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We reexamine the recently proposed ‘‘little inflation’’ scenario that allows for a strong first-order phase

transition of QCD at non-negligible baryon number in the early Universe and its possible observable

consequences. The scenario is based on the assumptions of a strong mechanism for baryogenesis and a

quasistable QCD-medium state which triggers a short inflationary period of inflation diluting the baryon

asymmetry to the value observed today. The cosmological implications are reexamined, namely, effects on

primordial density fluctuations up to dark matter mass scales ofMmax � 1M�, change in the spectral slope
up toMmax � 106M�, production of seeds for the present galactic and extragalactic magnetic fields, and a

gravitational wave spectrum with a peak frequency around �peak � 4� 10�8 Hz. We discuss the issue of

nucleation in more detail and employ a chiral effective model of QCD to study the impact on small scale

structure formation.
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I. INTRODUCTION

At about 10ms after the big bang a phase transition from
the quark-gluon plasma to a hadron gas is expected to
have taken place at a temperature of about TQCD �
150–200 MeV. In the last decade it has become more
and more clear that this transition was most probably
only a rapid crossover as indicated by more and more
refined lattice gauge theory calculations at zero baryon
density [1,2]. In standard cosmology the baryon asymme-
try is tiny �B ¼ nB=s� 10�9, with nB being the net
baryon density and s the entropy density, as deduced
from later stages in the evolution of the Universe.
Therefore a first-order QCD phase transition seemed very
unlikely given the conditions. Still, the QCD phase dia-
gram is for most parts terra incognita. The chiral and the
deconfinement transition do not necessarily coincide but
there are some indications from effective models [3] and
lattice QCD calculations that there is at least a significant
connection between the two. There has been recent
progress in the attempt to include a finite baryon density
on the lattice [4,5] but effective models are still the method
of choice to explore the uncharted regions of the QCD
phase diagram [6]. Findings indicate that at finite baryon
densities a first-order phase transition can be expected as
shown by chiral effective models of QCD [7] caused by the
melting of quark and/or gluon condensates or by color
superconductivity [8]. A sketch of a possible QCD phase
diagram is depicted in Fig. 1 along with the commonly
accepted path the Universe took during and after the QCD-
transition. The Universe starts out in the upper left and
moves along the temperature axis from the chirally sym-
metric quark-gluon plasma through a crossover transition
to the chirally broken hadron gas phase. Once protons and
antiprotons stop to annihilate below 35 MeV the baryon
chemical potential quickly shoots up from 1 eV to the
nucleon mass (see Ref. [9] for more details). Effective

models of QCD [10,11] as well as lattice calculations [4]
at finite baryon chemical potential give hints for the ex-
istence of a critical endpoint at �C ¼ Oð1ÞTC.
At this point one might ask if there is a simple scenario

with the cosmological QCD phase transition being first
order without violating the constraint of a small baryon
asymmetry in the later evolution of the Universe. In a
recent publication we have introduced the little inflation
scenario [12], that allows for such a first-order QCD phase
transition in the early Universe without being in contra-
diction to present cosmological observations. In Fig. 2 we
sketch the evolution path of the Universe in the little
inflation scenario. Here the Universe starts out at a large
baryon chemical potential and therefore crosses the first-
order phase-transition line but stays in the deconfined
chirally symmetric phase. The Universe is trapped in the
wrong QCD vacuum state and undergoes a short period of
inflation until the delayed phase transition takes place. The
released latent heat then causes a large entropy release that
dilutes the baryon asymmetry to the presently observed
value. Afterwards the universe evolves along the standard
path just as in Fig. 1.
The concept of a little inflation (or tepid inflation) at the

QCD phase transition has been also introduced earlier by
Kämpfer et al. [13–16] and for a inflationary period of
similar duration as discussed here later by Borghini et al.
[17]. In both cases an initially higher net baryon density is
diluted to the presently observed small value of the baryon-
to-photon ratio in the course of the QCD phase transition.
The general idea of a short inflation to reduce a too high
baryon asymmetry was mentioned even earlier by Linde in
a publication on Affleck-Dine baryongensis [18] but not
explicitly in the context of the QCD phase transition.
In the present paper we will reexamine the findings

presented there in more detail and employ a chiral effective
model of QCD to study some of the implications more
thoroughly. The structure of this paper is as follows. In
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Sec. II we address the first prerequisite of the scenario,
namely, a baryon asymmetry of order one before the QCD
phase transition. In Sec. III we discuss the second prereq-
uisite, i.e. the topic of nucleation and especially the issues
of supercooling and high surface tension. In Sec. IV we
introduce the dilaton-quark-meson model and apply its
results in Sec. V where we discuss the implications for
linear structure formation. Section VI deals with the
changes to dark matter physics. Generation and modifica-
tion of magnetic fields and gravitational waves are dis-
cussed in Secs. VII and VIII, respectively. In the
Appendix A we summarize some analytic limits for the
structure formation calculations that are mostly not found
in the literature to our knowledge and may help with the
understanding of the numerical results in Sec. V.

II. BARYON ASYMMETRY

As we have seen one of the main requirements of such a
short inflationary period at the QCD phase transition is a
nonvanishing baryochemical potential �B=T �Oð1Þ. Big
bang nucleosynthesis calculations predict the observed
primordial abundances of elements correctly only if the
baryon asymmetry was tiny at a temperature of 1 MeVand
below. The cosmic microwave background radiation as
well as large-scale structure observations predict very
similar values and combining all these observations
one finds a baryon asymmetry of 5:9� 10�10 <�B <
6:4� 10�10 at 98% confidence level [19].
Now we need to estimate how long such a little inflation

has to be in order to start out with a sufficiently large ratio
of �B=T. The net number of baryons in a comoving
volume is conserved and can be estimated by NB �
a3i �BiT

2
i ’ a3f�BfT

2
f where the index i refers to the initial

values when the vacuum energy starts to dominate the
energy budget of the universe and f to the final values
after reheating. Therefore the initial ratio of the chemical
potential to the temperature can be higher by

�Bi

Ti
’ �3

�Bf

Tf

�
Tf

Ti

�
3

(1)

with � ¼ af=ai. If the phase transition at the end of

inflation transpires on a time scale much shorter than the
Hubble time then the Universe reheats back to the initial
temperature at the start of inflation in good approximation
Ti ’ Tf. Then we can conclude from Eq. (1) that for

�� 103 � e7 the baryon asymmetry before inflation �Bi

and �i=Ti will be of order unity. The latter condition
would, as we have seen, suffice to allow the QCD phase
transition to be first order.
The next question we need to address is if such a high

initial baryon asymmetry is possible within one of the
established baryogenesis mechanisms. Baryogenesis has
been a long-standing problem in cosmology ever since
the pioneering publication by Sakharov [20] and is still a
very active field of research especially since it became
clear that successful baryogenesis requires physics beyond
the standard model, see [21–25] for some extensive review
articles of the field.
In the well-established Affleck-Dine mechanism of bar-

yogenesis [18,26] a large baryon asymmetry is much more
natural than in other classes of models like, for example,
baryogenesis via leptogenesis. In short the idea is that
baryon- and lepton-number carrying scalar fields with
very flat potentials can locally acquire very large expecta-
tion values. The Affleck-Dine mechanism can readily be
incorporated into supersymmetric models [27], where
squark- and slepton-fields play the role of the baryonic
scalar fields. Once supersymmetry is broken the flat direc-
tions are lifted and the scalar-condensates decay to stan-
dard model particles leaving a finite baryon and lepton

FIG. 1 (color online). Sketch of a possible QCD-phase dia-
gram with the commonly accepted standard evolution path of the
universe as calculated, e.g. in [9] depicted by the (green) path.

FIG. 2 (color online). Sketch of a possible QCD-phase dia-
gram with the evolution path of the Universe in the little inflation
scenario.
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asymmetry. In simple realizations the Affleck-Dine mecha-
nism can easily produce a too high baryon asymmetry for
the standard cosmological scenario, thus either models
with multiple fields or more sophisticated coupling terms
have to be introduced to limit the initial baryon number
production or a subsequent reduction is necessary. The
latter could be achieved, as mentioned earlier, by a large
entropy release that dilutes the baryon-to-photon ratio to
the right value observed today, for example, by an infla-
tionary period (see, e.g. Ref. [18]). That being said Affleck-
Dine baryogenesis can provide �B �Oð1Þ, where this is
probably an upper limit [18]. Still, this bound has to our
knowledge not been explored any further after the esti-
mates in the initial publications by Affleck, Dine, and
Linde for the obvious reason that an even higher baryon
asymmetry was not desirable.

