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We consider the process of primordial black hole (PBH) formation originated from primordial

curvature perturbations produced during waterfall transition (with tachyonic instability), at the end of

hybrid inflation. It is known that in such inflation models, rather large values of curvature perturbation

amplitudes can be reached, which can potentially cause a significant PBH production in the early

Universe. The probability distributions of density perturbation amplitudes in this case can be strongly

non-Gaussian, which requires a special treatment. We calculated PBH abundances and PBH mass spectra

for the model and analyzed their dependence on model parameters. We obtained the constraints on the

parameters of the inflationary potential, using the available limits on �PBH.
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I. INTRODUCTION

According to the observational data (see, e.g., [1]), the
primordial curvature perturbation � is Gaussian with an
almost scale-independent power spectrum. It means that
the structure of the Universe originated from near-scale
invariant and almost Gaussian fluctuations. As is well
known, in models of slow-roll inflation with one scalar
field the curvature perturbation originates from the vacuum
fluctuations during inflationary expansion, and these fluc-
tuations lead to practically Gaussian classical perturbations
with an almost flat power spectrum near the time of horizon
exit, in full agreement with the data. So far, there is a weak
indication of primordial non-Gaussianity [at the ð2� 3Þ�
level] from the cosmic microwave background (CMB)
temperature information from the WMAP 3-, 5-, and
7-year data [2,3].

It was pointed out long ago that for inflation with
multiple scalar fields possibilities exist for non-Gaussian
fluctuations [4–6]. In particular, the authors of [6] elabo-
rated on a model of cold dark matter (motivated by double
inflation scenarios) in which it was assumed that the initial
perturbation field (the gauge-invariant potential) is a com-
bination of a Gaussian field�1 and the square of an another
Gaussian field�2,� ¼ �1 þ�2

2, and, in addition, that�2

is described by a sharply peaked power spectrum.
The detectable non-Gaussianity is predicted in models

with additional scalar fields contributing to � . The time
evolution of the curvature perturbation on superhorizon
scales (which is allowed in double inflation [7] and, in
general, in multiple-field scenarios) implies that, in prin-
ciple, a rather large non-Gaussian signal can be generated
during inflation. The primordial non-Gaussianity of � in
multiple-field models can be calculated using the �N
approach [7–10] or the expression for � through the non-

adiabatic pressure perturbation [11–13]. It is important to
note that non-Gaussian contributions to � predicted by all
these approaches might be negligible on cosmological
scales but rather large on smaller scales allowing, in prin-
ciple, primordial black hole (PBH) formation.
There are several types of two-field inflation scenarios in

which detectable non-Gaussianity of the curvature pertur-
bation � can be generated: curvaton models [14–19],
models with a noninflaton field causing inhomogeneous
reheating [20,21], curvaton-type models of preheating
(see, e.g., [22] and references therein), and models of
waterfall transition that ends the hybrid inflation [23–33].
In these two-field models, the primordial curvature per-

turbation has two components: �g, which is a contribution

of the inflaton (almost Gaussian) and ��, which is a con-
tribution of the extra field �. This second component is
parametrized by the following way [34]:

��ðxÞ ¼ a�ðxÞ þ �2ðxÞ � h�2i: (1)

If the linear term in (1) is negligible (i.e., if a � 0), one
has the ‘‘�2 model,’’ in which curvature fluctuations are
described by the �2 distribution. This �2 model is a par-
ticular case of the �2

m model [35–37], i.e., a model in
which the fluctuations generated during inflation have
�2
m distributions. Of course, there is a severe observational

constraint on the spectrum amplitude P �� [38] predicted

by the �2 model, at cosmological scales. That is, the
dominance of the quadratic term in (1) and, correspond-
ingly, large non-Gaussianity are possible only on smaller
scales (where, in particular, in case of a blue tilt the
amplitude P �� can be of the order of 1, leading to PBH

formation). The possibilities of PBH formation in
curvaton-type scenarios are discussed in [39].
It was shown in our previous work [33] that the power

spectrum of the primordial curvature perturbations from
the waterfall field in hybrid inflation with tachyonic pre-
heating has the form of a broad peak, and the peak value,
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k�, depends on the parameters of the inflationary potential,
in particular, on the parameter �, which is the ratio
jm2

