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Our current understanding of the Universe depends on the interplay of several distinct matter

components, which interact mainly through gravity, and electromagnetic radiation. The nature of the

different components, and possible interactions, tends to be based on the notion of coupled perfect fluids

(or scalar fields). This approach is somewhat naive, especially if one wants to be able to consider issues

involving heat flow, dissipative mechanisms, or Bose-Einstein condensation of dark matter. We argue that

a more natural starting point would be the multipurpose variational relativistic multifluid system that has

so far mainly been applied to neutron star astrophysics. As an illustration of the fundamental principles

involved, we develop the formalism for determining the nonlinear cosmological solutions to the Einstein

equations for a general relativistic two-fluid model for a coupled system of matter (nonzero rest mass) and

radiation (zero restmass). The twofluids are allowed to interpenetrate and exhibit a relative flowwith respect

to each other, implying, in general, an anisotropic Universe. We use initial conditions such that the massless

fluid flux dominates early on so that the situation is effectively that of a single-fluid and one has the usual

Friedmann-Lemaı̂tre-Robertson-Walker spacetime. We find that there is a Bianchi I transition epoch out of

which the matter flux dominates. The situation is then effectively that of a single fluid and the spacetime

evolves towards the Friedmann-Lemaı̂tre-Robertson-Walker form. Such a transition opens up the possibility

of imprinting observable consequences at the specific scale corresponding to the transition time.

DOI: 10.1103/PhysRevD.85.103006 PACS numbers: 97.60.Jd, 47.75.+f, 95.30.Sf

I. INTRODUCTION

The cosmological principle states that the Universe is
homogeneous and isotropic. Given the increased quality of
cosmological observations, this fundamental principle is
now becoming testable, and indeed questionable. That
questions abound in this area is obvious from the fact
that we do not have a good handle on the nature of dark
components that dominate the cosmological ‘‘standard
model’’ [1]. A large number of alternative models and
theories have been suggested in the literature, but most
are not particularly compelling. The treatment of the differ-
ent matter components, in particular, is often based on the
notion of coupled perfect fluids or scalar fields. If we are to
understand the bigger picture, we need to make progress on
this aspect, especially if we want to be able to consider
issues like heat flow [2–4], dissipative mechanisms [5–7],
Bose-Einstein condensation of dark matter [8,9] and pos-
sibly many others.

We argue that a more natural starting point for this
endeavor would be the relativistic variational multifluid

approach [10] that has (so far) mainly been applied to

neutron star astrophysics [11], and recently to relativistic

beams and shocks [12]. This approach would seem natural

since there could have been phases during which the

Universe would have effectively been anisotropic, with

different components evolving ‘‘independently.’’ For the

most part, models discussed in the current literature, in-

cluding initially anisotropic geometries, describe the mat-

ter content in terms of either effectively many component

single-fluid models [13], or a plain single component

[14–16]; although isotropization is expected in such situ-

ations, as required to end up with a realistic (read: in agree-

ment with currently available data) model [17], interesting

new consequences can however be derived, e.g. by enhanc-

ing an initially vanishingly small non-Gaussian signal [18].
As an illustration of the fundamental principles in-

volved, we develop the formalism for determining the
cosmological solutions to the Einstein equations for a
general relativistic, two-fluid model coupling matter
(nonzero rest mass) and radiation (zero rest mass).
Drawing on the experience from other applications it
would be straightforward to consider other relevant cases,
e.g. involving a dissipative heat flow [4] or superfluid
condensates [8,9]. However, the chosen example is perhaps
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the most conventional, since the leading-order thermody-
namics of massless particles has some generic features
(compare, say, a photon and phonon gas), and the same
for a massive component when the density becomes (rela-
tively) small.

Within this context, we will demonstrate how the dis-
tinct fluid motions lead to anisotropy and the spacetime
metric taking the form of a Bianchi I solution of the
Einstein equations. This follows since there is a spacelike
privileged vector, associated with the relative flow between
the two components in the problem. It is important to
understand that, while this feature is natural in the multi-
fluid context, it can never arise in the often considered
multiconstituent single fluid. The multifluid hypothesis
implies that each component ( labeled by an index x) of
the matter and radiation sourcing Einstein equations fol-
lows its own timelike vector u

�
x ; the relative flow between

the various fluids then generates a privileged spacelike
direction along which the Bianchi I solution aligns.
However, it is important to recognize that it is the fluxes
n�x ¼ nxu

�
x , where nx is the particle number density, that

are the fundamental sources. In particular, a fluid can be
moving quickly with respect to another, yet if its density is
much smaller its flux can be negligible.

Such a choice is by no means new [19] and recent work
in given circumstances has shown, here again, the possi-
bility of isotropisation [20], although behavior very differ-
ent from the standard cosmological one can also be found
[21]. (A useful review on anisotropic solutions and their
cosmological use is Ref. [22].) For instance, it has been
suggested [23–25] that since Bianchi universes, seen as
averaged inhomogeneous and anisotropic spacetimes, can
have effective strong energy condition violating stress-
energy tensors, they could be part of a backreaction driven
acceleration model.

Yet another reason for studying such cosmological mod-
els stems, curiously, from the observations! Large angle
anomalies in the cosmic microwave background (CMB)
indeed have been observed and discussed for quite some
time [26–29] and related with underlying Bianchi models
[30,31]. It is not our aim here to decide whether or not the
data do indeed imply some amount of anisotropy, but we
shall at least assume that they do not rule out the possibility
altogether. Note in that respect that further, currently on-
going observations of different backgrounds will deter-
mine, for instance, if the CMB dipole is fully originating
from mere local Earth motion (and should thus be removed
altogether from the data) or if part of it is cosmological [32].

