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We analytically study the evolution of gravitational instability of self-gravitating dark matter within the

framework of a nonrelativistic ‘‘hydrodynamical’’ model of the Universe, valid for scales that are small

compared to the Hubble scale and for distances far away from black holes. We propose a particular form for

parametrizationof the particledistribution functionviamacroscopic quantities, such that the initial dispersionof

microscopic velocities is not neglected, but plays a determinant role. Thus our model may be called amodified

cold dark matter model. We found an analytical solution which indicates that a spontaneous spatially localized

fluctuation of velocity generates density perturbations relative to initially unperturbed background. For the

instability to arise, we do not need to assume any initial density (metric) fluctuations. The evolving perturbation

is hydrodynamically unstable in the self-gravitating expandingUniverse and can produce both—regions where

no dark matter accumulates and halolike regions where dark matter does accumulate. The perturbation region

boundary propagates as a shockwavewith a speed that is timevarying, until eventually reaching its steady state.

We also derive an explicit analytical expression for the correlation functionRðx1 � x2Þ of density fluctuations,
which can be compared by experimentalists with data from astrophysical observations.
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I. INTRODUCTION

Formation of large-scale structures in the Universe is
thought to be due to primordial perturbations of dark
matter [1–8]. These perturbations originated and devel-
oped prior to the recombination of baryonic matter and
formed gravitational wells where the baryonic matter con-
gregated forming galaxies and clusters. Thus, our under-
standing of the evolution of the large-scale galactic
structures is dependent on the understanding of the evolu-
tion of dark matter perturbations [9–18].

It follows fromsimple physical considerations that any self-
gravitating system, including dark matter, is unstable. The
instability is accompaniedby the redistributionof thematter in
space, forming regions of high and low concentrations.

The Jeans instability model [19] for the ordinary matter
is well known, but it describes only a static system.1

In this work, we study the evolution of the collective
perturbations of the modified cold dark matter. The adjec-
tive cold signifies that as a result of long-distance gravita-
tional interaction, dark matter particles are drawn into slow
collective motions that can be described by characteristic
macroscopic velocity uðr; tÞ. The distribution of individual
velocities v around umay take different forms. However, if
the principal contribution to the macroscopic motion
comes from the particles with individual velocities v close
to the averaged u, a pointed velocity distribution function
can be replaced (for the limit case consideration) by the
delta function centered at u [5]. (Just like the Maxwell
distribution tends to the delta function when temperature �

tends to zero: ��3=2��3=2 expð�ðv� uÞ2=�Þ ! �ðv� uÞ
when � ! 0.) Working with the detailed distribution func-
tion is very complex (see, for example, [20]). Transitioning
to the delta distribution function significantly simplifies
calculations and eliminates the need to track velocities
far away from the distribution center because their contri-
bution to the collective is negligible.
By saying modified cold dark matter model, we mean

that unlike the traditional cold dark matter models [4,5,8]
postulating that particle velocity distribution function f is a
delta function, f� �ðv� uðx; tÞÞ, individual velocities v
of the particles in our model are tightly distributed in the
vicinity of the collective velocity u corresponding to the
function maximum, i.e. f possesses a nonzero dispersion
around u. This dispersion (c) carries all information about
the particle system at the moment when the dark matter
separates from the rest.
Using such a simplified model, we aim to study the

gravitational instability of the dark matter system

*eptito@gmail.com.
1The criterion of the Jeans instability is derived by assuming

that the self-gravitating medium in equilibrium is static, homo-
geneous, isotropic, and governed by a barotropic equation of
state, and by employing the ‘‘Jeans swindle’’ so the Poisson
equation is satisfied in an ad hoc way when there is no back-
ground density. Linear analysis produces the dispersion relation
between space and temporal scales of perturbations !2 ¼
c2k2 � 4�G�0, where c is the constant sound speed in gas
and �0 is the constant mass density of the unperturbed medium.
In the framework of the Jeans model, the static material Universe
is dynamically unstable only for perturbations with the space

scales greater than the Jeans truncation scale �J (2�k
�1
J � �J ¼

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=G�0

p
) (where the background density �0 is not time de-

pendent). For � below �J , spectral components of the medium
perturbations evolve as ‘‘acoustical’’ waves.
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analytically. To accomplish our goal, we build a nonrela-
tivistic ‘‘hydrodynamical’’ model of dark matter formu-
lated for these macroscopic quantities, valid for scales that
are small compared to the Hubble scale and for distances
far away from black holes. Hydrodynamical methodology
has been extensively studied in the context of baryonic
fluid. However, when attempting to apply it to the context
of dark matter, the key issue becomes how to properly
‘‘translate’’ some of the terms. At the evolutionary stage
when collisions of dark matter particles became extremely
rare and the shape of the particle distribution function
‘‘froze,’’ local thermal equilibrium ceased to exist. Then
the traditional concepts of macroscopic ‘‘temperature’’ and
‘‘pressure’’ caused by particle collisions are not valid.
However, we are able to parametrize the model in such a
way thatmicroscopic velocities form quantities resembling
these hydrodynamical macroscopic parameters, which al-
lows us to proceed with consideration of collective (hydro-
dynamic) instability in a nonstationary self-gravitating
system. Importantly, in our proposed formulation the initial
dispersion of the microscopic velocities is not neglected,
but indeed is critical, unlike in classical models [12,17] and
subsequent analytical studies of cold dark matter (for
example, [4,5,8]).

Because cold dark matter particles are presumed to be
‘‘slow,’’ with velocities v much smaller than the speed of
light c0, we do not need to take into account relativistic
corrections in the expression for pressure. While the pres-
ence of background spatial curvature or rotation results in
relativistic correction terms in the Newtonian equations of
motion and gravitation, these terms are only of second
order (as shown in [21] for baryonic matter) with respect
to the ratio of ‘‘thermal’’ velocity to the speed of light,
because pressure is proportional to the square of thermal
velocity.

We discuss a range of specific solutions that follow from
our model under different regimes and conditions, but
focus on one exact analytical solution (assuming that dis-
persion is local and proportional to some power of the

background density, for example, c2 / �2=3
c ), expressed

in terms of elementary functions. This solution possesses
a transparent physical meaning: a spontaneous spatially
localized fluctuation of velocity generates density pertur-
bations relative to the initially unperturbed background.
The perturbation is hydrodynamically unstable in the self-
gravitating expanding Universe and can produce both—
regions where no dark matter accumulates and halolike
regions where dark matter accumulates. The perturbation
region boundary propagates as a shock wave with speed
that is time varying, until eventually reaching its steady
state. The found solution respects the principle of cau-
sality—there are no perturbations in the regions not
reached by the shock wave. And there occurs no singularity
of density distribution even at the center of fluctuation,
even if the initial velocity fluctuation is singular.

The article is structured as follows: Section II formulates
the model. Section III discusses the model’s analytical
solutions generally, while Sec. IV focuses on the above-
mentioned exact case. Section V summarizes and discusses
the results. Appendixes A, B, and C provide assisting
derivations and technical details. In particular,
Appendix B derives and presents the analytical expression
for the correlation function (for the Gaussian random field
of density fluctuations) that can be used to compare data
from astrophysical observations.