Now we want to make the above rough guess for the
highest possible�B before such a little inflationary period a
bit more quantitative taking �B ¼ 1 as an upper limit.
Because of asymtotic freedom QCD should be well de-
scribed by a free gas of quarks and gluons at sufficiently
high energy densities so we can use this to gain some more
quantitative estimates. To keep things simple we take all
particles to be massless. The energy density, pressure, en-
tropy density, and number density of a relativistic gas read

� ¼ g

�
�2

30
T4 þ 1

7
�2T2 þ 1

14�2
�4

�
(2)

p ¼ �

3
¼ g

�
�2

90
T4 þ 1

21
�2T2 þ 1

42�2
�4

�
(3)

n ¼ @p

@�
¼ g

�
2

21
T2�þ 2

21�2
�3

�
(4)

s ¼ �þ p��n

T
¼ g

�
2�2

45
T3 þ 2

21
�2T

�
: (5)

Here g is the effective number of bosonic helicity states, i.e.
fermionic helicity states areweighted with a factor of 78 . For

�nBwe can directly use Eq. (4)withg ¼ gq=3 for the degrees

of freedom. The entropy density has contributions from
particles with sizable chemical potential and from those
without, therefore we label the quark degrees of freedom an
index q and those that have a non-negligible chemical
potential with an index �. This is necessary because both
are not necessarily the same since leptons should most
likely carry an asymmetry similar to the baryonic one,

s ¼ g
2�2

45
T3 þ g�

2

21
�2T: (6)

If we now combine both we arrive at an estimate for the
baryon asymmetry

�B ¼
2gq
63 ðT2�þ �3

�2Þ
g 2�2

45 T3 þ g�
2
21�

2T
¼ gq5ð�T þ 1

�2
�3

T3Þ
g7�2 þ g�15

�2

T2

: (7)

Interestingly this means that in the limit of � � T as well
as in the limit� � T the baryon asymmetry is just propor-
tional to �=T. The limits can be directly read of to be

�B �
8><
>:

gq5

g7�2
�
T � � T

gq
g�3�

2
�
T � � T

: (8)

Herewe assume for simplicity that all particle specieswith a
nonzero chemical potential have the same chemical poten-
tial, i.e. � ¼ �q ¼ �� ¼ �e, etc. In the end we assume

that the equilibrium condition for the quark and baryon
chemical potential holds �B ¼ 3�q. Note that one cannot

treat baryons as fundamental degrees of freedom satisfying
Eq. (4) with a charge of 1=3 within this simple estimate or
there would be a contradiction to the chemical equilibrium
condition.
In Fig. 3 the results from (7) are shown for two particle

compositions each for negligible lepton asymmetry and for
equal baryon and lepton asymmetry. One can see that the
influence from the particle composition is only a small
effect, since the additional degrees of freedom contribute
in a similar magnitude to numerator and denominator of
�B. On the other hand �B is significantly suppressed at
the same chemical potential when adding an equal lepton
asymmetry. This can be easily understood since the lepton
asymmetry only increases the entropy but not the baryon
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FIG. 3 (color online). Here we plot the resulting baryon asym-
metry from Eq. (7) as a function of �B=T for different cases. All
curves include photons, three neutrino families, electrons and
positrons, up and down quarks, and eight gluons. Solid [red (A)]
and dotted [blue (B)] curves assume a negligible lepton asym-
metry while the latter also includes strange quarks and muons.
The dashed [black (C)] and the dashed-dotted [orange (D)] lines
include a lepton asymmetry and again the latter adds s-quarks
and muons.
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number. The limiting values for �B=T assuming �B ¼ 1
for the four cases are shown in Table I.

Next we can translate the limits on the initial chemical
potential to temperature ratio to a constraint on the extent
of the dilution. The baryon number in a comoving volume
is conserved, i.e. nBi ¼ �3nBf, therefore the extend of the

dilution can be directly inferred from the ratio of baryon
asymmetries before and after inflation

� ¼
�
�Bisi
�Bfsf

�
1=3 ¼

�
�Bi

�Bf

�
1=3

: (9)

Note that this definition does not necessarily coincide with
the length of the period of exponential expansion defined
by negative total pressure as we shall see later. To evaluate
this expression we only need to calculate the baryon asym-
metry �Bi because the two specific entropy densities si and
sf are by definition equal.

If we now make use of the experimental value for �Bf

we find the upper limit on the inflation length is given by

�max ¼ 1176�1=3
Bi (10)

independent of particle composition. In Fig. 4 we show
the corresponding maximum dilution of baryon number
by a delayed QCD phase transition in the little inflation
scenario. This figure is part of the results of the dilaton-

quark-meson model and the structure formation calcula-
tion in Secs. IV and V, respectively, but it is quite model
independent apart from the value of the chosen value of the
vacuum energy.
The period of exponential expansion could also be esti-

mated by comparison with the condition pV þ pR ¼ 0, i.e.
the point at which the pressure turns negative. Even such a
simple estimate turns rather lengthy and would also not be
very accurate because for interesting inflation lengths the
dark matter energy density becomes of similar order than
the vacuum and radiation energy densities. We will show
the numerical results for the period of exponential expan-
sion in contrast to the length of dilution as shown in Fig. 3
in Sec. V.

III. NUCLEATION

The next critical requirement of the little inflation sce-
nario is a large supercooling or in other words if a suffi-
ciently delayed phase transition is possible. This issue is
directly connected to the stability and height of the barrier
between the chirally broken phase and the chirally restored
phase in the effective potential for sufficiently low tem-
peratures. In chiral models of QCD including gluonic
degrees of freedom in the form of a dilaton field the barrier
only vanishes in the T ! 0 limit [28] thus strong super-
cooling is in principle possible and we will come back to
this model later on.
First let us consider the nucleation rate � of the low-

temperature phase inside the high-temperature phase

� ¼ �0e
��F�=T; (11)

where the functional form is that of a thermally activated
process as found by Langer in the 1960s and 1970s, e.g.
[29]. �0 is in general a temperature-dependent dynamical
prefactor and �F� is the free energy needed to produce a
critical sized bubble of the new phase inside the old phase.
What is meant by a critical sized bubble in this context? If
the temperature is smaller than the critical temperature of
the phase transition T < Tc the system becomes metastable
and statistical fluctuations produce bubbles of the low-
temperature phase with a radius R and a free energy of

�F ¼ 4�

3
ðpHðTÞ � pLðTÞÞR3 þ 4�R2�S: (12)

Here pHðTÞ and pLðTÞ are the pressure in the high and the
low temperature phase, respectively, and �S is the surface
tension. The first term describes the energy gained by
transforming a spherical volume of radius R to the new
phase while the second term gives the energy it costs to
create the surface interface around the bubble. Since
pLðTÞ> pHðTÞ both terms have opposite sign and there
is a critical radius R� at which �F has a minimum

R� ¼ 2�S

pLðTÞ � pHðTÞ (13)
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FIG. 4 (color online). The reduction of �B to the presently
observed value from an initial value of one. The scale parameter
a is normalized to the scale parameter at which reheating occurs.

TABLE I. Degrees of freedom in the 4 considered cases A-D
correspond to the curves in Fig. 3

All particles Quarks Asymmetrical particles �B=Tjmax

g gq g� for �B ¼ 1

A 47.75 21 21 88.89

B 61.75 31.5 31.5 88.74

C 47.75 21 29.75 125.7

D 61.75 31.5 43.75 123.1
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only bubbles larger than R� can grow, for smaller ones it is
energetically more favorable to shrink and disappear. One
might just estimate �0 by T4 for dimensional reasons but
Csernai and Kapusta [30] found �0 in an effective field
theory to be

�0 ¼ 16

3�

�
�S

3T

�
3=2 �S�HR�

�4
Hð�wÞ2

(14)

which can easily be a few orders of magnitude smaller than
the naive estimate. Here �H and �H are the shear viscosity
and the correlation length in the high T phase, respectively,
and �w is the difference in enthalpy density w ¼ �þ p
between the two phases.