�j=H2, where m2
� is the mass squared of the waterfall

field �. At small values of � (� & 10) the peak is
far beyond horizon (k�=aH � 1) and the perturba-
tions are strongly non-Gaussian [because they have
�2 distributions due to the fact that curvature perturbation
� depends on the waterfall field amplitude quadratically,
just as in Eq. (1)]. It appears that the spectrum amplitude
P � is negligible on cosmological scales but is quite sub-

stantial at small scales (if �� 1) and it is interesting to
analyze if it can be constrained by data of PBH searches.

The effects of non-Gaussian primordial curvature and
density perturbations on the formation of PBHs had been
considered in Refs. [40–44]. Our consideration in the
present paper has almost no intersections with the content
of these works. We study in this paper, mostly, two ques-
tions: (i) forms of the PBH mass spectra in the non-
Gaussian case and (ii) constraints on the inflationary
potential parameters (for the concrete inflation model)
following from processes of PBH formation in the
radiation-dominated era. Note that we consider the case
of the strong non-Gaussianity (in contrast with, e.g., stud-
ies of [44]).

The plan of the paper is as follows. In Sec. II we review,
very briefly, the main aspects of the model used for de-
scribing the waterfall transition (the tachyonic preheating)
at the end of hybrid inflation. In particular, we present in
this section the formula for the curvature perturbation �
(derived in our previous work [33]), which is a basis for all
following calculations of PBH formation. In Sec. III we
consider problems connected with the process of PBH
formation in the radiation era of the early Universe: proba-
bility distribution functions of our model, the formula for
PBH mass spectrum (following from Press-Schechter for-
malism), and the formula for the relative energy density of
the Universe contained in PBHs. At the end of Sec. III we
present some illustrative results of PBH mass spectra cal-
culations. In Sec. IV we present the resulting constraints
on the parameters of our inflation model following from
the studies of PBH formation. Section V contains our
conclusions.

II. THE WATERFALL TRANSITION MODEL

We consider the hybrid inflation model which describes
an evolution of the slowly rolling inflaton field � and the
waterfall field �, with the potential [45,46]

Vð�;�Þ ¼
�
M2 �

ffiffiffiffi
�

p
2

�2

�
2 þ 1

2
m2�2 þ 1

2
��2�2: (2)

The first term in Eq. (2) is a potential for the waterfall field
� with the false vacuum at � ¼ 0 and true vacuum at

�2
0 ¼ 2M2=

ffiffiffiffi
�

p � v2. The effective mass of the waterfall

field in the false vacuum state is given by

m2
�ð�Þ ¼ �ð�2 ��2

cÞ; �2
c � 2M2

ffiffiffiffi
�

p
�

: (3)

At �2 >�2
c the false vacuum is stable, while at �2 <�2

c

the effective mass squared of � becomes negative, and
there is a tachyonic instability leading to a rapid growth
of � modes and eventually to an end of the inflationary
expansion.
The evolution equations for the fields are given by

€�þ 3H _��r2� ¼ ��ðm2 þ ��2Þ; (4)

€�þ 3H _��r2� ¼ ð2 ffiffiffiffi
�

p
M2 � ��2 � ��2Þ�: (5)

From Eq. (5), one obtains the equation for Fourier modes
of ��:

� €�k þ 3H� _�k þ
�
k2

a2
� �H2

c þ ��2

�
��k ¼ 0: (6)

Here a ¼ aðtÞ is the scale factor and the parameter � is
given by the relation

� ¼ 2
ffiffiffiffi
�

p M2

H2
c

: (7)

The solution of Eq. (4) (in which we ignore the gradient
term due to the choice of a uniform� gauge) is (for t > tc,
tc is the critical point when the tachyonic instability
begins)

� ¼ �ce
�rHcðt�tcÞ; r ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
� m2

H2
c

s
: (8)