II. NONRELATIVISTIC HYDRODYNAMICAL
MODEL

We assume that the evolution of dark matter can be
described in the phase space of variables r and v by the
Boltzmann-Vlasov-Poisson equation for distribution func-
tion f ¼ fðr; v; tÞ2

@tfþ vi@if� @j�@̂f ¼ St½f�; �� ¼ 4�G
Z

dvf:

(1)

Here the notations are i, j, and k are the coordinate indices,

@t � @=@t, @k � @=@rk, @̂k � @=@vk, � is the gravita-
tional potential, and G is the gravitational constant.
Function f is normalized by the density of the matterR
dvf ¼ �. Nonlinear Eqs. (1) are nonlocal due to the

fact that the gravitational potential � depends, via the
Poisson equation, on the integral of the distribution func-
tion with respect to velocities.
Currently dark matter particles interact very weakly

(only via the gravitational field). The free path distance
of dark matter particles exceeds the characteristic scale of
inhomogeneities typical for the Universe.3 Therefore, one
can neglect in our consideration the collision integral,
letting St½f� ¼ 0 from the very outset. In general, however,
in models where dissipative effects are not neglected in
long-distance interactions (for example, in gravitational or
electrostatic fields), the integral has a form of divergence of
some current (see Appendix A).
Cold dark matter is described by the distribution func-

tion f with a sharply pointed maximum at near-zero

2For a system of N identical classical particles, the distribution
function fðr; v; tÞ is given by �N ¼ �r�vm�1fðr; v; tÞ, where
�N is the number of particles in the volume element �r centered
at r whose velocities fall in the velocity element �v centered at v
at time t.

3Recall that the time required to reach equilibrium must be
longer than the mean free path time tf � ðn��VÞ�1. (Here n is
the dark matter density, � is the collision cross section of dark
matter particles, and �V is their relative characteristic velocity.)
Even for a light neutrino whose mass mn � 2 eV, the free path
time tf is 8 or 9 orders of magnitude longer than the lifetime of
the Universe [5]. Obviously, for heavy dark matter particles, time
tf is even longer.
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velocities. This radically simplifies calculations as they can
be done over only coordinates r; t instead of v; r; t (see
[22]). In such a case, the so-called hydrodynamical collec-
tive velocity4 can be introduced, determined by expression

�ui ¼
Z

dvvif ,
Z

dvðvi � uiÞf ¼ 0: (2)

Here definition � ¼ R
dvf was used. After integrating

Eq. (1) with respect to v, the continuity equation can be

derived since
R
dvSt½f� ¼ �R

dv@̂kjk ¼ 0, i.e., collisions
change the velocities of the particles in the system, but
have no effect on the spatial density. Next by multiplying
Eq. (1) by vi and integrating with respect to the velocities,
one obtains

@t�ui þ @j
Z

dvvivjf� @j�
Z

dvvi@̂jf ¼
Z

dvviSt½f�;
�� ¼ 4�G�; (3)

or

@tð�ukÞ þ @ið�uiukÞ � @j�kj þ �@k� ¼ Jk;

�� ¼ 4�G�: (4)

Here stress tensor �ij½f� ¼ �R
dvðvi � uiÞðvj � ujÞf is

introduced. Tensor �ij becomes diagonal when the distri-

bution function is spherically symmetrical with respect to
velocities, fðjv� ujÞ, in a local reference frame. In this
case, Eq. (2) is respected automatically. Term Jk disappears
even for St½f� � 0 in the approximation of long-distance
interactions

Jk �
Z

dvvkSt½f� ¼ �
Z

dv1v1k@̂pjp

¼
Z

dv1�pkjp ¼
Z

dv1jk

¼
Z

dv1dv2ðf1@̂2nf2 � f2@̂1nf1Þ@̂1k@̂1njv1 � v2j ¼ 0:

Here f� � fðv�;x�; tÞ with � ¼ 1 or 2.
To close the system of equations, one must propose

some functional form of the stress tensor �ij½f�, i.e., one
must define the equation of state for the cosmological fluid,
which requires some specific information about the

distribution function form.5 When dark matter behaves
almost like a low-temperature ideal gas, virtually without
any collisions, the sharply pointed distribution function can
be replaced by the Dirac-delta function when integrals with
respect to individual velocities of particles are calculated
from power expressions of velocity. Therefore, for the
pressure-free matter (the so-called ‘‘cold dust’’), the dis-
tribution function can be reasonably replaced by
fðr; v; tÞ ¼ �ðr; tÞ�ðv� uðr; tÞÞwith macroscopic parame-
ters � and u. In this case, Eq. (2) is satisfied automatically,
and the stress tensor �ij ¼ 0 since ðvj � ujÞ�ðv� uÞ � 0.

However, if the initial dispersion of velocities, c, is not
strictly zero, distribution function f has the form of a
‘‘smeared’’ delta function—a delta function whose sharply
pointed maximum has a finite width. When c � 0, such
function f rapidly tends to zero for v � 0 and c ! 0, and
tends to infinity for v ¼ 0 and c ! 0. At the same time,
integrals of any velocity power multiplied by this function
converge. A good approximation for such distribution
function f is a Maxwell-like velocity distribution when

f / ð�c2Þ�3=2 expð�ðv� uÞ2=c2Þ with a small parameter
c. It is important to not confuse this parameter c with the
actual thermal velocity of the dark matter particles as the
two parameters have nothing in common.
In this paper, we parametrize the actual distribution

function using the above-described macroscopic parame-
ters �;u and c2 via expression

fðr; v; tÞ ’ �ðr; tÞ½1þ 1
2c

2�̂��ðv� uðr; tÞÞ; (5)

which reflects the fact that in our model the individual
particles’ velocities are tightly distributed in the vicinity of
the collective’s averaged velocity of the hydrodynamical
flow. Such parametrization can be viewed as representing
the first terms in a series expansion (with respect to the
velocity dispersion) of a general quasicold dark matter
distribution function. This parametrization with small
parameter c2 describes the nonzero but small width of
the distribution function in the space of velocities. In
general, parameter c2 may be time dependent. Equation
(5) containing the delta functions is obviously symbolic. It
appears only in integral expressions with some powers of
velocity, and for this reason, after integrating with respect
to the velocity variable, produces converging values. In

Eq. (5), operator �̂ denotes the Laplacian with respect to
velocity components. Delta-function derivatives are taken

4Just as the moments of distribution function f define the
macroscopic parameters, the moments (with respect to veloc-
ities) of the kinetic equation (1) produce equations for macro-
scopic quantities and, therefore, describe the evolution of the
matter (e.g., plasma or self-gravitating gas) from the macro-
scopic standpoint. Because equations obtained this way are
congruent to hydrodynamical equations of fluid dynamics, the
theories using such macroscopic equations are called hydro-
dynamical ones [22].

