðtÞP
i Viðt0Þ

�
1=3

; (26)

and the Buchert average deceleration parameter qD is
calculated according to Eq. (21).
The distance-redshift relation is required to find qobs. It

can be found by solving the Sachs optical equations for a
ray passing through a number of different FLRW regions.
All that is required is to ensure continuity of the affine
parameter, �, the redshift, z, the angular diameter distance,
dA, and the expansion scalar, �, at the boundary, as a ray
leaves one region and enters another. These conditions
impose no restrictions on the individual FLRW regions.
Their size, matter content, and expansion rate can be
chosen separately. We choose the cosmic time in individual
regions such that it is continuous on the boundary between
them.
The Sachs equations in each region are given by

d2ðdAÞ
d�2

¼ �4�G�ið1þ zÞ2dA; (27)

with 4-vector tangent to the null curves given by

ka ¼
�
1þ z;� 1þ z

ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
kiX

2

s
; 0; 0

�
: (28)

The redshift as a function of affine distance is then

dz

d�
¼ �Hið1þ zÞ2: (29)

We have not used 1þ z ¼ a�1, as the total redshift along a
ray, zð�Þ, is not the same as the redshift that one would
obtain by ray-tracing through a single FLRW region.
We propagate the light rays through each region in turn,

until the edge of the region is reached at some coordinate
distance Xi (which we call the ‘‘length’’ of the region).
This length is a function of time (evaluated at the instant
the ray enters a region), chosen so that the ray travels a
proper distance in each region proportional to the fraction

1It should be noted that this averaging scheme is weighted by
proper volume, and so the density of observers is implicitly
assumed to be weighted in a similar manner. Of course, this need
not be the case, and other ways of distributing observers
throughout space could be considered. This would affect what
a ‘‘typical’’ observer should expect to see. We do not consider
this question further here.

PHILIP BULL AND TIMOTHY CLIFTON PHYSICAL REVIEW D 85, 103512 (2012)

103512-6



of the proper volume taken up by that region on a surface of
constant t, i.e.

aI�I

aII�II
¼ VI

VII

: (30)

This choice takes into account not only the different ex-
pansion rates of the two different regions along the line of
sight, but also the fact that as we go forwards in time the
number density of dust regions should be expected to
decrease. For simplicity, we fix the (comoving) length of
the collapsing region, �I, and then solve Eq. (30) for �II on
entering each new region.

The redshift through the model is given by integrating
Eq. (29). There is a blueshift as the photons pass through
collapsing regions, and a redshift as they pass through
expanding regions. The distance increases despite the blue-
shift, and the distance-redshift relation becomes multival-
ued. This leads to it taking on a jagged appearance, although
the distance remains smooth as a function of affine parame-
ter. The observational deceleration parameter can be calcu-
lated by fitting an FLRWmodel with dust, curvature, and �
to the jagged distance-redshift curve, using a simple least-
squares procedure. The FLRW deceleration parameter,
defined by Eq. (6), can then be calculated to give qobs.

The local volume deceleration parameter in each FLRW
region is given by Eq. (4). In our chosen spherical collapse
model, �� ¼ 0 in both regions, and �m ¼ 0 in the vac-
uum region, so the average of the local deceleration
parameter reduces to

hq�i ¼ 1

2

�m;IVI

VI þ VII

j0; (31)

which is positive definite (i.e. decelerating everywhere).
The equality q� ¼ qKS holds, since each region is FLRW,
and therefore has vanishing shear.

B. Kasner-EdS model

In the previous section we considered the spherical
collapse model, which consists of disjoint regions of differ-
ent FLRW spacetimes. This model is simple to work with,
but only forms an approximate solution of Einstein’s equa-
tions. In this section we consider an exact solution that is
inhomogeneous along the line of sight, with alternating
regions of collapsing dust and expanding vacuum, as illus-
trated in Fig. 1. We take the two spacelike directions
orthogonal to the line of sight to span a plane symmetric
subspace, and enforce statistical homogeneity along the
line of sight only.

In order to prevent the rapid formation of singularities
that often occurs when dust is allowed to collapse in
general relativistic models, wewill take the dust dominated
regions to be locally spatially homogeneous and isotropic.
These symmetries prevent the sudden formation of singu-
larities at different points in space, as every point is taken
to be identical to every other point by fiat. The geometry of
these regions is therefore given by the FLRW line-element
(23), where aðtÞ is the scale factor that obeys the
Friedmann equation