The time evolution of ��k during the growth era of the
waterfall was studied, numerically, in the previous work
[33]. We used in [33] an artificial cutoff of large-k modes,
which corresponds to considering only the waterfall field
modes that already became classical near the beginning of
the growth era. The classical nature of the waterfall field
had been discussed in [30], in the approximation when the
expansion of the Universe is negligibly small. It was shown
in [30] that, in the Heisenberg picture of the quantum

theory, the operator ^��k has, at not very large k, almost
trivial time dependence (during the biggest part of the

growth era). Namely, ^��k is a constant operator times a
c number, which means that the perturbation is classical
(this issue is elaborated on in detail in the literature on the
quantum-to-classical transition [47–49]).
Following [30] we assume that the waterfall transition

ends when the last term on the right-hand side of Eq. (4)
becomes equal to the preceding one, i.e., when

hð��Þ2i ¼ m2

�
� �2

nl: (9)

The main equation for a calculation of the primordial
curvature perturbation (on uniform density hypersurfaces)
is [11] (see also [12,13])
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� ¼ �
Z

dt
H�pnad

pþ 	
; (10)

where the nonadiabatic pressure perturbation is �pnad ¼
�p� c2s�	 and the adiabatic sound speed is c2s ¼ _p= _	.
Equation (10) follows from the ‘‘separated universes’’
picture [7–11] where, after smoothing over sufficiently
large scales, the Universe becomes similar to an unper-
turbed Friedmann-Robertson-Walker cosmology. In our
case, one has

�pnad ¼ �p� � _p

_	
�	�: (11)

Energy density 	 and pressure p is a sum of contributions
of � and � fields. Equation (11) takes into account that in
�pnad there is no contribution from the � field.

For the curvature perturbation, we have

� ¼ �� ¼ �Að�2 � h�2iÞ; (12)

where �2 and h�2i are determined at the time of the end of
the waterfall, t ¼ tend, and A is given by the integral [33]

A ¼
Z tend

0

Hcdt
_�2ðtÞ þ h _�2ðtÞi

�
fðtÞ

fðtendÞ
�
2 1

2

�
�m2

�ðtÞ þ
� _fðtÞ
fðtÞ

�
2

� _p

_	

�
m2

�ðtÞ þ
� _fðtÞ
fðtÞ

�
2
��

: (13)

Here the function fðtÞ describes the time evolution of the
waterfall field, which is almost independent of k [30,33],

�ðx; tÞ ¼ CðxÞfðtÞ: (14)

It was shown in [33] that for �� 1, the curvature
perturbation spectrum will reach values of P � � 1 in a

broad interval of other model parameters (such as r, �,
and Hc). The peak values, k�, for small �, are far beyond
the horizon, so the smoothing over the horizon size will not
decrease the peak values of the smoothed spectrum.
Furthermore, the spectrum near the peak remains strongly
non-Gaussian after the smoothing. The calculations of
[33], based on the quadratic inflaton potential, show that
for� & 100 and in the broad interval of r the peak value k�
can be estimated by the simple relation:

k�
aH

� e�N; (15)

where N is the number of e-folds during the waterfall
transition. A similar estimate is contained in the recent
work of [32]. Note that for k � k�, we obtain the well-
known (e.g., [25,26,30]) result P � ðkÞ � k3.

III. PBH PRODUCTION FROM NON-GAUSSIAN
PERTURBATION

A. PBH formation threshold

A production of PBHs (about these objects, see, e.g.,
reviews [50,51]) during the reheating process had been

considered in [52–56]. PBH formation in connection to
non-Gaussianity has been studied in [40–44]. In all those
papers, the case of rather weak non-Gaussianity has been
considered. In the present work, we study in detail the case
of strong non-Gaussianity (i.e., onewhen the quadratic term
in Eq. (1) dominates). Furthermore, we have an opposite
sign for the quadratic term due to the sign in Eq. (12), which
leads to very different dependencies of PBH abundances
on the power spectrum amplitude compared to the usually
considered (Gaussian or almost Gaussian) cases (such be-
havior was qualitatively described in [30]).
The classical PBH formation criterion in the radiation-

dominated epoch is [57]

� > �c � 1=3; (16)

where � is the smoothed density contrast at the horizon
crossing (at this moment, k ¼ aH). The Fourier compo-
nent of the comoving density perturbation � is related to
the Fourier component of the Bardeen potential � as

�k ¼ � 2

3

�
k

aH

�
2
�k: (17)

For modes in a superhorizon regime, �k � �ð2=3Þ�k, so
(16) can be translated to a limiting value of the curvature
perturbation [43], which is

�c ¼ 9
4�c � 0:75: (18)

If we assume a somewhat larger PBH formation threshold,
�c � 0:45 (see, e.g., [58]), then

�c � 1: (19)

We will not insist on the concrete value of the threshold
parameter and, in the following, will consider both values
(18) and (19) as possible ones.