In order to remain close to the observationally verifiable
model, we shall concentrate on the example of the
radiation-to-matter transition for which, in principle, the
underlying microphysics ought to be well-known, up to
the a priori necessarily negligible dark-matter-to-radiation
coupling. We then ask whether it is possible to have a
cosmological epoch where there is a relative flow of radia-

tion with respect to the matter, but out of which the
expansion becomes isotropic and the relative flow
dissipates. We will demonstrate that the short answer to
this question is yes, as flux domination of one fluid over the
other leads to an effectively one-fluid situation, thus yield-
ing an effective Friedman-Lemaı̂tre-Robertson-Walker
(FLRW) Universe. In essence, the cosmological principle
appears to be satisfied on both sides of the transition, but
the transition itself puts forward a Bianchi I behavior with
a spacelike privileged direction. Our goal here is to, first of
all, establish this possibility and then consider the com-
patibility of such a model with current observational data
[33,34].
On the technical side, the two-fluid nature of the problem

introduces several terms that are not present in the one-fluid
case. We will ‘‘skew’’ the discussion somewhat by intro-
ducing variables that were found useful in the stability
analysis of two-fluid systems by Samuelsson et al. [35].
In particular, we will take into account the fact that two-
fluid systems have two speeds of ‘‘sound,’’ and use cau-
sality to constrain parameter values that enter through the
equation of state. Wewill also introduce the so-called cross-
constituent coupling, which occurs when the equation of
state has terms containing both fluid densities. It is an
equilibrium property and thus is nondissipative. While the
coupling is not the main focus here, it is important for a
follow-on analysis [36] where we consider so-called two-
stream instability. This can occur when there is a relative
flow between two fluids with cross-constituent coupling. If
a disturbance is developed on top of the relative flow, and
the coupling is strong enough, it can become unstable if it
appears to move, say, to the right with respect to one fluid,
but to the left with respect to the other. In this sense, the
work here has the additional purpose of building the ‘‘back-
ground,’’ relative-flow configurations.
The outline of this paper is as follows: In Sec. II we

construct cosmologies having two Killing symmetries,
with the subsequent Einstein tensor components presented
in Sec. II A. Section II B contains a brief review of the two-
fluid formalism and how it applies in the current context.
We also show how our formalism can be immediately
employed to describe relativistic condensates (which
reduces to the standard descriptions of terrestrial systems,
such as superfluid helium four). In the following Sec. III
we show how an ideal gas in the presence of a radiation
field leads to a system with cross-constituent coupling, and
then construct a simpler model containing similar charac-
teristics. Section IV restricts the analysis by removing the
spatial-dependence in the metric and matter. (The more
general set of equations are required for the two-stream
instability analysis of [36].) This same section includes a
numerical analysis subsection IVB and ends with a dis-
cussion of the results. We finish with some concluding
remarks in Sec. Vand an Appendix containing more details
on how the equations are obtained.
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II. COSMOLOGIES WITH TWO SPACELIKE
KILLING VECTORS

We will choose the simplest possible two-fluid model:
the relative matter flow is in one direction (to be taken
along the z ‘‘axis’’), and orthogonal to it will be two,
mutually orthogonal spacelike Killing vector fields (one
along the x axis and another along the y axis). We will use
as our x and y coordinates the two parameters that naturally
generate the Killing vector fields X� and Y�. With this
choice we have

X � ¼ ð0; 1; 0; 0Þ; Y� ¼ ð0; 0; 1; 0Þ: (1)

It is also the case that

0 ¼ g��X�Y� ¼ g12: (2)

Finally, if we let t denote the time coordinate then the two
symmetries imply the remaining metric components are
functions of only z and t.

There is some remaining freedom in the choice of
coordinate system, i.e. it can be shown that the so-called
synchronous gauge (g00 ¼ �1 and g0i ¼ 0) that reduces
the metric to

ds2 ¼ �dt2 þ gxxdx
2 þ gyydy

2 þ gzzdz
2 þ 2gxzdxdz

þ 2gyzdydz; (3)

can be utilized. Within this gauge choice there is another
change of coordinates that can be made, namely �t ¼ t, �x ¼
�xðx; zÞ, �y ¼ �yðy; zÞ, and �z ¼ z, that sets the terms g13 and
g23 to zero. The final form of the metric is thus

ds2 ¼ �dt2 þ A2
xdx

2 þ A2
ydy

2 þ A2
zdz

2; (4)

where the A@ (@ ¼ fx; y; zg) are, as yet unknown, functions
of t and z. When the z-dependence is relaxed, the space-
time described by (4) is of the well-known Bianchi I type.
Although we focus on this case later in Sec. IV, we keep the
z-dependence here because a follow-on analysis [36] will
need the full z-dependent equations.

A. The Einstein tensor

The nontrivial Einstein tensor coefficients can be
straightforwardly computed with the known geometric
quantities given in the Appendix. Letting a dot ‘‘_’’
and a prime ‘‘0’’ denote, respectively, @=@t and @=@z,
we have

Gt
t ¼ �ðHxHy þHxHz þHyHzÞ

þ 1

A2
z

½I0x þ I0y þ ðIx þ IyÞ2 � IxIy � IxIz � IyIz�;

Gx
x ¼ �ð _Hy þ _HzÞ � ðH2

y þHyHz þH2
z Þ

þ 1

A2
z

½I0y þ ðIy � IzÞIy�;

Gy
y ¼ �ð _Hx þ _HzÞ � ðH2

x þHxHz þH2
z Þ

þ 1

A2
z

½I0x þ ðIx � IzÞIx�;

Gz
t ¼ � 1

A2
z

½ _Ix þ _Iy þ ðHx �HzÞIx þ ðHy �HzÞIy�;

Gz
z ¼ �ð _Hx þ _HyÞ � ðH2

x þHxHy þH2
yÞ þ

IxIy

A2
z

; (5)

where we have introduced the ‘‘Hubble’’-like functions
(@ ¼ fx; y; zg)

H@ �
_A@
A@

; (6)

and the ‘‘inhomogeneity’’ functions

I@ � A0@
A@

: (7)

We will see below that when the z-dependence is dropped,
the two-fluid energy-momentum-stress components are
such that Tx

x ¼ Ty
y , implying for the Einstein tensor

Gx
x ¼ Gy

y.
Clearly, not all these components can be independent of

each other, for otherwise the overall problem would be ill-
posed because of too many equations. But recall that there
is the Bianchi Identity r�G

�
� ¼ 0, which for the situation

here yields two independent components:

0¼ _Gt
tþ@zG

z
t þðHxþHyþHzÞGt

tþðIxþ Iyþ IzÞGz
t

�HxG
x
x�HyG

y
y�HzG

z
z;

0¼ _Gt
zþ@zG

z
zþðHxþHyþHzÞGt

zþðIxþ IyÞðGz
z�Gx

xÞ:
(8)

It is important to note that the second of these vanishes
identically when there is no z-dependence, because then
the Einstein tensor componentGz

t ¼ 0. This means that we
still need three metric degrees of freedom.

