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Electromagnetic (EM) follow-up observations of gravitational wave events will help shed light on the

nature of the sources, and more can be learned if the EM follow-ups can start as soon as the gravitational

wave event becomes observable. In this paper, we propose a computationally efficient time-domain

algorithm capable of detecting inspiral gravitational waves from coalescing binaries of compact objects

with nearly no further delay in addition to the time required to condition the data into a time series of

calibrated gravitational-wave strain. Our algorithm, if can be expanded to include sky localization, will

serve as the first step towards triggering EM observation before the merger. The key to the efficiency of

our algorithm arises from the use of chains of so-called infinite impulse response filters, which filter time-

series data recursively. Computational cost is further reduced by a template interpolation technique that

requires filtering only done for a ‘‘coarse bank’’, much sparser than the ‘‘fine bank’’ normally required to

sufficiently recover the optimal signal-to-noise ratio: the filter chain of each coarse-bank template is

divided into several sections, filtering output from these sections are combined appropriately to

reconstruct the output of each of the nearby fine-bank templates. The filter construction and interpolation

techniques are illustrated in this paper using Newtonian-chirp waveforms, although these will be

generalizable to more accurate post-Newtonian waveforms. Towards future detectors with sensitivity

extending to lower frequencies, our algorithm’s computational cost is shown to increase rather insignif-

icantly compared to the conventional time-domain correlation method using finite impulse response

filters.
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I. INTRODUCTION

Coalescences of neutron-star (NS) binaries are primary
sources for ground-based gravitational-wave detectors. It
has been estimated that Advanced LIGO may be able to
detect 10 to 100 such events per year [1,2]. The mergers of
neutron-star binaries are also possible progenitors of short
hard �-ray bursts. Although these bursts are believed to be
mostly beamed away from us, the prompt emission and
afterglow they induce in X-ray, optical, infrared and radio
frequency bands may well be less beamed, and therefore be
visible to us [3,4]. If a statistically significant gravitational-
wave trigger can be obtained before or right after such a
coalescence, electromagnetic (especially optical) observa-
tories can then be alerted to search for possible prompt and
afterglow emissions—such follow-up observations are
likely able to resolve whether these mergers are indeed
the progenitors of short hard �-ray bursts, and provide
further knowledge about the nature of these events.

Currently, neutron star-neutron star coalescence signals
are being searched for in gravitational-wave data using the

matched filtering technique [5,6], which calculates the
correlation of data with theoretical templates weighted
by noise. In order to reduce the computational cost, current
search pipelines use a frequency-domain method, which
gathers a long stretch of time-series data containing N
points (the duration of which should be longer than the
longest possible signal), then uses a fast-Fourier-transform
(FFT) algorithm to search for all possible signals that end
within this stretch of data, with a cost of OðN logNÞ, as
opposed to theOðN2Þ required by a one-by-one search over
merger time. Such a trick, although efficient, implies that
we cannot start analyzing the data until the collection
finishes.
Unless significant changes from current frequency-

domain analysis method are made, the latency caused by
data collection will compromise our ability to obtain a
trigger with the shortest possible delay after the merger,
and will totally prevent us from obtaining the trigger before
the merger. At least two efforts are underway to suppress
latencies for coalescence signals, the multi-band template
analysis (MBTA) [7] and the Low-Latency Online Inspiral
Detector (LLOID) [8]. MBTA is a two-band frequency-
domain search method while LLOID provides an infra-
structure that accommodates either time or frequency
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domain searches. The time-domain aspect of the LLOID
pipeline based on finite-impulse-response (FIR) filters [9]
is described in [8]. Note for a different search of short
gravitational waves of unknown waveforms, a program has
been set up to analyze available detector data in near
real-time and seek for optical counterpart of candidate
events [10].

In this paper, we propose a straightforward and efficient
time-domain search algorithm, which allows zero and even
negative latency (i.e., obtaining trigger before the merger if
the signal-to-noise ratio (SNR) condition and other con-
sistency conditions are met) in the most natural way.
Admittedly, without the savings made available by FFT,
the computational cost of a straightforward implementa-
tion using FIR filters can be formidable. In the correlation
calculation, each template contains a large number of wave
cycles, and there exists a large number of templates—and
both these numbers increase dramatically with the low-
ering of the minimum frequency cutoff fmin (Table I). This
poses serious computational challenge for detecting gravi-
tational waves (GWs) from compact object coalescence for
future gravitational wave (GW) detectors.

We propose two techniques that can dramatically in-
crease the computational efficiency for time-domain
searches of the inspiral part of GWs from coalescing
binaries of compact objects in real-time, and make it
feasible for future detectors with frequency cutoffs at as
low as fmin ¼ 3 Hz. The first technique uses the well-
known infinite impulse response, or IIR filters [9], which
can be computed with much higher efficiency than FIR
filters. We propose to filter the data using a bank of IIR
filters, the sum of which approximates each individual
binary coalescence waveform template. The second tech-
nique reduces the number of templates by an interpolation
technique that applies to the proposed IIR filter method. In
this approach, we first divide the bank of IIR filters asso-
ciated with each template into subgroups, and then recon-
struct the filter outputs of a fine template bank by
recombining the filter outputs from each of these sub-
groups with appropriate complex coefficients and time

delays. This is similar to the generic multiband interpola-
tion scheme used in MBTA and LLOID [7,11,12].
Several conventions are used in this paper. The term

latency refers generally to the delay from the time when a
signal arrives at the detector to the time the data containing
the signal actually starts to be analyzed. We specifically
focus on the delay starting from the time when the data are
ready to be analyzed. One example of the latency is the
delay due to data accumulation before a fast Fourier trans-
formation (can be performed. The term real-time process-
ing means that data points or data segments are processed
(with outputs generated) at a rate that is equal to their input
rate. floating point operation is abbreviated as FLOP (plu-
ral FLOPs). FLOPS and flops are used interchangeably to
stand for floating point operations per second. Throughout
this paper, we follow the convention of counting each real
addition and real multiplication equally as one FLOP.
This paper is structured as follows. In Sec. II, we briefly

review the basics of matched filtering technique and
introduce time-domain IIR filters. In Sec. III, we use
Newtonian-order templates as an example to construct
IIR filters, characterize the error involved and calculate
the computational cost for each individual template. In
Sec. IV, we present an interpolation technique that allows
us to use a significantly decreased number of templates for
which filter chains must be implemented. In Sec. V, we
make a simple comparison between the computational
cost of IIR filtering and the straightforward frequency-
domain algorithm. In Sec. VI, we summarize our main
conclusions.

II. MATCHED FILTERING TECHNIQUE

The optimal technique to extract a signal from noisy data
when we have reliable theoretical predictions for the signal
waveform is to use matched filtering [5,6]. The output of
the matched filtering technique is basically the correlation
of data with expected waveforms weighted by noise. This
can be realized in the frequency or time domain. We will
give a brief overview of the matched filtering technique,
and introduce its frequency-domain implementation and its
time-domain approach using the FIR and IIR filters.

A. Frequency-domain implementation

1. Single template

Suppose the output of the interferometer h is a sum of
noise n and, if exists, a signal s:

h ¼ nþ s: (1)

For the moment, let us assume that s is a single known
waveform. In Eq. (1), we have intentionally left out the
arguments of the functions h, n, and s, which reflects the
point of view that each of them can be equivalently repre-
sented both in the time and frequency domain. More
specifically, we use the following convention for Fourier

TABLE I. Basic information for the detection of Newtonian
chirp signals by initial, Advanced LIGO and Einstein Telescope
(labeled as iLIGO, aLIGO, and ET, respectively). The columns,
from left to right list the names for present and future detectors,
the minimum frequency of the detector, signal duration and
number of wave cycles for a ð1:4þ 1:4ÞM� NS-NS binary
(see Sec. III A), as well as the number of templates required in
order to achieve a match of 0.98 for binaries with individual
mass of 1–3M� [computed from the metric Eq. (60)].