_a2

a2
¼ 8�G

3
�� k

a2
; (32)

where � / a�3 is the energy density of the dust. In the
vacuum regions we will take the geometry to exhibit trans-
lational symmetry along the line of sight, but will not
restrict the geometry to be FLRW, as it is known that no
solutions that satisfy the junction conditions will exist in
this case. The geometry of this region is then given by

ds2 ¼ �dt̂2 þ b21ðt̂ÞdX̂2 þ b22ðt̂ÞðdŶ2 þ dẐ2Þ; (33)

where b1ðt̂Þ and b2ðt̂Þ are the scale factors in the directions
tangent and normal to the line of sight, respectively.
It can be shown that the junction conditions between

these two regions are satisfied if we identify our hatted
and unhatted coordinates at the boundary, and if k ¼ 0,

b1 ¼ a�1=2 and b2 ¼ a [44,46]. The dust dominated re-
gions are then spatially flat FLRW, the vacuum regions are
Kasner, and the entire geometry is an exact solution of
Einstein’s equations [45]. These solutions are, in fact, a
special case of the general dust solution admitting a three
dimensional group of spacelike Killing vectors on two-
dimensional planar subspaces [23,63], but are chosen such
that we can have collapsing regions that do not exhibit the
shell crossing singularities that tend to rapidly form in the
general case. We can arrange for either the dust regions to
be collapsing and the vacuum regions to be expanding
along the line of sight, or the dust regions to be expanding
and the vacuum regions to be collapsing along the line of
sight. Here we will concentrate on the former, which
appears to us to be more in-keeping with the usual picture
of what is expected to happen in the late Universe (voids
expanding, and dense regions collapsing).
In order to calculate observational quantities within this

solution, along our chosen line of sight, we will need to
specify a set of observers. In the dust dominated regions
these can be conveniently chosen to be comoving with the
fluid, such that they follow a set of geodesic curves with

FIG. 1 (color online). Schematic representation of a line-of-sight through a universe with alternating expanding vacuum regions
(clear), and collapsing dust regions (grey).
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tangent vector ua ¼ ð1; 0; 0; 0Þ. In the vacuum regions we
will also take our observers to follow curves with tangent
vector ua ¼ ð1; 0; 0; 0Þ, in the coordinates used in Eq. (33).
One should note that although there is no fluid in this case,
so that this choice is not unique, it is a choice that picks out
a set of curves that are parallel to the world-lines of
observers who stay at the boundary between regions.
They are also geodesic. These choices therefore corre-
spond to a congruence of complete geodesic curves that
fill the entire spacetime.

Let us again refer to the dust dominated regions as
Region I and the vacuum regions as Region II. Null geo-
desic curves in these two regions, in the direction of the
inhomogeneity, are given by

kaI ¼
c1
a2

ða; 0; 0;�1Þ (34)

kaII ¼ c2ð
ffiffiffi
a

p
; 0; 0;�aÞ; (35)

where c1 and c2 are constants, and where we have again
taken the affine parameter that defines these tangents to
decrease into the past. The energy of a photon following
ka, as measured by the observers following the curves ua,
is given by

EI ¼ c1
a

(36)

EII ¼ c2a
1=2; (37)

where E ¼ �uak
a. We can also see that the Sachs optical

equations in the two regions reduce to

d2dA;I
d�2

¼ � 2c21
3a5

dA;I (38)

d2dA;II
d�2

¼ 0; (39)

where c1 is the constant from Eq. (34), which will be
different within each individual dust dominated region.
As always, the redshift is given by taking the ratio of
photon energy at the time of emission and observation,
calculated using Eqs. (36) and (37).

The trajectories of photons can be straightforwardly
integrated between the different regions, using Eqs. (34)

and (35), and by taking the value of X̂ðt̂Þ on leaving one
region as its initial value on entering the next. Likewise, the
value of E can be calculated along the null trajectories by
setting its value on entering one region as being equal to its
value on leaving the last. This gives the value of the
constants c1 and c2 in each of the dust and vacuum regions,
respectively, and allows Eqs. (38) and (39) to be integrated
along the null trajectory. Integration of this equation again
requires setting dA and � to be equal at the boundaries
between regions. Following the prescription above, the
model is uniquely specified once we specify three pieces

of information: (i) The size of the vacuum regions, (ii) the
size of the dust regions, and (iii) the time until the dust
regions reach the ‘‘big crunch’’.
Now let us consider the Buchert average of this geome-

try. The usual procedure is to average the expansion scalar
over a spacelike hypersurface, and use the averaged value
to calculate observables. Here we have created a model that
is inhomogeneous in one direction only. Averaging in all
three spatial directions should not therefore be expected to
reproduce anything like the observations we can calculate
by looking in the direction of the inhomogeneity. Instead,
we consider that the appropriate thing to do (and in analogy
to the case of inhomogeneity in all 3 spatial directions), is
to average the scale factor in the direction of inhomoge-
neity only. We are then left with an averaged geometry
with line-element

ds2 ¼ �dt2 þ hbi2dX2 þ a2ðtÞðdY2 þ dZ2Þ; (40)

where the averaged scale factor, hbi, is given by

hbi ¼
R ffiffiffiffiffiffiffiffi

gXX
p

dXR
dX

: (41)

We can now calculate observables in this averaged geome-
try, and compare them to the observations made along the
line of sight in the actual geometry of the spacetime.
Let us now consider the spatial average of the local

volume deceleration parameter. Again, we do not want to
average over all spatial directions, as we are only consid-
ering inhomogeneity and observations along one preferred
direction. The average of q� along the line of sight is
therefore given by

hq�i ¼
R
q�

ffiffiffiffiffiffiffiffi
gXX

p
dXR ffiffiffiffiffiffiffiffi

gXX
p

dX
; (42)

where q� is 1=2 in the collapsing dust regions, and �4
along the X-direction in the vacuum regions. We find a
similar expression for qKS, which takes the same value as
q� in both the dust and vacuum regions.