The important ratio for the cosmological QCD phase
transition is �=H, i.e. the rate of nucleation to the Hubble
parameter. Once this ratio exceeds unity bubbles are
produced abundantly and coalesce until the transition is
complete. If �=H does not exceed one then bubbles of the
low-temperature phase will form and grow but the distance
between bubbles increases so fast that the volume fraction
of the new phase stays small.

We will in the following compare to work done by
Csernai and Kapusta [30,31] for the QCD phase transition
within the bag model to find if the nucleation rate can be
sufficiently small compared to the Hubble parameter such
that the phase transition will initially fail. In Ref. [31] the
authors found that the transition is completed very quickly
with only marginal supercooling of about 1% below the
critical temperature. In fact this result depends strongly on
the value of the surface tension �S which they took to be
�50 MeV=fm2. This number originates from an older
work of Kajantie et al. [32] who calculated the surface
tension at critical temperature and zero density, for which
the transition is found to be a crossover by all recent lattice
calculations. As one can see from Eq. (11) � depends
exponentially on the value of the surface tension as well
as on the free energy difference between both phases and
especially the former quantity is in principle unknown at
nonzero baryon density.

Using the bag model with Tc ¼ 170 MeV and the same
parameters as in [30] we looked for the lowest surface
tension at which �=H does not exceed unity at least until
its maximum at around �Tc=2. This might already be
over-streching the applicability of (11) but it should still
give a reasonable estimate of the surface tension needed for
nucleation to fail. We find that the surface tension must
indeed be very large and exceed 448 MeV=fm2 � 3:7T3

c

using their high value of the bag constant of B ¼
ð235 MeVÞ4. If we however go to the lower end of values
found in the literature, i.e. the original number B ¼
ð145 MeVÞ4 found by the MIT group to fit hadron masses
[33], we find that a significantly lower �S ¼
124 MeV=fm2 suffices. The resulting �=H in that case
is shown in Fig. 5. The surface tension for the QCD
phase transition at nonzero baryon densities can only be

estimated by effective models since lattice gauge theory
calculations for this case are still in its infancies. In
Ref. [34] a reasonable range of �S ¼ 50–150 MeV=fm2

is discussed but even smaller or larger values are not
excluded in principle. In Ref. [35] the surface tension
was computed within the linear sigma model to be as low
as 5–15 MeV=fm2. If one considers very high densities
the surface tension for the transition from color-
superconducting phases to nuclear matter could reach val-
ues of 300 MeV=fm2 [36]. In Fig. 6 the minimal surface
tension needed for nucleation to fail is shown for the
commonly discussed range of the bag constant.
Our estimate only covers the initial failure to nucleate

but it is clear that the phase transition has to occur after
some limited supercooling (compared to ordinary infla-
tion) of only about 7 e-foldings at most as we have seen.
We stress that one should not take this estimate too far
because both B and �S have to be temperature dependent
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FIG. 5 (color online). Nucleation rate over the Hubble parame-
ter for the lowest value of the surface tension for which the phase
transition would initially fail.
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FIG. 6 (color online). Minimum value of the surface tension
as a function of the Bag constant at which �=H does not
exceed unity.
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in general since both will in a field theoretical approach
originate from the relative height and the shape of the
barrier between the two minima in the effective potential.
Finally �=H must exceed unity for inflation to end and the
phase transition to proceed, for which the surface tension
has to drop sufficiently fast such that fluctuations can easily
overcome the barrier. Another possibility would be the
complete vanishing of the barrier and a spinodal decom-
position as studied, for example, in [15] for a bag-like
model. Other authors have also discussed the strong sensi-
tivity of nucleation rates, for example, in the context of
neutron stars and core-collapse supernovae. There it was
found that nucleation time scales can basically not be
constrained and range from �s up to the age of the
Universe [37].

Also for heavy-ion collisions strong supercooling is
discussed for the ‘‘quench’’-scenario, see, e.g. [38].
There the chiral phase transition is delayed as the field is
trapped in a metastable minimum and is only released to
the true minimum in the T ¼ 0 limit.

The equation of state has to fulfill the usual condition
�þ 3p < 0 to enter an inflationary phase. In the bag

model this would be the case below a temperature Tinf ¼
ð30B=ðg�2ÞÞ1=4. In the linear-�-model or the NJL-model
this occurs when the thermal contributions to the energy
density become smaller than the vacuum contributions like
the quark condensate hmqq �qi � f2�m

2
� and the gluon con-

densate 	QCD=ð2gÞhGa
��G

��
a i � 4B.

We can conclude that QCD at nonzero baryon densities
is only poorly constrained and a delayed chiral phase
transition is very well possible and has already been dis-
cussed for several other scenarios apart from the early
Universe.

IV. DILATON-QUARK-MESON MODEL

To describe the dynamics of the phase transition and
especially the impact on density perturbations it is essen-
tial to have a reasonable thermodynamic description of
the chirally restored quark phase. For this we use the
quark meson model with a dilaton field, which incorpo-
rates chiral symmetry breaking as well as the trace anom-
aly of QCD. This model has been discussed by numerous
authors [39–42] to describe nuclear matter. It has the
interesting property that for a wide range of parameters
the high-temperature phase does only disappear in the
T ! 0 limit [28], which is necessary to get an equation
of state of the ‘‘wrong vacuum’’ that can be used to model
inflation. We will apply a simplified version of the
Lagrangian used in [41] and stick closely to their nota-
tion, while we do not include the !-meson for simplicity
and use quarks instead of nucleons as degrees of freedom.
The Lagrangian includes the linear �-model first intro-
duced by [43] which incorporates the scalar isovector
�-field with the �-field as its chiral partner. Further-
more we include the isoscalar dilaton field 
 that

incorporates the scale anomaly and thus a nontrivial
vacuum of QCD. The Lagrangian reads

L ¼ 1

2
ð@��Þ2 þ 1

2
ð@��Þ2 þ 1

2
ð@�
Þ2

þ �c ½i6@� gð�þ i�5 ~� 	 ~�Þ
c �Uð�;�; 
Þ; (15)

where the potential is given by

Uð�;�; 
Þ ¼ 

4
ð�2 þ �2Þ2 � k0

2

�




0

�
2ð�2 þ �2Þ

� f�m
2
��

�




0

�
2 þ k1

�




0

�
4 þ 1

4

4 ln


4


4
0

:

(16)

Note that the choice of the term �f�m
2
��ð 

0

Þ2 that breaks
chiral symmetry explicitly is not unambiguous. The given
choice 
2=
2

0 corresponds to a fermion mass term, while


=
0 would lead to a bosonic mass term. The differences
caused by this choice are small since the symmetry-
breaking term logarithmic in 
 is usually much larger, but
for a similar model including vector mesons the, quadratic
choice is favored when comparing to nuclear matter [40].
After integrating out the quark degrees of freedom [44]

one arrives at an effective mesonic Lagrangian

Lð�;�; 
Þ ¼ 1

2
ð@��Þ2 þ 1

2
ð@��Þ2 þ 1

2
ð@�
Þ2

�Uð�;�; 
Þ ���qqðT;�;mqÞ (17)

with the quark-antiquark potential reading

��qqðT;�;�Þ¼��qTV

2�2

Z 1

0
dpp2½lnð1þe�	ðEq��ÞÞ

þ lnð1þe�	ðEqþ�ÞÞ
: (18)

Here the single particle energy is as usual given by Eq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
. The effective quark mass is on the mean field

level determined by m2
q ¼ g2�2. The glueball and meson

fields have the following mean values in the vacuum h
i ¼

0, h�i ¼ �0 ¼ f�, and h�i ¼ 0. The full thermodynamic
potential is then given by

�ðT;�;�;�;
Þ¼ðUð�;�;
Þ�UvacÞVþ��qqðT;�;�Þ;
(19)

where Uvac is subtracted to ensure the correct normaliza-
tion �ð0; 0; 0; f�; 
0Þ ¼ 0, yielding

Uvac ¼ 

4
f4� � k0

2
f2� � f2�m

2
� þ k1: (20)