5In some models (see, for example, [23]), the velocity distri-
bution of dark matter particles was assumed Maxwellian with
nonzero initial dispersion of velocities ([23] used � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

�=2m
p �

2:2� 102 km=s). However, such an assumption is arguable,
because the absence of collisions between particles implies
that thermal equilibrium has not been reached. The specific
form of function f logically depends on the prehistory of the
formation of fluctuations, the masses of particles, their interac-
tion cross section, etc. Analogous considerations are prevalent in
plasma physics (see, for example, [22], Chap. 3, Sec. 4).
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according to well-known rules. It follows from its defini-
tion that the stress tensor �ij ¼ �c2��ij � �p�ij,

and that the above-mentioned macroscopic parameter
p is different from zero. Here, obviously, c2 ¼R
dvv2f=

R
dvf in the comoving frame of reference.

Parametrization (5) is physically meaningful because in-
tegration with respect to velocity v is always valid.
Parameter c2 describes the velocity dispersion, which is
defined by the ‘‘initial’’ distribution of velocities at a
moment t ¼ ti � 0 when the density of the Universe
becomes sufficiently small and the momentum state of
the system is forever frozen. As mentioned earlier, at the
evolutionary stage when particle collisions become ex-
tremely rare, local thermal equilibrium cannot be estab-
lished. Therefore, traditional concepts of temperature and
pressure caused by particle collisions, which are valid for
an equilibrium state, are not valid anymore.

Substitution of the proposed expression for f into the
collisionless form of Eq. (1) allows us to obtain the set of
shortcut equations for the dark matter evolution

@t� ¼ �@jð�ujÞ;
@tui ¼ �uj@jui � ��1@iðc2�Þ � @i�;

�� ¼ 4�G�:

(6)

Indeed we build a model analogous to the hydrodynamical
one. Here � is density, u is the collective flow velocity,
p ¼ �c2 is a pressurelike parameter which, as emphasized
earlier, is not the same as the traditional thermal pressure,
� is the gravitational potential, and G is the gravitational
constant. Quantity s / R

dv lnff which satisfies equation
@ts ¼ �ui@is is an entropylike quantity per unit mass.
Whatmakes thismodel different from the standard classical
fluid model is the presence of the term describing gravita-
tional action, @i�, in the equation of momentum conserva-
tion, and the existence of the nonlocal relationship between
� and �,� ¼ �½�� [the last equation in the set of Eqs. (6)].

The model is valid for scales that are small compared to
the Hubble scale and for distances far away from black
holes. The last equation of the system (6) describes the
shape of the gravitational potential �, created by the mass
distribution � in such regions. System (6) is self-
consistent: indeed, the evolution of � is determined by
the velocity u which in turn is governed by the gravita-
tional potential � whose evolution is governed by the
Poisson equation for �. Equations (6) must be completed
by the equation of energy conservation describing external
thermal sources, if such are present.

It is worth pointing out that within the framework of this
model [Eqs. (6)], the Universe cannot be static, i.e. it
cannot remain in the state of rest [when the flow velocity
from Eq. (6) u ¼ 0] with constant volume density and
entropy. Indeed, observations have confirmed [10–14]
that our Universe is expanding (i.e. the velocity u0 and
the distance r of a galaxy are related by Hubble’s law
ju0j ¼ Hjrj) and that the matter is homogeneous (�0) on

a large scale. Here �0ðtÞ is the unperturbed density (the
average background density), and HðtÞ is the Hubble’s
parameter. Substitution of these quantities into Eqs. (6)
reveals that functions �0ðtÞ and HðtÞ satisfy the evolution
equations

_� 0 ¼ �3H�0; _H ¼ �H2 � 4�

3
G�0: (7)

Here the dot signifies the time derivative. On the other
hand, in the context of the general relativity theory, the
assumption of the homogeneous and isotropic Universe at
large scales permits one to write for the metric

ds2 ¼ c20dt
2 � L2ðtÞ

�
dx2

1� kx2
þ x2d�2

�
; (8)

where d�2 ¼ d�2 þ sin2�d�2, ðt;xÞ ¼ ðt; x; �;�Þ are co-
moving coordinates, t is the proper time, LðtÞ is the scale
factor, and k is the curvature parameter which can be
chosen to be k ¼ þ1, 0, and �1 for positive, flat, and
negative constant space curvatures, respectively. Here t
represents the proper time measured by an observer whose
coordinates x are fixed in the comoving frame of reference.
Physical distance r relates to comoving x via scale factor
LðtÞ as r ¼ LðtÞx. In the big bang model the scale factor
LðtÞ evolves over time and its evolution is related to the
energy density �E and pressure p by two Friedmann’s
equations (here without the � term and the radiation
term) which, in combination with �EL

3 ¼ const valid for
the matter-dominated stage, gives

1

c20

� _L

L

�
2þ k

L2
¼ 8�

3c40
G�E;

€L

L
¼� 4�

3c20
Gð�EþpÞ: (9)

Here G is the gravitational constant. The Hubble’s expan-
sion parameter is introduced by H ¼ _LðtÞ=LðtÞ giving

H2 ¼ � kc20
L2

þ 8�

3c20
G�E; (10)

_H þH2 ¼ � 4�

3c20
Gð�E þ pÞ: (11)

The space is flat (k ¼ 0) when �EcðtÞ ¼ 3c20H
2ðtÞ=8�G.

For the nonrelativistic case of small velocities, �E ! c2�0

and all terms containing c�2
0 , i.e. p=c20, are neglected. We

obtain _H ¼ �H2 � ð4�=3ÞG�0 and L
3 _�0 þ 3�0L

2 _L ¼ 0,
i.e. a new Eq. (7).
In this form of the evolution equations, the diverging

part of the gravitational potential [term�0 / �0ðtÞr2 which
follows from the last equation of Eqs. (6)] is eliminated.
Moreover, this part of the potential is a physically non-
observable quantity; physically observable are only the
second derivatives of the potential, @i@j�. Thus, Eqs. (7)

are equivalent to the Friedmann equations (in the approxi-
mation p0 � �0c

2
0) obtained in the framework of field

equations for the general relativity theory [12,14] of the
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homogeneous isotropic Universe filled with matter.6 The
first of Eqs. (7) ensures conservation of the quantity �0L

3.
Equations (7) admit a particular solution which has the
form of the critical regime (�0 � �c) �c ¼ ð6�Gt2Þ�1,
Hc ¼ ð2=3tÞ�1. Then �c ¼ ð3=8�GÞH2

c (in the flat uni-
verse dominated by the matter and without the cosmologi-
cal constant). The cosmological model with this critical
value of the total mean density �c is the flat Friedmann-
Robertson-Walker universe which expands forever.

