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The chameleon mechanism appearing in the massive tensor-scalar theory of gravity can effectively

reduce locally the nonminimal coupling between the scalar field and matter. This mechanism is invoked to

reconcile large-scale departures from general relativity, supposedly accounting for cosmic acceleration, to

small-scale stringent constraints on general relativity. In this paper, we carefully investigate this frame-

work on cosmological and solar system scales to derive combined constraints on model parameters,

notably by performing a nonambiguous derivation of observables like luminosity distance and local post-

Newtonian parameters. The likelihood analysis of type Ia supernovae data and of an admissible domain

for the parametrized-post-Newtonian parameters clearly demonstrates that the chameleon mechanism

cannot occur in the same region of parameter space as the one necessary to account for cosmic

acceleration with the assumed Ratra-Peebles potential and exponential coupling function.
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I. INTRODUCTION

Today, gravitation is facing a major problem: on one
hand, general relativity (GR) has passed all solar system
experiments; on the other hand, GR and the standard model
of particles are not sufficient to explain galactic and
cosmological observations, for instance, the accelerated
expansion of the Universe. Several options have been
advanced to solve this apparent inconsistency. The most
widespread possibility consists of extending the matter-
energy content of the Universe with new ingredients like
dark matter and dark energy (DE). Another possibility
consists of modifying GR on large scales without the
introduction of a new type of matter. The construction of
a new theory of gravity is particularly hard because it has to
satisfy very stringent constraints on solar system scales
(see Will [1] for a review) while showing deviations on
large scales.

Moreover from a theoretical point of view, the different
attempts to quantize gravity or to unify it with other
fundamental interactions predict deviations from GR.
In most of the theories proposed to account for cosmic
acceleration, to quantize gravity, or to unify it with the
standard model, scalar fields naturally appear in addition
to the metric tensor. For example, scalar fields appear in
Kaluza-Klein theories or in string theories. They also
appear in a nonminimal extension of GR like in fðRÞ
theories [2] or in credible cosmological scenarios (inflation
or quintessence).

Tensor-scalar theories are therefore very important and
they are already widely studied in the literature. The first

tensor-scalar theory was introduced by Jordan, Brans, and
Dicke [3,4] in order to recover the Mach principle. A very
detailed study of tensor-scalar theory can be found in
Damour and Esposito-Farèse [5]. Tensor-scalar theories
incorporate both the direct coupling of the scalar field to
matter [through the coupling function Að�Þ] and a scalar
self-interaction term [represented by a potential Vð�Þ].
Massless tensor-scalar theories [characterized by a vanish-
ing potential Vð�Þ ¼ 0] are strongly constrained at the
linear level of the coupling function by solar system ex-
periments [1] and by binary pulsars [6], yet rather poorly
at the nonlinear level. In particular, the observation of the
Shapiro delay with Cassini spacecraft during a solar con-
junction [7] gives currently the best constraint on the post-
Newtonian parameter ~�:

~�� 1 ¼ 2:1� 2:3� 10�5� (1)

This constraint implies that the coupling function at the
linear level d logðAÞ=d� ¼ kð�Þ � 1.1 This low limit puts
a severe constraint on some theoretical development that
requires a coupling of the order of the unity [for example,
string theory or fðRÞ gravity produces coupling of the order
of the unity] unless some mechanism is reducing this
coupling constant.
In 2004, Khoury and Weltman [8,9] showed that certain

massive tensor-scalar theories can satisfy solar system
experiments even for high coupling constants. This hap-
pens because the amplitude of the mass of the scalar field
depends on the local matter density. In particular, in a
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1In standard literature about tensor-scalar theory, the coupling
constant is often noted �, which we do not use in order to avoid
confusion with the � parameters entering the Ratra-Peebles
potential (4).
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region of high density (for example, in the Sun) the scalar
field acquires a high mass while on cosmological scales
(where the local density is low) the mass of the scalar field
is very low. The fact that the scalar field has a mass
mimicking the local density justifies the name given to
this scalar field called chameleon fields.

Considering a spherical body, Khoury and Weltman
[8,9] showed that under certain conditions the scalar field
is nearly frozen inside the body with the exception of a thin
shell around the surface’s body. This screening effect
appears only if the so-called thin-shell parameter (noted
") is small enough. This effect has the interesting property
of reducing the effective scalar charge of the body that is
equal to the coupling constant k in the usual tensor-scalar
theory in a low gravitational field (nonperturbative effects
can appear in a strong field as shown in Damour and
Esposito-Farèse [10]). Since the effective scalar charge
entering in the expression of the ~� post-Newtonian pa-
rameters is reduced, this mechanism allows the theory to
pass the Cassini constraint (and more generally solar
system experiments) even for high coupling constants
k that were previously excluded by parametrized-post-
Newtonian (PPN) constraints.

The main constraint on chameleon models on solar
system scales is that the mass of the scalar field has to be
sufficiently large to satisfy solar system constraints
(equivalence principle, fifth force, and PPN constraints).
In Khoury andWeltman [8], it is explicitly argued that with
this mechanism it is possible to explain cosmological
effects without producing observable deviations in the
solar system because the environment is dense enough
and the contribution from the scalar field is exponentially
suppressed.

The goal of this paper is to verify this assumption and to
derive an acceptable domain for the parameters character-
izing the theory [mainly the coupling constant k and the
parameters characterizing the potential Vð�Þ]. The chame-
leon mechanism has already been widely studied in the
literature [8,9,11–15]. Nevertheless some issues need still
to be addressed. First of all, none of these articles derive
constraints from supernovae data taking correctly into
account nonminimal coupling. In this communication, we
will use supernovae data to find a confidence region for the
parameters characterizing the theory. Moreover, all publi-
cations related to chameleon fields used quantities in the
Einstein frame to perform calculations and to interpret
results. In this communication, we review the mechanism
by deriving unambiguously physical observables from
Einstein and Jordan frames. The latter is defined as the
set of gravitational degrees of freedom in which matter
couples directly to a metric, although that metric does not
propagate like it does in general relativity. This distinction
between Jordan and Einstein frame quantities has implica-
tions for cosmology because we used Jordan frame con-
served densities contrary to what is done in [11,12]. In the

same spirit, we take great care in the derivation of the
observable (the luminosity distance). To avoid any confu-
sion, we derive observables in both frames showing their
physical equivalence.
The same approach is applied for computing the static

and spherical solution representing the solar system.
Indeed, we use a Jordan frame quantity in the field equa-
tions contrary to what was done in [8,14,15] (but follow-
ing the work of [16]). On solar system scales, analytical
solutions representing the scalar field were computed in
[8,9,12,14,15] assuming a lot of hypotheses that have never
been checked. In this paper, we compare these solutions
with a numerical integration of the Einstein equations (in
the same way as in [16]). With these solutions, we derive
the post-Newtonian parameters taking care of the gauge
used and we compare our results with the literature.
Finally, we present a combined analysis of the cosmologi-
cal study and the post-Newtonian constraints.
The strategy followed is to fit the model on real data at

two different scales: on cosmological scales and on solar
system scales. In this paper, we decide to focus only on the
original theory proposed by Khoury and Weltman [8,9]
which is a tensor-scalar theory with an exponential cou-
pling function Að�Þ ¼ ek� and a runaway potential Vð�Þ
of the Ratra-Peebles type. This model is fully described in
Sec. II. We leave for future work the study of other cou-
pling constants and/or potentials.
Concerning cosmological scales presented in Sec. III,

we perform a likelihood analysis of the latest supernovae Ia
(SNe Ia) data. For this analysis, the cosmological evolution
equations are derived and the expression of the luminosity
distance is given. In the derivation of these equations, the
use of the Einstein or Jordan frame quantities is fully
discussed. In particular, the derivation of the luminosity
distance has been performed in both frames showing their
physical equivalence. From the likelihood analysis, we find
confidence regions for the different parameters involved in
the model. For models within these confidence regions, we
also perform a full cosmological analysis consisting of a
detailed study of the evolution of the scalar field �, the
evolution of the cosmic expansion, and its acceleration and
we derive an effective dark-energy equation of state from
the Friedmann-Lemaı̂tre equations. With this analysis, we
can clearly identify models explaining the accelerated
expansion of the Universe.
In Sec. IV, we focus on solar system constraints. Solar

system constraints are mainly composed of three tests:
violation of the weak equivalence principle, fifth force con-
straints, and post-Newtonian constraints. In our case, the
weak equivalence principle is not violated since the cou-
pling constant between the scalar field and matter is univer-
sal. However, we emphasize the fact that string theory can
give rise to tensor-scalar theory with different coupling
constants for the different matter fields. In this case, viola-
tion of the equivalence principle is expected [17].

A. HEES AND A. FÜZFA PHYSICAL REVIEW D 85, 103005 (2012)

103005-2



In the model considered here a fifth force term is present.
A fifth force analysis can be found in Khoury and Weltman
[8] while we concentrate our attention on the analysis of
the post-Newtonian parameters. To derive the expression
of the post-Newtonian parameters, we use the analytical
solutions of the field profile in a static spherical configu-
ration that can be found in the literature [8,14,15,18]. First
of all, in order to check the consistency of the analytical
expressions, we compare these analytical solutions (ob-
tained by assuming a lot of hypothesis) with a full numeri-
cal determination of the field profile solving the Einstein
equations representing a spherical and static body. Then, a
careful derivation of the post-Newtonian parameters is
performed. With the models within the confidence region
of the cosmological analysis, we compute the post-
Newtonian parameters ~� and we check if they satisfy the
constraint (1).

With these two analyses (cosmological and solar system
analyses), it is possible to answer to the question: can the
chameleon effect reconcile cosmological observations
with solar system constraints? For the model treated
here, the answer to this question is negative. Indeed, we
will show that on one hand large coupling constants can
pass the solar system constraints while they are excluded
by usual analysis. On the other hand, tensor-scalar theories
can indeed explain cosmic acceleration. But the main
conclusion of this communication is that, unfortunately,
the parameter confidence region needed to explain cosmic
acceleration does not overlap the one coming from solar
system constraints. This means it is not possible to explain
cosmic acceleration with the same parameters as those
passing solar system experiments.