Detector fminðHzÞ duration (s) Ncyc N 0:98

iLIGO 40 25 1:6� 103 1:7� 103

aLIGO 10 1:0� 103 1:6� 104 6:6� 103

ET 3 2:5� 104 1:2� 105 2:9� 104
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transform, which relates hðtÞ and ~hðfÞ (we shall use a tilde
to emphasize a frequency-domain representation):

~hðfÞ �
Z 1

�1
dtei2�fthðtÞ: (2)

The power spectral density of nðtÞ is denoted by ShðfÞ,
which is defined by

E½~nðfÞ~n�ðf0Þ� ¼ 1
2�ðf� f0ÞShðfÞ: (3)

Here we use one-sided spectral density, E½� denotes the
expectation value over an ensemble of realizations of the
noise and ‘‘�’’ denotes complex conjugation. ShðfÞ ¼
ShðjfjÞ as the noise in the time domain nðtÞ is real.

In order to extract s from h, we perform filtering, which
consists of taking the inner product between data h and
template u, forming a filter output of y:

y ¼ hhjui ¼ hsjui þ hnjui: (4)

Here we define inner product as

hajbi � 2
Z þ1

�1
df

~a�ðfÞ~bðfÞ
ShðfÞ : (5)

If both aðtÞ and bðtÞ are real valued, this can be further
simplified into

hajbi�4Re
Z þ1

0
df

~a�ðfÞ~bðfÞ
ShðfÞ ; aðtÞ;bðtÞ2R: (6)

In y, we have a signal component hsjui and a noise
component hnjui which fluctuates around zero. If s has a
substantially high amplitude and if the template u is ap-
propriate, the signal component hsjui in y will raise to a
high value that merely random fluctuation of hnjui is very
unlikely to account for. As a consequence, we can impose a
threshold on y—an incidence with y higher than the thresh-
old is viewed as a detection of a signal. The detection
efficiency depends on the SNR defined generally as

� ¼ yðn ¼ 0Þ � E½yðs ¼ 0Þ�
�yðs¼0Þ

; (7)

where �yðs¼0Þ is the standard deviation of the filter output

when data contain noise only. Assuming zero-mean
Gaussian noise, we have for Eq. (4)

� � hsjuiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jhnjuij2�p : (8)

Note that the SNR does not depend on the normalization of
the template u, and it is conventional to require that
hujui ¼ 1. In this case, the cross correlation of a template
with pure noise hnjui is a random variable with zero mean
and unity variance. It can be shown that E½hajnihnjbi� ¼
hajbi. So we have

� ¼ hsjui: (9)

According to the Cauchy-Schwarz inequality,

� ¼ hsjuiffiffiffiffiffiffiffiffiffiffihsjsip ffiffiffiffiffiffiffiffiffiffi
hsjsi

q
�

ffiffiffiffiffiffiffiffiffiffi
hsjsi

q
; (10)

where the equal sign takes place when u ¼ �s where � is a

constant, and normalization of u gives � ¼ 1=
ffiffiffiffiffiffiffiffiffiffihsjsip

. This
means the optimal SNR is given by the modulus of the
signal, hsjsi, and the reduction of SNR due to imperfect-
ness of template is given by the match, which is also equal
to unity minus mismatch, ":

hsjuiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihujuihsjsip � 1� ": (11)

2. Intrinsic and extrinsic parameters

In reality, templates are not necessarily placed along
each parameter dimension. The maximization of SNR
over certain parameters can be conducted analytically
and therefore no templates are needed. These parameters
are called extrinsic parameters, while those that still have
to be searched over one by one are called intrinsic
parameters.
For example, for any template

~uðfÞ ¼ ~u0ðfÞe2�iftcþi�c ; f > 0; (12)

which is constructed from u0ðtÞ by a time shift tc and a
phase shift �c, the SNR, for a target h is given by

� ¼ 4Re
Z þ1

0

~h�ðfÞ~u0ðfÞ
ShðfÞ ei2�ftcþi�cdf: (13)

Optimization over �c can be carried out instantly without
having to search over all possible values of �c, giving

max
�c

� ¼ 4

��������
Z þ1

0

~h�ðfÞ~u0ðfÞ
ShðfÞ ei2�ftcdf

��������: (14)

This makes �c an extrinsic parameter. Further optimiza-
tion over all tc can be done by first computing all values
of max�c

� using a fast Fourier transform, which cost

OðN logNÞ FLOPs in the discretized case where N is the
number of data points in the time domain. This is much
faster than computing the correlation for all possible
ending times, one by one, which cost OðN2Þ operation
counts—and in this way ending time tc is converted into
an extrinsic parameters. The method of Fourier transfor-
mation will be discussed in detail in Sec. VB.

B. Time-domain approach: FIR and IIR method

For the time-domain filtering we need to obtain a time
series of SNRs as a function of presumed signal arrival
time t
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�ðtÞ ¼ 2
Z 1

�1

~h�ðfÞ~uðfÞ
ShðfÞ eþi2�ftdf

¼
Z þ1

�1
wðt0Þuðt0 � tÞdt0; (15)

with

wðtÞ � 2
Z 1

�1
df

~hðfÞ
ShðfÞ e

�i2�ft; (16)

which can be thought of as ‘‘over-whitened data’’; it is a
real-valued function of time. Note that in order to generate
the over-whitened data, we need to convolve hðtÞ with the
inverse Fourier transform of 1=ShðfÞ, which is a time-
symmetric, oscillatory function that decays towards zero
when t is much larger than the inverse of the interferome-
ter’s bandwidth (* 100 Hz), which is about* 10 ms. This
means the over-whitening process has an inherent latency
not much larger than 10 ms, which is negligible compared
to the duration of the signal. Note that we have intention-
ally not used the real-valued definition (6) for inner prod-
uct, because we would like to keep the possibility of using
complex-valued templates.

We now discretize the filtering algorithm. The discrete
form of Eq. (15) becomes

�k ¼
Xk

j¼�1
wjuj�k�t: (17)

Here we assume tk ¼ k�t, and that u only have support
within t � 0. While in principle the waveform uk could
have an infinite support in time,�1< k�t < 0. However,
the waveform uðtÞ is always assumed to begin only after its
amplitude reaches sensitivity within the LIGO band. Hence
we instead define the waveform to exist on the domain
�N�t � t � 0, and Eq. (17) becomes

�k ¼
Xk

j¼k�N

wjuj�k�t: (18)

This summation of the product of data and template at each
step turns out to be the general form of finite impulse
response filters. The term finite comes from the fact that
the output �k of the filter (its response) will become exactly
zero after N time steps have passed since a single initial
impulse in the data. For example, if we assume w0 ¼ 1,
wk ¼ 0 for k � 0, then �k will vanish for k > N. As seen
from Eq. (18), each �k costs N multiplications and N
additions to calculate. This translates into a computational
cost, in terms of FLOPs per unit time, of �N=�t.