B. Perturbation probability distributions

The relation between curvature perturbation � and
the waterfall field value is given by Eq. (12), or, using
�2

� ¼ h�2i,
�¼�Að�2��2

�Þ¼�max�A�2; �max�A�2
�: (20)

Here A and �2
� generally depend on the smoothing scale R.

The distribution of � is assumed to be Gaussian, i.e.,

p�ð�Þ ¼ 1

��

ffiffiffiffiffiffiffi
2


p e��2=2�2
� : (21)

The distribution of � can be easily obtained from (20)
and (21):

p� ð�Þ ¼ p�

��������
d�

d�

��������¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�maxð�max � �Þp eð���maxÞ=2�max ;

� < �max; (22)

which is just a �2 distribution with 1 degree of freedom,
with an opposite sign of the argument, shifted to a value of
�max. As required, h�i ¼ 0 and
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h�2i ¼
Z �max

�1
�2p� ð�Þd� ¼ 2�2max: (23)

On the other hand,

h�2i ¼ �2
� ¼

Z
P � ðkÞW2ðkRÞ dk

k
; (24)

where WðkRÞ is the Fourier transform of the window
function, and we use a Gaussian one, W2ðkRÞ ¼
expð�k2R2Þ, in this work.

From (23) and (24) we can write for �max (we now
denote the argument R explicitly):

�maxðRÞ ¼
�
1

2

Z
P � ðkÞW2ðkRÞ dk

k

�
1=2

: (25)

Everywhere below, we use the following notation:
�maxðR ¼ 0Þ � �max. So,

�max ¼
�
1

2

Z
P � ðkÞdkk

�
1=2 ¼ 1ffiffiffi

2
p h�2i1=2: (26)

It is clear that PBHs can be produced in the early Universe,
if �max > �c.

C. Formulas for PBH mass spectrum and abundance

In general, a Press-Schechter approach [59] used for
calculations of the number density of clusters in different
scenarios for the formation of structure in the Universe
does not use the assumption that the initial perturbations
have just Gaussian distributions. For example, in [60] the
Gaussianity of the cosmological density field was tested
using two different models for probability distribution
functions: a standard Gaussian model and a texture (see,
e.g., [61]) model. In [42] the Press-Schechter formalism
had been used for the case when an initial density field has
a �2 distribution, and PBH abundances, as a function of
black hole mass, for a power-law primordial power spec-
trum, were calculated.

The energy density fraction of the Universe contained in
collapsed objects of initial mass larger than M in Press-
Schechter formalism [59] is given by

1

	i

Z 1

M

~Mnð ~MÞd ~M ¼
Z 1

�c

p� ð�Þd� ¼ Pð� > �c;RðMÞ; tiÞ;
(27)

where function P on the right-hand side is the probability
that in the region of comoving size R the smoothed value of
� will be larger than the PBH formation threshold value,
nðMÞ is the mass spectrum of the collapsed objects, and 	i

is the initial energy density. Here we ignore the dependence
of the curvature perturbation � on time after the end of
the waterfall, assuming it does not change in the super-
horizon regime, until the perturbations enter the horizon at
k ¼ aH.