In this article we undertake the task of solving the set of
the hydrodynamical equations [Eqs. (6)], derived assuming
that the particle distribution function has the form given by
Eq. (5). We seek the solution in the following form:

� ¼ �0ðtÞ þ �1;

u ¼ HðtÞrþrrc 1;

� ¼ 2�

3
G�0ðtÞr2 þ�1:

(12)

Term �0ðtÞ describes the unperturbed medium density,�1 is
the density perturbation, c 1 is the velocity potential, and
v1 ¼ rrc 1 is the velocity perturbation. The form of
Eqs. (12) implies that the field variables depend on the
coordinate x ¼ r=LðtÞ comoving with the rate of expansion,
i.e., fðr; tÞ � fðr=LðtÞ; tÞ. Here LðtÞ is the scale factor de-
scribing the Friedmann-Hubble expansion of the Universe.7

The velocity field measured in the comoving coordinates
r ¼ Lx is (by taking the derivative with respect to time)
u ¼ ð _L=LÞrþ v1, where v1 is the peculiar velocity. From
here, it is clear that H ¼ ð _L=LÞ is the Hubble parameter:
indeed, as the Universe expands, fluid particles located at
fixed comoving positions x1;2 move away from each

other with relative velocity �u1;2 ¼ _L�x1;2 � H�r1;2.
Transitioning to the comoving coordinates x expresses the
timederivative and the gradient of the field functions (at fixed
r and fixed time, respectively) as@tjr ¼ @tjx � ð _L=LÞx � rx

and @=@xi ¼ L@=@ri.
It is convenient to introduce ‘‘density contrast’’

�1 ¼ �1=�0 � ð�� �0Þ=�0. Equations (6) then become

�Dt�1 þ ð1þ �1Þdiv v1 ¼ 0;

�0ð1þ �1Þ �Dtv1 þ c2r�1 ¼ ��0ð1þ �1Þr�1;

��1 ¼ 4�G�0L
2�1 (13)

with �Dtf ¼ L@tfþ v1 � rf. Here and below, it is under-
stood that the derivatives are with respect to the dimen-
sionless comoving spatial coordinates x and time t.
When the magnitudes of the initial density perturbations

are small, then the nonlinear terms in Eqs. (13) are also
small, and we can use the Fourier analysis (for normal
modes).8 [Note that Eqs. (13) can also be solved using
the Hamiltonian formulation (see Appendix C), which
might prove more practical or powerful in some circum-
stances. Within the scope of this article, however, we will
proceed with the more broadly familiar method—the
Fourier analysis for spectral modes.] Using the Fourier
analysis, the linearized Eqs. (13) with respect to
j�1j � 1 are

L@t�1 þ div v1 ¼ 0;

�0L@tdiv v1 þ �0c
2��1 ¼ ��0��1;

��1 ¼ 4�G�0L
2�1:

(14)

The Fourier transforms for the fields are introduced by the
expressions

f1¼
Z dq

ð2�Þ3=2fqe
i�q ;

fq¼
Z dx

ð2�Þ3=2f1e
�i�q :

(15)

Here q is dimensionless and time independent. Other fields
are decomposed similarly. In phase �qðt;xÞ ¼ q� x �
L�1q � r, scale LðtÞ is the characteristic scale which de-
pends on time—in the physical sense it is the ‘‘span of the
Universe.’’ Scale LðtÞ is related to HðtÞ by equation
�L�1ðd=dtÞLþH ¼ 0. Parameter L can be replaced by
L ! �L, i.e. the system is degenerated in the framework of
the classical nonrelativistic approximation.
The velocity is defined by the expression v1 ¼ rrc 1 �

L�1rc 1. We introduce Dq ¼ ½div v1�q, and obtain

@t�q þ 1

L
Dq ¼ 0;

@tDq �
�
c2

L
q2 � 4�G�0L

�
�q ¼ 0:

(16)

If quantitiesL and cwere constant (the static universe), the
well-known result of Jeans would follow from Eqs. (16): in

6The cosmological constant term can be eliminated in these
equations if replacements � ! �þ�c20=8�G and � !
���c40=8�G are made. Here ½G� ¼ L3M�1T�2. Therefore
the cosmological constant can be interpreted as arising from
the form of substance (’’dark energy’’) which has negative
pressure, equal in magnitude to its (positive) energy density
pDE ¼ ��DEc

2
0. The dimension of � is ½�� ¼ L�2.

Astronomical observations imply that � cannot exceed
10�46 km�2, i.e. 1=

ffiffiffiffi
�

p 	 1028 cm.
7It is convenient to use normalization LðtÞ ¼ L0ð1þ zÞ�1

where z is the redshift, so that L ¼ L0 at the present time with
z ¼ 0.

8The new behavior of flows is associated with the nonlinear
character of the hydrodynamic equations. The nonlinearity cou-
ples different spectral modes, and nonlinear effects accumulate.
As a result, even with small initial perturbations and smooth
initial conditions, higher spectral components appear, and a
radical departure from the linear regime can take place.
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this case all spectral components with q < qJ ¼ s�1
ffiffiffiffiffiffiffiffi
2=3

p
,

i.e. � > �J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2=G�0

p
in ordinary units, are unstable.9

Since in our case parameters L, c are functions of time, the
situation becomes more complex.

Let us analyze a particular case of the critical expansion
of the Universe when � ¼ �c ¼ ð6�Gt2Þ�1 ¼ �iðt=tiÞ�2.
For this critical expansion, the space characteristic scale is

L ¼ Liðt=tiÞ2=3. Here ti is the initial time instance which
fixes the initial conditions of the hydrodynamical fields.10

We choose parameter c2 in the form c2 / ��n=2
c , i.e. c2 ¼

c2i ðt=tiÞn. As we see further in our discussion, parameter n
turns out to be one of the key parameters determining
the shape of the solution. We also introduce the dimen-
sionless variable t=ti ! t and the dimensionless quantity
tiL

�1
i Dq ! Dq. Equations (16) then become

@t�q þ 1

t2=3
Dq ¼ 0;

@tDq �
�
c2i t

2
i

L2
i

tn�2=3q2 � 2

3t4=3

�
�q ¼ 0:

(17)

The initial conditions are defined at instance t ¼ 1 when
�qð1Þ ¼ �i and Dqð1Þ ¼ Di. Parameter a ¼ ðciti=LiÞq �
a1q can also be introduced at this stage and will be used
throughout the remaining derivations.

Equation (17) can be solved analytically for any arbi-
trary value of q and different values n.

III. ANALYTICAL SOLUTION—GENERAL
DISCUSSION

Generally speaking, dispersion c2 must be some func-
tion of �0. Physically it signifies that when density �0ðtÞ
decreases, the dispersion decreases too, and the distribu-
tion function becomes more and more pointing and tends to
the limit state of the standard cold dark matter with delta-
like distribution of velocities (not to be confused with the
‘‘cold’’ universe, which is not an acceptable model).
The form of Eq. (17) shows that the key factor in the

problem is the value of index n. (Recall that we introduced

n when defining c2 / ��n=2
c .) Value n ¼ �2=3 determines

the demarcation between the stable and unstable regimes
of the evolution of perturbations.
Solutions of Eq. (17) when the initial dispersion of

particles is not zero and index n >�2=3 are physically
not interesting, because beginning with some time ts
the coefficient in front of �q in the second equation

becomes positive and the instability regime never occurs.
Consequently, no accumulation of the dark matter will take
place.
At the demarcation regime (with n ¼ �2=3) and when

�qð1Þ ¼ 0, the solution is

�qðtÞ ¼ 3
t1=6�1=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�36a2

1
q2

p
� t1=6þ1=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�36a2

1
q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 36a21q

2
q Dq:

(18)

A Jeans-like instability takes place. Spectral components
with q < 5=6a1 ¼ qJ, where the critical value qJ is inde-
pendent of time, are unstable. Components with q > 5=6a1
are stable and propagate as quasi-acoustical perturbations.
The expansion of the Universe does not suppress such
instability, but makes the instability rate not exponential.
For small q, Eq. (18) becomes

�qðtÞ ’ AðtÞDq þ BðtÞa21ð�q2DqÞ
� � 3

5

�
t� 1

t2=3

�
Dq þ 9

125

�
6

�
t� 1

t2=3

�

� 5

�
tþ 1

t2=3

�
lnt

�
a21ð�q2DqÞ: (19)

Recall that a ¼ ðciti=LiÞq � a1q.
The case when the dispersion of particles decreases

more rapidly with time, for example, as c2 / �0ðtÞ, i.e.
c2 ¼ c2i t

�2, also allows an analytical solution. The solution
in this case is expressed via special functions:

9In the case when it is a priori known that the scale of initial
perturbations is much greater that the scale defined by the value
of c, i.e. c2q2 ! 0, one can neglect in Eqs. (16) the temperature
(in reality, it is the dispersion of the initial hydrodynamical
velocities) of the matter (c2 ¼ 0), from the very beginning.
The solution is then easily found and has the well-known form
�q!0 � Atþ Bt�2=3 and Dq!0 ��At2=3 þ Bt�1, although it is
not clear how initial conditions are defined and what value must
be assigned to B at the initial moment (t ¼ 0). For such a
situation, in the linear regime, density perturbations of cold
matter grow for t ! 1 in a self-similar manner [24].
10Formally, initial conditions for solving a system of equations
can be selected by specifying a set of two initial functions
(density and hydrodynamical velocity potential) at somemoment
of time t ¼ ti: �ðx; tiÞ ¼ �iðxÞ, 	ðx; tiÞ ¼ 	iðxÞ. Which moment
ti should be selected as the initial depends on the physics of the
interaction of the particles forming dark matter and the mass of
these particles. In our case, the moment ti corresponds to the
beginning of that epoch of the evolution of the Universe when its
general cosmological expansion is governed by the dark matter.
Perhaps this is the moment when the dark matter particles
became nonrelativistic [12]. It is natural to suppose that the
initial fluctuations at this moment are small: j�1j � 1. The
inequality allows us to consider the initial stage of the growth
of fluctuations in the linear approximation with respect to �1. We
define the initial fluctuations in terms of their Fourier spectrum:
�iðqÞ ¼ ð2�Þ�3=2

R
dx�1ðx; tiÞ expð�i�qðtiÞ. The inhomogene-

ities that we are interested in were formed in a spatially confined
region of space at t ¼ ti and (being field quantities) propagate
according to their specific evolution equations from one point to
another in the expanding homogeneous universe. For this reason,
the boundary conditions require their vanishing at infinity where
there are no primordial perturbations, i.e. �1ðx; tÞ ! 0 for an
arbitrary fixed t when jxj ! 1.
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�qðtÞ ¼ ��1�

�
� 1

4

�
t1=6

�
J�5=4

�
3a

2t2=3

��
a�i

qJ1=4

�
3a

2

�

� ð�i
q þDi

qÞJ5=4
�
3a

2

��
þ J5=4

�
3a

2t2=3

�

�
�
ð�i

q þDi
qÞJ�5=4

�
3a

2

�
þ a�i

qJ�1=4

�
3a

2

���
:

(20)

Here J
ðzÞ is the Bessel function of kind 
, �s is the

gamma function, � ¼ �ð2 ffiffiffi
2

p
=3�Þ��1=4, �qð1Þ � �i

q,

and Dqð1Þ � Di
q. When a�3=2t ! 1 for all essential

spectral components, Eq. (20) is reduced to the simpler
expression:

�qðtÞ ¼
3ð�i

q þDi
qÞ þ ð2�i

q � 3Di
qÞt5=3

5t2=3
;

Dq ¼ 2ð�i
q þDi

qÞ � ð2�i
q � 3Di

qÞt5=3
5t

:

(21)

At t ! 1, the system evolves as if the initial dispersion
of particle velocities was neglected from the beginning
(c2i ¼ 0) and the dark matter was simply cold.

At an arbitrary time t, ti 
 t <1, the field �1ðx; tÞ is
calculated from the general expression

�1ðx; tÞ ¼� 3�

2
ffiffiffi
2

p t1=6
Z dq

ð2�Þ3=2
�
J�5=4

�
3a1

2t2=3
q

�

�
�
a1q�

i
qJ1=4

�
3a1
2

q

�
�ð�i

qþDi
qÞJ5=4

�
3a1
2

q

��

þ J5=4

�
3a1

2t2=3
q

��
ð�i

qþDi
qÞJ�5=4

�
3a1
2

q

�

þa1q�
i
qJ�1=4

�
3a1
2

q

���
expiðq �xÞ: (22)

IV. ANALYTICAL SOLUTION—EXACT CASE

In this section we look for the solution of Eqs. (16) with

c2 / �2=3
0 , i.e. when the velocity dispersion depends on

density with index n ¼ �4=3.11 The equations become

@t�q þ 1

t2=3
Dq ¼ 0;

@tDq �
�
a21

1

t2
q2 � 2

3t4=3

�
�q ¼ 0: (23)

Equation (23) can be solved analytically in terms of ele-
mentary functions for any arbitrary value of q, and this is
the reason why we focus on this particular case.

We assume that there are no initial metric or density
perturbations. At instance t ¼ 1, the initial conditions are
defined as �qð1Þ ¼ 0 and Dqð1Þ ¼ Di.

We omit the technical details of the calculations and
present here only the final result:

�qðtÞ ¼ � Di
q

9a5
t

�
3a

�
�1þ 1

t2=3

��
1þ 3a2

1

t1=3

�

� cos

�
3a

�
�1þ 1

t1=3

��
þ

�
1� 3a2

�
1� 3

1

t1=3

þ 1

t2=3

�
þ 9a4

1

t2=3

�
sin

�
3a

�
1� 1

t1=3

���
: (24)

Here a ¼ ðciti=LiÞq � a1q, D
i
q � Dqð1Þ. When a is fixed

and t ! 1, Eq. (24) is reduced to the simpler expression:

�qðtÞ ’
tDi

q

9a5
½3a cos3a� sin3aþ 3a2 sin3a�: (25)

Terms of order oðt1=3Þ are neglected in this expression.
When the dominant contributions are made by the large-
scale spectral component, a ! 0, we obtain for any time t

�qðtÞ ’ � 3Di
q

5

�
t� 1

t2=3

�
þ oða1Þ: (26)