For certain types of waveforms, IIR filters can be used to
dramatically reduce computational cost. The simplest IIR
filter is a first-order recursive algorithm, in which the k-th
output yk is a linear combination of the (k� 1)-th output,
yk�1 and the k-th data, wk:

yk ¼ e�ð��i�Þ�tyk�1 þ wk�t; (19)

where �,� are real-valued constants with � > 0 to ensure
stable solutions. It can be shown that, e.g., by using tools of
Z transform [13], as long as wk does not diverge towards
k ! �1, then even if the recursion starts at a finite time
step, after an initial transient of several times 1=�, the
output of the filter achieves a steady state of

yk ¼
Xk

j¼�1
wje

ð��i�Þðj�kÞ�t�t: (20)

Note this is the discretized version of the continuous
integration

yðtÞ ¼
Z 1

�1
wðt0Þeð��i�Þðt0�tÞ�ðt� t0Þdt0: (21)

Note first that Eq. (20) indeed gives an infinite impulse
response, because for a data series containing only one
impulse, w0 ¼ 1 and wk ¼ 0 (k � 0), the output of the
filter, even at very late time steps, never vanishes. More
over, by comparing this with Eq. (15), the IIR filter can be
viewed as a template of a ‘‘damped’’ (looking back in time)
sinusoid:

uðtÞ ¼ eð�þi�Þt�ð�tÞ; (22)

where �ðtÞ is the Heaviside function

�ðtÞ ¼
�
0; t < 0;

1; t 	 0:
(23)

The IIR filter described above requires only one complex
multiplication and one summation per sampling time,
which means the computational cost is �1=�t.
For a simple proof of concept on the computational

efficiency of the IIR over the FIR filtering technique, we
examine the case when we do need to filter for a damped
sinusoid signal with frequency � and decay rate �. The
data to be filtered has a duration of at least on the order of
1=�. The Nyquist sampling theorem limits the sampling
interval to be at most �1=�, meaning that the FIR tem-
plate would have the number of data points several times
larger than �=�. Subsequently the computational cost of
the FIR in FLOPs per unit time is larger than�2=�. An IIR
filter, on the other hand, only has a cost of�, which means
the cost of IIR filter is �=�� 1=Q times that of FIR filter,
where Q � �=� is the quality factor of the damped sinu-
soid. As a consequence, if we can convert our waveforms
into a sum of a series of high-Q damped sinusoids, IIR
filters can be used over the FIR to dramatically reduce the
computational cost.

III. CONSTRUCTION OF IIR FILTERS FOR AN
INDIVIDUAL INSPIRALWAVEFORM

The simple IIR filter discussed in the previous
section has the special waveform of a damped sinusoid
[cf. Eq. (22)]. In this section, we will show that a chain of
IIR filters can be used to ‘‘piece together’’ the waveforms
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of compact binary coalescence. This is possible because
these waveforms are basically sinusoids with slowly vary-
ing amplitude and frequency. For simplicity, in this paper,
we will restrict ourselves to Newtonian chirps.

A. The Newtonian chirp waveform

The Newtonian chirp is the leading-order waveform
from a compact coalescing binary. In the time domain it
can be written as the real part of the complex expression
(see, e.g., [6], Sec. III C),

uðtÞ / ðtc � tÞ�ð1=4Þe�i2ð5McÞ�ð5=8Þðtc�tÞ5=8þi�c � AðtÞei�ðtÞ;
(24)

where we follow the convention of the geometrized units
with gravitational constant G ¼ 1 and the speed of light
c ¼ 1, Mc is the chirp mass of the binary

Mc ¼ M�3=5; (25)

which depends on the total mass of the binary M and � �
m1m2=M

2, the symmetric mass ratio. The signal finishes at
the ending time tc, and �c is the constant phase at the end
time. Here we have ignored time-independent factors of
proportionality in the amplitude, which do not affect tem-
plate construction. Note that because we are modeling the
inspiral part of the wave, the ending time tc here is intended
to model the end of the inspiral stage, not the end of the
entire coalescence waveform.

We have assigned real-valued functions AðtÞ and �ðtÞ
to denote the amplitude and phase of the waveform.
Although the actual waveform is the real part of uðtÞ, we
have intentionally kept its complex form, because the
imaginary part of uðtÞ represents the waveform of a binary
with a phase shift of �=2 from the real part—therefore the
real and imaginary parts together form a basis for the
linear space of signals of all phases. This is a feature of
all adiabatic waveforms, which satisfy

_A=ð�AÞ 
 1; _�=�2 
 1: (26)

Here the dot represents the time derivative, and � � _� is
the instantaneous angular frequency. In other words, the

amplitudeAðtÞ and angular frequency _�ðtÞ both evolve at
rates much slower than the instantaneous frequency _�.
This allows us to use the stationary phase approximation
to compute the Fourier transform of the waveform in
Eq. (24),

~uðfÞ / f�ð7=6ÞeiðAf�ð5=3Þþ2�ftcþ�c��=4Þ; f > 0; (27)

where

A ¼ 3
4ð8�McÞ�ð5=3Þ (28)

is the intrinsic parameter we need to search for in the case
of Newtonian chirp. Note that when we Fourier transform
the complex signal of Eq. (24), there is only positive-
frequency component, with ~uðfÞ ¼ 0 for f < 0. On the

other hand, if we took the real part of the signal, we would
have ~uð�fÞ ¼ ~u�ðfÞ for f > 0.
The duration of the inspiral wave can be well approxi-

mated as a function of chirp massMc [See Eq. (25)] and the
detector’s minimum cutoff frequency fmin [14],

TðMc; fminÞ ¼ 647 013

ðfmin=HzÞ8=3ðMc=M�Þ5=3
s: (29)

One can see that for a fixed fmin, the longest signal duration
corresponds to the smallest chirp mass. The sample signal
durations for the initial, advanced and future GW detectors
of various fmin can be found in Table I, column 3. It is
shown that GWs from a canonical ð1:4þ 1:4ÞM� NS-NS
binary system will have a duration 40 times longer for
advanced detectors, and possibly 10 000 times longer for
the future Einstein Telescope (ET) detector than that of the
initial detector.

B. An IIR filter chain

The adiabatic condition in Eq. (26) also implies that the
waveform can be divided into constant-frequency inter-
vals: within each interval it can be approximated as a
sinusoid with constant frequency, while neighboring inter-
vals have slightly different frequencies. This further indi-
cates that we can attempt to write the entire waveform into
the sum of a series of damped sinusoids: the frequency of
each sinusoid corresponds to a constant-frequency interval,
the ending time of the sinusoid corresponds to the ending
time of this constant-frequency interval, while the decay
time should be comparable to the length of the constant-
frequency interval. The amplitude of the damped sinusoid
can be set to be comparable to the amplitude of the original
waveform during the corresponding constant-frequency
interval.
Mathematically, our target is therefore to approximate

the signal template uðtÞ with the sum of a chain of IIR
filters [cf. Eq. (22)], which we denote by UðtÞ:

UðtÞ � XM
l¼1

Ble
ð�l�i�lÞðt�tlÞ�ðtl � tÞ: (30)

Here the chain consists ofM filters; for filter lð1 � l � MÞ,
Bl is the amplitude of the filter l,�l and �l are the angular
frequency and decay rate, and tl is its ending time.
As a first step, let us determine the relevant portion of the

signal that we need to approximate: this is bounded by the
low frequency cutoff fmin, below which the chirp only
contributes negligible signal-to-noise ratio, as well as the
high frequency cutoff fmax. The minimum frequency fmin

is normally determined by the seismic wall of the detector
which is set to be 40 Hz for initial LIGO, 10 Hz for
Advanced LIGO, and might extend to lower frequencies
in future detectors, such as the Einstein Telescope. The
maximum frequency fmax is either determined by the end

TOWARDS LOW-LATENCY REAL-TIME DETECTION OF . . . PHYSICAL REVIEW D 85, 102002 (2012)

102002-5



of the Newtonian chirp or the upper end of the detection
band. In this paper we set fmax ¼ 2000 Hz.