The mass spectrum of the collapsed objects, nðMÞ, is
given by

nðMÞ ¼ 2
	i

M

��������
@P

@R

��������
dR

dM
; (28)

where, as usual, the factor of 2 approximately takes into
account the fact that underdense regions also collapse. In
the above formula, M is the initial fluctuation mass corre-
sponding to the fluctuation of the comoving scale R,

M ¼ 4


3
	iðaiRÞ3;

dR

dM
¼ ð4
Þ�1=33�2=3	�1=3

i a�1
i M�2=3 (29)

(ai is the value of the scale factor at t ¼ ti,M is calculated
at the moment ti corresponding to the time of the end of the
waterfall, which is assumed to be close to reheating time;
note that the comoving fluctuation mass is not constant).
The horizon mass corresponding to the time when fluc-

tuation with initial massM crosses the horizon is (see [62])

Mh ¼ M1=3
i M2=3; (30)

where Mi is the horizon mass at the moment ti,

Mi � 4


3
t3i 	i � 4


3
ðH�1

c Þ3	 ¼ 4
M2
P

Hc

(31)

(here, we used the Friedmann equation, 	i ¼ 3M2
PH

2
c).

The reheating temperature of the Universe is [62]

TRH ¼
�
90M2

PH
2
c


2g�

�
1=4

; g� � 100: (32)

For simplicity, we will use the approximation that the
mass of the produced black hole is proportional to the
horizon mass, namely,

MBH ¼ fhMh ¼ fhM
1=3
i M2=3; (33)

where fh � ð1=3Þ1=2 ¼ const (this particular value of fh
corresponds to a threshold of the PBH production in a Carr-
Hawking collapse, see, e.g., the Appendix of [62]). Our final
qualitative conclusions do not depend on the value of fh. In
a more accurate analysis, one must take into account that the
connection betweenMBH andMh is more complicated, and,
in particular, depends on the type of the gravitational col-
lapse [57,58,62,63]. Moreover, there can be a dependence
on the shape of the radial fluctuation profile [64].
Using Eqs. (28), (29), and (33), the PBH number density

(mass spectrum) can be written as

nBHðMBHÞ ¼ nðMÞ dM

dMBH

¼
�
4


3

��1=3
��������
@P

@R

��������
fh	

2=3
i M1=3

i

aiM
2
BH

: (34)

We can estimate the relative energy density of the
Universe contained in PBHs, at the moment of time t
(assuming a radiation-dominated Universe with t < teq
and ignoring the PBH mass change due to accretion or
evaporation) as follows:
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�PBHðtÞ � 1

	ðtÞ
�
ai
aðtÞ

�
3 Z

nBHMBHdMBH: (35)

Using the scaling relations 	� t�2, a� t1=2 and consid-
ering the moment of time for which the horizon mass is
equal to Mh, we obtain

�PBHðMhÞ � 1

	i

�
Mh

Mi

�
1=2 Z

nBHM
2
BHd lnMBH: (36)

It is well known that for an almost monochromatic PBH
mass spectrum, �PBHðMhÞ coincides with the traditionally
used parameter �PBH (energy density fraction of the
Universe contained in PBHs at the moment of their for-
mation). Although all PBHs do not form at the same
moment of time, it is convenient to use the combination

M�1=2
i 	�1

i M5=2
BHnBHðMBHÞ to have a feeling of how many

PBHs actually form. We will use this combination in the
following (Fig. 3).

One should note that, strictly speaking, observational
constraints on the parameter �PBH are obtained using the
assumption that the PBH formation takes place at a single
epoch and the corresponding spectrum P � has a narrow

peak at some value of k. In our case, the width of the peak is
not very small (see Fig. 4 in [33]). But, as is well known,
the black hole abundance is extremely sensitive to an
amplitude of P � ðkÞ and, correspondingly, the bound on

P � ðkÞ weakly depends on the value of �PBH. Our main aim

is to determine constraints on the inflation model parame-
ters (in particular, on the value of �), and, as we show in
the present paper, the black hole abundances depend on �
and on the amplitude of P � ðkÞ very strongly. In such a

situation the form of the P � spectrum in the real scenario

of PBH formation (a size of the spectrum’s width) is not
very essential.

D. PBH mass spectrum calculation

The power spectra P � ðkÞ from the waterfall transition

process, for different sets of parameters, have been calcu-
lated in our previous paper [33]. For the purpose of this
section, it is convenient to parametrize the curvature per-
turbation power spectrum as follows:

P � ðkÞ ¼ P 0
� exp

�
�ðlgk=k0Þ2

2�2

�
; (37)

where P 0
� gives the maximum value approached by the

spectrum, k0 is the comoving wave number corresponding
to the position of the maximum, and � determines the
width of the spectrum. Evidently, values of the parameter
k0 should be equal to the corresponding peak values, k�, of
the P � ðkÞ curves calculated in [33].