II. THE MODEL

The model studied in this paper is the one proposed in
the original chameleon paper [8,9] and is given by the
following action in the so-called Einstein frame (c ¼ 1):

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
m2

p

16�
R�m2

p

2
@��@��� Vð�Þ

�

þ Sm½�m; A
2ð�Þg���; (2)

wheremp ¼ G�1=2 is the Planck mass, g is the determinant

of the Einstein frame metric g��, R is the Ricci scalar, and

�m are matter fields. In this frame, the scalar field �
interacts directly with matter particles through a conformal
coupling characterized by the function Að�Þ. Finally Vð�Þ
is a potential characterizing the scalar self-interaction. This
action generalizes the Jordan-Fierz-Brans-Dicke theory
[recovered in the case of a vanishing potential and of an
exponential coupling function Að�Þ ¼ ek�] [3,4] but also
the quintessence model [19,20] which can be recovered in
the case Að�Þ ¼ 1. In this communication, we consider
that all matter fields couple in the same way to the scalar
field with only one coupling function Að�Þ. The above

action can be justified by the low-energy limit of string
theory or supergravity [17,21–24].
Observable quantities are not directly obtained in this

frame because physical measurements are performed using
rods and clocks built upon matter fields �m. These matter
fields are universally coupled to the so-called Jordan frame
metric

~g �� ¼ A2ð�Þg�� (3)

and therefore follow geodesics corresponding to ~g�� and

not to the Einstein frame metric g��. One can perform the

conformal transformation in the action (2) to obtain the
Jordan frame action (see, for example, [5,6,25,26]).
Nevertheless the Jordan frame is not convenient for study-
ing the dynamics of the scalar field and of the metric ~g��

because the tensor and scalar modes are kinematically
coupled and because this frame introduces some fictitious
singularity [25,26].
In the following, a~will denote quantities expressed in

the Jordan frame. Observable quantities can easily be
computed in this frame in the same way as in GR. This
does not mean that observable quantities can only be
derived in the Jordan frame. Indeed, physical predictions
are not dependent on a change of variables in terms of a
conformal transformation. If the derivation of observable
quantities in Jordan frame is easy, one has to be more
careful when working with the Einstein frame. In particu-
lar, all physical units have to be scaled with the coupling
function Að�Þ.
The potential Vð�Þ in the action (2) is a key element in

the chameleon theory. It has to be of the runaway form
[8,9]. The potential used here is the Ratra-Peebles inverse
law potential [19,20]

Vð�Þ ¼ ��þ4

m�
p�

� ; (4)

where � and � are free parameters.
In this communication, we only consider an exponential

coupling function

Að�Þ ¼ ek�: (5)

This coupling function is the one used in the original paper
[8,9] and we leave the study of other types of coupling
function to future work.
From variational principles, we can derive field equa-

tions from action (2). Varying this action with respect to the
Einstein frame metric gives the Einstein field equations

R�� � 1

2
g��R ¼ 8�

m2
p

T�� þ 8�@��@��

� 4�g��@��@��� 8�

m2
p

g��Vð�Þ;
(6)
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where T�� ¼ �ð2= ffiffiffiffiffiffiffi�g
p Þð@L ffiffiffiffiffiffiffi�g

p
=@g��Þ is the Einstein

frame stress-energy tensor.
The variation of action (2) with respect to the scalar field

� leads to the Klein-Gordon equation for the scalar field:

h� ¼ � kð�Þ
m2

p

T þ 1

m2
p

dV

d�
; (7)

where T ¼ g��T�� is the trace of the stress-energy tensor,

h� ¼ g��r�r��, and kð�Þ is the scalar coupling

strength to matter and is given by

kð�Þ ¼ d lnAð�Þ
d�

¼ 1

Að�Þ
dAð�Þ
d�

: (8)

Finally, the invariance of action (2) under coordinate
transformations gives the following conservation equation
in the Einstein frame:

r�T
�� ¼ kð�ÞT@��: (9)

In the following, we will always consider matter to be
described by a perfect fluid. Therefore, the Einstein frame
stress-energy tensor is expressed as

T�� ¼ ð�þ pÞu�u� þ pg��; (10)

where � and p are the Einstein frame density and pressure
and u� is the 4-velocity of the fluid. As can be seen from
(9), this stress-energy tensor is not conserved in the
Einstein frame because of the explicit coupling between
matter and the scalar field. On the other hand, the Jordan
frame stress-energy tensor is conserved because the matter
field is universally coupled to the metric ~g��. Moreover,

the Jordan frame is defined as the frame in which matter
experiences locally the laws of special relativity. The
Jordan frame matter density and pressure (~� and ~p) are
directly observable. The observable stress-energy tensor
(Jordan frame) is related to its Einstein frame counterpart
by a conformal factor [5,25],

T�
� ¼ A4ð�Þ ~T�

� ¼ A4ð�Þð~�þ ~pÞ~u�~u� þ A4ð�Þ~p��
�

¼ A4ð�Þð~�þ ~pÞu�u� þ A4ð�Þ~p��
� :

This implies the following relations between matter den-
sity and pressure in the Einstein and Jordan frames:

� ¼ A4ð�Þ~�; (11a)

p ¼ A4ð�Þ~p: (11b)

In the following sections, we will derive observational
constraints on different parameters characterizing the the-
ory (namely, parameters involved in the potential and the
coupling function) and characterizing the cosmological
content of the Universe. First, we will perform a least-
square fit on the supernovae Ia data. This involves the
derivation and the integration of the equations describing
the cosmological evolution of the Universe. These equa-
tions will be derived from field equations (6) and (7).

Second, we will use solar system observations to obtain a
different constraint on the theory parameters. To do this,
we will derive the static spherical solution to the field
equations. This solution will represent the solar system
space-time.

III. COSMOLOGICAL CONSTRAINTS

This section is devoted to the study of the cosmological
dynamics of the model described in the previous section.
Let us briefly outline our original contributions concerning
chameleon cosmology. We derive the evolution equation in
the Einstein frame but using density and pressure defined
in the Jordan frame. Therefore, we introduce a new vari-

able ~� representing the observable density parameter. In
Sec. III B, we derive a luminosity distance relation which is
frame-independent (as any observables should be) and
therefore allows us to make cosmological predictions with-
out ambiguities. In particular, we present a likelihood
analysis of the latest SNe Ia data. This analysis extends
previous work on quintessence models (characterized by a
vanishing coupling constant k ¼ 0) to the cases of k � 0
where no analysis exists to our knowledge. We identify
models statistically consistent with data and show that the
statistical adequacy decreases with k. The rest of the
section comprises a detailed analysis of the model dynam-
ics within the confidence regions previously established.
First of all, we extend the work of Brax et al. [11] con-
cerning the study of the dynamics of the scalar field by
introducing three time scales and we show how the dy-
namics of � depends on the parameters of the model. In
Sec. III E, we propose an original analysis of the cosmic
expansion within the models explaining data. In this analy-
sis, contributions due to the quintessence potential and
to nonminimal coupling are clearly identified and com-
pared. Finally, we interpret considered models in standard
Friedmann-Lemaı̂tre-Robertson-Walker cosmology in
general relativity with an effective fluid whose quintes-
sence and nonminimal coupling contributions to the effec-
tive equation of state are identified.

A. Evolution equations

If we assume a flat Friedmann-Lemaı̂tre-Robertson-
Walker background space-time, the Einstein frame metric
can be written as

ds2 ¼ �dt2 þ a2ðtÞd‘2 ¼ a2ðtÞð�d	2 þ d‘2Þ; (12)

where aðtÞ is the Einstein frame cosmic scale factor, t is the
Einstein frame cosmic time, and 	 is conformal time. The
corresponding Jordan frame metric can be written as

d~s2 ¼ �d~t2 þ ~a2ðtÞd‘2 ¼ A2ð�Þds2
¼ �A2ð�ðtÞÞdt2 þ A2ð�ðtÞÞa2ðtÞd‘2� (13)
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The observable cosmic time ~t and the observable cosmic
scale factor (~a) are obtained from the last relations:

d~t ¼ Að�ðtÞÞdt; (14a)

~að~tÞ ¼ Að�ðtÞÞaðtÞ� (14b)

Replacing metric (12) in Einstein field equations (6) and
using the expression of the stress-energy tensor (11), one
obtains the Friedmann and acceleration equations

�
a0

a

�
2 ¼ 4�

3
�02 þ 8�

3m2
p

a2Vð�Þ þ 8�

3m2
p

a2A4ð�Þ~�; (15a)

a00

a
¼ � 4�

3
�02 þ 16�

3m2
p

a2Vð�Þ

þ 4�

3m2
p

a2A4ð�Þð~�� 3~pÞ; (15b)

where a 0 denotes a derivative with respect to conformal
time 	 and where ~� and ~p are the observable matter
density and pressure. The Klein-Gordon equation (7)
becomes

�00 þ 2
a0

a
�0 ¼ � kð�Þ

m2
p

a2A4ð�Þð~�� 3~pÞ � a2

m2
p

dV

d�
:

(16)

Finally, the conservation equation (9) gives

�0 þ 3
a0

a
ð�þ pÞ ¼ kð�Þ�0ð�� 3pÞ: (17)

Introducing the equation of state

! ¼ p

�
¼ ~p

~�
; (18)

and replacing the Einstein frame matter density and pres-
sure by their Jordan frame counterpart (11), the conserva-
tion equation (17) becomes

ðAð�ÞaÞ3ð1þ!Þ ~� ¼ ~�0; (19)

where the subscript 0 refers to the actual epoch character-
ized by a ~a0 ¼ Að�0Þa0 ¼ 1. From the last equation, we
see that the Jordan frame stress-energy tensor is conserved

since we find the usual expression ~a3ð1þ!Þ ~� ¼ cst.
We can introduce the observable density parameter de-

fined by

~� ¼ 8� ~G ~�

3 ~H2
; (20)

where ~H is the observable Hubble parameter defined by

~H ¼ 1

~a

d~a

d~t
(21)

and ~G is the varying gravitational strength which is related
to the Einstein frame gravitational constant by [27]