B. General relativistic two-fluid formalism

We will use the formalism developed by Carter [10] and
various collaborators (see Andersson and Comer [11] for a
review and references). The fundamental fluid variables
consist of two conserved number density four-currents, to
be denoted n

�
x . Recall that x is a constituent index (for

which there is no implied sum when repeated).
From the currents, we can form three scalars, namely

n2x¼�g��n
�
x n�x , n

2
y ¼ �g��n

�
y n�y , and n

2
xy ¼ �g��n

�
x n�y .
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A so-called ‘‘master’’ function ��ðn2x; n2y; n2xyÞ (the two-

fluid analog of the equation of state) is assumed, which
plays the role of Lagrangian for the system. The energy-
momentum-stress tensor is

T
�
� ¼ ��

�
� þ n

�
x �x

� þ n
�
y �

y
�; (9)

where

� ¼ �� n�x�x
� � n�y�

y
� (10)

is the generalized pressure and

�x
� ¼ g��ðBxn

�
x þAxyn

�
y Þ (11)

is the chemical potential covector. It is also the momentum
canonically conjugate to the current n

�
x .

Formally, the Axy and Bx coefficients are obtained
from � via the partial derivatives

A xy ¼ Ayx ¼ � @�

@n2xy
; Bx ¼ �2

@�

@n2x
: (12)

The fact that the momentum�x
� is not simply proportional

to the corresponding number density current n�x is a result
of entrainment (as it is known in the neutron star literature;
see, for example, [37]): the motion of one fluid induces a
momentum in the other fluid, and vice versa. Entrainment
vanishes if the Axy coefficient is zero.

Finally, the equations for each fluid consists of a con-
servation equation

r�n
�
x ¼ 0; (13)

and an Euler equation

n
�
x !x

�� ¼ 0; (14)

where the vorticity two-form is defined by

!x
�� ¼ 2r½��x

��; (15)

the square brackets indicating antisymmetrization of the
enclosed indices. It is important to understand that the
condition r�T

�
� ¼ 0 is satisfied once the equations of

motion are satisfied. Contrary to the single-fluid case,
r�T

�
� ¼ 0 does not yield enough information to com-

pletely determine the two-fluid evolution.
Note that the above way of writing each Euler equation

makes manifest its geometric meaning as an integrability
condition for the corresponding vorticity, a point that has
been much emphasized by Carter [10] (see also [11]). It
also immediately supplies a formalism for superfluid con-
densates, since setting �x

� ¼ r��x (where �x represents
the phase of the relevant quantum wave function) guaran-
tees that the fluid vorticity is zero. The nonrelativistic limit
of the fluid equations in this case recovers those that are
well known for, say, helium superfluids.

The symmetries do much to simplify the fluid equations.
It is easy to see that the vanishing of the Lie derivative of
n�x with respect toX� andY� requires n�x to be a function

only of t and z. We also assume that n
�
x is orthogonal to

X� and Y�. The unit four-vectors take the form

u�x ¼ ðutx; 0; 0; uzxÞ; utx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðAzu

z
xÞ2

q
: (16)

The entrainment parameter becomes

n2xy ¼ nxnyðutxuty � A2
zu

z
xu

z
yÞ; (17)

while the momenta reduce to

�x
t ¼ �ðBxnxu

t
x þAxynyu

t
yÞ;

�x
z ¼ A2

zðBxnxu
z
x þAxynyu

z
yÞ:

(18)

Finally, the components of T�
� are

Tt
t ¼ �þ nxu

t
x�

x
t þ nyu

t
y�

y
t ; Tx

x ¼ Ty
y ¼ �;

Tz
t ¼ nxu

z
x�

x
t þ nyu

z
y�

y
t ;

Tz
z ¼ �þ nxu

z
x�

x
z þ nyu

z
y�

y
z ;

(19)

where

� ¼ �� nxðutx�x
t þ uzx�

x
zÞ � nyðuty�y

t þ uzy�
y
zÞ: (20)

The remaining item required to completely specify the
matter is a particular form for the master function �.
This we will provide in Sec. III.
We see from the above that our problem has been

reduced to finding solutions for the four matter variables
fnx; uzxg and the three metric functions A@. The conserva-
tion Eqs. (13) now take the form

0 ¼ @

@t
ðAxAyAznxu

t
xÞ þ @

@z
ðAxAyAznxu

z
xÞ; (21)

while the Euler equations reduce to

@�x
t

@z
¼ @�x

z

@t
: (22)

The remaining equations are those of Einstein, constructed
from Eqs. (5) and (19).
As mentioned in the Introduction, we introduce some

new variables that are convenient for the multifluid analy-
sis. Since there are two fluids we have the well-established
result of two modes of sound propagation [10];,, namely,

c2x � @ ln�x

@ lnnx
: (23)

These are ‘‘bare’’ in the sense that they only equal the
local wave speed when there are no interactions between
the fluids [35]. A measure of the interactions are the
cross-constituent couplings defined—slightly modified
from [35]—as

C xy � @ ln�x

@ lnny
¼ �yny

�xnx
Cyx; (24)

where, if we set the entrainment to zero,
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�x � �u�x�
x
� ¼ Bxnx: (25)

The Cxy represent a key channel through which the two

fluids ‘‘see’’ each other (especially when the entrainment is
zero) [35,36].