�=V exhibits two minima, one at �� 0 and 
� 0:8
0

and a second one at �� f� and 
� 
0. The former
corresponds to the chirally restored phase with a low
effective mass while the second one is the chirally broken
phase with a large effective mass. Full restoration of scale
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symmetry, i.e. the first minimum being located at �� 0
and 
� 0, is only realized at high temperatures and low
densities at least for the parameters considered in our
calculation. If the scalar coupling is sufficiently large
both minima are present in the low-temperature limit,
although the chirally broken phase is energetically favored.
As the authors of Ref. [42] have found the chirally restored
phase will undergo a crossover to restored scale symmetry
at much higher temperatures if the density is nonzero, i.e.
the maximum moves towards 
� 0. Note that we do not
fix the effective quark mass in the vacuum via the
Goldberger-Treiman relation because the model is set up
to describe quarks in the high-temperature chirally restored
phase. We will later on fix the model parameters using the
more relevant vacuum energy constraints and the masses of
the sigma meson and the dilaton. The constants k0 and k1
are determined by the conditions

@�=V

@�

��������vac
¼ @�=V

@


��������vac
¼ 0: (21)

The equations of motion are found by minimizing the
thermodynamic potential with respect to � and 
.

@�=V

@�
¼ 0 ¼ �3 � k0

�




0

�
2
�� f�m

2
�

�




0

�
2 þ g�S

(22)

@�=V

@

¼ 0 ¼ �k0





2
0

�2 � 2f�m
2
��





2
0

þ 
3

�
4k1

4
0

þ 1þ ln

4


4
0

�
: (23)

These equations can reduced to a one-dimensional problem
by solving for 
 explicitly,


 ¼ 
0

�
�3 þ g�S

k0�þm2
�f�

�
1=2

; (24)

where �S, the scalar density, is defined by

�S ¼
g�q

2�2

Z 1

0
dpp2

mq

Eq

�
1

e	ðEq��Þ þ 1
þ 1

e	ðEqþ�Þ þ 1

�
:

(25)

The pressure is as usual just given by

PðT;�Þ ¼ ��

V
(26)

the net quark density is calculated via

�nqðT;�;mqÞ ¼ @�=V

@�
¼ �q

2�2

Z 1

0
dpp2

�
1

e	ðEq��Þ þ 1

� 1

e	ðEqþ�Þ þ 1

�
: (27)

The energy density is then given by

�ðT;�Þ ¼
�
1� T

@

@T
��

@

@�

�
�

V

¼ Uð�;�; 
Þ �Uvac þ
�q

2�2

Z 1

0
dpp2Eq

�
�

1

e	ðEq��Þ þ 1
þ 1

e	ðEqþ�Þ þ 1

�
: (28)

The entropy density can as usual be deduced from the
Euler-equation

� ¼ Ts� pV þ� �nq ! s ¼ �þ p�� �nq
T

: (29)

Calculating the speed of sound is a bit more involved but
straightforward. By definition the speed of sound is the
isentropic derivative of the pressure with respect to the
energy density

c2s ¼ @p

@�

��������s
: (30)

Isentropic means nothing else but

ds ¼ @s

@T

���������
dT þ @s

@�

��������T
d� ¼ 0: (31)

Using the total differentials of pressure and energy density
and Eq. (31) we arrive at the speed of sound in the form

@p

@�

��������s
¼ s @s

@� jT � �nq
@s
@T j�

@�
@T j� @s

@� jT � @�
@� jT @s

@T j�
: (32)

The remaining parameters 
0 and  are fixed via the QCD
vacuum energy and the mass of the sigma meson.
Investigating the QCD trace anomaly Ref. [45] found
that at tree level the trace anomaly of QCD is given by

��
� ¼ 	QCD=ð2gÞhGa

��G
��
a i; (33)

where ��� is the energy-momentum tensor, 	QCD is the

beta-function of QCD, g is the strong coupling constant,
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FIG. 7 (color online). Square of the isentropic speed of sound
and equation of state for the most extreme case �B=T ¼ 125:7.
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and Ga
�� is the gluon field strength tensor. The trace

anomaly of QCD then relates the vacuum energy to the
parameter 
0 [40]

��
� ¼ 4U� X

�¼�;�;


�
@U

@�
¼ f�m

2
��þ 
4 ’ 
4

¼ 4�vac

�




0

�
4 ! �vac ¼ 
4

0

4
: (34)

We neglect the contribution from the first term representing
the quark condensate for simplicity as done in [41] because
its contribution is much smaller than the one from the
gluon condensate given by the second term for the parame-
ters we will use later on. QCD sum rules suggest j�vacj �
ð240 MeVÞ4 (see Ref. [46]) while bag model estimates
range from ð235 MeVÞ4 down to ð145 MeVÞ4 in the origi-
nal paper of the MIT group [33]. This results in a possible
range for the parameter 
0 of 205 MeV<
0 < 339 MeV.
We choose a �-mass of 642 MeV, a dilaton mass of
1.5 GeV, and a vacuum energy of ð236 MeVÞ4 to achieve
a critical temperature of 170 MeV for the phase transition
at zero net density. The scalar coupling is chosen to be g ¼
7:5 which is the limiting value above which the chirally
restored phase is present even in the T ! 0 limit approxi-
mately. In Fig. 7 we show the resulting speed of sound and
equation of state in the maximum case �Bi=Ti ¼ 125:7 As
one could expect the speed of sound stays very close to the
relativistic gas value of c2s ¼ 1=3 because the effective
quark mass stays low in the chirally restored phase. The
equation of state nicely interpolates from a relativistic gas
(w ¼ 1=3) to that of vacuum energy (w ¼ �1). The small
kink in the speed of sound is caused by the merging of a
third always metastable intermediate phase with the chir-
ally restored phase which causes a sudden but small change
in the effective mass. The existence of this third maximum
in the pressure within this model has been discussed

before, for example, by Mishustin et al. [39], it can also
be seen in Fig. 8 at �� 0:5f�. There we show the pressure
as a function of the �-field (or equivalently the effective
mass) at the phase-transition temperature T ¼ 10:1 MeV
and �B=T ¼ 125:7. The first minimum at �� 0 is the
chirally restored phase, the chirally broken phase is located
at �� f�. The intermediate phase only appears close to
the phase transition and never becomes the favored one.
Note that at these temperatures and densities one may
expect color-superconducting quark matter in one of
many possible phases [8] which exceeds the scope of the
current investigation but may be an interesting starting
point for an alternative field theoretical description of the
scenario.
In the next section we will use the �, p, c2s and w of the

chially restored phase for our structure formation
calculations.

V. STRUCTURE FORMATION

Next we will investigate the effect of a little inflationary
period on primordial density perturbations. In particular
dark matter perturbations are affected in several ways and
on much larger scales than usual for the cosmological QCD
phase transition. First of all the Hubble radius is roughly

given by RH � g�1=2mPlT
�2
c � 10 km which encloses a

total energy corresponding to about 1M�. Since this epoch
is long before matter radiation equality, i.e. �DM �
ðaQCD=aEQÞ�R � 10�8�R, the mass of dark matter in the

same volume is smaller by the same factor resulting in a
dark matter mass scale of approximately 10�8M�. About
ten years ago Schmidt, Schwarz, and Widerin investigated
the effect of the QCD phase transition on dark matter
perturbations [47,48]. They found that peaks and dips in
the spectrum of dark matter perturbations may form for a
first-order phase transition but even for a crossover one
could expect a boost for small-scale perturbations. These
effects were due to the reduction of the speed of sound cs
and equation of statew ¼ p=� of the radiation fluid during
the phase transition. As the above estimate implies they
only found these effects at very small mass scales below
the Hubble scale. We shall examine the little inflation
scenario with the same approach to density fluctuations,
i.e. we work in the so called uniform-expansion gauge
(UEG) that is free of spurious gauge modes and well
behaved in the superhorizon limit [48,49] which is espe-
cially important for the little inflation scenario since modes
can enter the horizon and exit the horizon several times.
For the background evolution we assume a flat

Friedmann-Robertson-Walker metric that implies the
well-known Friedmann equations

H2 ¼ 8�G

3
� (35)