~G ¼ A2ð�ÞG ¼ A2ð�Þ
m2

p

� (22)

Replacing ~�0 in the conservation relation (19) by its
value derived from (20), one finds

~� ¼ 3m2
p
~H2
0
~�0

8�A2ð�0ÞðAð�ÞaÞ3ð1þ!Þ : (23)

We can now use the equation of state (18) and the
expression of ~� (23) in the Friedmann, acceleration,
and Klein-Gordon equations (15) and (16). If we introduce
two components in the Universe, pressureless matter (rep-
resenting baryonic and dark matter) characterized by
!m ¼ 0 and radiation characterized by !r ¼ 1

3 , we find

the cosmological evolution equations

�
a0

a

�
2 ¼ ~H2

0

A2ð�0Þ
� ~�m0Að�Þ

a
þ

~�r0

a2

�
þ 4�

3
�02

þ 8�

3m2
p

a2Vð�Þ; (24a)

a00

a
¼ ~H2

0

A2ð�0Þ
~�m0Að�Þ

2a
� 4�

3
�02

þ 16�

3m2
p

a2Vð�Þ; (24b)

�00 ¼ � 3kð�Þ
8�

~H2
0

A2ð�0Þ
~�m0Að�Þ

a
� 2

a0

a
�0

� a2

m2
p

dV

d�
: (24c)

It is worth commenting on these equations. First of all, they
depend on different parameters: the present value of the

densities parameters ~�m0 and
~�r0, the present value of the

Hubble parameter ~H2
0, the coupling function Að�Þ (in this

case parametrized by the value of the coupling constant k),
and the potential Vð�Þ (in this case parametrized by the
constants � and �). The quintessence cosmological equa-
tions are recovered in the case of a constant coupling
constant [Að�Þ ¼ 1 and kð�Þ ¼ 0] [28]. The above equa-
tions are somewhat different from what can be found in the
literature [11,29] because we have decided to work with
Jordan frame density and pressure (these are directly ob-
servable) following what has been done by Damour et al.
[6,10,25] and Babichev and Langlois [16] while most of
chameleon papers use some hybrid conserved density ( ��)
that can be related to the traditional Einstein frame density
[� nonconserved due to the coupling to the scalar field, see
(9)] or to the Jordan frame density pressure (~� conserved in
Jordan frame) [8,9,11,29]:

�� ¼ A�1ð�Þ� ¼ A3ð�Þ~�� (25)

COMBINED COSMOLOGICAL AND SOLAR SYSTEM . . . PHYSICAL REVIEW D 85, 103005 (2012)

103005-5



Naively, all these definitions of matter density could
be used in the source terms of the field equations.
Nevertheless from an interpretative point of view, the use
of the Jordan frame density ~� is justified since Jordan
frame quantities are measured as in GR with metric ~g��

coupling universally to matter fields. Moreover, Eq. (25) is
not robust since it depends on symmetries of the cosmo-
logical principle and, even in that case, is only valid for
pressureless matter. Jordan frame quantities are conserved
ones, while not suffering from these pathologies, and can
further safely be used in solar system physics.

B. Luminosity distance

SNe Ia standard candles provide a measurement of the

observable luminosity distance ~dLð~zÞ. This luminosity dis-
tance is easily obtained in the Jordan frame. Nevertheless,
to illustrate the fact that observable quantities can also be
derived in the Einstein frame, we will derive the expression

for ~dL in both frames. The present result is therefore frame-
independent.

In the Jordan frame, the luminosity distance is expressed
as in GR,

~dLð~zÞ ¼ ð1þ ~zÞ
Z ~z

0

dy
~HðyÞ ; (26)

where ~z ¼ 1=~a� 1 is the observable cosmological red-
shift. Finally, the distance modulus is defined as

~� ¼ 25þ 5 log

� ~dL
1 Mpc

�
� (27)

If we want to express the same observable quantity from
the Einstein frame, we introduce the Einstein frame dis-
tance luminosity dL:

dLðzÞ ¼ ð1þ zÞ
Z z

0

dy

HðyÞ ; (28)

where z ¼ 1=a� 1 and H is the Einstein frame Hubble

parameterH ¼ 1
a

da
dt ¼ a0

a2
. In the Einstein frame, the physi-

cal units are rescaled by a factor Að�Þ. For this reason, the
observable distance modulus is given by

� ¼ 25þ 5 log

�
dL

Að�Þ � 1 Mpc

�
� (29)

The equivalence between the two expressions (27) and

(29) can be shown. Substituting 1þ z ¼ 1=a, H ¼ a0
a2
, and

dz ¼ � da
a2

in (28), we find

dLðzÞ ¼ � 1

a

Z a

a0

da

a2H
¼ � 1

a

Z 	

	0

d	 ¼ 	0 � 	

a
; (30)

and thus

� ¼ 25þ 5 log

�
	0 � 	

Að�Þa
�

(31)

(if 	 is expressed in Mpc which is possible since c	 has
dimension of a length).

On the other hand, using relation (14a) and the fact that
dt ¼ ad	 we can express the Hubble parameter as

~H ¼ 1

~a

d~a

d~t
¼ 1

~aAð�Þ
d~a

dt
¼ ~a0

~a2
�

Substituting this relation and using the fact that d~z ¼ � d~a
~a2
,

the relation (26) becomes

~d Lð~zÞ ¼ � 1

~a

Z ~a

~a0

d~a

~a2 ~H
¼ � 1

~a

Z 	

	0

d	 ¼ 	0 � 	

~a
� (32)

Finally, the distance modulus (27) is unambiguously
given by

~� ¼ 25þ 5 log

�
	0 � 	

~a

�
¼ 25þ 5 log

�
	0 � 	

Að�Þa
�

with	 expressed in Mpc. Relation (14b) shows that the last
expression is equivalent to (31). This shows the physical
equivalence between the two frames and gives a useful
formula to compute the distance modulus without any
ambiguities from any frame. The distance modulus can
be evaluated from the integration of the cosmological
evolution equations (24) that gives the evolution of a and
� with respect to 	.

C. Supernova likelihood analysis

In this section, we present the results of a likelihood
analysis of recent SN Ia data [30]. Our goal is to identify
models characterized by a set of parameters which are
statistically consistent with observations, while departing
from the standard �CDM values. Cosmological models

are characterized by 6 parameters: ~�mo,
~�r0, ~H0, k,�, and

�. Since the present radiation density parameter is very
low, it has a negligible influence on SN Ia measurements.

Therefore, we fix its value ~�r0 ¼ 7:97� 10�5 [30]. The
value of the energy scale of the potential � is optimized

such that for a given value of � the input value of ~�m0 is
retrieved. Finally, since the Hubble diagram leaves ~H0

unconstrained in the plane �� ~�m0 [31,32], we fix the
value of ~H0 ¼ 70:4 km=s=Mpc [33]. Because of the de-
generacy of the Hubble diagram with respect to ~H0, we
compute the marginalized likelihood over ~H0 [34,35].
After the above considerations, each model is finally

characterized by a set of three parameters ( ~�m0, �, k).
We run a series of models decomposing the parameters’
domain using a uniform grid. The results of this analysis
are summarized on Fig. 1 where we plot the conditional

68% and 95% confidence regions in the plane ~�m0h
2–�

(with h ¼ ~H0=100 km=s=Mpc) with an assumed value of
the coupling constant k. As can be seen, the concordance
�CDM model (corresponding to k ¼ 0 and � ¼ 0) is
within this confidence region. Models characterized
by k ¼ 0 are quintessence models. As noticed from
previous quintessence data analysis [28,36], quintessence

models tend to fit the data by requiring values of ~�m0h
2
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lower than in �CDM. This trend is reinforced when in-
creasing the value of the coupling constant k. In addition,
we can see that the area of the confidence region does not
reduce significantly with an increase of the coupling con-
stant k. This means that the fine-tuning on parameters �

and ~�m0 does not evolve with k. This is mainly due to new
dynamical regimes explaining cosmic expansion with a
small value of the matter density parameter but a high
value of the coupling constant as can be seen further.

Figure 2 shows the evolution of the 
2 with the observed

cosmological density ~�m0 for a fixed value of � ¼ 0:5.
The 
2 gives an idea of the goodness of the fit of the model
to the data. An increase of the coupling constant k results in
an increase of the minimum value of the 
2 which shows
that models with a nonvanishing coupling constant provide
a slightly worse reproduction of data. For high values of the
coupling constant, the curve of the 
2 has two minima: one

with a small value of ~�m0 and one with a usual value of
~�m0. These two minima characterize two very different
cosmological evolutions (as will be discussed below) and
they lead to very different predictions for the age of the
Universe. The prediction for the age of the Universe is

represented in the top panel of Fig. 2 as a function of ~�m0.
First of all, it is interesting to note that models with a high
coupling constant lead to a higher estimation of the age of
the Universe than quintessence models with the same

cosmological parameters. For example, for h2 ~�m0 ¼ 0:1,
the estimation of the age of the Universe of a quintessence
model is 14:2� 109 years while for the same parameters
the model with a coupling constant k ¼ 10 gives an age of
15:3� 109 years. Moreover, models with a small value of
~�m0 (allowed by the likelihood analysis) lead to an esti-
mation of the age of the Universe much higher.
A supplementary interesting result is the relationship

between � and the other parameters. Figure 3 represents
the evolution of � with respect to � for different values of

k and ~�m0. It can be seen that the influence of the coupling
constant and of the matter density parameter is very weak
in comparison with the influence of �. We fit a curve on
these data and we find the following relation:

log� � 19�� 47

4þ �
(33)

which is the same relation as found in [32] for the quin-
tessence model. The last relation gives an order of magni-
tude for the value of �.