Some final words on this setup is about our frame of
reference. We have chosen a frame that is not attached to
either fluid. One might expect it would be easier to work in
either of the fluid rest-frames, but this is actually not the
case. Starting with the metric in Eq. (4), we can show that
‘‘jumping’’ on a fluid rest-frame introduces a shift vector
into the metric.

Let �x� be the rest-frame coordinates of, say, the x-fluid.
We can assume that the coordinate transformation does not
involve the orthogonal pair fx; yg, so that �t ¼ �tðt; zÞ, �x ¼ x,
�y ¼ y, and �z ¼ �zðt; zÞ, which guarantees �uxx ¼ �uyx ¼ 0.
What we want is �uzx ¼ 0, which implies

@�z

@t
¼ � @�z

@z

uzx
utx

; (26)

and therefore �z must depend on both t and z. We can now
assume that �t ¼ t. However, the change of coordinates also
affects the metric; in particular,

�g tz ¼ �@�z

@t
� 0: (27)

III. A COSMOLOGICAL TWO-FLUID SCENARIO:
MATTER AND RADIATION

When the particle species of a fluid has mass mx, it can
be useful to separate out from � mass density terms;
namely,

� ¼ �mxnx �myny � Eðn2x; n2y; n2xyÞ; (28)

where E contains other information about the fluid ther-
modynamics, and relative motion effects. The two-fluid
cosmology we have in mind has a combination of matter,
with mass mx ¼ m, and radiation, which means my ¼ 0.
We assume a nonzero cross-constituent coupling and zero
entrainment. One of our conserved currents is the total
particle flux of the matter. Since we are ignoring dissipa-
tion in the flows, we can use the total entropy flux of the
system as our other conserved current. The bulk of this is
due to the radiation. To simplify the notation, we set nx ¼
n, ny ¼ s,�x � �, and�y � T, which is the temperature.

To see how a cross-constituent term can come about,
consider the usual way of combining a (nonrelativistic) gas
and radiation in the energy density and pressure:

� ¼ mnþ 3

2
nT þ �T4; (29)

p ¼ nT þ 1

3
�T4; (30)

where � is constant. We take as our fundamental thermo-
dynamic variables n and s, and so the temperature,

obtained as T ¼ @�=@s, is a function of both. Hence, the
ideal gas contribution will generate a cross-constituent
coupling (cf. Equation (24)). Even if we take the tempera-
ture as fundamental, there would still be its coupling
with n.
Writing T in terms of fn; sg explicitly is not tractable. So

for the purpose at hand, it is perhaps clearer to consider a
simpler, algebraic construction where the dependence is
explicit. With that in mind, we will use a master function of
the form

� ¼ �m�n� �ss
4=3; (31)

where we have placed a polytropic coupling to the entropy
in an effective mass m� for the matter; namely,

m� ¼ mþ �nsn
�n�1s�s ; (32)

where �n � 1, �s � 1, and �ns are constants. The remain-
ing fluid variables are

� ¼ 1

3
�ss

4=3 þ ð�n þ �s � 1Þðm� �mÞn; (33)

� ¼ mþ �nðm� �mÞ; (34)

T ¼ 4

3
�ss

1=3 þ �sðm� �mÞ n
s
; (35)

C ns ¼ �s

�n � 1
c2n; (36)

where

�c2n ¼ �nð�n � 1Þðm� �mÞ; (37)

Tc2s ¼ 4

9
�ss

1=3 þ �sð�s � 1Þðm� �mÞ n
s
: (38)

There are a few comments to be made about this con-
struction. In order to have a model that cools as it expands,
we see that n ! 0 and s ! 0 which also means m� ! m.
This also ensures that the ‘‘dust’’ limit of the standard
cosmological scenario � ! m and cn ! 0 is achieved.
Finally, we recover the usual result for the massless fluid
of s / T3 and c2s ! 1=3. In fact, if we eliminate the second
term in (38) using (35), we find

s ¼ �T3 and � ¼
�
3ð�s � 1� c2s Þ
4ð�s � 4=3Þ�s

�
3
: (39)

It is also worthwhile to consider the other direction of the
evolution, which is that back to the past, where the universe
contracts and heats up to the point where the temperature
scale is much higher than that of the mass scale.

IV. HOMOGENEOUS BACKGROUND

Assuming that the background is only time-dependent,
then the two matter Eqs. (21) and (22) imply (for x ¼
fn; sg)
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Az�
xVx ¼ Mx; AxAyAznx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

x

q
¼ N x; (40)

where Mx and N x are constants and we have introduced
Vx ¼ Azu

z
x. One can also show that Tz

t ¼ 0 is automati-
cally guaranteed by (40), provided that the integration
constants satisfy

M nN n þMsN s ¼ 0: (41)

Equation (40) allows, in principle, to write nx and Vx in
terms of A@, which can be put into the Einstein equations to
get a closed system of equations. But, since we will be
solving the equations numerically, it is actually easier to
use the original differential equations, which can be shown
to take the form

1� c2nV
2
n

1þV2
n

� CnsV2
n

1þV2
n

� CsnV2
s

1þV2
s

1� c2sV
2
s

1þV2
s

0
B@

1
CA _n

n

_s
s

 !
¼ �

Hx þHy þ Hz

1þV2
n

Hx þHy þ Hz

1þV2
s

0
@

1
A
(42)

for the densities and
_Vn

Vn

_Vs

Vs

0
B@

1
CA ¼ � c2n Cns

Csn c2s

 ! _n
n

_s
s

 !
� Hz

Hz

 !
(43)

for the velocities.
To solve for the metric we use the definition of H@ and

three of the Einstein equations (setting GN ¼ M�2
Pl with

MPl the Planck mass) to evolve fA@; H@g as follows:
_H x ¼�H2

x þHyHz� 4	

M2
Pl

½�nð1þ2V2
n ÞþTsð1þ2V2

s Þ�;
(44)

_H y ¼�H2
y þHxHz� 4	

M2
Pl

½�nð1þ2V2
n ÞþTsð1þ2V2

s Þ�;
(45)

_H z ¼ �H2
z þHxHy � 4	

M2
Pl

ð�nþ TsÞ; _A@ ¼ H@A@:

(46)

The so-called Hamiltonian constraint Gt
t ¼ 8	

M2
Pl

Tt
t is

HxHy þHxHz þHyHz ¼ 8	

M2
Pl

ð��þ�nV2
n þ TsV2

s Þ:
(47)

The initial conditions therefore consist of four matter,
and six metric initial conditions; i.e. the set
fnðt0Þ; sðt0Þ; Vnðt0Þ; Vsðt0Þ; Aðt0Þ; Hðt0Þg, where t0 is the ini-
tial time.