C. Lemaı̂tre-Tolman-Bondi model

In the previous two sections, we considered models
consisting of alternating expanding vacuum and collapsing
dust regions. We will now consider a model with no
discontinuities in the density distribution, in the form of
the spherically-symmetric, dust-only Lemaı̂tre–Tolman–
Bondi (LTB) solutions [48–50]. These have been the focus
of much recent interest due to their ability, in the guise of
‘‘giant void’’ models, to reproduce the observed supernova
Hubble diagram without a cosmological constant [64–70].
They are also capable of having an accelerating spatial
average under certain conditions [71–74].
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The LTB metric is given by

ds2 ¼ dt2 � a22ðt; rÞ
ð1� kðrÞr2Þdr

2 � a21ðt; rÞr2d�2; (43)

where a2 ¼ ða1rÞ0 is the radial scale factor. The transverse
scale factor a1 must satisfy the analogue of the Friedmann
equation, �

_a1
a1

�
2 ¼ 8�G

3

mðrÞ
a31

� kðrÞ
a21

þ�

3
: (44)

Primes and over-dots denote partial derivatives with re-
spect to r and t, respectively. The functions kðrÞ and mðrÞ
are arbitrary functions of the radial coordinate, and may be
interpreted as the spatial curvature and a mass density at a
given radius. The sign of kðrÞ classifies the differential
equation, and analytic parametric solutions exist for each
sign. Integrating Eq. (44) with respect to time introduces a
third arbitrary radial function, tBðrÞ, which describes the
local time since the big bang singularity along the world-
lines of the dust.

The metric in Eq. (43) is invariant under the transforma-
tion r ! fðrÞ, which can therefore be used to set one of the
arbitrary functions to a simple form, without losing any
generality. The LTB solutions are isotropic about r ¼ 0
only, and in general have different expansion rates in the
radial and transverse directions (H1 ¼ _a1=a1 and H2 ¼
_a2=a2, respectively). The density, expansion, and shear
scalars for this spacetime are

� ¼ ðmr3Þ0
3a2a

2
1r

2
(45)

� ¼ 2H1 þH2 (46)

�2 ¼ 1

3
ðH1 �H2Þ2: (47)

Observers away from the center of symmetry have aniso-
tropic distance-redshift relations, in general. Rather than
solving the Sachs equations in full for every direction on
the sky, we will operate within the dipole approximation2,
which assumes that the dipole term dominates the anisot-
ropy of the distance-redshift relation [75–78]. The dipole is
aligned with the radial direction due to the symmetry of the
model, and so the monopole can be estimated by taking the
mean of the angular diameter distance in the radial direc-
tions facing into and out from the center of symmetry,

dAðzÞj‘¼0 � 1

2
½dAðþr̂; zÞ þ dAð�r̂; zÞ�: (48)

We expect this to be a reasonable approximation for the
models considered here. The observational deceleration
parameter, qobs, is defined using the monopole of dA only.

For light propagation purely in the radial direction, the
tangent vector to the null geodesics is

ka ¼
�
ð1þ zÞ;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

a2
ð1þ zÞ; 0; 0

�
; (49)

and the redshift is given by integrating

dz

d�
¼ �H2ð1þ zÞ2: (50)

The angular diameter distance in either direction can be
found using the Sachs Eq. (9) in the radial direction.
In general, spatial averages in an LTB spacetime will be

both position- and domain-dependent. We consider spatial
averaging only for spherical domains centered at r ¼ 0, on
hypersurfaces of constant t. We define the effective scale

factor to be aD ¼ ðVD=VD;0Þ1=3, where

VD ¼ 4�
Z rD

0

a2a
2
1r

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrÞr2p dr (51)

and rD is the radius of the spherical domain. The average
of a scalar quantity is then given by

hSi ¼ 4�

VD

Z rD

0
Sðr; tÞ a2a

2
1r

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrÞr2p dr: (52)

We consider only the class of LTB models with � ¼ 0.
This means that the spacetime is locally decelerating
everywhere, q� � 0. The Kristian-Sachs measure is also
necessarily decelerating (qKS � 0).
Nevertheless, the freedom in the radial profiles makes it

possible to construct models in which the Hubble diagram
exactly matches that of an accelerating FLRW model for
z > 0, as seen by an observer at the center of symmetry
(although see [79]). As a result, LTB models have been
studied extensively as a conventional relativistic explana-
tion of the apparent acceleration inferred from supernova
observations which does not require the existence of an
exotic dark energy component, or modifications to the
theory of gravity (e.g. [55,64–66,77,80–85]). Despite
some success, however, they ultimately seem unable
to account for certain combined sets of cosmological
observables3 [77].
Acceleration of the Buchert average, qD < 0, has been

demonstrated for a number of different LTB models (e.g.
[71–73,86,87]). The cases studied generally take spherical
averaging domains, centered about the origin. They typi-
cally find acceleration only for finite ranges of domain size,
which do not correspond to the homogeneity scale (if one
exists). Additionally, models in which observers at the
center of symmetry infer acceleration from their Hubble
diagram seem not to correspond to those with an acceler-
ating Buchert average [71], and vice versa [88]. Since the
spacetime is always decelerating locally, the existence of