D. Evolution of the scalar field

It is interesting to study the cosmological evolution
of the scalar field for the cosmological model compatible
with the SN Ia analysis from the previous section. The
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FIG. 1 (color online). Representation of the conditional 68% (in blue—darker area) and 95% (in green—lighter area) confidence
regions in the h2 ~�m0–� plane for different assumed values of coupling constant k from the analysis of the UNION SN Ia Hubble
diagram. The star represents the best fit.
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Klein-Gordon equation governing the scalar field evolution
is given by (24c) and can be written as

�00 þ 2H�0 ¼ �kð�Þa
2A4ð�Þ
m2

p

~�m � a2

m2
p

dV

d�

¼ �a2
@Veff

@�
; (34)

where H ¼ a0=a and Veffð�Þ is an effective potential
whose expression is

Veffð�; ~�mÞ ¼ 1

m2
p

�
Vð�Þ þ 1

4
A4ð�Þ~�m

�
� (35)

With the hypothesis adopted in this paper (the use of a
Ratra-Peebles potential and an exponential coupling func-
tion), this effective potential exhibits a minimum (see
Fig. 10). The scalar field is thus attracted toward the
minimum of this effective potential. This minimum de-
pends on the scale factor a (due to the fact that the effective
potential depends on ~�m) and therefore is moving contin-
uously with time. The shape of the effective potential for
two different densities is represented in Fig. 10. The den-
sity is decreasing with the scale factor [see Eq. (19)] which
implies this effective potential was very narrow in the early
time and it becomes wider and wider with the time.
It is worth noticing that the expression (35) of the

effective potential is somewhat different from the expres-
sion given in Brax et al. [11]. The difference comes only
from the fact that we use the Jordan frame density ~� while
Brax et al. used a hybrid definition of the density �� given
by (25).
Working with the Ratra-Peebles potential Vð�Þ ¼

�4þ�=m�
p�

� and with an exponential coupling function

Að�Þ ¼ ek� gives an analytical expression for the mini-
mum of the effective potential determined by the following
conditions:

0 ¼ � ��4þ�

m�
p�

�þ1
þ k~�me

4k�� (36)

Solving this equation gives the value of the scalar field that
minimizes the effective potential �min as a function of the
cosmological density ~�m, of the coupling constant k, and of
the parameters of the potential (� and �):

�minð~�mÞ ¼ �þ 1

4k
LW

�
4kb

�þ 1

�
(37)

with b ¼ ð��4þ�=m�
pk~�mÞ1=ð�þ1Þ and LWðxÞ the

W-Lambert function [37].
For models fitting the SNe Ia (see previous section), the

typical behavior of the scalar field is the following:
(i) At the beginning, the attractor mechanism is very

efficient and the scalar field is attracted by the mini-
mum of the effective potential and oscillates around
it. This is due to the fact that the effective potential is
very narrow in the early time. Figure 4 shows the
behavior of the scalar field for different initial con-
ditions and the minimum of the effective potential
�min (37). We can clearly see that the attractor
mechanism is very strong for the small-scale factor.
This implies that the cosmological evolution is very
weakly sensitive to the scalar field initial conditions
(see Fig. 4). This is reminiscent of the tracking
properties of the Ratra-Peebles potential [38].

(ii) For some time, the scalar field follows closely the
minimum of the effective potential.
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−10
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FIG. 3 (color online). Dark (blue) line: data representing �
with respect to � for different values of k and ~�m0. It can be
seen that the influence of k and ~�m0 is very weak compared to �.
Light (red) line: curve resulting from a fit on these data
[see (33)].
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FIG. 2 (color online). Top: Representation of the age of the
Universe with respect to the observed matter density ~�m0 for
models characterized by � ¼ 0:5. Bottom: Representation of the
chi squared per degrees of freedom 
2=ndof (number of degree of
freedom) with respect to the observed matter density ~�m0 for
models characterized by � ¼ 0:5.

A. HEES AND A. FÜZFA PHYSICAL REVIEW D 85, 103005 (2012)

103005-8



(iii) Depending on the model considered, the attractor
mechanism may not be strong enough and the
scalar field may not be able to follow the minimum
of the potential (see Figs. 4 and 6). In particular, for
low coupling constants, the effective potential be-
comes too wide to sufficiently attract the scalar
field.

The necessary condition for the scalar field to follow the
minimum of the effective potential can be derived by
considering the time scales involved in the scalar field
evolution. There are three different time scales:

(i) The damping time scale due to the 2H�0 in Eq. (34)
given by

1

tdamp
¼ 2H

a
¼ 2H; (38)

where tdamp is an Einstein frame cosmic time scale

characterizing the Hubble damping.
(ii) The time scale characterizing the scalar field oscil-

lations around the minimum of the potential. This
time scale is related to the effective mass of the
scalar field given by

m2 ¼ @2Veff

@�2
� (39)

The related time scale is given by

1

t2�
¼ m2

ð2�Þ2 (40)

which characterizes the response time of the scalar
field.

(iii) The last time scale involved in the scalar field
evolution is related to the evolution of the effective
potential. This potential is continuously moving in
time due to the presence of the ~�m term in (35). We
characterize the time scale due to this evolution by
the time scale related to the variation of the mini-
mum of the potential �min:

1

tmin

¼
_�min

�min

¼ 1

�min

@�min

@~�m

@~�m

@~a
_~a; (41)

where a dot denotes the derivative with respect to
the Einstein frame cosmic time (dt). Using the
expression of �min (37) and ~�m (23) and the defi-
nition of ~a (14b), we finally get

1

tmin

¼ 3ðH þ � _�Þ
1þ �þ 4k�min

� (42)

The scalar field � follows the minimum of the effective
potential if the damping time is higher than the scalar field
response time (tdamp > t�) and if the evolution of the

effective potential is slower than the field response time
(tmin > t�). In other words, the conditions characterizing

the fact that the scalar field follows the minimum of the
potential are given by

m2

4�2
> 4H2; (43a)

m2

4�2
>

9ðH þ � _�Þ2
ð1þ �þ 4k�minÞ2

: (43b)

The three time scales are represented in Fig. 5 (for a model
fitting SN Ia data with k ¼ 1). We can see that the inter-
section of t� with the other curves occurred at ~a� 0:1

which is exactly the scale factor where the scalar field stops
to follow the minimum of the effective potential (see
Fig. 4). We note ~at the Jordan frame scale factor from
which the scalar field stops to follow the minimum of Veff .
Figure 6(a) represents the evolution of the scalar field and
of the minimum of the effective potential for different
values of the coupling constant k. The transition scale
factor ~at increases with k, and for k� 15, the scalar field
stays in the minimum of the potential during all of the
evolution. In Fig. 6(b), the behavior of the scalar field for
the second minimum of the 
2 curves for k ¼ 10 is also
represented. The evolution of this model (characterized by

a small value of the density parameter ~�m0) is very differ-
ent from the other ones. The scalar field increases very fast.
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FIG. 4 (color online). Evolution of the scalar field as a function
of the Jordan frame scale factor ~a (the observable one) for
different initial conditions �i and for the model characterized
by (k ¼ 1, ~�m0 ¼ 0:197, and � ¼ 0:5). The minimum of the
effective potential [see relation (37)] is represented by the
darkest (blue) lines. Top: curves on a log-log scale, we can see
that the scalar field reaches the minimum of the effective
potential for all the initial conditions. Bottom: linear x axis,
we see that the scalar field does not follow the minimum of the
effective potential from ~a� 0:1 and the evolution of the scalar
field is independent of the initial condition �i (all curves are
superimposed).
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Figure 6(c) represents also the evolution of the transition
scale factor with the coupling constant k (~at being com-
puted by the comparison of the Hubble damping time scale
and the field response time). The transition scale factor
increases with the coupling constant which is logical since
the effective potential is tighter for a high coupling con-
stant; it is therefore more difficult to leave this potential.

E. Evolution of the cosmic expansion

We study here what is the origin of the observed cosmic
acceleration. In this context, cosmic expansion is described
in the Jordan frame by the scale factor ~a ¼ Að�Þa that is
measured with matter. In order to identify the origin of the

acceleration, we need to compute the value of 1
~a
d2 ~a
d~t2

. With

the definition of ~a (14b) and with the evolution equations
(24), we can express

~q ¼ 1
~H2~a

d2~a

d~t2
¼ ~qM þ ~qQ þ ~qNMC; (44)

where all the terms are given by

~qM ¼ �
~�m

2
� ~�r; (45a)

~qQ ¼ 8�

3m2
pA

2ð�Þ ~H2

�
Vð�Þ �m2

p

�02

a2

�
; (45b)

~qNMC ¼ k�00

A2ð�Þa2 ~H2
� (45c)

The first term gives the usual term present in GR involving
matter (here the subscriptM refers to pressureless baryonic
and dark matter and also to radiation). The second term ~qQ
is a term due to the presence of the scalar field in the
dynamics. This term is also found in quintessence models
[where the coupling function is equal to Að�Þ ¼ 1 and the
coupling constant k vanishes] [32,35,38]. Finally, the last
term ~qNMC is due to the nonminimal coupling [Að�Þ � cst]
and is closely related to the evolution of the scalar field.

The different contributions to the cosmic acceleration
are represented in Fig. 7 for three different values of
the coupling constant k (k ¼ 1, k ¼ 10, and k ¼ 20) for
best-fit models. The matter contribution is more or less
the same for the different k. What is interesting to notice is
that for a small value of k, the cosmic acceleration is
explained by the quintessence term ~qQ while the nonmini-

mal coupling does not play any role. An increase of the
coupling constant produces a decrease of the quintessence
contribution in favor of the nonminimal coupling contri-
bution ~qNMC. In conclusion, if k 	 1, the cosmic accel-
eration is explained by the nonminimal coupling.
In order to compare the difference in the dynamic of the

two minima in the 
2 curves [see Fig. 2 (bottom) and
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FIG. 6 (color online). (a) Evolution of the scalar field (con-
tinuous lines) and of the minimum of the effective potential �min

(37) (dash-dotted lines) for different values of the coupling
constant k. For small values of the coupling constant, the scalar
field leaves �min quite early. The transition scale factor ~at where
the field leaves the potential increases with the coupling constant
k. For k ¼ 15, the scalar field is still in the minimum of
the effective potential at the present epoch. (b) Evolution of
the scalar field (continuous lines) and of the minimum of the
effective potential �min (37) (dash-dotted lines) for two models
with k ¼ 10 located in the local minima of the 
2 (see Fig. 2).
The evolution of the model located in the second minimum of
the 
2 located in the low ~�m0 minimum is very fast.
(c) Evolution of the transition scale factor ~at with the coupling
constant k.
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FIG. 5 (color online). Evolution of the three time scales char-
acterizing the field response time (40), the Hubble damping (38),
and the evolution of the effective potential (41) as a function of
the Jordan frame cosmic scale factor ~a for the same model as in
Fig. 4. We can see the intersection between t� and tdamp occurred

at the transition scale factor ~at that corresponds to the scale
factor where the field leaves the minimum of the potential (see
Fig. 4).
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related discussion], Fig. 7 represents also the evolution of
the acceleration factors for the two different minima for
k ¼ 10. The evolution of the model in the left-minimum
(with a small matter density parameter) is very fast and
reaches an asymptotic behavior with the quintessence
contribution being of the same order of magnitude as the
contribution from the nonminimal coupling. The matter
contribution tends to a very small value, which is logical
since the density parameter of this model is very small.