In the limit case, at t ! 1, the system evolves as if the
initial dispersion of particle velocities was neglected from
the beginning (c2i ¼ 0) and the dark matter was simply

cold. Figure 1 shows the evolution of ��ðaÞ, i.e., normalized
�q dependent on normalized q for several different values

of t (discussion about the physical meaning of parameter a
follows below). The effect of the spectrum compression is
apparent: large-scaled components (small q) become in-
creasingly significant as time t increases.
Using the inverse Fourier transformation for Dq, we can

formulate the solution for the density contrast �1 ¼
�1=�0 � ð�� �0Þ=�0 via the Green’s function G

�1ðx; tÞ ¼
Z

dx1Gðx� x1; tÞDiðx1Þ; (27)

2 4 6 8

a

0.6

0.5

0.4

0.3

0.2

0.1

0.1

a

FIG. 1 (color online). Spectral distribution of ��ðaÞ ¼ �q=tDq

[normalized Fourier components of ‘‘density contrast’’ �1 ¼
�1=�0 � ð�� �0Þ=�0] calculated from Eq. (24) when dimen-
sionless time t1 ¼ 3 (dashed), t2 ¼ 10 (dot-dashed), and t3 ¼
103 (long-dashed). Here a ¼ ðciti=LiÞq � a1q. The effect of
spectrum compression is apparent: large-scaled components
(small q and therefore, small a) become more significant as
time t increases.

11If this system were describing an ideal gas, such index
(� 4=3) would have corresponded to the adiabatic expansion.
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where the Green’s function is defined by the expression

Gðx12; tÞ ¼ � t

9a51

Z dq

ð2�Þ3
1

q5

�
3a1q

�
�1þ 1

t2=3

�

�
�
1þ 3a21q

2 1

t1=3

�
cos

�
3a1q

�
�1þ 1

t1=3

��

þ
�
1� 3a21q

2

�
1� 3

1

t1=3
þ 1

t2=3

�
þ 9a41q

4 1

t2=3

�

� sin

�
3a1q

�
1� 1

t1=3

���
expðiq � x12Þ (28)

and D ¼ div v1. This solution is the main result of our
work.

We obtain after integrating with respect to angles that

Gðx12;tÞ¼� t

9a51

4�

ð2�Þ3X
Z 1

0

dq

q4

�
3a1q

�
�1þ 1

t2=3

�

�
�
1þ3a21q

2 1

t1=3

�
cos

�
3a1q

�
�1þ 1

t1=3

��

þ
�
1�3a21q

2

�
1�3

1

t1=3
þ 1

t2=3

�
þ9a41q

4 1

t2=3

�

�sin

�
3a1q

�
1� 1

t1=3

���
sinqX: (29)

Here X ¼ jx12j. By changing variables, we obtain

Gðx12;tÞ� t

a31

�GðZ;tÞ

¼ t

a31

�
� 4�

9ð2�Þ3
ffiffiffiffi
�

2

r � ffiffiffiffi
2

�

s Z 1

0
dqsinqZ

�
�

1

Zq4

�
3q

�
�1þ 1

t2=3

��
1þ3q2

1

t1=3

�

�cos

�
3q

�
�1þ 1

t1=3

��
þ
�
1�3q2

�
1�3

1

t1=3

þ 1

t2=3

�
þ9q4

1

t2=3

�
sin

�
3q

�
1� 1

t1=3

����
; (30)

where Z ¼ X=a1. The integral (30) can be calculated
analytically:

Gðx12; tÞ ¼ t

a31

1

432��þ��

�
�
�
tð�9þ Z2ÞðZð�þ � ��Þ

� 3ð�þ þ ��ÞÞ � 3t2=3
�
3

�
1

t

�
1=3

Zð�þ � ��Þ

þ 9

�
1�

�
1

t

�
1=3 þ

�
1

t

�
2=3

�
ð�þ þ��Þ

� Z2ð�þ þ��Þ
���

: (31)

Here notations �þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ð1� t�1=3Þ þ ZÞ2

q
and �� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�3ð1� t�1=3Þ þ ZÞ2
q

are introduced.

Figures 2 and 3 plot solution (31) for several values
of t. This solution has a transparent physical meaning: a
spontaneous spatially localized fluctuation of velocity
[with div v ¼ D0�ðx1Þ] generates density perturbation
[�1ðx; tÞ / D0Gðx; tÞ] relative to the initially nonperturbed
background, i.e., �0ðti ¼ 1Þ ¼ const, where ti is the mo-
ment of perturbation initiation. [Note that �1ðx; tÞ and

0.5 1.0 1.5 2.0 2.5 3.0

Z

0.4

0.3

0.2

0.1

G
Z

,
t

FIG. 2 (color online). Green’s function �GðZ; tÞ as a function of
coordinate Z ¼ X=a1 and dimensionless time t. t1 ¼ 3 (dashed),
t2 ¼ 10 (dot-dashed), and t3 ¼ 30 (long-dashed). As the system
evolves, a spontaneous spatially localized fluctuation of velocity
generates density perturbation relative to the initially nonper-
turbed background. Note that density perturbation �1ðx; tÞ and
Green’s function Gðx; tÞ have opposite signs, so that minimum
values of Gðx; tÞ correspond to maximum values of �1ðx; tÞ. The
depth of the potential pit, and therefore �1ðx; tÞ, grows with time
t. There are no perturbations when Z > 3ð1� t�1=3Þ. The border
between the perturbed and unperturbed regions propagates as a
shock wave with speed that is time varying.

0.5 1.0 1.5 2.0 2.5 3.0

Z

0.020

0.015

0.010

0.005

G t
Z

,
t

FIG. 3 (color online). Time-scaled Green’s function
[ �GðZ; tÞ=t] as a function of coordinate Z ¼ X=a1 and dimen-
sionless time t. t1 ¼ 3 (dashed), t2 ¼ 10 (dot-dashed), t3 ¼ 102

(long-dashed), and t4 ¼ 1 (solid). As the system evolves, a
spontaneous spatially localized fluctuation of velocity generates
density perturbation relative to the initially nonperturbed back-
ground. Note that density perturbation �1ðx; tÞ and Green’s
function Gðx; tÞ have opposite signs, so that minimum values
of Gðx; tÞ correspond to maximum values of �1ðx; tÞ. There are
no perturbations when Z > 3ð1� t�1=3Þ. The radius of the
accumulation region asymptotically tends to the constant radius
Zc ¼ 3. The border between the perturbed and unperturbed
regions propagates as a shock wave with speed that is time
varying.
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Gðx; tÞ have opposite signs, so that minimum values of
Gðx; tÞ on Figs. 2 and 3 correspond to maximum values
of �1ðx; tÞ.] The perturbation is hydrodynamically unstable
in the self-gravitating expanding universe and develops
according to the following scenario: (a) in the region where
D0 < 0, the dark matter accumulates. The depth of the
potential pit, and therefore the density fluctuation
�1ðx; tÞ, grow as / t (Fig. 2). The radius of the accumu-
lation region asymptotically tends to the constant radius
Xc ¼ 3a1 (Fig. 3). (b) Dark matter escapes regions where
D0 > 0. As a result, domains form where dark matter is
absent. (c) The border between the perturbed and unper-
turbed regions propagates as a shock wave (see Figs. 2 and
3) with speed that is time varying.