_H ¼ �4�Gð�þ pÞ: (36)
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FIG. 8 (color online). Pressure p as a function of the �� field
in units of f� at the phase-transition temperature T ¼ 10:1 MeV
and �B=T ¼ 125:7.
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The overdot as usual denotes a derivative with respect to
time. The common approach now is to decompose the
perturbed metric into scalar, vector and tensor perturba-
tions where only scalar perturbations lead to the growth of
structure. The corresponding perturbed line element reads

ds2 ¼ a2ð�Þ½ð1þ 2�Þd�2 � 2Bjidxid�

� ð½1þ 2’
�ij þ 2EjijÞdxidxj
: (37)

Here �, B, ’, E are spacetime dependent scalar functions
representing the four scalar degrees of freedom and �ij is

the spacial part of the background metric. Following [50]
we introduce two combinations of the metric variables that
are independent of spacial gauge transformations just like
� and ’. These are


 � �aðB�Ha2E0Þ (38)

� � 3Hð�þ a’0Þ þ k2

a2

; (39)

where primes denote derivatives with respect to the scale
parameter a and k is a comoving wave number. One can
show that 
 and � describe the perturbations in the shear
�ij and the expansion �, respectively. The latter is given

by� ¼ 3H� �, therefore choosing � ¼ 0 corresponds to
having an unperturbed Hubble flow. This explains the
naming uniform expansion gauge or Hubble constant
gauge. Choosing 
 ¼ 0 leads to the more popular longitu-
dinal or conformal Newtonian gauge as used in the well-
known review of Mukhanov, Feldman, and Brandenberger
[51]. For ideal fluids the evolution equations in UEG read
[48,50]

_� ¼ �3Hð�þ ��Þ ��c � 3Hð�þ pÞ� (40)

_c ¼ �3Hc � ��� ð�þ pÞ� (41)

which can be deduced from energy-momentum conserva-
tion and the three divergence of the Euler equation. Here
� � �� and �� � �p denote the perturbation of the energy
density and pressure, respectively. Furthermore c is

the potential of the momentum density ~S, i.e. ~rc ¼ ~S.
The latter is related to the fluid velocity v via c k=a ¼
ð�þ pÞv. Equations (40) and (41) apply for each de-
coupled ideal fluid. All fluids are gravitationally linked
via the perturbation of the lapse � and Einstein’s
R0
0-equation

ð�þ 3 _HÞ� ¼ 4�Gð�þ 3pÞ: (42)

Here one already realizes that H2 and _H appear as two
distinct scales in the set of perturbation equations. These
will be similar for most cases, but during an inflationary
period they are not as we will see later. Introducing dimen-

sionless variables � ¼ ��=�, ĉ ¼ kc =ða�Þ and the equa-
tion of state w ¼ p=� the UEG set of equations takes the
form

�0
i ¼ � 3ðc2si � wiÞ

a
�i þ k

Ha
ĉ i � 3ð1þ wiÞ�a (43)

ĉ 0
i ¼�1� 3wi

a
ĉ i � c2si

k

Ha
�i � ð1þwiÞ k

Ha
� (44)

� ¼ �
3
2 ð1þ 3c2sÞ

ð k
H
Þ2 þ 9

2 ð1þ wÞ�: (45)

Here the index i refers to an individual fluid, each of which
has a set of Eqs. (43) and (44). H ¼ Ha is the so-called
conformal Hubble parameter. Primes denote derivatives
with respect to the scale parameter. All fluids are connected
via the last equation for the perturbation of the lapse�. The
mean density contrast, equation of state, and speed of
sound are calculated by

�¼
P

i �i�iP
i �i

; w¼
P

i piP
i �i

; c2s ¼
P

i c
2
si�i�iP

i �i�i

: (46)

Basically all viable dark matter candidates are already
chemically decoupled from the radiation fluid at the
QCD phase transition, thus their numbers are not repopu-
lated by reheating after inflation. Therefore the dark matter
number density is diluted by the same factor �3 as the net
baryon number. As stated before the dark matter mass
enclosed inside the Hubble horizon is of the order of
10�8M� at TQCD � 170 MeV. Thus any influence on per-

turbations inside dark matter would not have any conse-
quences on larger scales. An inflationary period at the
QCD-phase transition can change this in two ways. First
of all the amount of dark matter enclosed inside the horizon
must be larger by a factor �3 initially to match the present
day dark matter density despite the dilution. For a short
inflationary period, as discussed here, one encounters an
additional effect on perturbations that have physical wave
numbers kph & H at the beginning of inflation. This is

caused by an additional scale apart from H, namely _H1=2,
via Eq. (42) emerges. One may realize this by combining
Eqs. (35) and (36) to find that

_H

H2
¼ � 2

3

�þ p

�
¼ � 2

3
ð1þ wÞ: (47)

So as long as w is not too close to�1 both scales coincide,
but during an inflationary phase this is no longer true. Let
us do an estimate for a general mix of radiation, dark
matter, and vacuum energy. In this case

_H ¼ �4�G

�
4

3
�Ri

�
ai
a

�
4 þ �Mi

�
ai
a

�
3
�
/
�
ai
a

�
q
; (48)

where the subscripts refer to matter and radiation with
q ¼ 3 to 4, respectively. The index i refers to the onset
of inflation. Comparing this to the first Friedmann equation
one finds that
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H2 ¼ 8�G

3

�
�V þ�Ri

�
ai
a

�
4þ�Mi

�
ai
a

�
3
�
� 8�G

3
�V: (49)

As a consequence the two scales differ by

��������
_H

H2

��������
1=2’

�
ai
a

�
q=2

: (50)

This would not play any role for a long inflationary period,

i.e. with more than 50 e-foldings. In this case _H�1=2 is
beyond the size of the observable Universe, approximately
at the order of the infrared cutoff of the produced primor-
dial spectrum. Summarizing, there should be two distinct
scales in the spectrum dividing it into three regimes

kph
H

ji > 1 ðsub-hubble before inflationÞ

1>
kph
H

ji >
�
ai
af

�
q=2ðintermediateÞ

kph
H

ji <
�
ai
af

�
q=2ðunaffectedÞ

One could even expect another spectral region of modes
that are always sub-Hubble till the end of inflation. These
would be located below 10�8M� and are thus of little
relevance for structure formation. Translating our previous
estimates to the highest affected mass scale involved we
find

Mmax � 10�8M��3q=2 � ð105 � 109ÞM� (51)

at most for �inf � 640. In this case the second mass scale
between the first and the second spectral region could be
expected at

Mmed � 10�8M��3 � ð1� 10ÞM� (52)

For the numerical treatment we assume a scale invariant
primordial Harrison-Zeldovich spectrum to be present
before the phase transition. Each wave number k is fol-
lowed separately from a point where it was sufficiently
super-Hubble to apply the initial conditions for a radiation
dominated universe given by the growing superhorizon
modes [48,50]

�R ¼ A

6

�
k

H

�
2

ĉ R ¼ A

54

�
k

H

�
3

(53)

�DM ¼ 3

4
�R ĉ DM ¼ 9

8
ĉ R: (54)

For the description of the radiation background we take the
input from the dilaton-quark-meson model as described in
the previous section. We add a massless ideal gas of
photons, gluons, e� and three neutrino families as in
case C described in Sec. II. For the dark matter we assume
a decoupled pressureless nonrelativistic gas with a vanish-
ing speed of sound.
In Fig. 9 we show the resulting spectrum of primordial

fluctuations after a little inflation in comparison to the
spectrum as expected without little inflation. The spectrum
is given in terms of the transfer functions defined in the
following way:

TRðkÞ ¼
�
�2
RðkÞ þ ĉ 2

RðkÞ=c2sR
ð�2

R þ ĉ 2
R=c

2
sRÞin

�
1=2

(55)

TDMðkÞ ¼
�
�2
DMðkÞ
�2
DM;in

�
1=2

: (56)

The ‘‘in’’ quantities are evaluated at (final) horizon entry in
the limit of small wave numbers [48], i.e. in the unaffected
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part of the spectrum for the little inflation calculation. Note
that a transfer function of unity does not correspond to
nonlinear perturbations. For a scale-invariant spectrum it
simply corresponds to a amplitude of 10�5–10�4 since the
perturbations in radiation are frozen until the decoupling of
the cosmic microwave background radiation (ignoring
low-scale damping effects). The fluctuations are evolved
for 12 orders of magnitude in a to ensure that the whole
spectrum is superhorizon at the start of the calculation and
is completely subhorizon at the end. The final temperature
for the parameters used is Tend � 150 eV � Treheat=10

6.
All scales belowMmax � 106M� show a suppression, those
below MH �M� show additional features depending on
their phase during horizon exit. Above this scale the spec-
trum of density perturbations is given by the primordial
spectrum of density perturbations, e.g. a nearly scale-
invariant spectrum. In the Appendix A we also give the
approximate analytic solutions for the different regimes.
Summarizing they show that in the unaffected region the
modes grow similarly to the radiation dominated super-
horizon solutions while the intermediate modes are frozen.
This consequently explains the relative suppression of the
intermediate modes compared to the large scale limit.