A. Preliminaries: The matter quadratures

It is useful at this point to apply the results of Eq. (40).
For the matter we can write

n ¼ 1

AxAyAz

N nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

n=ðAz�Þ2
q ; (48)

Vn ¼ Mn

Az�
: (49)

The first indicates that the metric coefficients must grow
with time if both n ! 0 and � ! m (the conditions for
cooling); that is, we can be sure that our model allows for
both expansion and cooling. The second relation therefore
shows that Vn ! 0 with time.
A similar analysis for the entropy fluid is complicated by

the fact that it is massless, and thus the associated chemical
potential (i.e. the temperature) can go to zero. In particular,
it is not clear a priori that the entropy fluid velocity

Vs ¼ Ms

AzT
(50)

remains finite, i.e. whether or not AzT grows with time.
Actually, the entropy relation

s ¼ 1

AxAyAz

N sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

s=ðAzTÞ2
q (51)

shows that s ! 0 even if AzT ! 0. In fact, we see that

0 � AxAyAzs � N s: (52)

As for the behavior of AzT, we can show that substituting
Eq. (51) into Eq. (39) results in a cubic for ðAzT=MsÞ2,
which is�

AzT

Ms

�
6 þ

�
AzT

Ms

�
4 �

�
A2
z

AxAy

�
2
�
N s

�M3
s

�
2 ¼ 0: (53)

If the FRLW solution is obtained in the late time limit, then
the last term tends to a constant, and hence AzT as well.
This shows that Vs ! const and uzs ! 0. In fact, we see in
Fig. 1 that this is precisely the case. The bottom line is that
this form of model is such that the expansion can become
isotropic, and damp out the three-velocities of each fluid.

B. Numerical results

Numerically solving the system of Eqs. (42)–(46) re-
quires that we rewrite those in terms of dimensionless
quantities. Rescaling the time variable to t ! m2t=MPl,
and denoting by an overdot the derivative with respect to
this new dimensionless time, we set

x � n

m3
; y � s

m3
; ~� � �

m
and ~T � T

m
;

(54)

together with

~� � �nsm
3ð�n��sÞ�4; (55)

yielding
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~� ¼ 1þ �n~�x
�n�1y�s ; (56)

~T ¼ 4

3
�sy

1=3 þ �s~�x
�
n y

�s�1; (57)

showing that the system is fully determined provided the
two arbitrary dimensionless constants �s and ~� are given.

To make comparison with standard cosmology clearer,
we further rewrite the Bianchi I metric Eq. (4) in the form

ds2 ¼ �dt2 þ a2ðtÞðe2
xdx2 þ e2
ydy2 þ e2
zdz2Þ; (58)

with
P

@
@ ¼ 0, thus defining the scale factor aðtÞ. The
relations to pass from Eq. (4) to Eq. (58) are then

a3 ¼ AxAyAz and 
x ¼ 1

3
ln

A2
x

AyAz

; (59)

with similar relations for 
y and 
z obtained by circular

permutations of the indices ðx; y; zÞ. The so-called shear
variables [1] are given by

�@ � _
@e2
@ ¼ A2@
a2

_
@: (60)

We can rewrite the equations of motion in terms of the
e-fold number N, defined through

aðtÞ ¼ eN; (61)

by using the relation

d

dt
¼ 1

3
ðHx þHy þHzÞ d

dN
: (62)

The figures that illustrate our results all use this parameter
N for the horizontal axis.
A realistic model having two FLRW phases connected

by a Bianchi I transition is realized through numerical
solutions of Eqs. (42)–(46). We use the exact solutions of
Eqs. (48) and (40), together with theHamiltonian constraint
(47) as a measure of the numerical error. This is given in
Fig. 2, which shows the relative error, for our particular
choice of parameters, to be limited to at most 10�18.
Figure 3 shows the behavior of the fluid variables withN

around the radiation-to-matter transition, i.e. with the state
parameter w smoothly varying from its initial value of 1

3 to

zero. The rescaled number density x is found to be negli-
gible throughout, even though its contribution to the energy
density eventually dominates. The rescaled entropy y pro-
vides, roughly, all of the energy density � initially and for
most of the transition, but eventually becomes negligible,
as expected. Finally, the temperature ~T is seen to decay to
zero, while the rescaled chemical potential ~� asymptoti-
cally takes its fiducial value unity.
The behavior of the metric and the shears are displayed

in Figs. 4 and 5, respectively. The beta coefficients change

FIG. 2 (color online). Evaluation of the overall numerical
errors associated with the solution of Eqs. (42)–(46): with the
same parameters as in the previous figures, we show here the
levels at which Eqs. (48), (51), and (47), are satisfied. The most
error-prone situation, at the end of the calculation, still satisfies
the constraints to better than 10�18.