The found solution also respects the principle

of causality—there are no perturbations when X >

3a1ð1� t�1=3Þ. There occurs no singularity of density
distribution even at the center of fluctuation, when t > 1,
even if the initial velocity fluctuation is singular. As stated
above, the region with the increased density is contained
within a finite radius from the origin of perturbations,
which is consistent with, or at least is not contrary to, the
observations of dark matter ‘‘halos’’; see, for example,
[4,5,8]. Since the value of the dimensionless parameter
a1 determines both the characteristic size of the halo and
its growth rate, experimental comparisons with our theo-
retical predictions can be very helpful.

Importantly, the nonsingular density profile produced by
our model is consistent with the observations, which reveal
flat density profiles at the center of dwarf and low surface
brightness galaxies (� ’ r�� with � ’ 0) [25–32]. In con-
trast, cosmological N-body simulations of �CDM predict
steeper power-law mass-density distributions at the center
of halos (� ’ r�� with � ’ 1–1:5) [33–35]. (This discrep-
ancy is the well-known core-cusp problem of the CDM
scenario [36].)

The physical meaning of the dimensionless parameter
a1 ¼ citi=Li merits further consideration. Within the
framework of our model, nothing more can be said about
this parameter beyond this expression. The reason is that
the initial moment of time, ti, needs to be defined.
Physically, the ‘‘initial time’’ is probably the moment
when the evolution of the velocity perturbations (fast dis-
orderly quasi-oscillating turbulent motions) disconnects
from the evolution of density perturbations. In our model,
we only considered gravitational effects, i.e. ti / GMU=c

3
0,

where MU � �0L
3 ¼ const. In the broader consideration,

quantum effects (i.e. small-scale effects characterized
by the Planck constant ℏ) and cosmological effects
(i.e. large-scale effects characterized by the cosmologi-
cal constant �) should be included so that tg ¼
tgðMU; c0; G;ℏ;�Þ. However, this task is very complex

and is most certainly beyond the scope of this work. As a
‘‘back of the envelope’’ consideration based on the
dimensional analysis, we can only say that when dark

matter is very dense and quantum effects are strongly
pronounced (t ! 0), ti ¼ tiðMU; c0; G;ℏÞ can be written

as ti ¼ ðGMU=c
3
0ÞF½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c50

q
c30=GMU�, where F is some

unknown function. If FðxÞ � xs with 0< s < 1, we can
see that s ¼ 0 corresponds to the not-very-interesting
case of extremely slow instability (tg �GMU=c

3
0) and

s ¼ 1 corresponds to the quantum scale (ti � tP). It is
obvious that the reality would be described by s lying
somewhere between 0 and 1. Picking s ¼ 1=2 as an
example produces ti � 10�12 s which would be not in-
consistent with the intuition that dark matter mass fluc-
tuations evolve on the scale much faster than the
Universe age (1018 s).

V. CONCLUSION

In this article, we studied the evolution of fluctuations of
the modified cold dark matter. The main distinction of our
model from the traditional cold dark matters is that our
particle velocity distribution function f is not a pure
delta function with respect to velocities but possesses a
nonzero dispersion term (i.e., a smeared delta function).
Parametrization with the velocity dispersion term Eq. (5)
allowed us to construct quantities resembling macroscopic
temperature and pressure—concepts normally not valid in
collisionless matter—and to study the model analytically
within the framework of the hydrodynamical approach.
Our model is nonrelativistic and is valid for scales that
are small compared to the Hubble scale and for distances
far away from black holes.
The solution of the proposed model is rather complex.

We discussed various aspects of the solution in Sec. III, but
most cases cannot be solved analytically and require nu-
merical calculations. However, we were able to solve

analytically one specific case [Eqs. (16) with c2 / �2=3
0 ,

i.e. n ¼ �4=3]. We derived an explicit expression
[Eq. (27)] for the density contrast �1ðx; tÞ ¼ �1=�0 �
ð�� �0Þ=�0 which involves the Green’s function Gðx; tÞ
[Eq. (28)] and divergence D ¼ div v1 of the primordial
velocity perturbation. Thus, if one specifies the primordial
velocity perturbation, the entire nonstationary evolution of
the density contrast in time and space can be calculated.
Perhaps this is of interest to experimentalists and numerical
modelers, who can compare their data with our analytical
formula results at various x and t.
Very importantly, our model does not require, nor uses,

any assumptions about the initial metric or density pertur-
bations. It is the spontaneous spatially localized fluctuation
of velocity that generates the subsequent density perturba-
tions which evolve in time and space. Our solution pro-
duced a particularly interesting result showing that the
density distribution is always finite (nonsingular), even if
the initial velocity perturbation at the origin is singular.
The solution also revealed that a halolike structure

can form as a result of the evolution of the fluctuations.
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(Figs 2 and 3.) As the instability evolves, the halo becomes
denser and expands in radius, tending toward the limit
(constant) radius Xc ¼ 3a1. The steady-state distribution
describing the potential ‘‘pit’’ within the structure cannot
be derived in the framework of a linear approximation. The
solution is realized at the nonlinear level.

Indeed, halos have been observed and produced by
N-body numerical simulations. Numerical studies have
examined different profiles of density distributions,
matching free model parameters to the observational
data. For example, some of the profiles considered
were �ðrÞ ¼ ðMa=2�Þðrþ aÞ�3, where M is the
total cluster mass and a is the scale length [37];
�ðrÞ ¼ �s4r

3
s=rðrþ rsÞ2 [33]; �ðrÞ ¼ ��2 exp½�ð2=�Þ�

ððr=R�2Þ� � 1Þ�, �ðrÞ ¼ �0ðr=RÞp� exp½�b�ðr=ReÞ��,
and �ðrÞ ¼ �0 exp½��ðlnð1þ r=R�ÞÞ2� [38]. To compare
any observed or simulated density profiles directly with
our model, one needs to decide on how to specify the
primordial velocity perturbation (D), integrate it with the
Green’s function given by Eq. (28) in accordance with
Eq. (27), and consider the desired instance of time t in
the evolutional history. Note, however, that we derived
the solution that is nonstationary and only eventually
leads to its limit steady state, while other parametriza-
tion studies typically consider the final steady states of
the halo density profiles. Thus, any comparisons need to
match the evolutional stages of the models.

On a last note, the analytical consideration that we
proposed allowed us to derive the explicit expression for
the correlation function of density perturbations. We pro-
vide the derivation, exact expression, and illustrating
figures in Appendix B. We assumed that correlations of
small perturbations of different scales are independent and
are Gaussian in nature. The explicit analytical expression,
Eq. (B2), can be used to analyze data from astrophysical
observations.