F. Dark-energy effective equation of state

Following what is usually done in quintessence studies
[28,32,35,38,39] and in the context of the abnormally
weighting energy hypothesis [40], we can model the pres-
ence of the nonminimally coupled scalar field by an effec-
tive fluid of dark energy in GR (parametrized by a density

parameter ~�DE and by the equation of state parameter
~!DE). In order to identify clearly the quintessence contri-
bution from the contribution coming from the nonminimal
coupling, we introduce two effective fluids in GR related to

the quintessence term (characterized by ~�Q and ~!Q) and

to the nonminimal coupling (characterized by ~�NMC and
~!NMC).

The observed Hubble constant is defined by (21). Using
relations (14b) and (14a), we can relate this Jordan frame
Hubble constant to the Einstein frame one:

~H ¼ 1

~a

d~a

d~t
¼ 1

Aa

dðAaÞ
Adt

¼ 1

A

�
H þ �ð�Þ d�

dt

�
: (46)

Inserting the evolutions equations (24) in Eq. (46) to the
square and matching the resulting expression with the
usual Friedmann equations in the Jordan frame

1 ¼ ~�m þ ~�r þ ~�Q þ ~�NMC; (47)

one identifies the expression of the observable density
parameters

~�Q ¼ 8�

3m2
pA

2ð�Þ ~H2

�
m2

p
_�2

2
þ Vð�Þ

�
; (48a)

~�NMC ¼ k
~H2A2ð�Þ

�
2
_a _�

a
þ k _�2

�
� (48b)
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FIG. 7 (color online). Representation of the different terms of
the acceleration factor for different coupling constants k. The
different terms ~qM for the matter contribution, ~qQ for the

quintessence contribution, and ~qNMC for the nonminimal cou-
pling contribution are given by Eq. (45). The first three curves
k ¼ 1, 10, 20 represent a model in the global minimum of the 
2

while the last curve k ¼ 10-left represents a model in the second
minimum (left) of the 
2 (see Fig. 2). For a model in the global
minimum of the 
2, the GR contribution is of the same order of
magnitude for different values of k; the quintessence potential
contribution decreases when the coupling constant increases to
leave room for the contribution coming from the nonminimal
coupling. The model in the low ~�m0 minimum of 
2 (left)
characterized by a lower value of the ~�m0 has a much faster
evolution.
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FIG. 8 (color online). (a–b) Evolution of the density parameter
~� corresponding to the quintessence contribution [ ~�Q given by

(50a) and represented by the dark (blue) lines] and to the non-
minimal coupling contribution [ ~�NMC given by (50b) and rep-
resented by the light (red) lines] different coupling constants:
(a) k ¼ 1 and k ¼ 20; (b) two models characterized by k ¼ 10
and in the different local minima of the 
2. (c) Evolution of the
equation of state parameter ~!DE as a function of the cosmic scale
factor for a best-fit model with different coupling constants and
for a model in the second minimum of the 
2 with k ¼ 10.
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The total parameter density is given by

~�DE ¼ ~�Q þ ~�NMC� (49)

Figures 8(a) and 8(b) represent the evolution of the differ-

ent density parameters ~� defined above for different cou-
pling constants k. The quintessence density parameter
decreases when k increases while the nonminimal coupling
density parameter increases with k. This is consistent with
the behavior of the acceleration factor ~q illustrated in
Fig. 7. For a high value of the coupling constant, the cosmic
acceleration is mainly explained by the nonminimal cou-
pling. The asymptotic behavior of the left-minimummodel

(low value of ~�m0) is also confirmed by Fig. 8(b).
Matching the acceleration equation (44) with the usual

GR acceleration

~q¼�
~�m

2
� ~�r�1

2
~�Qð1þ3 ~!QÞ�1

2
~�NMCð1þ3 ~!NMCÞ

gives the equations of state

~!Q ¼ m2
p
_�2=2� Vð�Þ

m2
p
_�2=2þ Vð�Þ ; (50a)

~!NMC ¼ 1

3

2 _a _�
a þ 2 @Veff

@� � k _�2

2 _a _�
a þ k _�2

(50b)

and the total equation of state is given by

~! DE ¼ ~!Q
~�Q þ ~!NMC

~�NMC

~�DE

� (51)

Figure 8(c) represents the evolution of the total equation of
state parameter ~!DE for different coupling constants k. All
models represented in this figure are statistically equivalent
to�CDM for the SNe Ia measurements. An increase of the
coupling constant produces a significative change in the
shape of the curves. In particular, the value of d ~!

d~a j0 can

become positive [this derivative is sometimes noted � ~!1

in a Chevallier-Polarski-Linder parametrization of the
equation of state parameter ~!ð~aÞ ¼ ~!0 þ ~!1ð1� ~aÞ
[41,42]]. In the quintessence scenario with the Ratra-
Peebles potential, the derivative of ~! is always negative
( ~!1 > 0) [43]. Therefore, a measurement of the value of
the derivative of the equation of state parameter should in
principle discriminate strongly nonminimally coupled DE
and uncoupled quintessence. Such a measurement will be
performed by the EUCLID mission recently selected by
the European Space Agency.

IV. SOLAR SYSTEM CONSTRAINTS

In this part, we will study the constraints on the parame-
ters characterizing self-interaction of the scalar field and on
the coupling between matter and the scalar field that can be
obtained from solar system experiments. The traditional

tensor-scalar (traditional in the sense where no potential is
considered or a chameleon mechanism is not playing any
role) is severely constrained by solar system and by binary
pulsar experiments. For example, deviations from general
relativity can be expressed in the PPN framework [1]. The
PPN parameters related to a traditional tensor-scalar theory
of gravity with an exponential coupling constant Að�Þ ¼
ek� are given by (see, e.g., [5])2

~�� 1 ¼ �2
k2

4�þ k2
; ~�� 1 ¼ 0� (52)

The present constraint on the ~� parameter is obtained from
the Shapiro measurement of the Cassini probe [7]:

~�� 1 ¼ ð2:1� 2:3Þ � 10�5� (53)

This constraint on ~� shows that the tensor-scalar theory of
gravity can be viable only for a very small linear coupling
parametrized by k. The main point of the chameleon fields
presented in Khoury and Weltman [8,9] is that this con-
straint can be evaded thanks to the chameleon mechanism.
If the potential of the scalar field is chosen so that its
effective mass becomes large in the presence of matter,
the coupling constant k is replaced by an effective coupling
constant keff that can be strongly reduced with respect to k.
The goal of this part of the paper is to study a simplified
model of the Sun and to derive constraints so that the
chameleon mechanism is strong enough to pass the PPN
test of gravity. Furthermore, we will compare the admis-
sible parameters region with the confidence region ob-
tained by a cosmological analysis in the previous section.
Let us summarize the innovative points of this publica-

tion for what concerns solar system physics. In the next
section, we study properties related to spherical static
solutions of field equations (6)–(9). The field equations
deriving from a Schwarzschild-like metric are written
out. These equations are similar to the ones found in [16]
but the problem of the boundary conditions is fully dis-
cussed in the light of the cosmological analysis from the
previous section. In Sec. IVB, we review the chameleon
mechanism presented in [8,9]. Section IVC is devoted to
the analysis of the analytical field profile derived in the
literature [8,14,15,18]. In particular, the hypothesis done to
obtain these analytical results is discussed and a compari-
son between the analytical results and the full numerical
resolution of the field equations is performed in order to
identify the validity regime of the analytical solution.
In Sec. IVD, we derive the post-Newtonian parameters

related to the solar system metric. Different PPN analyses
of the chameleon mechanism can be found in the literature

2Note that our scalar field� is related to the scalar field ’ used
by Damour and Esposito-Farèse by the relation � ¼ ’ffiffiffiffiffi

4�
p .

Therefore, our coupling constant k is related to their constant

� by k ¼ ffiffiffiffiffiffiffi
4�

p
� and the ~� parameter given by ~� ¼ 1��2

1þ�2

becomes ~� ¼ 4��k2

4�þk2
.
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[8,13,44]. Unfortunately, the present results are derived
using different gauges which can be misleading.
Therefore, we present a complete derivation of the post-
Newtonian parameters following the procedure described
in Damour and Esposito-Farèse [5] and we compare it to
current results. Finally, we combine the cosmological
analysis and the post-Newtonian analysis to derive con-
straints on the parameters of the theory. In particular, we
show that the considered model cannot explain cosmic
expansion and satisfy solar system constraints at the
same time.