The numerical result for the maximum mass scale is
quite close to the lower bound in the above estimate (52)
because dark matter has to be more abundant than radiation
during almost the complete duration of the little inflation,
which can be seen in Fig. 10. Still this mass scale is of
cosmological interest as it is comparable to that of globular
clusters (GC) which were the first objects to form during
primordial galaxy formation (for a comprehensible over-
view of the topic the reader may have a look at the review
by Harris [52]). Globular clusters are very compact star
clusters of several hundred thousand to several million
stars, with a radius of only �10 pc. They are very metal-
poor objects and age estimates from stellar evolution mod-
els strongly suggest that they should already have been
created during the formation of their host galaxy. Their
mass function has a well-defined peak atMgc � 2 	 105M�
in contrast to younger star clusters whose mass function
shows a steep power-law distribution between 104M� &

Myc & 107M� with an index of � �2 [53]. There have

been attempts to explain the preferred mass scale for GC
by a higher Jeans mass at low metallicity that preferred
more massive clusters at early times. Other explanations
include disruptive processes (for low-mass clusters) and
mass loss due to stellar evolution (for high-mass cluster)
that might produce a preferred mass scale as seen in n-body
simulations [54] starting from a steep mass function like
the one of present young clusters. The latter point was
dismissed by Vesperini et al. [55] whose simulations have
shown that only very fine-tuned initial conditions will
result in GC properties that fit the observations if one
assumes GC formed just like clusters do today. On the
other hand, they showed that an initial mass function that

was almost flat below the present peak mass scale succeeds
in reproducing the observational data. Interestingly a
power-law cutoff in the dark matter fluctuations below a
mass scale 105�6M� as found in the little inflation scenario
could thus help to explain this standing problem in galactic
astrophysics. The suppression of power spectrum below
these scales could also be interesting to study because of its
impact on the cuspy core density distribution of dark
matter in small galaxies and the large number of halo
structures seen in standard structure formation.

VI. DARK MATTER

Apart from the impact on small-scale structure forma-
tion for dark matter the little inflation scenario has further
direct consequences on properties of dark matter candi-
dates. For cold dark matter the dilution of the energy and
number densities leads to the possibility of a matter-
dominated phase before the inflationary phase since the
dark matter energy density after reheating is basically fixed
by the present-day value. This can also be seen in Fig. 10
that displays the evolution of the different contributions to
the energy density, wherein dark matter just starts to domi-
nate right before the onset of inflation. To account for the
different ratio of radiation and baryon densities before little
inflation the dark matter density has to be larger by the
same factor �3 as the baryon density. For � * 103 the dark
matter contribution actually becomes larger than the
vacuum contribution which would in any case limit the
maximum length of the exponential expansion to

�infmax¼
�

B
�DMðafÞ

�
1=3�900

�
B1=4

235MeV

�
4=3

�
0:236

�DM0

�
1=3
; (57)

where the bag constant B represents the vacuum contribu-
tions of QCD. Interestingly this limit and the previously
discussed limit from the Affleck-Dine baryogenesis coin-
cide by chance, while the latter actually limits the entropy
release the former only limits the length of exponential
expansion. As a side remark, to produce a complete spec-
trum of primordial fluctuations one would require
� * 1010, far beyond both limits so little inflation cannot
replace standard inflation. Still Fig. 10 shows that the
period of exponential expansion �inf � 640 is even shorter
than this estimate because the energy density of radiation
increases so strongly with the baryon asymmetry at a fixed
vacuum energy. This difference in � and �inf is caused by
the different dependencies of the entropy and the energy
density on � or rather nB.
What does a larger dark matter density before the QCD

scale mean for the properties of cold dark matter? For
nonrelativistic decoupling of dark matter the weak inter-
action cross section will no longer give the right amount of
dark matter today. This is due to the fact that the dark
matter annihilation cross section has to be much smaller,
i.e.
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�annih
dm � �weak

�3
because �DM / 1

�annih
dm

;

where we ignore logarithmic dependencies on the dark
matter mass. This allows more dark matter particles to
survive annihilation before freeze-out and thus increases
the CDM number density before little inflation. This gives
the interesting prospect that the little inflation can be
probed by ongoing and future collider experiments like
the LHC since the discovery of a standard weakly interact-
ing massive particle as the neutralino would exclude the
scenario.

Another case would be thermally decoupled ultra-
relativistic particles where the dilution of dark matter
number densities can be incorporated in the ordinary tem-
perature relation to the radiation background. Here little
inflation leads to an effective shift in the temperature
relation

T ¼ TDM�

�
gseffðTDecÞ
gseffðTÞ

�
1=3

: (58)

This in turn modifies the relation of warm dark matter relic
mass and decoupling degrees of freedom to match the
present-day density found, for example, in [56]

mmax
DM � 51 eV�3

�
4

gDM

��
gseffðTDecÞ
106:75

��
�0

DMh
2

0:116

�
: (59)

This shifts the suitable mass of a thermal relic particle to a
much higher value without the need for a large number of
additional effective degrees of freedom at decoupling be-
yond those of the standard model. There can also be effects
for baryonic dark matter as discussed by Jedamzik [57].
During a first-order phase transition the speed of sound
vanishes and thus sufficiently nonlinear density fluctua-
tions can collapse during that time. For an exponentially
small fraction of Hubble volumes that are over-dense
enough primordial black holes (PBH) may form. The
mass spectrum of these PBH will be strongly peaked
around 1M� which corresponds to the total (not just the
dark matter) energy density inside the Hubble volume at
the phase transition. The produced abundance of PBH
depends on the spectral index and amplitude of the density
fluctuation spectrum, which we have seen is different and
in general more complicated in the little inflation scenario.
Nevertheless it seems quite clear that the suppression of
small-scale density fluctuations will also strongly reduce
the production of such primordial back holes during the
phase transition at the end of a little inflation.

During the nucleation process lumps of quark matter
or small quark stars could be produced but only with
M� 10�9M� as we argue that nucleation starts after the
little inflationary epoch.

VII. MAGNETIC FIELDS

A standing problem in astrophysics is the origin of large-
scale magnetic fields that have strengths of up to Bobs

 ¼
0:1 �G on extragalactic and up to 10 �G on galactic
scales. To understand the existence of such magnetic fields
with correlation lengths of typically 0.1 Mpc it is necessary
to have an initial seed field generated before or during
galaxy formation. The required strength of such seed fields
varies strongly with the assumed amplification mechanism
and may vary over many orders of magnitude 10�30 G &
Bseed
 & 10�10 G, see [58] and references therein for an

overview of the topic. The seed fields may be generated
during ordinary inflation or at a first-order phase transition.
The latter has been discussed for the QCD phase transition
by numerous authors [59–61] at a time when the phase
transition at small baryon-asymmetry was still believed to
be first order. The established mechanism for magnetic
field production was the collision of hadronic bubbles
during the phase transition [60]. Different masses of quarks
and nucleons would lead to a diffusion of baryon number
via the bubble walls and consequentially a baryon contrast
close to the phase boundary would develop [59,60]. This
baryon contrast can be estimated by the ratio of the net
baryon numbers in the two phases to be

R ¼ �nBq
�nBH

: (60)