What are the typical values of the parametersP 0
� and�?

It was shown in [33] that the spectrum P � ðkÞ can reach

values of the order of 1 if �� 1. It follows from Fig. 4 of
[33] that for � ¼ 2, r ¼ 0:1 one has � � 0:7, P 0

� � 0:4

(and �max � 0:9), while for� ¼ 1, r ¼ 0:1 the peak ismore
wide and high: � � 1:0, P 0

� � 1:2 (with �max � 1:86).

So, in the case of � ¼ 2 the PBHs are produced if the
formation threshold is assumed as in (18) while they are
not yet produced in the case of (19).
We note that, generally, the values of P 0

� , �, and k0
depend on the rather complex interplay between the
potential parameters �, r, HI, and �. In particular, the
position of the peak, k0, depends on HI and the number
of e-folds which waterfall takes, and thus varies with the
change of any of the above four parameters. So, in this
section, we will consider P 0

� , k0, and � as independent

parameters.
In Fig. 1 we show the distribution p� ð�Þ [Eq. (22)] for

a fixed set of parameters �, P 0
� (physically, they corre-

spond to the � ¼ 2, r ¼ 0:1 case) and for different
values of the fluctuation size (smoothing scale) R. It is
seen that in this case, for larger values of R the fluctua-
tion spectrum is not ‘‘strong’’ enough to produce PBHs,
while for the smallest R the PBHs will form [if we
assume threshold (18)—both values of �c that we con-
sider are also shown in the figure].
The probability Pð� > �cÞ [used in Eq. (27)] for fixed

values of � and �c, but for different P 0
� , is shown in Fig. 2.

The value ofP 0
� was fine-tuned for the bottom curve so that

�max does not go below �c (and �max � �c � 1). Once �max

drops below �c, no PBHs ever form (at least for the
classical PBH production scenario which we consider).
For the bottom curve, it happens at k0R � 1 just because
�maxðRÞ � �c > 0 only for the smallest values of R [see
Eq. (25)]. For each curve in Fig. 2 we see a sharp drop of
Pð� > �cÞ to the zero at the value of R when �maxðRÞ
reaches �c. Technically, the derivative @P=@R at this point
diverges, which will lead to a characteristic spike in the
PBH mass spectrum, according to Eq. (34).

0.0 0.5 1.0

0.5

0.0

0.5

1.0

lo
g 10

p

FIG. 1. The probability distribution p� ð�Þ for � ¼ 0:7, P 0
� ¼

0:4 and for different values of R: from left to right, R ¼ 10k�1
0 ,

k�1
0 , and 0:1k�1

0 . The possible (model dependent) values of �c
(�c ¼ 0:75 and �c ¼ 1) are shown by the dashed lines.
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Results of the PBH mass spectra calculations using
Eq. (34) are shown in Fig. 3. Again, we are doing some
fine-tuning for part of the curves, choosing parameters so
that �max � �c � 1. In these cases, such fine-tuning allows

us to reach �PBH �M�1=2
i 	�1

i M5=2
BHnBHðMBHÞ � 10�3 or

so. The mass of the produced PBHs, as can be seen from
the same figure, is several orders below M0

h.

It is well known [51] that for rather large PBH masses,
say, MBH * 1010 g, the constraints on their abundance
from different types of sources (such as gravitational con-

straints and constraints following from nonobservation of
the products of PBH’s Hawking evaporation) are rather
severe, �PBH & ð10�27–10�10Þ, or so. It turns out that in
the present model it is possible to reach such small values
of �PBH only with extreme fine-tuning of inflationary
potential model parameters. However, in the range of
masses below MBH � 1010 g the constraints on �PBH are
not so severe, and in this mass range, �PBH � 10�3 is not
forbidden by the observations. Such light PBHs evaporate
very quickly (long before nucleosynthesis) and the hope of
their possible detection is mainly due to high-frequency
gravitational wave background which they generate
through Hawking evaporation (see, e.g., [65–67]; in these
papers, PBHs with masses MBH � 105 g and values of
�PBH � 10�3 are considered).