A. Static spherical configuration

The metric characterizing a static spherically symmetric
space-time can be written in Schwarzschild coordinates (in
Einstein frame)

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2d�2� (54)

Replacing this expression of the metric in the field equa-
tions and using the definition of the stress-energy tensor
(11), we find the following equations:

�0 ¼ 8�

m2
p

rA4ð�Þe� ~�þ 4�r�2 þ 1� e�

r
þ 8�

m2
p

re�Vð�Þ;

(55a)

�0 ¼ 8�

m2
p

rA4ð�Þe� ~pþ 4�r�2 � 1� e�

r
� 8�

m2
p

re�Vð�Þ;

(55b)

�0 ¼ �; (55c)

�0 ¼ �
�
2

r
þ 1

2
ð�0 � �0Þ

�
�

þ A4ð�Þe�
m2

p

kð�Þð~�� 3~pÞ þ e�

m2
p

dV

d�
; (55d)

~p0 ¼ �ð~�þ ~pÞ
�
kð�Þ�þ �0

2

�
; (55e)

where a prime denotes here the derivative with respect to
the radial coordinate r. These equations extend the ones
derived by Damour and Esposito-Farèse [10] (where no
potential was considered) and are equivalent to the ones in
Babichev and Langlois [45]. This set of 5 equations with
6 unknowns needs to be completed by an equation of state.
In this communication, we consider a simple model of a
star/planet assuming the energy density is constant inside
the body (~�b). Outside the body, we consider a cosmologi-
cal background of baryonic gas and dark matter whose
constant density ~�1 is related to the cosmological density

parameter ~�m0 by the relation (23).
To understand the chameleon effect, it is useful to con-

sider Eq. (55d) in the nonrelativistic limit (ignoring the
backreaction of the scalar field and considering e� � 1)
and neglecting the pressure with respect to the energy
density:

d2�

dr2
þ 2

r

d�

dr
¼ dVeff

d�
; (56)

where the effective potential is exactly the one appearing in
the cosmological evolution (35). With a runaway potential,
this effective potential has a minimum given by �minð~�Þ.
In the case of a Ratra-Peebles potential, this minimum
is given by the expression (37). As already stated in
Sec. III D, the expression of the effective potential is differ-
ent from what is usually used in the chameleon literature
[2,8,9,11,14,15] because we use the always conserved
Jordan frame density ~� that is observable (we follow
what is done by Damour et al. [6,10,25] and by Babichev
and Langlois [16]) while most chameleon papers are using
a hybrid density for pressureless matter that is conserved in
the cosmological context ( ��) related to the Jordan frame or
to the Einstein frame density by a conformal factor as
indicated by the relation (25). This difference does not
change qualitatively the results obtained.
Five boundary conditions are needed to solve the prob-

lem given by Eq. (55) and the equation of state. Regularity
conditions at the origin of coordinates r ¼ 0 impose that

�ðr ¼ 0Þ ¼ 0; (57a)

�ðr ¼ 0Þ ¼ 0� (57b)

The matter pressure needs to vanish at the boundary of
the body considered r ¼ Rb, giving the supplementary
condition:

pðr ¼ RbÞ ¼ 0� (57c)

An additional condition on � is still needed, which corre-
sponds to fixing the time coordinate. This choice can be
arbitrary and does not change the result of the integration
since the equations depend only on �0. The last condition
concerns the scalar �. Following what is done in Khoury
and Weltman [8,9], in Babichev and Langlois [45], in
Tamaki and Tsujikawa [14], and in Tsujikawa et al. [15],
we suppose that the scalar field reaches the minimum of the
potential at a very large distance from the body:

�ðr ¼ 1Þ ¼ �min� (57d)

The validity of the assumption is questionable. Indeed, we
have seen in Sec. III D that the cosmological evolution
does not always produce a situation where the scalar field
stays in the minimum of the effective potential. In particu-
lar, for low values of the coupling constant (k below�15),
we have shown that this is not the case and the cosmologi-
cal value of the scalar field at the present epoch �0 is
different from the value minimizing the effective potential
(�min) as illustrated in Fig. 6. In Fig. 9 we represent the
ratio �1=�0 (with �1 being the value of the scalar field
minimizing the effective potential). It can be seen that for a
low value of the coupling constant this ratio is different
from 1 and the boundary conditions (57d) cannot be ful-
filled. To be completely consistent, one should solve the
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cosmological evolution of the structures in order to have an
idea of the field boundary conditions at the limit of the
solar system. This work is out of the scope of this paper.

The five equations in (55) with the considered equation
of state and with the five boundary conditions (57a) de-
scribed above form a boundary value problem (BVP). This
BVP has been solved numerically by using multigrid
methods.

B. The chameleon mechanism

As already stated in the previous section, in the non-
relativistic limit, the evolution of � is governed by the
effective potential Veffð�; ~�Þ which depends explicitly on
the local matter density. This potential is illustrated in
Fig. 10 where the dark (blue) line represents the effective
potential outside the body (the cosmological density ~�1 is
much smaller than the body density ~�b) and the red line

represents the potential inside a body (star or planet). The
minimum of the potential is noted �min and the mass of
small fluctuations around �min is obtained by evaluating
the second derivative of the potential

m2 ¼ @2Veff

@�2

���������¼�min

¼ 1

m2
p

�
d2Vð�minÞ

d�2
þ 4A4ð�minÞk2 ~�

�
� (58)

As can be seen in Fig. 10, a larger value of ~� corresponds to
a smaller value of �min and to a larger value of m (the
potential becomes more narrow). In other words, the
denser the environment, the more massive the chameleon.
In what follows, index b refers to the quantity evaluated at
the minimum of the effective potential inside the body and
1 refers to the quantity evaluated at the minimum of the
effective potential outside the body.
In the chameleon model, it is assumed that the scalar

field reaches its minimum far away from the body [�ðr ¼
1Þ ¼ �1] as we discussed around (57d). On the other
side, the field does not necessary reach its minimum inside
the body. Two regimes are possible:
(i) The field does effectively reach the minimum of the

potential inside the body [�ðr ¼ 0Þ � �b] and is
frozen in this minimum in a large part of the body.
This regime is called the thin-shell regime [8,9]
because the field evolves only in a small shell around
the body’s surface. If we note by Rb the body radius
and by Rr the radius where the field begins to move,
the condition to have a thin-shell regime is given by

�Rb

Rb

¼ Rb � Rr

Rb

< 1: (59)

Following Khoury and Weltman [8,9], we can write
this condition as follows:

�Rb

Rb

� " ¼ �1 ��b
3
4� k�b

< 1; (60)

where " is called the thin-shell parameter3 and�b is
the Newtonian potential at the body’s surface.

(ii) The field does not reach the minimum of the poten-
tial inside the body and the field is not frozen at all
inside the body. This regime is called the thick-shell
regime.

0.5 1.0 1.5 2.0 2.5 3.0
1

2

3

4 k � 1
k � 5
k � 10

FIG. 9 (color online). Ratio �minð~�1Þ=�0 between the value
of�minimizing the cosmological effective potential Veff and�0

the value of the field given by the cosmological evolution. The
different lines correspond to different values of the coupling
constant k and the filled areas represent different values of ~�m0.

V
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FIG. 10 (color online). Representation of the effective poten-
tial for a large and small value of the matter density ~�. This
illustrates that, as ~� decreases, the effective potential becomes
wider and the minimum shifts to a higher value. The effective
potential inside a body (star or planet) is represented by the light
(red) line and outside the body by the dark (blue) line.

3The definition of the thin-shell parameter " is different from
the definition given in Khoury and Weltman [8,9] because the
starting action is not the same. In particular, our scalar field � is

related to their scalar field �KW by the relation � ¼ �KW

mp
, and as

a consequence, our scalar coupling k is related to their scalar

coupling � by k ¼ ffiffiffiffiffiffiffi
8�

p
�. With these relations, the thin-shell

parameters defined in Khoury and Weltman [8,9] " ¼ �KW1��KWb

6�Mp�b

become �1��b

ð3=4�Þk�b
.

A. HEES AND A. FÜZFA PHYSICAL REVIEW D 85, 103005 (2012)

103005-14



Figure 11 shows qualitatively the difference between the
two regimes. In the thin-shell regime, the field is frozen
around �b inside the body while this minimum of the
effective potential is not reached in the thick-shell case.

C. Field profile and fine-tuning

The field profile �ðrÞ has been derived analytically by
Khoury andWeltman [8]. A more precise solution has been
derived by Waterhouse [18] and by Tamaki and Tsujikawa
[14]. They introduced a third regime: the no-shell regime
which essentially corresponds to the thin-shell regime in
the limit where the thin shell vanishes. These solutions
have been derived by considering a lot of hypotheses:

(i) The solution has been derived using a Minkowski
background space-time.

(ii) Outside the body, the derivative of the effective
potential is linearized.

(iii) In the thin-shell regime, inside the body the deriva-
tive of the effective potential is also linearized.

(iv) m1Rb � 1.
(v) The factor A4ð�Þ is always approximated to 1

(which means that k� � 1).

The validity of the preceding hypotheses has never been
checked afterwards by comparing the analytical solution
with the numerical solution of the full relativistic system of
Eq. (55). Finally, Tsujikawa et al. [15] derived the field
profile considering a perturbation coming from the gravi-
tational background.

The exterior solution derived with the previous hypothe-
sis is given by

�ðrÞ ¼ �1 � keff
4�

GMb

rc2
e�m1ðr�RbÞ; (61)

where keff depends on the thin-shell parameter ":

" ¼ �1 ��b
3
4� k�b

� (62)

Two regimes are identified depending on the value of ":
(i) If " < 1

2 þ 1
ðmbRbÞ2 . This case corresponds to the thin-

shell regime and the effective coupling constant is
given by

keff ¼ 3k

�
�Rb

Rb

þ 1

mbRb

�
�
�Rb

Rb

�
2 � 2

mbRb

�Rb

Rb

� 1

ðmbRbÞ2
�
� 3k"� (63a)

(ii) If " > 1
2 þ 1

ðmbRbÞ2 . This case corresponds to the

thick-shell regime and the effective coupling con-
stant is given by

keff ¼ k� (63b)

The analytical expression for the interior solution can be
found, for example, in Tamaki and Tsujikawa [14] but will
not be needed in our case sincewewill be only interested in
the exterior solution (which represents the solution around
the Sun).
Figure 12 represents a comparison between the analyti-

cal solution and the numerical solution of the full BVP
problem (55) for a situation corresponding to the Sun and

b

r rstar

Thin Shell

No Thin Shell

FIG. 11 (color online). Representation of the evolution of the
scalar field as a function of the radius coordinate in the two
regimes. Light (red) line: in the thin-shell regime, we see that the
field is frozen in the minimum of the potential inside the star.
Dark (blue) line: in the thick-shell regime, the field does not
reach the minimum of the effective potential inside the star.
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FIG. 12 (color online). Representation of the evolution of the
scalar field around the Sun for a model characterized by the
parameters: � ¼ 10�9 GeV, � ¼ 0:5, k ¼ 1, and ~�1 ¼
10�27 kg=m3. With these parameters, we obtain a thick shell
around the Sun. Top: comparison of the field profile around the
neighborhood of the Sun obtained numerically by solving the
full BVP problem (55) and by using the analytical solution.
Bottom: relative difference between the numerical solution and
the analytical approximation. One can see that the analytical
solution is very good far from the Sun but is less efficient in the
Sun.
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with a cosmological density of 10�27 kg=m3 for a model
giving a thick shell. We can see that the analytical solution
is very good far from the Sun but this agreement is less
good inside the Sun. This is mainly due to the fact that the
analytical solution is obtained by neglecting the A4ð�Þ
term in Eq. (55d). Since, for the determination of the
PPN parameters, we only need the outside solution, the
analysis of Fig. 12 shows that the analytical solution can be
used in the case of a thick shell.