Now suppose our Newtonian chirp has a particular value
for the intrinsic parameter A, and tc ¼ 0, �c ¼ 0. Let us
define t0 � tini as the time at which the instantaneous
frequency of the waveform is equal to fmin (which means
jt0j ¼ �t0 is the duration of the Newtonian chirp from fini
to coalescence), and incrementally define

tl ¼ tl�1 þ Tl; j12 €�ðtlÞT2
l j ¼ 	 
 1; l ¼ 1; 2; . . .

(31)

until we reach tM, which corresponds to a frequency at or
beyond fmax. These intervals,

½t0; t1�; ½t1; t2�; . . . ; ½tM�1; tM� (32)

will be the constant-frequency intervals described previ-
ously. The parameter 	 should be substantially less than
unity, so that the phase error caused by assuming a constant
frequency is significantly less than 1 rad.

For t 2 ½tl�1; tl�, we expand �ðtÞ at t� ¼ tl � 
Tl

(where 
 is an ad hoc parameter to be adjusted later)

�ðtÞ ’ �ðt�l Þ þ _�ðt�l Þðt� t�l Þ þ 1
2
€�ðt�l Þðt� tlÞ2 (33)

such that the first term is a constant phase, the second term

gives a single angular frequency of _�ðt�l Þ, while the third

term gives the error of a single-frequency approximation,
which will be small if 	 is small enough in Eq. (31). We

will then use �l � � _�ðt�l Þ as the oscillation frequency of

the IIR filter assigned for this constant-frequency interval,
and prescribe a complex amplitude of

Bl � Aðt�l Þei�ðt�
l
Þ�i�lðtl�t�

l
Þ: (34)

These will assemble into

Ble
�i�lðt�tlÞ ¼ Aðt�l Þei�ðt�

l
Þþi _�ðt�

l
Þðt�t�

l
Þ� AðtÞei�ðtÞ;

tl�1 � t � tl: (35)

We must still add a Heaviside function and a damping
component to modify (35) into a form realizable by an IIR
filter. Since the validity of (35) is between tl�1 and tl, it is
natural to have the Heaviside function cutoff values for
t > tl, and to have the damping component have a time
constant comparable to Tl, which gradually cuts off the
filter at t & tl�1. Prescribing

�l ¼ �=Tl; (36)

with � yet another ad hoc parameter, we write

Ulðt;A; tc ¼ 0; �c ¼ 0Þ � Ble
�i�lðt�tlÞ��lðtl�tÞ�ðtl � tÞ

(37)

which is our IIR filter for interval l, for chirps with pa-
rameters A, tc ¼ 0, � ¼ 0. Summing over all Ul, we
obtain an IIR chain that approximates the entire complex
chirp signal:

Uðt;A; tc ¼ 0; �c ¼ 0Þ ¼ XM
l¼1

Ulðt;A; tc ¼ 0; �c ¼ 0Þ:

(38)

If the sum of the complex filter chain UðtÞ indeed approx-
imates the complex chirp signal uðtÞ [cf. Eq. (24)], then the
real and imaginary parts of the output from the filter
chain will be good approximations for filtering chirps
with �c ¼ 0 and �=2, respectively.
For nonzero tc, we will have to apply

Uðt;A; tc; �c ¼ 0Þ � Uðt� tc;A; tc ¼ 0; �c ¼ 0Þ: (39)

Note that having Heaviside function �ðt� tc � tlÞ within
Ul means we have to collect the IIR filter result of filter l at
tl þ tc. The fact that all tl are negative means all results are
obtained before the coalescence (which happens at tc) and
hence IIR filtering itself causes no latency—except for the
small latency due to over-whitening, as stated previously
(Sec. II B)

C. Filtering for general signal phases
and goodness of match

Since the construction of the IIR filter chain is of an
ad hoc nature, we must test how well the resulting IIR filter
chain U can approximate the original signal u. A natural
candidate would be imposing that the match between the
signal u and the template U

�cplx ¼ jhujUijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihujuihUjUip (40)

must be close to unity.
However, this needs to be connected to the signal-to-

noise ratio achievable by IIR filtering. For doing so, we
must first elaborate how to use the output of the complex
IIR filtering to recover signals with arbitrary phases. If we
write

u � ur þ iui (41)

with ur;i represent the real and imaginary parts of u in the

time domain, and similarly,

U � Ur þ iUi; (42)

then the true signal of arbitrary phase is a linear combina-
tion of ur and ui written as A1ur þ A2ui, and we should use
a linear combination of the real and imaginary parts of U,
namely B1Ur þ B2Ui as the search template. For any
particular coefficients A1;2, the optimal overlap is given by

�IIRðA1; A2Þ ¼ max
B1;2

hA1ur þ A2uijB1Ur þ B2UiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihB1Ur þ B2UijB1Ur þ B2Uii
p :

(43)

The worst-case scenario is given by a minimization over
(A1, A2):

JING LUAN et al. PHYSICAL REVIEW D 85, 102002 (2012)

102002-6



�worst
IIR ¼ min

A1;A2

�IIRðA1; A2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihA1ur þ A2uijA1ur þ A2uii
p : (44)

In fact, when the signal and the template are both highly
adiabatic, it can be shown that �IIRðA1; A2Þ is approxi-
mately independent of A1;2, and that to a very good

accuracy:

�cplx � �worst
IIR : (45)

Equation (44) is therefore used to calculate the goodness of
the match of the IIR filter chain.

D. Implementation for ð1:4þ 1:4ÞM� binaries
and initial LIGO

We first apply the prescription described in Sec. III B to
construct an IIR filter chain for ð1:4þ 1:4ÞM� binaries for
initial LIGO and use Eq. (44) to test their overlap with the
true signals. We choose (by hand) 
 ¼ 2:3, 	 ¼ 0:269 and
� ¼ 4, an overlap of 0.99 is achieved with NIIR ¼ 200 IIR
filters.