2See the end of Sec. VI, and Ref. [75], for a discussion of the
validity of this approximation. 3For an alternative perspective, see [30].
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acceleration in the Buchert average must be caused purely
by the backreaction term, Eq. (20).

In what follows, we will specialize to LTBmodels with a
simple Gaussian spatial curvature profile

kðrÞ ¼ Ak exp

�
� r2

w2
k

�
; (53)

with tB ¼ constant, and with a choice of radial coordinate
such that mðrÞ ¼ constant. When Ak < 0, there is a central
void region (often surrounded by an over-dense shell), and
an asymptotic flat FLRW region. These models are capable
of producing good fits to the existing supernova data, for an
observer at the center of symmetry.

IV. RESULTS: SPHERICAL COLLAPSE

In this section, we evaluate our 4 measures of accelera-
tion in the spherical collapse model (as described in
Sec. III A). This model is known to be able to have an
accelerating Buchert average, despite locally decelerating
everywhere [7].

In Fig. 2 we plot the magnitude of sources, �, that an
observer in the spherical collapse model would see, minus
the magnitude a source at the same redshift would have in a
pure vacuum model (with all of the dust regions removed).
The model used in this figure is one in which the vacuum
regions are 80 Mpc wide at the present time, and dust
regions are 15 Mpc wide. We refer to these plots as ‘‘the
Hubble diagram’’. We consider two different observers in
this plot: one at the center of a collapsing dust region (red
line), and one at the center of an expanding vacuum region
(blue line). It can be seen that the type of region that the
observer finds themselves in can have a considerable im-
pact on the behavior of the Hubble diagram they construct
at low z. At high z, however, the curves evolve almost
identically (up to a vertical displacement). In both cases,
the blueshifting that occurs in the collapsing region forces

the curves upwards, due to the magnitude continuing to
increase even while the redshift decreases. This leads to an
overall positive gradient for the curves in Fig. 2, while the
gradient at any point on each individual curve is negative.
This result is significant, as accelerating FLRW models
have positive gradient in these plots, while decelerating
FLRW models have negative gradient.
In Fig. 3 we plot the results of averaging the Hubble

diagrams constructed by observers in both the dust and
vacuum regions of the same model considered in Fig. 2. We
do this by constructing individual distance-redshift rela-
tions for a large number of observers (all in the same
model), binning these relations in redshift, and then calcu-
lating the mean and standard deviation in each bin. We also
calculate the magnitudes that would be found in the
Buchert averaged model, and the spatially averaged decel-
eration parameter q� ¼ qKS. In the upper panel of Fig. 3
we plot the magnitude of sources, minus the magnitude
they would have at the same redshift if all the dust regions
were removed (as in Fig. 2). In the lower panel we plot the
magnitude of sources minus the magnitude they would
have in the Buchert averaged model. In this figure we shift
the curves so that they coincide at z ¼ 0. This corresponds
to a change in the local Hubble rate.
It can be seen from the upper panel of Fig. 3 that the

Buchert average (dashed black line) closely traces the
mean observed magnitude (solid red line). The 1 and 2�
confidence regions appear to oscillate, because of the
jaggedness of the individual distance-redshift curves that
were averaged over (see Fig. 2). Nevertheless, the curve for
the Buchert average stays within the 1� confidence region
for the entire redshift range considered. Part of the reason
for this is that the black line has been shifted vertically to
match the red line at high z, in order to aid comparison.
Without this shift, the two curves have the same zero-point,
but fluctuations in the mean observational curve at low z
cause an offset to build up at higher z. The zero-points are
the same because they are governed by the same spatial
average of the local Hubble rate hH0i (for the observational
curve) and the Buchert average Hubble rate HD (for the
Buchert average curve). These are equal at z ¼ 0.
It can be seen from the lower panel in Fig. 3 that making

the comoving size of the regions smaller, so that the initial
region is less dominant, significantly reduces the fluctua-
tions of the mean observational curve (in both cases, these
fluctuations decrease as redshift increases). This in turn
reduces the offset that develops between the observational
curve and the Buchert average curve.
The short blue line in the upper panel of Fig. 3 is the

‘‘effective’’ curve obtained by setting q0 ¼ hq�i in the
FLRW series expansion for dAðzÞ. Again, q� ¼ qKS in
the spherical collapse model, so this line is also the effec-
tive curve for the Kristian-Sachs deceleration parameter. It
can be seen to bear little resemblance to the observational
and Buchert average curves.