The case of a thin-shell profile around the Sun is more
delicate to treat from a numerical point of view. Indeed, it
is no longer possible to solve numerically the full BVP.
This is mainly due to the fact that ~�b=~�1 � 1030 which
means that, in order to have a model exhibiting a thin-shell
profile, the effective mass of the scalar field inside the body
(mb) needs to be huge [as can be inferred from the relation
(83) of Tsujikawa et al. [15] ]. As a result of this huge
effective mass mb, variations of the scalar field inside the
body are extremely small and very often smaller than the
epsilon machine. This leads to problems very delicate to
treat numerically. The thin-shell profile obtained by solv-
ing the full BVP was obtained by Babichev and Langlois
[45] but in the case where the ratio of density was of the
order of 10�2 � 10�4.

Instead of solving the full BVP, which is very hard to do,
we treat a simplified BVP constituted of the scalar field
only. This means that we approximate the space-time
background by a Minkowski space-time (this is also one
of the hypotheses done in order to get the analytical
solution). In this case, the second order differential equa-
tion with boundary conditions [�0ðr ¼ 0Þ ¼ 0 and �ðr ¼
1Þ ¼ �1] is solved by a shooting method implemented
with a stiff integrator in quadruple precision. With this
method, it is possible to get a thin-shell profile around
the Sun.

Figure 13 represents a comparison between the analyti-
cal solution and the numerical solution of the simplified
BVP for a situation corresponding to a spherical sun and
with a cosmological density of 10�27 kg=m3 for a model
giving a thin shell. We can see that the analytical solution is
very good far from the sun but this agreement is less good
inside the sun. Once again, for the determination of the
PPN parameters, we only need the outside solution. The
analysis of Fig. 13 shows that the analytical solution can be
used in the case of a thin shell.

D. Post-Newtonian parameters

In order to constrain the parameters characterizing the
theory with solar system experiments, it is useful to derive
the post-Newtonian parameters. As indicated in relation
(52), the post-Newtonian parameters for a tensor-scalar
theory without potential are given by

~�� 1 ¼ �2
k2

4�þ k2
; ~�� 1 ¼ 0�

As shown in the previous section, when a potential is added
to the theory, the chameleon effect can reduce the coupling
constant k to an effective coupling constant keff as indi-
cated in (63a). Considering the chameleon theory as a
Brans-Dicke theory with an effective coupling constant
keff as was done in the original chameleon papers [8,9] is
not correct. Instead, one has to compute more carefully the
PPN parameters following the procedure described in
Damour and Esposito-Farèse [5]. This procedure is used
in Faulkner et al. [13] but they used a definition of the post-
Newtonian parameters in Schwarzschild coordinates
which can be misleading since the original PN parameters
are defined in standard post Newtonian gauge [1] where the
coordinates are isotropic. More precisely, the PN parame-
ters are defined with the Jordan frame metric in isotropic
coordinates as

d~s2 � �
�
1� 2

~G ~Mb

c2 ~

þ 2 ~�

� ~G ~Mb

c2 ~


�
2
�
d~t2

þ
�
1þ 2~�

~G ~Mb

c2 ~


�
ðd~
2 þ ~
2d ~�2Þ; (64)

where ~
 is the Jordan frame isotropic radial coordinate. In
this section, we consider a weak gravitational field and
therefore we use a post-Newtonian expansion. In this con-
text, the symbol � emphasizes the fact that the equality is
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FIG. 13 (color online). Representation of the evolution of the
scalar field around the Sun for a model characterized by the
parameters � ¼ 10�2 GeV, � ¼ 3:3, k ¼ 1, and ~�1 ¼
10�27 kg=m3. With these parameters, we obtain a thin shell
around the Sun. Top: comparison of the field profile around
the neighborhood of the Sun obtained numerically by solving the
BVP problem related to the scalar field and by using
the analytical solution. Bottom: relative difference between the
numerical solution and the analytical approximation. One can
see that the analytical solution is very good far from the Sun but
is less efficient in the Sun.
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valid only to first post-Newtonian order. Instead of using
isotropic coordinates, one can perform the transformation
to express the space-time metric in Schwarzschild coordi-
nates (this transformation for constant PN parameters is
derived in [46]) using the transformation

~r � ~


�
1þ �

~G ~Mb

c2 ~


�
� (65)

A simple calculation gives

d~s2 � �
�
1� 2

~G ~Mb

c2~r
þ 2ð ~�� ~�Þ

� ~G ~Mb

c2~r

�
2
�
d~t2

þ
�
1þ 2~�

~G ~Mb

c2~r
� 2~�0 ~G ~Mb

c2

�
d~r2 þ ~r2d ~�2; (66)

where ~�0 ¼ d~�=d~r is the derivative of the PN parameter ~�
with respect to the Schwarzschild radial coordinates. This
simple calculation shows that when we are dealing with
space-time dependent PN parameters, we have to be very
careful with the gauge in which the PN parameters are
defined since its spatial derivative can appear. For example,
in Faulkner et al. [13], they used Schwarzschild coordi-
nates to identify a space dependent ~� but without any term
related to ~�0. This means that the expression they derive
will differ from the one defined in isotropic coordinates
which is the definition of ~� given in Will [1].

In the following, we will follow the procedure described
in Damour and Esposito-Farèse [5], being very careful to
the gauge used. Hereafter, 
 will refer to the isotropic
radial coordinate and r to the Schwarzschild radial coor-
dinate and the~always refers to Jordan frame quantities. We
start from the spherically symmetric metric in the Einstein
frame in the weak field limit (in isotropic coordinates):

ds2 � �
�
1� 2

Mb

m2
p


þ 2

�
Mb

m2
p


�
2
�
dt2

þ
�
1þ 2

Mb

m2
p


�
ðd
2 þ 
2d�2Þ: (67)

Then, we can perform the conformal transformation to
derive the Jordan frame metric

d~s2 ¼ A2ð�Þds2� (68)

To transform the last expression into the form (64), we use
the field profile (61) as a function of the Schwarzschild
radial coordinates and the transformation between
Schwarzschild and isotropic coordinates (r � 
þ
Mb=m

2
p) to express the field profile as function of 
.

Finally, using the expansion A2ð�Þ ¼ A2ð�1Þe2kð���1Þ ¼
A21ð1þ 2kð���1Þ þ 2k2ð���1Þ2Þ and the relations
between Jordan and Einstein frame quantities [5] [~x� ¼
Að�1Þx� ¼ A1x� andmb ¼ A1 ~mb], we obtain the metric
(64) with

~G ¼ Að�1Þ2
m2

p

�
1þ kkeff

4�

�
e�m1ð
�
bÞ; (69a)

~� ¼ 4�� kkeffe
�m1ð
�
bÞ

4�þ kkeffe
�m1ð
�
bÞ ; (69b)

~� ¼ 0� (69c)

In practice, m1 is tiny and the exponential decay can be
neglected leading to the expression

~� ¼ 4�� kkeff
4�þ kkeff

: (70)

This approach gives the PN parameters as defined by Will
[1] and avoids any confusion due to the choice of coordi-
nates to define the ~� parameter. However, in a lot of papers
[2,13,44] this derivation is done using Schwarzschild co-
ordinates without the term linked to the derivative ~�0. For
this reason, we expect differences in the expression of the
PN parameter ~� due to the difference of gauge used. This
difference is present in relation (5.50) of de Felice and
Tsujikawa [2] where an additional term is present in the
denominator of ~�. Nevertheless in [13,44] m1 is supposed
to be very small and they neglect terms that are in fact
closely related to the ~�0 contribution and they find a result
similar to (70) (with some differences due to the choice of
the starting action, see footnote 2). Finally considering the
theory equivalent to Brans-Dicke (which is done in Khoury
and Weltman [8,9]) with a coupling constant keff leads
to a ~� ¼ ð4�� k2effÞ=ð4�þ k2effÞ which is quite different

from expression (70) and which leads to a misevaluation of
the PN parameters.
The thin-shell effect has the property to hide the devia-

tions from GR on solar system scales. Indeed, in the case of
a thin-shell profile, the deviation from GR is quantified by
the quantity

~�� 1 ¼ �2
kkeff

4�þ kkeff
� �6

"k2

4�þ 3"k2
� (71)

This shows that big values of the coupling constant k can
be compatible with solar system experiments such as the
measurement of the Shapiro delay by Cassini (53) if the
thin-shell parameter " is small enough while big values of
k are completely excluded in Brans-Dicke theory. Using
(62), the last expression becomes

~�� 1 ¼ �2
kð�1 ��bÞ

�b þ kð�1 ��bÞ � (72)

It is possible to push the analytical development further
by considering that �1 	 �b [which is justified since

it is shown in Tsujikawa et al. [15] that �1=�b ¼
ð~�b=~�1Þ1=ð�þ1Þ � 1030=ð�þ1Þ if we use the cosmological
and the Sun density]. Isolating k�1 from the last relation

k�1 ¼ � �bð~�� 1Þ
2þ ð~�� 1Þ ; (73)
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and using the Cassini constraint (53) and the value of the
Newton potential at Sun radius �b ¼ 2:12� 10�6, we get
a boundary value k�1 
 2:12� 10�12. The value of�1 is
given by the value of the field minimizing the effective
potential Veff and is given by relation (37). For a very low
value of�1 (which is the case here), we can use the Taylor
expansion of the W-Lambert function WLðxÞ � x and we
find the constraint

k

�
��4þ�

m�
pk~�1

�
1=ð�þ1Þ 
 2:12� 10�12� (74)

Let us summarize the discussion about post-Newtonian
parameters. The ~� post-Newtonian parameters have been
computed with great care of the gauge used. The ~� PN
parameter is given by expression (70) where keff depends
on the thin-shell parameters ". If " > 1

2 þ 1
ðmbRbÞ2 , we have a

thick shell and the theory is equivalent to Brans-Dicke and
the Cassini constraint gives the usual constraint on the
coupling constant k2 
 10�4. If " < 1

2 þ 1
ðmbRbÞ2 , we have

a thin shell and the Cassini constraint is given by the
constraint (74).