We next estimate the computational cost required by
such IIR filtering. We focus on the floating point operation
count per unit time required to generate complex outputs
from the sum of individual IIR filter outputs of Eq. (19).
Here we assume the maximum sample rate for compact
binary coalescence data analysis is 8192 Hz, with 2� down
sampling applied successively to provide channels with
sample rates of 4096 Hz, 2048 Hz, . . ., 256 Hz. The IIR
filter bank is divided into 6 groups, each corresponding to a
frequency band of 2kþ5–2kþ6 Hz, for k ¼ 0; 1; . . . ; 5. For
filters in group k, we assume they are applied to the channel
with sample rate of

Sk ¼ 2kþ8 Hz: (46)

In Table II, we list the actual number of IIR filters required
to achieve a minimum overlap of 0.99 at different fre-
quency band with down-sampling technique. For compari-
son, we list the corresponding numbers for the FIR method
also applied with down-sampling technique.
At each time step, each IIR filter needs to perform a total

of 12 real-number multiplications and additions namely: 4
real-number multiplications plus 2 real-number additions
for multiplying the current output by the complex recursive
coefficient, 2 real-number multiplications for multiplying
data ([second term in Eq. (19)] with a complex normaliza-
tion coefficient to yield proper SNR output, 2 real-number
additions for combining the previous two products, while
finally 2 real-number additions for adding the result of this
filter into the total output.
If we ignore costs for down and up sampling, which are

performed relatively rarely, the total computational cost for
initial-LIGO filters in Table II is

C IIR ¼ X5
k¼0

12SkNIIR;k ’ 2:4� 106 flops: (47)

On the other hand, if we carry out the same down-
sampling scheme for FIR filtering, the number of points
in group 0 will be

NFIR;0 ¼ S0 � ½tð64 HzÞ � tini�; (48)

where tð64 HzÞ is the time at which the instantaneous
frequency is 64 Hz. For k ¼ 1; 2; 3; . . . 5, we have

NFIR;k ¼ Sk � ½tð2kþ6 HzÞ � tð2kþ5 HzÞ�: (49)

At sample rate Sk, for each time step, we have to perform
two real-valued correlations with array lengthNFIRk, which
cost 4NFIR;k floating point operations. The total computa-

tional cost of FIR filtering is therefore

TABLE II. Breakdown of number of filters and computational cost (over successive twofold down-sampling channels) of multirate
FIR and IIR filtering, of a single template for a ð1:4þ 1:4ÞM� binary for initial, Advanced LIGO and the Einstein Telescope. See text
in Sec. III D. Here computational costs for each typeoffiltering and for different samplingchannels are calculatedusingEqs. (47)–(50),with
numerical values quoted in units of MFLOPS or 106 FLOPS. The minimum overlap is 0.99.

Rate Skðs�1Þ 16 32 64 128 256 512 1024 2048 4096 8192

Type f=Hz 2–4 4–8 8–16 16–32 32–64 64–128 128–256 256–512 512–1024 >1024 Ntot Total Cost

iLIGO

FIR NFIR;k 4547 3062 965 304 96 30 9004 20

CFIR;k 4.7 6.3 4.0 2.5 1.6 1.0

IIR NIIR;k 71 62 34 19 10 4 200 2.4

CIIR 0.22 0.38 0.42 0.47 0.49 0.39

aLIGO

FIR NFIR;k 45835 30868 9723 3062 965 304 96 30 90883 53

CFIR;k 11.7 15.8 10.0 6.3 4.0 2.5 1.6 1.0

IIR NIIR;k 220 198 111 62 34 19 10 4 658 3.0

CIIR 0.17 0.30 0.34 0.38 0.42 0.47 0.49 0.39

ETB

FIR NFIR;k 213010 311130 98000 30868 9723 3062 965 304 96 40 667198 120

CFIR;k 13.6 39.8 25.1 15.8 10.0 6.3 4.0 2.5 1.6 1.0

IIR NIIR;k 392 631 353 198 111 62 34 19 11 3 1814 3.3

CIIR 0.08 0.24 0.27 0.30 0.34 0.38 0.42 0.47 0.54 0.29
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C FIR ¼ X5
k¼0

4SkNFIR;k ’ 2:0� 107 flops: (50)

This is nearly 8 times the cost of the IIR filter method
assuming down-sampling technique applied to both filter-
ing methods. The result of above cost estimation for the IIR
and FIR filtering are also listed in Table II. We will show in
the next subsections that the improvement is much more
significant for advanced detectors as they venture into
lower frequencies.

E. Dependence on initial frequency and future detectors

As initial frequency fmin is lowered in future
gravitational-wave detectors, we anticipate much longer
signals (see Table I), and therefore a possibly dramatic
increase of computational cost. In this subsection, we
will first obtain analytical scalings in IIR and FIR computa-
tional costs, assuming an idealized down-sampling
scheme. We will then provide more realistic estimates of
cost by constructing actual IIR filters and adopting the
same successive 2� down-sampling strategy.

1. Analytical estimates

Ideally, the minimum sample rate is twice the instanta-
neous frequency of the signal, or S ¼ 2f. For FIR filters,
we have

NFIR 	 2Ncyc �
Z tc

tini

�dt ¼
Z �

_�
d�� f�ð5=3Þ

min : (51)

Converting the summation Eq. (50) into integral, we
obtain:

C FIR �
Z

�dNFIR � f�ð2=3Þ
min : (52)

For IIR filters, during a dephasing time of T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2	= _�

q
,

we use one filter �NIIR ¼ 1 and �� ¼ _�T ¼
ffiffiffiffiffiffiffiffiffiffi
2	 _�

p
,

which leads to

NIIR ¼
Z

d�
dNIIR

d�
¼

Z d�ffiffiffiffiffiffiffiffiffiffi
2	 _�

p � f�ð5=6Þ
min : (53)

The computational cost of IIR filtering is

C IIR �
Z

�dNIIR � f1=6max � f1=6min: (54)

Note that for IIR filtering, the positive power lawmeans the
computational cost scales predominantly with the higher
cutoff frequency, instead of the lower cutoff frequency—
we therefore expect the computational cost not to increase
dramatically when fmin is lowered, if we already have
fmax 
 fmin.

2. Numerical estimates

More detailed constructions for Advanced LIGO and ET
have been carried out, following Sec. III D, assuming
fmin ¼ 10 Hz for Advanced LIGO and 3 Hz for ET.
Assuming the same successive 2� down-sampling strat-
egy, we evaluate the single template computational cost for
ð1:4þ 1:4ÞM� binaries for both FIR and IIR filtering. As it
turns out, using the same 	 ¼ 0:269, but ð
; �Þ ¼
ð2:5; 4:25Þ for Advanced LIGO and ð
; �Þ ¼ ð2:25; 4:5Þ
for ET, will still give us match above 0.99.
The number of filters in each down-sampling band, as

well as computational cost breakdown for a single template
are shown in the second and third tiers of Table II, for
Advanced LIGO and ET, respectively. We also compare
our numerical values with scaling laws predicted in
Eqs. (52) and (54), which are plotted in dashed curves in
Fig. 1. [We determined the normalization of the theoretical
formulas using numerical values of computational cost at
fmin ¼ 40 Hz.] The agreement is remarkable, especially
considering that our successive 2-fold down-sampling is
not continuous, and therefore rather nonideal.
As we can see from Table II and Fig. 1, the IIR reduces

computational cost from (multirate) FIR filtering by factor
of 8 for initial LIGO. As we move to lower starting
frequencies, the saving factor increases to 18 and 40,
respectively. The single-template cost, even when we ex-
trapolate fmin to the rather unlikely 1 Hz, stays at several
MFLOPS.

IV. INTERPOLATION BETWEEN IIR FILTERS OF
DIFFERENT INSPIRALWAVEFORMS

In order to search for all possible kinds of compact
binary coalescence, we must match the signal with a family
of templates parametrized continuously by the parameters

�

�

�

� �
�

1 2 5 10 20 50
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100
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fmin Hz

C
os

t
M

FP
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FIG. 1 (color online). Theoretical (dashed curves) and numeri-
cal (labeled by ‘‘þ’’’s) scaling of the computational cost with
fmin for the FIR (red upper curve) and IIR (blue lower curve)
method for one template, fixing fmax ¼ 2000 Hz. The theoreti-
cal scaling is based on Eqs. (52) and (54) [see Sec. III E 2],
numerical values are taken from Table II, column 15.