FIG. 1 (color online). Velocities derived from Eq. (43), as
functions of the e-fold number N (defined in the main text).
The underlying parameter values for this plot are �s ¼ 1, ~� ¼
0:1, �n ¼ 1:1, and �s ¼ 1:1. The initial values are such that
nð0Þ ¼ 3:9� 10�7, sð0Þ ¼ 1, Vnð0Þ ¼ 0:99, Vsð0Þ ¼
�4:25� 10�7, A@ð0Þ ¼ 2, and H@ð0Þ ¼ 2:89 (for each @).
This figure illustrates that Vn, although initially very large,
rapidly decays to zero while Vs remains essentially negligible,
and almost constant, at all times.
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from being initially equal to each other (zero in the
numerical calculation), to final constant values. With a
rescaling of the spatial coordinates we can absorb these
constants so as to return to the usual FLRW metric. Here
we use the same parameters as before, except that we have
taken ~� ¼ 1, 10. The reason is illustrated in Fig. 5, which
shows that the shears �@, initially vanishing (because we
start with a FLRW radiation dominated phase), increase
first during the transition, reach a maximum and eventually
decrease to vanishingly small values, which is expected for
the final FLRW matter dominated epoch. As one might
expect, as the coupling ~� is increased, the anisotropies
increase.

Finally, Fig. 6 shows the time evolution of the sound
speeds c2n and c2s , as well as Cns and Csn. We find that c2s ¼
1=3 throughout, although c2n is modified in the radiation
era. Both cross-coupling terms decrease with time. This,
along with the vanishing of the relative flow, is an impor-
tant result for a two-stream instability analysis, for it
implies that the conditions for instability are naturally
eliminated by the overall expansion of the universe.

With the solution at hand, it is now possible to return to
the original equations and understand what is taking place
during the transition. Originally, we set initial conditions in
the radiation era, for which Ts � �n, with the extra

FIG. 3 (color online). Background fields for the same parame-
ters as Fig. 1. The thick solid line corresponds to the state
parameter w, i.e. the ratio of � (thin full line) and p ¼ � (thick
double-dotted line), the number density x / n is essentially
negligible at these scales, while the density � is dominated by
the contribution of the entropy y / s (thick dashed line); the
conjugate variables, namely, the rescaled temperature ~T (thick
dotted line) and matter chemical potential ~� (thick long dashed
line) both decrease, with ~� ! 1 as expected.

FIG. 4 (color online). Metric coefficients 
i as functions of the
e-fold number N, for the same parameters as Fig. 1, except that
~� ¼ 1, 10. The full thick line represents 
z, while the other two
(dotted and dashed lines) stand for 
x and 
y respectively,

satisfying 
x ¼ 
y ¼ � 1
2
z, in agreement with our setting.

FIG. 5 (color online). Shear functions �i as functions of the e-
fold number N, for the same parameters as Fig. 1, except that
~� ¼ 1, 10. The full thick line represents �z, while the other two
(dotted and dashed lines) stand for �x and �y respectively.

Because of the relation between the metric coefficients 
i, it
turns out that the shears satisfy a similar relation, namely �x ¼
�y ¼ � 1

2�z. We also see that the anistropies increase as the

coupling ~� is increased.
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requirement that Vs 	 1: this means that the evolution of
the three Hubble functions, and hence of the scale factors,
will be identical, so the shears vanish and we are in an
FLRW phase. Then, as the product�n begins to grow, with
Ts decreasing, the matter velocity, provided it was large
enough to begin with (and we see numerically that we need
to set it very close to unity in order to have a visible effect)
is still large enough that the corresponding term becomes
important and the scale factors begin to evolve in different
ways. Finally, even this velocity becomes sufficiently small
with respect to unity that one recovers the FLRW symme-
try expected for the matter dominated epoch. The reason as
to why the matter velocity can be large, and yet the uni-
verse be radiation dominated, is because it is the flux that
enters the Einstein equations; a large velocity can be
compensated for by a small number density.

V. CLOSING REMARKS

A main goal of this work was to develop for cosmology
the general relativistic, multifluid model (derived from a
variational formalism) that has so far been used mostly for
neutron star astrophysics. While we considered only a two-
fluid system, the formalism itself can, in principle, handle a
number of different fluids. As it comes from an action,
coupling to other fields can be imposed in more or less
standard ways. For example, electromagnetism can be

incorporated via the usual gauge coupling, thus allowing
for plasmas and their effects on the system. We also dem-
onstrated how relativistic condensates follow automatically
because the formalism is written in terms of the conjugate
momenta, and simply setting the momenta to be gradients of
scalars automatically ensures zero vorticity.
The two-fluid model we introduced is valid for applica-

tions in cosmology. Even though the relative motions were
antialigned, the model illustrated behavior that one might
expect from a close examination of the radiation-to-matter
transition. The main task was to build a model in which
both the radiation and the matter dominated eras were
describable by means of an FLRW metric, as necessary to
fit nucleosynthesis, CMB, and large scale structure forma-
tion data [33,34]. We found that such a situation could easily
be implemented, provided the relative fluid velocity is large
enough at the transition time, an assumption that needs to be
justified on the basis of primordial cosmology models.
Indeed, in the now well-established framework of inflation
[38], it is tremendously difficult for the Universe to remain
with any relevant amount of leftover anisotropy: in fact,
inflation was precisely invented to, among its expected out-
sets, remove any primordial anisotropy!
It should be recalled at this point that the model pre-

sented above is the simplest setup of what might be envi-
sioned for the transition itself, for we have not taken into
account, for example, the nonconservation of the photon
number through its coupling with luminous matter, matter
flows with more than one constituent, or relative flows at
arbitrary angles. Obviously, one would not be too surprised
if comparison to observational data indicated the need for a
more elaborate model. Note also that we have assumed
here that the matter fluid has only one flux-component.
This may not be a reasonable assumption; it is, however,
largely a scale-dependent statement.
There are not many ways to produce such primordial

anisotropy. Among the most natural are perhaps models
based on some amount of nontrivial electromagnetic phe-
nomena taking place during very early epochs. Consistent
with large scale astrophysical observations of �� ray halos
around active galactic nuclei [39], the existence of rela-
tively intense intergalactic magnetic fields of the order of
10�15 G have been deduced, whose formation is expected
to be of primordial origin. Some inflationary models [40]
are able to produce such large scale magnetic fields, that
are statistically isotropic. It requires a special effort to
construct a so-called ‘‘hairy’’ universe [41] in which the
resulting magnetic field (or any other gauge field coherent
over large distances) points to a privileged spatial direc-
tion; off-diagonal TB and EB spectra could be induced by
such models [42], hence providing an observational means
to validate them.
A special spatial direction can also exist in more radical

scenarios. In one such model, for instance, a planar domain
wall remains all through the inflationphase, therebybreaking