IV. CONSTRAINTS ON THE WATERFALL
TRANSITION MODEL

We have seen that in the waterfall model considered,
PBH abundance severely depends on the amplitude of the
curvature perturbation spectrum: once �max is above �c,
PBHs are produced intensively. Demanding that PBHs do
not form in the early Universe, we can impose the bound on
parameters of the inflaton potential. From the condition
�max < �c one has, for two fixed values of �c, the following
constraints (r ¼ 0:1; there is a weak dependence on this
parameter but the result is almost independent on �, Hc):

�c ¼ 0:75: �> 2:3; P 0
� < 0:29; (38)

�c ¼ 1: �> 1:65; P 0
� < 0:55: (39)

These constraints are not based on the comparison with
data on �PBH.
It is interesting to estimate the mass of PBHs that can be

produced by this model and corresponding horizon masses.
For the horizon mass corresponding to the peak position
[33] one has the relation

M0
h � e2NMi; (40)

where N is the number of e-folds that waterfall transition
takes. This approximate relation follows from the estimate
k�=aH � e�N obtained in [33]. Here k� is the peak value of
the � power spectrum, and aH corresponds to the end of
the waterfall. We find that N is highly parameter depen-
dent: although P 0

� mostly depends on � and rather weakly

on other parameters, N depends on � (or �c) in a strong
way. Here we estimate the range of N values to get an idea
of the PBH mass range given by Eq. (40).
For the purpose of this estimate, we take the maximal

possible value of �c to be equal to the (reduced) Planck
mass MP. The lower limit is obtained from the classicality
condition [30]: to have an effective waterfall (classical
regime is reached for the � field), we need

ffiffiffiffi
�

p � 1=
ffiffiffiffi
�

p
,

or, at least, �� 1=� (numerical solutions show that for the

5 4 3 2 1 0
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log10 R k0

lo
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P
c

FIG. 2. The probability Pð� > �cÞ as a function of R. From
top to bottom, P 0

� ¼ 0:4ð�max � 0:9Þ, 0:28ð�max � 0:752Þ, and
0:278 46ð�max � 0:750 012Þ. For all curves, � ¼ 0:7, and �c ¼
0:75.
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FIG. 3. The PBH mass spectra for different values of
the perturbation spectrum amplitudes. From right to left,
P 0

� ¼ 1ð�max � 1:42Þ, 0:4ð�max � 0:9Þ, 0:28ð�max � 0:752Þ,
0:278 46ð�max � 0:750 012Þ, and 0:278 451 1ð�max �
0:750 000 068Þ. The position of the peak in the
P � ðkÞ spectrum is the same for all cases. For the calculation

we used the value � ¼ 0:7, and �c ¼ 0:75. The mass M0
h

corresponds to the horizon mass at the moment of time when
perturbation with the comoving wave number k0 enters the
horizon.
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sets of parameters we consider, the waterfall is still effec-
tive in this case). So we consider the lower limit for �c to
be �c ¼ �Hc.

We find that N � 4 for the limit of �c ¼ �Hc, both for
� ¼ 1:65 and � ¼ 2:3; this result turns out to be indepen-
dent of Hc. With the growth of �c, N also increases. For
�c ¼ MP and Hc ¼ 1011 GeV, N � 32 for � ¼ 2:3 and
N � 41 for � ¼ 1:65 (these values of N also have some
dependence on the inflation energy scale Hc).

We plot the possible regions of Mh in Fig. 4. It is seen
that the possible mass range is very wide. As discussed
above, the exact PBH abundance (�PBH) and relation of

characteristic PBH mass MBH to Mh will depend on the
values of the parameters in a fine-tuning regime (see Fig. 3
for an illustration).