FIG. 2 (color online). Magnitude of sources in the spherical
collapse model, minus the magnitude they would have in pure
vacuum. Observations made by a single observer, from the
center of the dust and vacuum regions, are displayed as solid
red (lower at z ¼ 1) and blue lines, respectively. The dashed
black line is the same quantity in the Buchert averaged model.
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The values for the deceleration parameters measured in
this model are

hq�i ’ 0:017 (54)

qD ’ �0:167; (55)

with hqKSi ¼ hq�i, and hqobsi ’ qD. By considering other
model parameters, we have confirmed that the curves due
to averaging observations, and the Buchert average dis-
tance curve, always seem to show similar functional be-
havior (and thus have similar deceleration parameters).
Neither of these quantities are ever close to hqKSi or
hq�i, unless the dust regions are made to expand, or are
made to be very small.

We find that the existence of acceleration in both the
Buchert average and the observational distance-redshift
relations is a generic feature of spherical collapse models
consisting of expanding and collapsing regions. Figure 4
shows the results of varying the parameters of the FLRW
regions that constitute the model. The base model has the
parameters hI ¼ �2:0 and �m;I ¼ 1:8 in the dust regions,

and hII ¼ 0:7 and �m;II ¼ 0 in the vacuum regions. The

comoving sizes of these regions are taken to be �I ¼
15 Mpc and �II ¼ 80 Mpc, respectively. The collapsing
region is chosen to be 52% of its maximum age. The plots
in Fig. 4 are for models with these parameter values, unless
they are the parameter being varied. The figure shows a
strong dependence of the Buchert average acceleration on
region size – models with collapsing regions that are
relatively larger have greater acceleration, as expected.

Increasing the Hubble rate in the vacuum regions reduces
the current age of the model, and correspondingly
increases hq�i. This is due to this quantity being evaluated
at an earlier time, when the collapsing regions are more
dominant. Figure 4 shows that the deceleration parameter
of the Buchert averaged model is negative as long as the
collapsing region takes up a non-negligible fraction of the
comoving volume. If the vacuum region dominates, both
the local volume and Buchert average deceleration pa-
rameters tend to zero. Since the observational deceleration
parameter is well-approximated by the Buchert average
measure, it seems that all that is required for observers to
see an apparent acceleration is the existence of a non-
negligible fraction of collapsing regions.

V. RESULTS: KASNER-EDS

We now repeat the analysis of the previous section for
the Kasner-EdS model. This is included in order to allay
concerns that the coherence in the accelerations of the
Buchert average and observational measures seen in the
spherical collapse model were caused simply by inade-
quacy of the model.
In Fig. 5 we plot the magnitude of sources, �, that an

observer in the Kasner-EdS model would see, minus the
magnitude a source at the same redshift would have in a
pure vacuum model (with all of the dust regions removed).
The model used in this figure again has dust regions that
are 15 Mpc wide, but the vacuum regions are now
�1500 Mpc across. This large number is required in order
to get cosmologically interesting redshifts, because of the

FIG. 3 (color online). Upper Panel: Magnitude of sources in the spherical collapse model, minus the magnitude they would have in
pure vacuum. The solid red line is the mean observed magnitude, obtained by spatially averaging distance-redshift relations on a
surface of t ¼ constant. The pink bands are 1� and 2� confidence regions. The black dashed line shows the corresponding quantity in
the Buchert averaged model. The short blue line is the distance modulus for a FLRW model with deceleration parameter q ¼ hq�i.
Lower Panel: A difference plot of the red line and dashed line, from the panel above. The solid black line corresponds to a model with
regions that are a quarter of the size of those used in the upper panel. The pink (wide) and grey (narrow) bands are 1� confidence
regions for the two different models.
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rapid acceleration in the vacuum regions along the
preferred line of sight.4 We also choose the model such
that the dust regions collapse to a singularity in �5 billion
years. We consider two different observers in Fig. 5: one at
the center of a collapsing dust region (green line), and one
at the center of an expanding vacuum region (blue line).
Again, it is apparent that the type of region that the
observer finds themselves in can have a considerable im-
pact on the behavior of the Hubble diagram they construct
at low z, while at high z the curves evolve almost identi-
cally (up to a vertical displacement). Blueshifting again
occurs in the collapsing regions, forcing the curves
upward.

In Fig. 6 we plot the results of averaging the distance-
redshift relations of observers in both the dust and vacuum
regions of the same model considered in Fig. 5, as was
done in Fig. 3 for the spherical collapse model. Magnitudes
in the Buchert averaged model, and the spatially averaged
deceleration parameter q� ¼ qKS, are also calculated.
With this model, however, no vertical shift of the Buchert
averaged model curve is required in order for it to agree
well with the average of the observed magnitudes.
The Buchert average closely traces the mean observed

magnitudes. We do, however, perform a vertical shift on
all of the curves in Fig. 6 simultaneously, so that they
approach the origin at z ¼ 0. Again, reducing the comov-
ing size of the regions, so that the initial region is less
dominant, significantly reduces the fluctuations of the
mean observational curve.
The short blue line in the upper panel of Fig. 6 is again

the ‘‘effective’’ distance modulus curve obtained by setting
q0 ¼ hq�i in the FLRW series expansion for dAðzÞ. We
also again have q� ¼ qKS. The values for the deceleration
parameters measured in this model are

hq�i ’ �3:96 (56)

qD ’ �7:18; (57)

FIG. 4 (color online). Dependence of the Buchert average deceleration parameter, qD (dashed black line), and spatially-averaged
local volume deceleration parameter, hq�i (solid red line), on the parameters of the spherical collapse model. Shown is the dependence
on the Hubble rates in the collapsing and vacuum regions, hI and hII , and the comoving region sizes, �I and �II.