JING LUAN et al. PHYSICAL REVIEW D 85, 102002 (2012)

102002-8



of the binary, e.g., their masses. In practice, although max-
imization of match over certain parameters (e.g., initial
orbital phase of the binary) can be done analytically, for the
rest of the parameters, we must sample them discretely, and
build a template bank—and match the signal with each
member of the bank. The density of the discretization is
usually determined by imposing that each member of the
continuous family can be approximated well enough by at
least one member of the bank, with mismatch less than a
maximum tolerable value, "max.

For advanced detectors, the number of templates can be
as large as 105 [15,16] posing a significant computational
challenges. Interpolation strategies have therefore been
conceived (e.g., [17–20]) to reduce the number of tem-
plates, based on the fact that signal-to-noise ratio is a
continuous function of the parameters being searched
over. More specifically, if we refer to the bank constructed
by imposing the maximum tolerance of mismatch "max as
the fine bank, then the hope is that even if match is
calculated for a coarse bank in which parameters are less
densely populated, the signal-to-noise ratio of the fine bank
can still be recovered by interpolation, in such a way that
the total cost of computing coarse-bank SNRs plus inter-
polating fine-bank SNRs is less than the cost of directly
computing fine-bank SNRs.

Motivated by Refs. [7,8,11,12], our interpolation
method also divides each coarse-bank template into several
subtemplates in the frequency (thus time) domain, and
recovers fine-bank SNRs using SNRs from the subtem-
plates. We will show that, although the division into sub-
templates increases the cost of recombination, it allows a
much coarser bank—and finally decreases the computa-
tional cost by a large factor.

A. Template banks in general

To develop a scheme to discretize the parameter space
without losing detection efficiency, we must know how
much the SNR is reduced by using a template whose
parameter values differ from those of the signal. We define
the mismatch between two normalized templates of differ-
ent sets of parameters as

" � 1� huð�Þjuð�0Þi: (55)

The template u is specified by a parameter vector �. If �0 is
near to �, we can Taylor expand " at � and have the
approximation to second order of �� � �0 � � as

" ’ 1

2

@2"

@ð��iÞ@ð��jÞ
����������¼0

��i��j; (56)

from which we define a (positive definite) metric in the
parameter space

�ij � 1

2

@2"

@ð��iÞ@ð��jÞ
����������¼0

: (57)

Equations (56) and (57) indicates that mismatch between
neighboring points in the parameter space can be viewed as
distance measured by metric �.
Suppose we would like to place a template bank in a

D-dimensional parameter space, with a mismatch no
higher than ", then the most straightforward strategy would
be laying down a cubic grid with proper side length dl
measured by the metric �ij, such that template placed at

each grid point will be able to cover a cube whose vertices
are centers of neighboring cubes. This means we have

Dðdl=2Þ2 ¼ ": (58)

The volume spanned by each cube (according to metric
�ij) is therefore

�V ¼ dlD ¼ ð2 ffiffiffiffiffiffiffiffiffiffi
"=D

p ÞD: (59)

The total number of templates in the bank would be the
total volume of the parameter space divided by the volume
of each cell, or

N ¼ Vtot

�V
¼

R
dD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detk �ij k

q
ð2 ffiffiffiffiffiffiffiffiffiffi

"=D
p ÞD

: (60)

B. Newtonian chirps

Through the stationary-phase approximation [21], the
Fourier transform of a Newtonian chirp can be written as

~uðf;A; tc; �cÞ / f�ð7=6ÞeiðAf�ð5=3Þþ2�ftcþ�cÞ; f > 0;

(61)

and ~uðfÞ ¼ ~u�ð�fÞ for f < 0. The mismatch between two
neighboring templates with parameters (A, tc, �c) and
(Aþ �A, tc þ �tc, �c þ��c) can be written as

"ð�A;�tc;��cÞ ¼ 1�
Rfmax

fmin

f�ð7=3Þ cos��
ShðfÞ dfRfmax

fmin

f�ð7=3Þ
ShðfÞ df

(62)

where

�� ¼ f�ð5=3Þ�Aþ 2�f�tc þ ��c (63)

Expanding Eq. (62) up to second order in ��, we obtain
by comparing with Eqs. (56) and (57) the metric

k �ij k ¼
I
�
� 17

3

�
Ið�3Þ Ið�4Þ

� I
�
� 1

3

�
I
�
� 4

3

�
� � I

�
� 7

3

�

2
666664

3
777775; (64)

where ‘‘�’’ indicates terms obtainable by symmetry, and

Ið�Þ ¼ 1

2

�Z fmax

fmin

df
f�

ShðfÞ
���Z fmax

fmin

df
f�ð7=3Þ

ShðfÞ
�
; (65)
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and we have used i ¼ 1, 2, 3 to label �A, 2��tc and ��c,
respectively. Note the metric depends on the frequency
division and noise spectral density only.

Here among the three parameters, search over�c is done
analytically, as discussed in Sec. III C, while search over tc
is carried out systematically at the sample rate—the only
parameter left to discretize is A. Therefore, A is an intrinsic
parameter as described previously. The correct way to
place templates along intrinsic parameter directions is to
‘‘project out’’ the intrinsic parameters, as discussed, e.g.,
by Owen and Sathyaprakash [16].

In our case, the projected metric along direction A is one
dimensional given by

g11 ¼ �11 � �2
13�22 � 2�12�13�23 þ �2

12�33

�22�33 � �2
23

; (66)

which depends on fmin, fmax and the noise curve Sh
through Ið�Þ. Following Eq. (60), the number of templates
required to achieve a mismatch " is then

N ¼
ffiffiffiffiffiffiffi
g11

p ðAmax � AminÞ
2

ffiffiffi
"

p ; (67)

where Amin and Amax are the minimum and maximum
values of A. Here we can be more specific about template
placement along the A direction. Given any A, which is
associated with a member of the template bank, and
suppose its mismatch with a neighboring template with
A��A is "max, or

g11ð�AÞ2 ¼ "max; (68)

then neighboring templates should be placed at A� 2�A,
therefore we have

N ¼ Amax � Amin

2�A
; (69)

which recovers Eq. (67).
Here we give the noise spectral density we use for initial

LIGO, Advanced LIGO, and the Einstein Telescope. For
the initial LIGO [22], we have x ¼ f=ð150 HzÞ and

ShðfÞ ¼ 9 � 10�46½ð4:49xÞ�56 þ 0:16x�4:52

þ 0:52þ 0:32x2� Hz�1: (70)

For Advanced LIGO [23], we have x ¼ f=ð215 HzÞ and

ShðfÞ ¼ 10�49

�
x�4:14 � 5x�2

þ 111
1� x2 þ 1

2 x
4

1þ 1
2 x

2

�
Hz�1: (71)

Note this is different from what is used in [8]. As a result,
two methods are dealing with different number of tem-
plates for the same parameter space. Note also that we used
Newtonian waveforms. These should be taken into account
when we compare the computational cost of the two

methods. For the Einstein Telescope, we adopt ETB—a
broadband configuration using conventional technologies
[24,25], for which x ¼ f=ð100 HzÞ andffiffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

q
¼ 10�25ð2:39� 10�27x�15:64 þ 0:349x�2:145

þ 1:76x�0:12 þ 0:409x1:10Þ Hz�0:5: (72)

Applying Eqs. (67) and (68) to these three detectors, we
can show that the number of templates increase by a factor
of 3.9 when we upgrade from initial to Advanced LIGO,
and another factor of 4.4 when we upgrade from Advanced
LIGO to the Einstein Telescope. These numbers are listed
in Table I, column 5.