V. CONCLUSIONS

We have considered PBH production from strongly non-
Gaussian density (curvature) perturbations in the radiation-
dominated era of the early Universe. The main physical
model that we used is the model of hybrid inflation water-
fall (with tachyonic preheating), however, the results may
be applied to different models that produce similar
perturbations.
We have given the expressions for perturbation proba-

bility distributions and, on the basis of Press-Schechter
formalism, calculated PBH abundances and PBH mass
spectra for the model. The most important result of the
paper is that we obtained limits on the parameters of the
potential of our hybrid inflation model. In particular, we
have shown that the parameter �, which is the ratio
jm2

�j=H2, is limited from below, i.e., � is larger than

some value (otherwise the abundance of PBHs will be
too high, in contradiction with available constraints on
�PBH). We have shown also that these limits on � are
sensitive to the PBH formation threshold parameter (in
our case, �c). Note that the characteristic PBH masses
that can be (in principle) produced by this model are shown
to depend significantly on the coupling parameter, �, of the
inflaton potential. The second important result is that for
our inflation model the possible horizon and PBH mass
regions, corresponding to the peak in perturbation power
spectrum, are constrained (Fig. 4).
It was shown also that to obtain values of PBH abun-

dance not contradicting with the available limits on �PBH,
for MBH * 1010 g, extreme fine-tuning of the model
parameters is needed. Note that the model allows one to
more or less naturally (with a degree of fine-tuning similar
to one needed in some single-field inflation models
[44,68]) produce PBHs with MBH � 105 g or so, and
�PBH � 10�3 or so. Such PBHs are one of the possible
sources of high-frequency gravitational wave background,
which can be observed in the future.
Throughout the work, we used a simplified gravitational

collapse model [using Eq. (33)], close to the standard one,
to treat PBH formation. The inclusion of critical collapse
[58,63] effects in our calculation would require the re-
placement of fh in Eq. (33) with a function proportional
to ð� � �cÞ�c ; �c is around 0.3–0.4. This will change the
results for the PBH mass spectrum (Fig. 3); in particular,
the curves in that figure will be shifted by 1–2 orders of
magnitude to the left and their shape will change, but this
will not affect other results of the paper.
Note added.—After this work was published as an

e-print, the paper [69] appeared, in which an analytical
framework for calculating the curvature perturbation
spectra produced by the hybrid inflation waterfall was
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FIG. 4. The horizon mass regions corresponding to the posi-
tion of the peak in the curvature perturbation power spectrum
(shaded areas). (a) � � 2:3, �c ¼ 0:75; (b) � � 1:65, �c ¼ 1. In
both cases, the value of � is just enough to produce PBHs, and
we vary the parameter �c (or, equivalently, �) between minimal
and maximal possible values. The exact PBH abundance and the
relation of the characteristic PBH mass MBH to Mh will depend
on the values of the parameters in a fine-tuning regime (see
Fig. 3 for an illustration).

FORMATION OF PRIMORDIAL BLACK HOLES FROM NON- . . . PHYSICAL REVIEW D 85, 103504 (2012)

103504-7



developed, in a general case of any inflaton potential form
including the case of N * 1.

The author of [69] finds good agreement between nu-
merical calculations of our work [33] and his analytic
estimates. He also discusses in detail all assumptions that
are made in such models, in particular, he stresses that the
gradient of � must be negligible for the calculation using
Eq. (10) to be viable. We proved the smallness of this
gradient in [33] for our case [see Eq. (3.9) of that work].
Also, Lyth [69] discusses the compatibility of the evolution
equation for � [our Eq. (6)] with the energy continuity
equation. The possible inconsistency between these two
equations is due to the fact that the interaction term,
���2, is dropped in Eq. (4) but the term ��2� is still
used in Eqs. (5) and (6). The condition for using this
approximation correctly is derived to be [69]

� � 1

jm�ðtÞjH
djm�ðtÞj

dt
� 1: (41)

In our case, from Eqs. (3) and (8), one has

� ¼ r

e2rHt � 1
; (42)

which is small only forN ¼ Ht * 1. For smallerHt, when
the waterfall just started, �k is small, and the term propor-
tional to ��2 in Eq. (4) can be dropped just due to the
smallness of �. As one can see from Eq. (42), the consis-
tency condition depends only on a value of the parameter r
which we fixed throughout the present work. Namely, we
used the value r ¼ 0:1 and, in this case, the consistency
condition is satisfied.
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