FIG. 5 (color online). The same quantities that were plotted in
Fig. 2, but using the Kasner-EdS model.

4It should be reiterated here that we are not proposing this
model as a realistic representation of the actual Universe, but
rather to provide a simple exact solution of Einstein’s equations
that allows us to study relativistic behavior that may occur in
more realistic solutions. In this sense, it should be considered as
proof-of-concept only.
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with hqKSi ¼ hq�i, and hqobsi ’ qD. This value of hq�i
corresponds to rapid acceleration, but not as rapid as sim-
ply looking through pure vacuum regions in the direction of
inhomogeneity, where q0 ¼ �4. The value of qD, on the
other hand, corresponds to considerably more acceleration
than simply looking through the vacuum regions alone. As
in the spherical collapse models, therefore, the presence of
the collapsing dust regions causes a dramatic increase in
both the acceleration of the Buchert averaged model, and
the average of the observational acceleration.

By considering models with other parameter values, we
again confirm that the curves due to averaging observa-
tions, and the Buchert average distance curve, always seem
to show similar functional behavior (and thus have similar
deceleration parameters). Neither of these quantities are
ever close to hqKSi or hq�i, unless the dust regions are
removed, or become vanishingly small.

VI. RESULTS: LTB

The final model that we consider is an LTB spacetime,
with parameters chosen to produce a good fit to the super-
nova data for an observer at r ¼ 0. These are displayed in
Fig. 7. Unlike the other models we have considered, the
LTB model has smooth density and Hubble rate profiles on
spatial slices. There are, however, no collapsing regions at
t ¼ t0.

Figure 8 displays the magnitudes of sources in the LTB
model for our various measures of acceleration. Since the
chosen model has no homogeneity scale, we plot the
distance modulus curves for two different averaging do-
main radii: rD ¼ 1000 Mpc (well inside the void), and
rD ¼ 3000 Mpc (near the void boundary). The results in
the two cases differ significantly, with the smaller averag-
ing domain displaying acceleration for the mean observa-
tional curve (solid red line), while its counterpart for the

larger domain (solid blue line) shows a strong deceleration.
Note that the observational curves are for the monopoles of
the distance-redshift relation, obtained using the dipole
approximation described in Sec. III C. The curves for the
Buchert average (dashed lines) do not match the mean
observational curves (solid lines) in any discernible way.
In particular, both of the curves for the Buchert average are
decelerating, while the averaged observed relation for the
smaller domain size is accelerating.
The dotted and dash-dotted lines are ‘‘effective’’ dis-

tance moduli for the local volume and Kristian-Sachs
deceleration parameters. These correspond to series
expansions of the FLRW dAðzÞ relation with deceleration
parameters q0 ¼ hq�i and q0 ¼ hqKSi respectively. Neither
follows the Buchert average, nor the mean observational
curves. They are closely related to one another though, with

FIG. 6 (color online). The same quantities that were plotted in Fig. 3, but using the Kasner-EdS model.

FIG. 7 (color online). Density and expansion rates as a function
of radius in anLTBvoidmodel. Themodel has spatial curvature of
the form given in Eq. (53), with Ak ¼ �3:82� 10�8 Mpc�2 and
wk ¼ 1800 Mpc. Shown are the density, � (solid black), trans-
verse Hubble rate, H1 (blue dashed), and radial Hubble rate,
H2 (blue dash-dot). All of the curves are normalized to their
values in the asymptotically-homogeneous region (� ¼
9:2� 1010M	 Mpc�3, H1 ¼ H2 ¼ 57:7 kms�1 Mpc�1).
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only a slight discrepancy apparent at higher redshift for the
larger domain size. This is because the two measures only
differ by a term proportional to the shear, which is relatively
small in this case.