FIG. 6 (color online). The bare sound speeds c2n, c
2
s , and cross-

constituent couplings Cns and Csn as functions of the e-fold
number N, for the same parameters as Fig. 1. Since c2s ¼ 1=3
throughout, it is not shown in the figure. Both c2n (dotted line) and
Cns (dashed line) are smoothly decaying functions of time, while
Csn (full line, hardly visible on the figure) is essentially negli-
gible at all times.
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the rotational invariance of the final perturbation power
spectrum [43].Multifield inflationcan also serve that purpose
by producing vorticity, although at second order in the rele-
vant perturbations [44].

Another way to induce a non-FLRWuniverse (perhaps the
simplest) is to start with a theory having a built-in privileged
timelike vector with which the dominant fluid may not
necessarily align; examples are provided by the Hořava-
Lifshitz setup [45,46], originally aimed at renormalizing
gravity, and the Einstein-æther theory [47].1 Depending on
the initial conditions, their solution can actually also relax to
the usual FLRW solution, the fluid unit vector then aligning
dynamically with the æther vector [49,50].

In all these situations, it remains to be seen whether some
cosmological variables might take values that differ from
their canonical ones, as derived in the framework of the best-
fit vanilla single field inflation paradigm. To clarify the
situation, a full perturbation theory should now be examined
[51]. Unlike those that assume only a single fluid, a pertur-
bation analysis of a two-fluid system has to take into account
the possibility of two-stream instability [35].

Such instabilities are well-established in plasma physics,
and have also been argued for in laboratory superfluids and
their neutron star analogs [52,53]. Samuelsson et al. [35]
have shown that a relative velocity and some type of
coupling (cross-constituent or entrainment) for a system
of two relativistic fluids is a necessary condition for two-
stream instability. Roughly, there is a ‘‘window’’ of insta-
bility that opens when a mode appears to be, say, right-
moving with respect to one of the fluids, yet left-moving
with respect to the other. In this paper we have shown that
the conditions for such instabilities to exist, a relative flow
between two coupled fluid components, may be satisfied in
cosmology. We have also shown that cosmological expan-
sion provides a mechanism for shutting down the instabil-
ity by closing the window, since both the relative velocity
and the cross-constituent coupling are driven to zero.

If such instabilities were to be triggered, a basis for a set
of observational constraints (or possible detections) for the
transition epoch may be established. In a companion paper
[36], we explore whether these instabilities develop before
the instability window is closed. If an instability were to
develop in some of the anisotropic transitions, they would
most definitely leave relevant imprints in both CMB and
large scale structure data, in the form either of non-
Gaussianities, bizarre polarization distributions and spec-
tra, and special scales corresponding to the Hubble volume
at the transition time. For instance, it can be argued that
such instabilities can occur during the matter to cosmo-
logical constant transition if and only if the latter is made
of a fluid, hence having a state parameter w>�1; how-
ever close w is to �1, such a fluid could initiate an
instability that an actual cosmological constant, having

w ¼ �1, could not. Therefore, observing the relevant con-
sequences of these instabilities at the relevant length scales
would allow a discrimination between these two otherwise
indistinguishable models.
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APPENDIX: GEOMETRIC QUANTITIES

For the metric given in (4) we find the Christoffel
coefficients to be

�t
xx ¼ A2

xHx; �t
yy ¼ A2

yHy; �t
zz ¼ A2

zHz;

�x
tx ¼ Hx; �2

ty ¼ Hy; �z
tz ¼ Hz;

�x
xz ¼ Ix; �y

yz ¼ Iy; �z
zz ¼ Iz

�z
xx ¼ �

�
Ax

Az

�
2
Ix; �z

yy ¼ �
�
Ay

Az

�
2
Iy; (A1)

leading to the following nonvanishing components of the
Ricci tensor:

Rx
x ¼ Hx

X
@
H@ þH0

x � 1

A2
z

½I0x þ IxðIx þ Iy � IzÞ�; (A2)

Ry
y ¼ Hy

X
@
H@ þH0

y � 1

A2
z

½I0y þ IyðIx þ Iy � IzÞ�; (A3)

Rz
z ¼ Hz

X
@
H@ þH0

z � 1

A2
z

½I0x þ I0y þ IxðIx � IzÞ

þ IyðIy � IzÞ�; (A4)

Rz
t ¼ 1

A2
z

½IxðHz �HxÞ þ IyðHz �HyÞ � I0x � I0y�; (A5)

Rt
t ¼

X
@
ðH0@ þH2@Þ; (A6)

and scalar

R ¼ 2

�X
@
ðH2@ þH0@Þ þHxHy þHxHx þHyHz

� 1

A2
z

½I0x þ I0y þ ðIx þ IyÞ2 � IxIz � IyIz � IxIy�g;

(A7)

with the sign convention for the Riemann tensor given by

R
�
��
 � @
�

�
�� � @��

�
�
 þ �

�
�
�

�
�� � �

�
����

�
: (A8)

From these, one can obtain the Einstein tensor (5). As
pointed out in the main text, the Einstein equations are
not all independent.1In the IR limit, these theories turn out to be equivalent [48].
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Ivezić, G. R. Knapp et al., Mon. Not. R. Astron. Soc. 401,
2148 (2010).

[35] L. Samuelsson, C. S. Lopez-Monsalvo, N. Andersson, and
G. L. Comer, Gen. Relativ. Gravit. 42, 413 (2010).