C. Subtemplates

1. General discussion

Now suppose we divide our entire signal frequency
interval, ðfmin; fmaxÞ into M segments of

½f0; f1�; ½f1; f2�; . . . ; ½fM�1; fM�; (73)

with f0 ¼ fmin and fn ¼ fmax. (When we later apply this
to IIR filter chains, M will be much less than the total
number of filters, N.) For any template u, we define sub-
template uJ, J ¼ 1; . . .M, to have the same value as tem-
plate u within the frequency interval ½fJ�1; fJ� but have
zero values elsewhere,

~uJðfÞ ¼
�
~uðfÞ; fJ�1 � f � fJ;

0; otherwise:
(74)

Now let us consider two neighboring templates, u and v,
their Jth-sub-inner product can be naturally defined as an
integral over frequency segment J:

hujviJ � huJjvJi ¼ 4Re

�Z fJ

fJ�1

df
~u�ðfÞ~vðfÞ
ShðfÞ

�
: (75)

This sub-inner product can also be regarded as the contri-
bution to the full inner product hujvi from segment J
[cf. Eq. (5)], and

hujvi ¼ XM
J¼1

hujviJ (76)

We denote u and uþ �u as neighboring templates, and
we also define their J-th submismatch specific to interval J,
in the intrinsic parameter space, as

"J � 1� hujuþ�uiJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihujuiJhuþ �ujuþ �uiJ
p ; (77)

which is equal to the ‘‘ordinary’’ mismatch between uJ and
uJ þ �uJ as defined in Eq. (55). Up to second order in �u,
we can show that the total mismatch and the J-th submis-
match are
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" ¼ 1

2

h�uj�ui
hujui (78)

"J ¼ 1

2

h�uj�uiJ
hujuiJ : (79)

Using Eq. (76), we can show that

" ¼ XM
J¼1

"J
hujuiJ
hujui : (80)

Since

XM
J¼1

hujuiJ
hujui ¼ 1; (81)

the overall mismatch is therefore a weighted average of the
submismatches. This means to achieve an overall mis-
match of ", we only need to make sure the submismatches
"J average to ". This has dramatic implications in the sense
that it allows the overall mismatch to be maintained by
(1) dividing the frequency band into several frequency
intervals with nonuniform submismatches, (2) reducing
the size of frequency intervals to allow larger step size
for intrinsic parameters. These lay the foundation for our
template interpolation method.

To qualitatively understand the reason that the grid size
for intrinsic parameter placement can be enlarged when we
restrict ourselves to smaller frequency intervals, we first
note that in the frequency domain, it is the phase that we
need to match, while the amplitude as a function of fre-
quency is the same for all parameters. We note that the
phase of ~uðfÞ, which we denote by �ðfÞ, is determined by
A, as well as tc and �c [Eq. (61)]. In Fig. 2, we plot the
phase �ðfÞ for a particular set of parameters (A, tc, �c) in
blue (lower solid curve) and also for a neighboring set of
parameters (Aþ�A, tc, �c) in red (upper solid curve). If
we were to use the template with parameter A to search for
a signal with parameter Aþ �A, we could shift �c and tc

used in the search, which corresponds to shifting the blue
curve by a linear function in frequency. The green dashed
curve illustrates a reasonably optimal attempt—yet the
difference between the green curve and the red curve
cannot be reconciled very well due to the fact that linear
functions do not correct for curvature. However, if we
divide the frequency range into several intervals, and allow
different values of �tc and ��c to be applied to each
interval (black segmented lines), then subtemplates with
A can achieve rather low submismatches with signal with
Aþ�A. This corresponds to the fact that a curve can be
better approximated by straight lines when divided into
smaller intervals.

2. Newtonian chirp in the frequency domain

Let us now focus on a particular frequency segment J,
with fJ�1 � f � fJ, and work out the relation between
�A and "J, as ��c and �tc are allowed to readjust their
values (to be different from other segments). This simply
requires us to repeat the procedure in Sec. IVB for each
segment: with �A, �tc and ��c, we have the J-th sub-
mismatch of

"J ¼ ½�A 2��tc ��c ��J

�A

2��tc

��c

2
664

3
775 (82)

with

�J �
IJ
�
� 17

3

�
IJð�3Þ Ijð�4Þ

� IJ
�
� 1

3

�
Ij
�
� 4

3

�
� � IJ

�
� 7

3

�

2
666664

3
777775; (83)

and

IJð�Þ � 1

2

�Z fJ

fJ�1

dff�

ShðfÞ
���Z fJ

fJ�1

dff�ð7=3Þ

ShðfÞ
�
: (84)

Note that the above are identical to Eqs. (62)–(64), except
with integrations restricted to the interval of ½fJ�1; fJ�.
The next step is similar to the ‘‘projection’’ process

described by Owen and Sathyaprakash, but restricted to
interval J. With Eq. (82), we ask the following question: if
we are allowed to freely readjust individually the values of
�tc and ��c for interval J of the template (i.e., the Jth

subtemplate), what would be the J-th submismatch achiev-
able for �A, and what should the corresponding ��c and
�tc be.
The answer to the question is readily obtainable by a

maximization of the mismatch " over �tc and ��c, fixing
�A. This results in adjustments of

2��tJc

��J
c

" #
¼ � �J

22 �J
23

�J
32 �J

33

" #�1 �J
12

�J
13

" #
�A; (85)

which result in the Jth submismatch of

"J ¼ gJ11ð�AÞ2; (86)

2 5 10 20 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

f Hz

�
f

FIG. 2 (color online). Illustration of the phase function�ðfÞ vs
frequency for the presumed parameter A (blue lower solid curve)
and its neighboring parameter Aþ�A (red upper solid curve),
the linear shift of the blue line to match the red line (green
dashed curve), and a piecewise approximation (black segmented
dashed lines) of the red line by shifting segments from the blue
line. It shows that with smaller frequency intervals, it is easier to
match phases arising from different intrinsic parameters.
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with

gJ11 � �J
11 �

½�J
13�2�J

22 � 2�J
12�

J
13�

J
23 þ ½�J

12�2�J
33

�J
22�

J
33 � ½�J

23�2
: (87)

Following Eq. (80), we have the total mismatch

" ¼ geff11 ð�AÞ2; (88)

where

geff11 ¼ X
J

gJ11hujuiJ
hujui (89)

is an effective metric coefficient for any division of the
frequency band. More specifically, geff11 describes the mis-
match achievable by individually adjusting ��J

c and �tJc,
for each interval of the division. It can be shown that in
general a finer division of frequency intervals always gives
a smaller geff11 . As a consequence, if we define

�Acb ¼
ffiffiffiffiffiffiffiffiffiffi
"max

geff11

s
; (90)

with the subscript ‘‘cb’’ indicating coarse bank, then �Acb

will be greater than �A given by Eq. (68) where g11 is
evaluated using the full frequency band. In order to make a
distinction, we shall rewrite that same equation as

�Afb ¼
ffiffiffiffiffiffiffiffiffiffi
"max

g11

s
; (91)

but adding a subscript ‘‘fb’’ to indicate the fine bank. In
order to maximize �Acb for a maximum mismatch "max,
we should simply minimize geff11 globally, over all possible
frequency division schemes. Because a template at A in
the fine bank covers (A� �Afb, Aþ�Afb), the ratio of the
number of templates in the coarse bank to that of the fine
bank is,

N cb

N fb

¼
ffiffiffiffiffiffiffiffi
geff11

g11

s
: (92)