Because muons and strange quarks are already slightly
suppressed at the critical temperature Tc the baryon con-
trast would also cause a charge dipole layer at the phase
boundary to develop. The resulting net positive charge
density is

�þ
C ¼ eð2=3nu � 1=3nd � 1=3nsÞ ¼ 	enB; (61)

where the indices u, d, and s refer to the different quark
flavors and the factor of proportionality 	 depends on the
temperature, chemical potential, and the masses of the
particles. For a small �B and reasonable strange quark
and muon masses 	� 10�2–10�3. After a strong super-
cooling muons and strange quarks will be suppressed
resulting in 	 � 0:2 for the little inflation case. Cheng
et al. estimated the magnetic field generated by the colli-
sion the hadron gas bubbles to be

BQCD � 8��Crdv

3
¼ 8�eR	 �nBr

2
diffHQCD

3
(62)

due to turbulent charged flow. Here the flow parallel to the
bubble walls was assumed to have velocities v� rnHQCD

giving the main contribution to the field generation. The
thickness of the baryon excess layer rd was estimated
according to results of [62] to be rd � r2diff=rn with rdiff
being the baryon diffusion length and rn the mean separa-
tion of nucleation sites. R	 should be at least 0.3 with the
above estimates up to values of�10–100 if baryon number
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can be effectively piled up by the expanding bubble walls.
Thus we arrive at magnetic fields of strength BQCD ¼
108–1010G for low baryon asymmetry, i.e. for the standard
scenario assuming a first-order phase transition. If the
baryon contrast exceeds R� 10 then any initial field may
be readily amplified by magneto-hydrodynamic (MHD)
turbulence to the equipartition value (see [61] and refer-
ences therein)

Beq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�T4v2

f

q
; (63)

where vf is the fluid velocity. Now we shall modify these

estimates for the little inflation scenario. First of all the
initial value of the baryon number contrast R between the
two phases can be much higher because quarks are much
more favorable carriers of baryon number than nucleons at
such low temperatures of T � 170 MeV=�� 0:2 MeV at
the end of inflation. The diffusion length will also be larger
because both baryon and antibaryon densities nB, n �B will
be additionally diluted by a factor �3 resulting in

rdiff / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB þ n �B

p � 4 �m�3=2 � 10 cm (64)

for a random walk approximation. Thus development of
MHD turbulence should be expected resulting in equipar-
tition of the magnetic field with a strength of Beq �
1012 G. The fluid velocities were taken to be vf � 1 be-

cause the released latent heat is much larger than the
thermal energy.

Next one may ask if such a strong magnetic field does
not violate bounds for the total energy density foremost
from big bang nucleosynthesis, which is the next important
milestone in the evolution of the Universe after the QCD
phase transition. Caprini and Durrer found that magnetic
fields produced by a causal production mechanism (in
contrast to magnetic fields produced during primordial
inflation) can be strongly limited via their integrated en-
ergy density and the shape of the spectrum [63,64]. They
argued that the spectrum of the generated magnetic field
must fall off with a steep power law for uncorrelated
superhorizon scales, i.e. B2

 / �n with n  2. As stated
earlier the typical comoving length scale of galactic mag-
netic fields is 0.1 Mpc which is comparable to the shortest
magnetic field mode that survives plasma damping pro-
cesses up to recombination [65,66]. This scale is clearly
much larger than the comoving horizon size H�1 � 10 pc
at the QCD phase transition. Therefore even a relatively
small field strength at the 0.1 Mpc scale requires a mag-
netic field at the 10 pc scale that is larger by many orders of
magnitude easily resulting in a very large integrated mag-
netic field energy density. We use the bound on an addi-
tional radiation energy density at big bang nucleosynthesis
found by Ref. [67] allowing at most 1.6 additional effective
neutrino families at the 98% confidence level. The inte-
grated magnetic energy density is thus bounded from
above by BQCD ¼ 5 	 1013 G which limits the strength of

the comoving seed field to Bseed
0:1Mpc < 10�22 G. Our pre-

vious estimate of the generated magnetic field conse-
quently does not violate this bound, but the field strength
is very low and may not suffice to seed large-scale mag-
netic fields if not enhanced sufficiently. In [68] it was found
that an inverse cascade mechanism could transfer some
field strength from small to larger scales thus partially
escaping the effects of plasma damping. The inverse cas-
cade mechanism requires a nonvanishing helicity of the
primordial magnetic field, as one can expect in the pre-
sented scenario due to the large baryon asymmetry, thus
one may still to successfully seed large scale magnetic
fields at the QCD phase transition.

VIII. GRAVITATIONALWAVES

The final signal of the QCD phase transition that we
would like to discuss are gravitational waves. The process
of nucleation and subsequent bubble collisions will stir
hydrodynamic turbulence producing gravitational waves
in the process [59,69–72]. Again the Hubble parameter
gives an important scale for the spectrum [59,71]. Since
the production mechanism is causal a peak frequency has
to be greater than or equal to the Hubble frequency, �peak 
�H. By how much this peak scale differs will depend on the
details of the production mechanism and most importantly
on the relevant time- and length scales that might be
significantly different from the Hubble frequency. Let us
assume an exponential nucleation rate � / expðt=�Þwith �
being the characteristic time scale for the nucleation pro-
cess. Then the peak frequency of the spectrum due to the
collision of bubbles will be given by

�B
peak�4:0 	10�8 Hz

�
0:1H�1

�

��
T�

150MeV

��
geff

50

�
1=6

; (65)

where T� is the reheating temperature and the result is
already redshifted to the present-day frequency. It is com-
mon to denote a gravitational wave spectrum in terms of a
characteristic strain amplitude which is defined in the
following way:

hcð�Þ ¼ 0:9 	 10�18

�
1 Hz

�

��
h0
0:7

�
½�gwð�Þ
1=2: (66)

Using the results of [71] with the above estimates one
arrives at a peak strain amplitude for the bubble collision
peak of

hcð�B
peakÞ ¼ 4:7 	 10�15

�
�

0:1 H�1

�
2
�
150 MeV

T�

��
50

geff

�
1=3

:

(67)

Bubble collisions will also create hydrodynamic turbu-
lence that will stir gravitational waves with a slightly lower
peak frequency

�T
peak ’ 0:3�B

peak (68)
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but with a higher peak amplitude

hcð�T
peakÞ ’ 2:1hcð�B

peakÞ (69)

for a strongly first-order phase transition [71]. The addition
of magneto-hydrodynamic (MHD) turbulence could fur-
ther boost the peak amplitude as shown in [73,74]. For
frequencies lower than the Hubble frequency the spectrum
should be uncorrelated white noise. The approximate
shape of the strain amplitude spectrum is then given by

hcð�Þ / �1=2 for � <H (70)

hcð�Þ / �n for � > �B
peak; (72)

where the spectral index n should be at least �2 if the
number of bubble collisions is low. If multibubble colli-
sions play an important role the index is expected to be
lower where simulations of the collision of vacuum bub-
bles as done in [72] find n ¼ �3=2while older simulations
found �2 � n � �1 [69,70]. Note that a gravitational
wave spectrum with n ¼ �1 would be UV-divergent
unless there is a cutoff [75], so n <�1 for a realistic
spectrum.

The Parks Pulsar Timing Array (PPTA) measures timing
residuals in pulsar signals to put upper bounds on a sto-
chastic gravitational wave background in a relatively nar-
row frequency band around 10�8 Hz [76,77]. The PPTA
results already allow to limit the nucleation time scale with
the presently available data to �=H�1 < 0:12. This limit
will improve to �=H�1 < 0:06 for the full data of the
Parkes Pulsar Timing Array project [76] or even beyond
that depending on the position of the peak [78,79] since the
sensitivity depends on the spectral index of the gravita-
tional wave background. The results can be seen in Fig. 11
where the expected spectrum of gravitational waves for the
former case is shown with three different high-frequency

slopes and the approximate sensitivity regions of existing
and future detectors. In [80] the most optimistic results
from [73,74] are compared with the most optimistic results
from [69,70] where the former have a slightly higher peak
amplitude due to MHD turbulence while for the latter the
contribution from multibubble collisions is stronger in the
high-frequency regime.
The planned Square Kilometer Array (SKA) will im-

prove the sensitivity in �gwð�Þ by about four orders of

magnitude [81]. Thus SKAwill lower the bound on �=H�1

by about an order of magnitude as visible in Fig. 11. If
multibubble collisions are important detection via the
spaceborne Laser Interferometer Space Antenna (LISA)
could also be possible if the high-frequency spectral index
n * �1:4 and �=H�1 * 10�2. In Fig. 12 the limiting case
of a strain amplitude spectrum for �=H�1 ¼ 0:005 is
shown below which the signal would be unobservable
with either SKA or LISA.
Furthermore it has been found that the QCD-phase

transition will also leave a step-like imprint on the spec-
trum of primordial gravitational waves due to the strong
reduction of the radiation degrees of freedom [82]. In [80]
this result was confirmed also for several lattice equations
of state. Furthermore the effect of a little inflationary phase
on the primordial spectrum was examined and a strong
power-law suppression for frequencies larger than the
Hubble frequency at the QCD phase transition was found.