[36] G. L. Comer, P. Peter, and N. Andersson, arXiv:1111.5607.
[37] G. L. Comer and R. Joynt, Phys. Rev. D 68, 023002

(2003).
[38] M. Lemoine, J. Martin, and P. Peter, Inflationary

Cosmology, Lecture Notes in Physics, Vol. 738 (2008).
[39] S. Ando and A. Kusenko, Astrophys. J. Lett. 722, L39

(2010).
[40] M.M. Anber and L. Sorbo, J. Cosmol. Astropart. Phys. 10

(2006) 018.
[41] M.-A. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett.

102, 191302 (2009).
[42] M.-A. Watanabe, S. Kanno, and J. Soda, Mon. Not. R.

Astron. Soc. 412, L83 (2011).
[43] C.-H. Wang, Y.-H. Wu, and S. D.H. Hsu (2011).
[44] A. J. Christopherson, K. A. Malik, and D. R. Matravers,

Phys. Rev. D 79, 123523 (2009).
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[46] D. Blas, O. Pujolàs, and S. Sibiryakov, Phys. Rev. Lett.

104, 181302 (2010).
[47] T. Jacobson, Proc. Sci., QG-PH (2007) 020.
[48] T. Jacobson, Phys. Rev. D 81, 101502 (2010).
[49] W. Donnelly and T. Jacobson, Phys. Rev. D 82, 064032

(2010).
[50] I. Carruthers and T. Jacobson, Phys. Rev. D 83, 024034

(2011).
[51] T.G. Zlosnik (2011).
[52] N. Andersson, G. L. Comer, and R. Prix, Mon. Not. R.

Astron. Soc. 354, 101 (2004).
[53] N. Andersson, G. L. Comer, and R. Prix, Phys. Rev. Lett.

90, 091101 (2003).

MULTIFLUID COSMOLOGY: AN ILLUSTRATION OF . . . PHYSICAL REVIEW D 85, 103006 (2012)

103006-11

http://dx.doi.org/10.1007/BF02714547
http://dx.doi.org/10.1088/0264-9381/12/3/007
http://dx.doi.org/10.1088/0264-9381/12/3/007
http://dx.doi.org/10.1088/0264-9381/28/19/195023
http://dx.doi.org/10.1088/0264-9381/28/19/195023
http://dx.doi.org/10.1086/151073
http://dx.doi.org/10.1017/S0334270000008638
http://dx.doi.org/10.1017/S0334270000008638
http://dx.doi.org/10.1017/S0334270000008638
http://dx.doi.org/10.1088/1475-7516/2011/09/016
http://dx.doi.org/10.1088/1475-7516/2011/09/016
http://dx.doi.org/10.1103/PhysRevLett.103.111301
http://dx.doi.org/10.1103/PhysRevLett.103.111301
http://dx.doi.org/10.1103/PhysRevD.83.123515
http://dx.doi.org/10.1088/0004-637X/738/1/93
http://dx.doi.org/10.1088/0004-637X/738/1/93
http://dx.doi.org/10.1051/0004-6361:20031693
http://dx.doi.org/10.1051/0004-6361:20031693
http://dx.doi.org/10.1088/1475-7516/2007/11/005
http://dx.doi.org/10.1088/1475-7516/2007/11/005
http://dx.doi.org/10.1088/1475-7516/2008/04/004
http://dx.doi.org/10.1088/1475-7516/2008/04/004
http://dx.doi.org/10.1103/PhysRevD.81.083517
http://dx.doi.org/10.1103/PhysRevD.81.083517
http://dx.doi.org/10.1103/PhysRevD.79.043524
http://dx.doi.org/10.1103/PhysRevD.79.043524
http://dx.doi.org/10.1007/s10714-009-0799-5
http://dx.doi.org/10.1103/PhysRevD.83.124051
http://dx.doi.org/10.1103/PhysRevD.83.124051
http://dx.doi.org/10.1016/j.physrep.2008.03.003
http://dx.doi.org/10.1016/j.physrep.2008.03.003
http://dx.doi.org/10.1088/0264-9381/24/4/017
http://dx.doi.org/10.1088/0264-9381/24/4/017
http://dx.doi.org/10.1007/s10509-011-0596-y
http://dx.doi.org/10.1007/s10509-011-0596-y
http://dx.doi.org/10.1103/PhysRevLett.93.221301
http://dx.doi.org/10.1155/2010/847541
http://dx.doi.org/10.1103/PhysRevD.83.083005
http://dx.doi.org/10.1103/PhysRevD.83.083005
http://dx.doi.org/10.1111/j.1365-2966.2007.12221.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12221.x
http://dx.doi.org/10.1103/PhysRevD.79.103518
http://dx.doi.org/10.1088/0004-637X/734/1/61
http://dx.doi.org/10.1088/0004-637X/734/1/61
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1007/s10714-009-0861-3
http://arXiv.org/abs/1111.5607
http://dx.doi.org/10.1103/PhysRevD.68.023002
http://dx.doi.org/10.1103/PhysRevD.68.023002
http://dx.doi.org/10.1088/2041-8205/722/1/L39
http://dx.doi.org/10.1088/2041-8205/722/1/L39
http://dx.doi.org/10.1088/1475-7516/2006/10/018
http://dx.doi.org/10.1088/1475-7516/2006/10/018
http://dx.doi.org/10.1103/PhysRevLett.102.191302
http://dx.doi.org/10.1103/PhysRevLett.102.191302
http://dx.doi.org/10.1111/j.1745-3933.2011.01010.x
http://dx.doi.org/10.1111/j.1745-3933.2011.01010.x
http://dx.doi.org/10.1103/PhysRevD.79.123523
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://dx.doi.org/10.1103/PhysRevD.81.101502
http://dx.doi.org/10.1103/PhysRevD.82.064032
http://dx.doi.org/10.1103/PhysRevD.82.064032
http://dx.doi.org/10.1103/PhysRevD.83.024034
http://dx.doi.org/10.1103/PhysRevD.83.024034
http://dx.doi.org/10.1111/j.1365-2966.2004.08166.x
http://dx.doi.org/10.1111/j.1365-2966.2004.08166.x
http://dx.doi.org/10.1103/PhysRevLett.90.091101
http://dx.doi.org/10.1103/PhysRevLett.90.091101