The upper set of observational curves in Fig. 8 show that
a substantial fraction of observers within a radius of
r 
 1000 Mpc will infer acceleration from the monopole
of their Hubble diagram, despite all of the other decelera-
tion parameters indicating deceleration. This is caused by
spatial variations in expansion rate along their lines of
sight, but does not seem to be linked with spatial average
properties of the spacetime, as it was in the spherical
collapse and Kasner-EdS models. Figure 9 suggests that
many of these observers will see a large dipole in the
distance-redshift relation over their sky. Presumably,
most of the observers would conclude that they lived in a
Universe that is inhomogeneous on large scales, and would
therefore not attempt to fit an FLRW model to their ob-
servations at all. In that case, the question of whether the
monopole of the observational relation is accelerating or
not becomes less of an issue. Attempts to summarize the
(observational) acceleration of the model with one number,
the monopole qobs, would fail. Attempting to construct a
homogeneous Buchert average model would probably not
be seen as a sensible procedure either.5

The Buchert average curve in Fig. 8 is much closer to the
effective local volume acceleration and Kristian-Sachs
curves than to the observational curve, although it still
deviates from both of them substantially. There are a
number of reasons why this is the case. The first is that
the model is not statistically homogeneous, and so the
Buchert average does not represent the ‘‘typical’’ condi-
tions that a light ray would experience traveling through
the spacetime.6 Secondly, the backreaction scalar QD, of
Eq. (20), is small in this model, because both the shear and
the variance of the expansion rate are small. As such, the
Buchert average deceleration parameter qD, defined in
Eq. (21), is dominated by the same terms that appear in
the definitions of the Kristian-Sachs and local volume
measures, most notably the density. Our different measures
of acceleration do not exactly reduce to one another in this
case, but they are rather close (as can be seen in Fig. 10,
inset). We also see that in the absence of a sensible way of
defining a representative smooth model (due to the lack of
a homogeneity scale), the mean behavior of light rays
should not be expected to correspond to the Buchert aver-
aged model.
In Fig. 10, the various (spatially-averaged) deceleration

parameters are plotted as a function of averaging domain
radius, rD. The Buchert average, local volume, and
Kristian-Sachs deceleration parameters track one another
rather closely over the whole range of domain sizes, for the
reasons discussed above. The observational curves (thick
and thin solid lines) have a rather different behavior. Both
are obtained by calculating q0 in an FLRW model that has
been fit to the monopole of the distance-redshift relation as

FIG. 9 (color online). Distance modulus curves for an off-
center observer in the same model, at r ¼ 915 Mpc. The dotted
blue lines show the distance modulus as a function of redshift for
radial lines of sight looking out of and into the void (upper and
lower curves, respectively). The dashed blue line is the distance
modulus for the monopole of the distance-redshift relation,
calculated using the dipole approximation. The solid black line
is the relation for an observer at the center of symmetry.

FIG. 8 (color online). Distance moduli in the LTB model. The
red curves (uppermost) are for averaging domains of size rD ¼
1000 Mpc, and the blue curves for rD ¼ 3000 Mpc. The solid
lines are the mean distance moduli found by spatially averaging
the monopole of the observed distance-redshift relation, with
accompanying 1� and 2� confidence bands. The dashed lines
are the distance moduli for the distance-redshift relation in the
Buchert averaged spacetime. The dotted and dot-dashed lines are
the distance moduli for a series expansion of the FLRW dAðzÞ
relation, with deceleration parameters q ¼ hq�i and q ¼ hqKSi,
respectively. The curves have all had their zero-points shifted to
match at z ¼ 0.

5Instead, the Buchert averaging procedure could be used to
define a ‘smoothed-out’ model that is inhomogeneous. This
would result in position-dependent average quantities, and
would likely be sensitive to both the shape and size of the
averaging domain.

6In fact, it cannot, as the null geodesics involved in calculating
this quantity go outside of the averaging domain.
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a function of observer position.7 The resulting position-
dependent value of q0ðrÞ is then spatially averaged. The
thick yellow curve corresponds to fitting FLRW models to
the distance-redshift monopole out to z ¼ 1, and the thin
red one to z ¼ 0:1. The two are very different. In particular,
the fit out to higher redshifts shows acceleration for small
averaging domain radii. Figure 9 shows why this is the
case: At low redshift, the observational distance modulus
curve is decelerating (which is also suggested by the fact
that qKS > 0 everywhere), but appears to accelerate at
higher redshifts for observers inside the void. By fitting
FLRW models to the larger redshift range, more of the
apparent acceleration is captured. This behavior is wholly
due to quantities being integrated along past null direc-
tions, and is not caused by the local curvature of spacetime
at any one point.

The results we have presented for the observational
deceleration are subject to the validity of the dipole ap-
proximation, that was discussed in Sec. III C. This approxi-
mation will tend to overestimate the monopole of the
angular diameter distance at a given redshift, causing a
decrease in qobs relative to its exact value. As can be seen
from Fig. 10, this only serves to worsen the discrepancy
between hqobsi and the other deceleration parameters at
high redshift. At low redshift the approximation is most
accurate [76], and so the correction required in this regime
should be expected to be small. As such, we consider our
results to be robust to the use of this approximation.