IX. SUMMARY

We have reexamined the idea of a little inflation at the
QCD phase transition and extended the discussion as com-
pared to our previous publication [12]. We found interest-
ing cosmological implications such as the suppression of
primordial density fluctuations up to dark matter mass
scales of Mmax � 106M� relative to the large-scale spec-
trum due to the change of the global equation of state. This
could have interesting consequences for the physics of
globular clusters and the emergence of the first stars and
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h
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FIG. 11 (color online). Largest strain amplitude spectrum at
�=H�1 ¼ 0:12 that is still compatible with the data of the Parks
Pulsar Timing Array. A shorter duration of the phase transition
reduces the amplitude and shifts the peak to higher frequencies.
Detection with LISA would only be possible if multibubble
collisions play a significant role.

PPTA

SKA

LISA

n 2 n 1.5

n 1

10 10 10 8 10 6 10 4 0.01 1
10 25

10 22

10 19

10 16

10 13

10 10

Hz

h
c

FIG. 12 (color online). Strain amplitude spectrum for
�=H�1 ¼ 0:005 below which the signal would be unobservable
with either SKA or LISA.
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could also have an impact on the cuspy core density
distribution of dark matter in small galaxies and the
too large number of halo structures seen in standard struc-
ture formation. We found that the baryon density can
actually be so large that one may even expect color-
superconducting phases to be present before the onset of
the little inflation, this might pose an alternative route of
investigation for the scenario. We also discussed the pro-
duction of primordial magnetic fields that may be strong
enough to seed the presently observed galactic and extra-
galactic magnetic fields. Furthermore we addressed the
production of a spectrum of gravitational waves around a
peak frequency of 4 	 10�8 Hz that may be observable via
pulsar timing in the future [76,81]. Dark matter properties
are also strongly affected as the annihilation cross section
for cold dark matter has to be up to nine orders of magni-
tude lower to give the right amount of dark matter today,
which can be probed at the LHC by detecting the neutra-
lino with an unexpected low annihilation cross section. The
conditions in such a cosmological phase transition would
then be closer to the situation in heavy-ion collisions or
even the center of neutron stars than to the standard QCD
phase transition in the hot big bang scenario. Hence, the
upcoming FAIR facility would actually for the little infla-
tion scenario be a probe for the physics of the early
Universe.

ACKNOWLEDGMENTS

We thank Rob Pisarski, Eduardo Fraga, Ruth Durrer,
Chiara Caprini, and Arthur Kosowsky for useful comments
and discussions. This work is supported by the
Bundesministerium für Bildung und Forschung (BMBF)
under Grant No. FKZ 06HD9127, by the German Research
Foundation (DFG) within the framework of the excellence
initiative through the Heidelberg Graduate School of
Fundamental Physics (HGSFP) and through the Graduate
Program for Hadron and Ion Research (GP-HIR) by the
Gesellschaft für Schwerionenforschung (GSI), Darmstadt.

X. APPENDIX

Now let us discuss the analytic solutions to the system of
differential equations for the perturbations

�0
i ¼ � 3ðc2si � wiÞ

a
�i þ k

Ha
ĉ i � 3ð1þ wiÞ�a (A1)

ĉ 0
i ¼ � 1� 3wi

a
ĉ i � c2si

k

Ha
�i � ð1þ wiÞ k

H a
� (A2)

� ¼ �
3
2 ð1þ 3c2sÞ�

k
H

�
2 þ 9

2 ð1þ wÞ
� (A3)

for the most relevant cases. We will limit the discussion to
stating the approximate equations of motion for the radia-
tion and the dark matter component by directly giving the

dominant analytic solutions. First let us look at the growing
superhorizon solutions in the case of a radiation-dominated
Universe, which sets the initial condition for the numerical
calculations. These solutions set the relevant initial con-
ditions for our numerical calculations. The approximate
equations of motion and the resulting solutions are sum-
marized in Table II.

A. INFLATIONARY SOLUTIONS

Now we want to additionally find the solutions for
the inflationary phase in the different spectral regimes.
For the inflationary regime it will be most important to
examine the case of q ¼ 3 because radiation will be less
abundant than matter soon after the onset of inflation for
relevant inflation lengths. First of all we need the mean
quantities

1þw’
�
ai
a

�
3
; �’�DM

�
ai
a

�
3
; c2s ’13; w’�1; (A4)

and we also need to remember that k=H / 1=a in the
following. Now let us examine the two most relevant
spectral regimes, namely, the intermediate and the unaf-
fected regime. For the spectral range we have examined
numerically none of the modes will stay sub-Hubble
sufficiently long during inflation to approach an analytic
limit. This would only be the case for modes that stay
similar or even below the Hubble frequency for the whole
duration of inflation. It turns out that the solutions in
this case are combinations of Bessel functions that
cannot be found by simple analytic means. Thus we skip
a lengthy discussion for these modes and directly jump to
the other two regimes that are relevant to the discussion
and have analytic solutions that can be derived rather
quickly.

First let us discuss the intermediate modes with 1 �
k
H � ð1þ wÞ1=2. The approximate equations of motion in

this regime and the corresponding solutions are summa-
rized in Table III. The solutions for the dark matter pertur-
bations imply that �DM and �R will be frozen very quickly

TABLE II. Equations of motion and dominant perturbation
solutions for a radiation-dominated Universe in the superhorizon
limit. The constant A fixes the amplitude at horizon crossing
and is scale-independent for a Harrison-Zeldovic spectrum
[47,48].

Superhorizon: k=H � 1, radiation domination: c2s ¼ w ¼ 1=3,
� ¼ ��R=2, k=H / a

�0
R ’ k

Ha
ĉ R þ 2

a �R �0
DM ’ 3

2a �R

ĉ 0
R ’ 1

3
k

H a
�R ĉ 0

DM ’ � 1
a ĉ DM þ 1

2
k

Ha
�R

�R ¼ Að k
H Þ2 �DM ¼ 3

4�R

ĉ R ¼ A
9 ð k

H
Þ3 ĉ DM ¼ 9

8 ĉ R
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until the end of inflation and approach a constant value.

Note that ð1þ wÞ1=2 drops more quickly than k
H so any

mode that enters this regime stays there until the end of
inflation.

Now let us turn to the unaffected modes that are given

by the condition 1 � ð1þ wÞ1=2 � k
H . The correspond-

ing approximate equations of motion and the resulting
solutions in this regime are again summarized in
Table IV. Note that the solutions for �R and �DM are
exactly the same solution as for the radiation dominated
superhorizon case as found before. Comparing these
results to the analytic superhorizon solutions in the
radiation-dominated Universe we find that �DM and �R

have the same growing mode / a2, thus the naming of

the spectral region as ‘‘unaffected’’ is justified. On the

other hand, ĉ DM and ĉ R grow only linearly with the
scale parameter in contrast to a cubic growth in
the radiation-dominated super-Hubble case. This is ac-
tually necessary to keep the spectrum scale invariant on

large scales [48] since this requires �i=ĉ i / k=H . The
latter keeps the amplitude at horizon entry independent
of the wave number for large scales. Furthermore
the comparison between the intermediate and the unaf-
fected cases shows that one may expect a relative sup-
pression in the fluctuations below the unaffected part of
the spectrum because the intermediate modes are frozen
in while the unaffected modes grow in the respective
limit.
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