For the models within the 95% confidence region of the
supernovae Ia likelihood analysis (see Sec. III C), we com-
pute the thin-shell parameter " given by relation (62).
Figure 14 shows the evolution of " for the model consid-
ered in Sec. III C. We can see that all these models present
a huge value of the thin-shell parameter. This means that no
thin-shell mechanism is playing any role for all these
models and they are all equivalent to Brans-Dicke theory.
Therefore, for models explaining cosmic acceleration, no
chameleon effect is present on the solar system scale. Since
the theory is equivalent to Brans-Dicke, the constraint on ~�
gives k2 < 10�4.

Another way to see the incompatibility between cosmo-
logical observations and solar system observations is to
take the ð�;�Þ plane already presented on Fig. 3. With
relations (70) and (63a), it is possible to compute the ~�

post-Newtonian parameters for different models character-
ized by the three parameters �; �, and k (considering a
cosmological observed matter density of 10�27 kg=m3).
Figure 15 represents the area in the parameter space
ð�;�Þ that is compatible with the ~� constraint (53) for
different values of the coupling constant. Several remarks
need to be made. First of all, we see that high coupling
constants are not completely rejected by solar system ex-
periments. For example, k ¼ 1 or k ¼ 104 is completely
rejected by considering massless tensor-scalar theory while
it can be seen that these coupling constants can be admis-
sible with respect to a post-Newtonian test of gravity in a
certain domain of the space parameters ð�;�Þ. In particu-
lar, for low values of � and high values of �, the chame-
leon effect is strong enough to reduce the scalar charge keff
so that the ~� parameter (70) satisfies the Cassini constraint.
This was the breakthrough of the original papers [8,9].
Nevertheless, we can see in Fig. 15 that it is not possible
to explain cosmic acceleration and to pass the solar system
experiments at the same time (at the exception of the small
coupling constants k, which is also the case for Brans-
Dicke theory). Indeed, there is no intersection between the
curves representing the relation between � and � imposed
by the cosmological observations and the domain allowed
by the PPN constraints.
In the calculation of the PPN parameters in Fig. 15, the

density at infinity of the solar system is assumed to be the
cosmological density [~�ðr ¼ 1Þ ¼ ~�0]. This situation is a
simplified situation. In reality, the situation is much more
complex since the solar system is not plunged into a
cosmological fluid but is a part of a galaxy which itself is
a part of a galaxy cluster and so on. As a consequence,
the scalar field will have an evolution at all the different
scales from solar system scales to cosmological scales
(passing by the galactic scale and the galaxy cluster scale
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FIG. 14 (color online). Representation of the thin-shell pa-
rameters ". The different lines represent different values of the
coupling constant and the filled areas represent different values
of � between 0.5 and 3.
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FIG. 15 (color online). Representation of couples ð�;�Þ ad-
missible with the Cassini constraint (53) for different values of
the coupling constant k and representation of the couples ð�;�Þ
needed to explain cosmological observations. The density at
infinity of the solar system ~�ðr ¼ 1Þ ¼ 10�27 kg=m3 which
corresponds to the cosmological matter density.

A. HEES AND A. FÜZFA PHYSICAL REVIEW D 85, 103005 (2012)

103005-18



and so on). All this modeling is quite complex and beyond
the scope of this paper. Nevertheless to have some intu-
ition, we compute the PPN parameter by assuming that the
density at infinity of the solar system is given by the
galactic density at a distance from the solar system. We
assume a galactic density of ~�gal � 10�21 kg=m3 at solar

system distance from the galactic center. Figure 16 repre-
sents the admissible domain in the ð�;�Þ plane supposing
that the density at infinity is given by the galactic density
~�ðr ¼ 1Þ ¼ ~�gal. We can see that the situation is better

than considering the cosmological density. The area of the
region satisfying the PPN constraint is bigger but there is
still no intersection between the cosmological relation and
the solar system constraint.

The result of this analysis is that, on solar system scales,
the chameleon effect can allow high coupling constants k
that are normally excluded by Brans-Dicke analysis on the
condition that parameters � and � are in the admissible
domain (which means for high � and small �). But we
have shown that there is no intersection between models
explaining cosmological expansion and models authorized
by solar system experiments.

V. CONCLUSION

In this paper we have studied massive tensor-scalar
theories at two different scales: on cosmological scales
and on solar system scales. We have presented combined
constraints of the so-called chameleon field introduced by
Khoury andWeltman [8,9]. In this communication we have
only focused on the original model which is characterized
by an exponential coupling function Að�Þ ¼ ek� and on a
Ratra-Peebles [20] runaway potential. We have also de-
rived an unambiguous definition of observables like lumi-
nous distance and the ~� post-Newtonian parameter, leading
to different predictions than in literature.

On cosmological scales, we have derived the cosmologi-
cal equations of evolution by using the Jordan frame
density parameter as a source term in the Einstein equa-
tions. Using the latest supernovae Ia data [30], we have
derived confidence regions for the coupling constant k, for
the parameters characterizing the potential, and for the

cosmological matter density today ~�m0. Considering mod-
els within this confidence region, we have derived a rela-
tionship between the two parameters characterizing the
Ratra-Peebles potential. The relationship found (33) is
exactly the same as the one obtained in the quintessence
model (characterized by a vanishing coupling constant
k ¼ 0) [32]. A detailed analysis of the cosmological evo-
lution has been presented. In particular, the contribution of
the scalar field has been parametrized by an effective fluid
of dark energy in GR. We have presented the evolution of
the effective equation of state parameter ~!DE and we have
shown that the derivative of this parameter can become
positive which can lead to a test to distinguish tensor-scalar
theories from quintessence scenarios. Moreover, we have
shown that for high coupling constants the cosmic accel-
eration is mainly produced by the nonminimal coupling
and not by the scalar self-interaction. Finally, we identified
two dynamical regimes that can explain the cosmic accel-
eration. This two regimes are characterized by two minima
in the 
2 curves as shown in Fig. 2.
In the second part of the article, we have studied the

solar system configuration modeled by a spherical and
static central body (the Sun). We have computed numeri-
cally the field profile solving the full boundary value
problem composed by the Einstein field equations and
we have compared these numerical simulations to analyti-
cal solutions that can be found in the chameleon literature.
In particular, we have shown that the analytical solutions
are very good outside the central body but are not com-
pletely satisfactory inside the body. These simulations have
confirmed that the thin-shell mechanism can appear in the
surrounding of the Sun. Using an analytical expression
outside the central body, we have derived the post-
Newtonian parameters. In this derivation we have taken
great care for the gauge used to define PN parameters,
comparing our approach with existing expressions in cha-
meleon literature. In the case of a thin-shell situation we
have confirmed that the scalar charge of the central body
can drastically be reduced by the relation keff ¼ 3"kwhere
" is the thin-shell parameter. Contrary to what is claimed in
Khoury and Weltman [8,9], we have shown that the theory
is not equivalent to Brans-Dicke theory with an effective
coupling constant keff . As a consequence, the ~� constraint
is different from what was derived in the original chame-
leon papers. Nevertheless, we have confirmed that in the
case of a thin-shell situation, the reduction of the scalar
charge implies a reduction of the deviation of the post-
Newtonian parameter ~� from its GR value. This confirms
the fact that high values of the coupling constant k can
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FIG. 16 (color online). Representation of couples ð�;�Þ ad-
missible with the Cassini constraint (53) for different values of
the coupling constant k and representation of the couples ð�;�Þ
needed to explain cosmological observations. The density at
infinity of the solar system ~�ðr ¼ 1Þ ¼ 10�21 kg=m3 which
roughly corresponds to the galactic matter density.
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eventually pass solar system constraints while these cou-
pling constants were previously excluded by considering
traditional tensor-scalar theories.

For models within the 2 cosmological confidence re-
gion we have computed the thin-shell parameters " and we
have found that this parameter is always very huge com-
pared to the unity (" 	 1). This means that no thin-shell
effect can be invoked on solar system scales for models
fitting supernovae Ia data and as a consequence no reduc-
tion of the scalar charge can be observed. The theory is
therefore equivalent to Brans-Dicke and the post-
Newtonian constraint implies that only small coupling
constants are admissible. Another presentation of the com-
bined constraints has been presented in the form of an
admissible region in the ð�;�Þ plane (where � and � are
the parameters characterizing the Ratra-Peebles potential).
In this plane, we have shown that there is no intersection
between the cosmological admissible domain and solar
system admissible domain.

The main conclusion of this work is that the chameleon
field (if one considers the initial model by Khoury and
Weltman [8,9]) cannot explain cosmological accelerated
expansion and pass solar system constraints at the same
time. On one hand, we have shown that there are models

fitting supernovae Ia data relying more on nonminimal
coupling than on self-interaction potential. On the other
hand, there are models satisfying solar system constraints
even for a high coupling constant (which are rejected if
no chameleon mechanism is present). But there are no
models satisfying both conditions. We emphasize that this
conclusion is only valid for an exponential coupling
constant and for a Ratra-Peebles potential. It would be
interesting in a future work to study other types of po-
tential (like the SUGRA model [47]) and other types of
coupling function [like the Gaussian coupling constant

Að�Þ ¼ ek�
2=2] which can eventually lead to a different

conclusion.
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