VII. DISCUSSION

In this paper, we have studied different concepts of what
it means for a spacetime to display ‘‘accelerating expan-
sion’’. The measures of acceleration that are associated
with these concepts all reduce to the same quantity in a
perfectly homogeneous and isotropic FLRW universe, but
in an inhomogeneous universe we have shown that they can
be very different indeed. This occurs even to the extent that
some can indicate deceleration, while others indicate that
exactly the same spacetime is accelerating. In universes
that are statistically homogeneous on large scales, we find,
that in order to estimate the acceleration inferred by mak-
ing observations over large distances (as is the most usual
way to infer acceleration in cosmology), one is best off
using a model constructed from nonlocal averages of geo-
metric quantities, as occurs in Buchert’s formalism, rather
than considering the local expansion rate of space. This is
in agreement with an argument put forward by Räsänen
[89,90]. The appearance of acceleration in observations
made over large scales does not necessarily imply or
require the expansion of space to be accelerating, nor
does it require local observables to indicate acceleration.
The models that we used to reach these conclusions are

given in Sec. III, and include both exact and approximate
relativistic toy models that are known to display some of
the types of acceleration we have considered. To be spe-
cific, we consider: (A) an approximate ‘‘spherical col-
lapse’’ model (with disjoint collapsing and expanding
FLRW regions); (B) an exact Kasner-EdS model (with
expanding and collapsing regions along the line of sight);
and (C) an exact LTB model (expanding everywhere). The
spherical collapse model has the advantage of being able to
model reasonably complicated distributions of matter,
while the Kasner-EdS model allows one to model a uni-
verse that is statistically homogeneous along the line of
sight.
In the spherical collapse and Kasner-EdS models, the

reconstructed distance-redshift relation, which corre-
sponds most closely to what is actually measured in ob-
servational cosmology, is closely related to the Buchert
average, and not the mean local properties of the space-
time. This means that showing that local spacetime cannot
accelerate without �, or a quintessence field, is not suffi-
cient to disprove backreaction as a source for the apparent
late-time accelerating expansion of the Universe [7,8].
This does not, of course, mean that the observed accelera-
tion can currently be said to be due to backreaction: the
situations we considered here are very much toy models
(albeit ones that we expect to capture some of the proper-
ties of the real Universe). More study is required and, in
particular, more realistic, nonperturbative models of the
Universe are required, before any definite conclusions can
be drawn about the real Universe. One recent attempt at
constructing such models appears to show some evidence

FIG. 10 (color online). Spatial averages of various decelera-
tion parameters as a function of averaging domain radius, rD.
The local volume (dash-dotted green line), Kristian-Sachs
(dotted blue), and Buchert average (dashed black) deceleration
parameters have rather similar values. A close-up of these curves
is shown in the inset so that they can be distinguished. The thick,
solid yellow line is the deceleration parameter found by fitting an
FLRWmodel to the distance-redshift relation for a wide range of
redshifts, z 
 1. The narrower solid red line shows the same
measure, but for a fit to only z 
 0:1.

7The best-fit FLRW model may not always be a particularly
good fit – the monopole of the distance-redshift relation in LTB
models can take on much more complicated functional forms
than are allowed in FLRW.
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of the effects we describe here [91], but it is still neither
conclusive nor fully realistic.

As a corollary of our study, a possible source of obser-
vational evidence for the hypothesis that the apparent
acceleration of the Universe is due to inhomogeneity
presents itself: If the parameters of FLRW models inferred
from local observations are significantly different from
those inferred from observations made over large dis-
tances, then this would seem to imply that the FLRW
model that we use to model local spacetime is different
to the FLRWmodel that best describes the evolution of the
Universe on large scales. Any such difference would signal
a significant departure from the predictions of the concord-
ance �CDM model of the Universe, and would therefore
cast considerable doubt on the detection of � � 0. Of
course, inferring cosmological parameters from observa-
tions made on small scales is a considerable challenge.
Sample variance due to the presence of local structures,
and the peculiar velocities they induce, would have to be
very well-understood. Nevertheless, the supposed detec-
tion of the ‘‘Hubble Bubble’’ [92] suggests that it may not
be entirely impossible.

The link we have found between observations and the
spatial average can be explained by considering that, for a
large enough collection of null rays, the typical conditions
experienced by a ray at a given time, t, are likely to
correspond to the average of local conditions on a hyper-
surface of t ¼ constant. These averages are exactly what
Buchert’s approach is constructed to estimate. As long as
spacetime is statistically homogeneous and isotropic above
some scale, the result then follows (assuming observers

and sources are distributed in a volume-weighted way).
These issues have been considered in detail in [38].
In the case of the LTB model, in Sec. VI we found that

the Buchert average was more closely related to the local
measures than to the typical distance-redshift relation of an
observer, apparently in contradiction with our previous
results. This model, however, is not statistically homoge-
neous or isotropic, and shows apparent (observational)
acceleration only for a limited range of averaging domain
sizes. Furthermore, the distance-redshift relation is only
poorly represented by its monopole alone, since the dipole
of the relation would certainly be important too. Therefore,
our conclusions are that in this case the Buchert average is
not enough to characterize the ‘‘typical’’ properties of the
spacetime, and the mean of the monopole of the distance-
redshift relation is also not enough to characterize what a
typical observer should expect to see. This leads one to
question what it really means for an LTB model to exhibit
‘‘average acceleration’’ at all.
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