APPENDIX A: COLLISION INTEGRAL

When interaction between particles is defined by the
long-distance potential � ¼ �Gm2=r (here r is the dis-
tance between two particles), the principal role in the
process of establishing equilibrium play particles that are
located at large relative distances. These particles slowly
deviate due to collisions. Therefore, the collision integral
St½f� has the diffusive form [39] (for details, see [40,41])

St½f� ¼ �@̂pjp;

jp ¼ ð4�G2m2 ln�Þ
Z

dv2KpnðsÞðf1@̂2nf2 � f2@̂1nf1Þ
� jþk ðv1;xÞ � j�k ðv1;xÞ; (A1)

where value ln� is called the Coulomb logarithm,
s ¼ v1 � v2 is the relative velocity of the colliding
particles, and m is the particle mass. Equation (A1) can

be presented in the Fokker-Planck form St½f� ¼
�@1k½4�G2m2 ln�ðAkf1 � Bkn@1nf1Þ�, where the coeffi-

cients are Ap ¼ R
dv2KpnðsÞ@̂2nf2 ¼ �R

dv2ð@̂2nKpnÞ�
ðsÞf2, Bpn ¼

R
dv2KpnðsÞf2. The collision kernel is the

one given by Landau: Kpn ¼ ðjsj2�pn � spsnÞ=jsj3.
Kinetic theory is derived from the Boltzmann equation,

which is the conservation equation for the phase-space
distribution function of an ensemble of interacting parti-
cles. For the case of Coulomb-like interactions, Landau
[39] expressed the collision integral St½f� in the Fokker-
Planck form. This mixed integro-differential representation
for plasmas was extended to relativistic electromagnetic
interactions by Beliaev and Budker [42]. For the nonrelativ-
istic case, it was shown by Rosenbluth, MacDonald,
and Judd [43] and by Trubnikov [44] that the integrals
appearing in the collision term can be expressed in terms
of the solution of a pair of differential equations. For

the nonrelativistic case, Kpn ¼ @̂p@̂njsj and @2nKpn ¼
�2@1pjsj�1. These representations are inserted into Eqs.

(A1), and the differentiation with respect to v1 is moved
outside the integration with respect to v2. Defining the po-
tentials hðv1Þ ¼ �R

dv2jsjf2 and gðsÞ¼�2
R
dv2jsj�1f2,

we have Bpn ¼ �@̂p@̂nh and Ap ¼ �@̂pg. Furthermore,

from �jsj ¼ 2jsj�1 and �jsj�1 ¼ �4��ðsÞ it follows that
h and g obey equations�h ¼ g and�g ¼ f (� denotes the
Laplacian with respect to the variable v).

APPENDIX B: CORRELATION FUNCTION

The correlation function for density perturbations takes
the form

Rðx12Þ � h�1ðx1; tÞ�1ðx2; tÞi ¼
Z

dqSq expðiq � x12Þ;
(B1)

where x12 ¼ x1 � x2, and the Fourier spectrum of density
fluctuations SðqÞ is defined by the expression h�q�

�
q0 i ¼

ð2�Þ3Sq�ðq� q0Þ. The brackets represent statistical aver-

aging. Determining the shape of Sq is one of the major

goals of experimental cosmology. It traces both the physi-
cal context during which the gravitational instabilities
developed and the mechanisms that originally gave birth
to the density fluctuations.
Our model produced the explicit analytical expression

for the Fourier components of density perturbations [Eq.
(24)] which allows us to present their correlation function
in the analytical form as well. To do so, we make only one
assumption: in order to describe the initial state that is
random, we assume that the field is Gaussian. Spatial
statistical properties of Gaussian fields are uniquely de-
fined by the field’s spectrum SðxÞ (which represents the
mean square of the Fourier transforms for the ensemble).
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From Eq. (24) we find that

SqðtÞ ¼ 1

81a10
t2SDq

��������3a

�
�1þ 1

t2=3

��
1þ 3a2

1

t1=3

�

� cos

�
3a

�
�1þ 1

t1=3

��
þ

�
1� 3a2

�
1� 3

1

t1=3

þ 1

t2=3

�
þ 9a4

1

t2=3

�
sin

�
3a

�
1� 1

t1=3

����������2

: (B2)

Here the Fourier spectrum of the initial velocity fluctua-
tions SDq is defined by the expression hDi

qD
i�
q0 i ¼

ð2�Þ3SDq�ðq� q0Þ.
The inverse Fourier’s transform is obtained from an

expression analogous to Eq. (B1),

SDq ¼
Z dx

ð2�Þ3 R
DðxÞ expð�iq � xÞ: (B3)

If the correlation function at the moment t ¼ 1 is
given by the expression RDðxÞ ¼ D2 expð�jxj2=4l2Þ, the
spectral density SDq is easily calculated: SDq ¼
��3=2D2l3q expð�l2q2Þ. In terms of variables a this func-

tion becomes SDq ¼ ð1=a1Þ��3=2D2l3a expð�L2a2Þ with

L2 ¼ l2=a21.
We obtain that

SqðtÞ ¼
�
D2l3

a41

��
t2

81�
ffiffiffiffi
�

p expð�L2a2Þ
a9

��������3a
�
�1þ 1

t2=3

�

�
�
1þ 3a2

1

t1=3

�
cos

�
3a

�
�1þ 1

t1=3

��

þ
�
1� 3a2

�
1� 3

1

t1=3
þ 1

t2=3

�
þ 9a4

1

t2=3

�

� sin

�
3a

�
1� 1

t1=3

����������2
�
� S0 ��ðs; tÞ: (B4)

The spectral distribution of the correlation function �� ¼
ða41=t2D2l3ÞSqðtÞ is shown for different times in Fig. 4

(when L � 1) and Fig. 5 (when L ¼ 1). Here L ¼ l=a1.

APPENDIX C: HAMILTONIAN FORMULATION

Nonlinear equations (13) can be reformulated in terms
of functional derivatives in the Hamiltonian form

@�t��q ¼ �H=�	q; @�t	q ¼ ��H=���q � �c	q:

(C1)

Here the dimensionless time is given by �t ¼R
t dt0Vðt0Þ=Lðt0Þ where V2 ¼ 6�G�0L

2, the full

Hamiltonian is H ¼ H2 þHint where

H2 ¼ ð1=2Þ
Z

dq½ðq � qÞ	q	�q þ ðs2 � q�2Þ�q��q�;
(C2)

Hint ¼
Z

dq0dq00dq000½�ð1=2Þðq00 � q000Þ�q0	q00	q000

þ ð�=6Þs2�q0�q00�q000 ��ð3Þðq0 þ q00 þ q000Þ: (C3)

One finds from here, for example, that �H2=���q ¼
ðs2 � q�2Þ�q, �H2=�	�q ¼ q2	q, etc. The first term in

Hint can be symmetrized via index permutation. Detailed
formulation, derivations, and applications of the
Hamiltonian approach can be found in [45].
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FIG. 4 (color online). Evolution of the correlation function
�� ¼ ða41=t2D2l3ÞSqðtÞ [Eq. (B4)] when L ¼ l=a1 � 1, shown

for t ¼ 3 (dashed), t ¼ 10 (dot-dashed), and t ¼ 103 (long-
dashed).
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FIG. 5 (color online). Evolution of the correlation function
�� ¼ ða41=t2D2l3ÞSqðtÞ [Eq. (B4)] when L ¼ l=a1 ¼ 1, shown

for t ¼ 3 (dashed), t ¼ 10 (dot-dashed), and t ¼ 103 (long-
dashed).
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