In summary, given a required maximum mismatch "max

with a particular frequency subdivision, by adjusting ��J
c

and �tJc individually, a single template at A can cover the
region (A��Acb, Aþ �Acb). For a signal with j�Aj �
�Acb, the J-th subtemplate for parameter Aþ �A can be
constructed by adjusting �tJc and ��J

c of the subtemplate
of template A using Eq. (85). The interpolated template of
parameter Aþ �A is therefore the sum of the constructed
subtemplates from a coarse-bank template A

~uðf;Aþ�A;tc;�cÞ¼
XM
J¼1

~ujðf;A;tcþ�tJcð�AÞ;�c

þ��J
cð�AÞÞ

¼XM
J¼1

~ujðf;A;tc;�cÞei2�f�tJcð�AÞþi��J
cð�AÞ:

(93)

It is straightforward to establish the following properties
of the effective metric: (i) geff11 always becomes smaller
when we insert one or more dividing frequencies into an
existing division of ½fmin; fmax�, (ii) if we continue to
decrease the maximum size of intervals, we can decrease
geff11 indefinitely [in fact, for small intervals, gJ11 scales as

ð�fÞ5, which means geff11 should scale as ð�fÞ4, and hence
�A scales as ð�fÞ�2]. Furthermore, for template families
with more than one parameter, it is straightforward to
generalize our result to

geffab ¼ X
J

gJabhujuiJ
hujui ; (94)

with the number of templates in the coarse bank given by

N cb

N fb

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detk geffab k
detk gab k

s
: (95)

D. Application to IIR filtering technique

In this section, we will apply the formalism developed in
the previous subsection and discuss how we can implement
IIR filter chains only for a much coarser bank of tem-
plates—while still obtaining SNRs for the entire fine tem-
plate bank. Discussions made in the previous sections,
although strictly speaking only apply to sharp divisions
in the signal frequency band, still qualitatively apply to IIR
filters that work in time-domain. The trick is to replace
frequency intervals in the previous section by groups of IIR
filters. This approach will work as long as we include
enough number of filters in each ‘‘group’’, so that overlaps
between different groups are relatively unimportant. We
note that, as is the case for the construction of IIR filter
chains, the construction of the interpolation scheme by
itself does not justify its efficiency—a separate test of
achievable match will be carried out explicitly after the
interpolation scheme is constructed.
To be more specific, we regroup the entire chain ofN IIR

filters into m subgroups, with group J including those
whose oscillation frequency lies within the frequency in-
terval J defined in Sec. IVC. In other words, group J of IIR
filters can be written as
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VJðt;A; tc;�cÞ ¼
X

�l
2�2½fJ�1;fJ�

Ulðt;A; tc;�cÞ

� XlJ
l¼lJ�1þ1

Ulðt;A; tc;�cÞ; J ¼ 1; . . . ;M;

(96)

where we have l0 ¼ 0. We will treat VJ as corresponding to
the ~uJðf;A; tc; �cÞ of Sec. IVC. As a consequence, from
Eqs. (85) and (93), signal uðt;Aþ�A; tc; �cÞ can be in-
terpolated by the IIR filters constructed for uðt;A; tc; �cÞ

uðt;Aþ �A; tc; �cÞ ’
XM
J¼1

VJðt;A; tc þ �tJc; �c þ��J
cÞ

¼ XM
J¼1

ei��
J
cVJðt;A; tc þ �tJc; �cÞ:

(97)

Here �tJc and ��J
c should be computed from �A using

Eq. (85).
In practice we can easily generalize the coefficients in

front of VJ to further reduce the overall mismatch, by using
a slightly more general reconstruction formula:

uðt;Aþ�A; tc; �cÞ ’
Xm
J¼1

dJVJðt;A; tc þ�tJc; �cÞ; (98)

where dJ are complex coefficients that depend on �A,
given by

dJ ¼
X
K

T�1
JK hVKðA; tc; �cÞjuðAþ�A; tc; �cÞi; (99)

with the matrix T given by

TJK ¼ hVJðA; tc; �cÞjVKðA; tc; �cÞi: (100)

E. Full computational cost

Figure 3 illustrates the procedure of obtaining the out-
puts from IIR filter chain for fine-bank coverage by inter-
polating coarse-bank filter outputs described previously.
Upon obtaining outputs from subgroups of IIR filters for
the coarse bank, we need to reconstruct outputs for all
members of the fine bank. We hereby estimate the cost for
reconstruction. Let us assume that a member of the fine
bank that is not a member for the coarse bank is �A away
from a coarse-bank template A. For this �A, we need to go
through each group J of filters, take the total output of this
group (which corresponds to filtering by VJ), multiply it by
the complex number dJ (6 floating point operations) and
shift in time by �tJc, and then add it to the sum (2 floating
point operations). The output eventually yields the SNR
corresponding to the member of the fine bank. Note that
both dJ and �tJc are functions of �A, but they do not need
to be recalculated for each time step.

FIG. 3. Schematic diagram of the IIR filtering process for a template with parameter Aþ p�Acb þ q�Afb. The first part is the IIR
filtering for a member of the coarse bank, Aþ p�Acb, which produces a range of filter outputs, labeled by U1 . . .UlM . These are

grouped intoM groups of summed IIR results V1; . . . ; VM. The result for Aþ p�cb þ q�Afb is obtained by combining these VJ’s after
each one is multiplied by dJðq�AfbÞ and shifted by �tJcðq�AfbÞ. The entire data analysis process still computes Nfb filter results, by
including Ncb possible p’s and Nfb=Ncb possible q’s for each p. [In the special case of q ¼ 0, the VJ’s are directly summed without
having to go through multiplications and time shifts.] The down-sampling or up-sampling process is not shown.
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Assuming our frequency division is made in a way such
that each filter group has the same sample rate (SJ for
group J), then the total recombination cost is

C recom ¼ X
J

8SJ: (101)

In the language of Sec. III D, if we assume there areNgroup;k

IIR filter groups for each down-sampling channel, then the
recombination cost can also be written as

C recom ¼ X
k

8SkNgroup;k: (102)

As a consequence, assuming that �Acb ¼ R�Afb, we have
a total cost of

C total ¼ N fb

�
CIIR
R

þ
	
1� 1

R



Crecom

�

� N fb

X
k

�
12NIIR;k

R
þ 8Ngroup;k

�
Sk; (103)

with the approximation valid when R 
 1. In this case, we
can have a good estimate of the computational cost of IIR
filtering with interpolation. For a coarse bank with density
1=R the fine bank, filtering cost naturally decreases to 1=R
of the cost of conventional IIR filtering without interpola-
tion. The cost of recombination can be estimated with a
simple rule: for each sample rate, the cost of recombination
is about 2=ð3 �nkÞ times that of conventional IIR filtering,
where

�n k � NIIR;k

Ngroup;k

(104)

is the average number of IIR filters in groups at the k-th
sample rate. As a consequence, the total cost of the IIR
filtering with interpolation scheme including recombina-
tion can be lowered significantly if we achieve a balance of
R 
 1 and �n 
 1. Note larger Rmeans larger coarse-bank
grid size �Acb for a fixed �Afb. This is achieved by
introducing ner frequency intervals. On the other hand,
ner frequency intervals means more IIR groups Ngroup or

smaller �n within each down-sampling channel.
The computational cost for performing down or up

sampling is implementation-dependent (see discussions
in [8]). They are not included in our calculation for sim-
plicity. We only need to perform data down sampling once
for all templates, so the cost should be negligible compared
to the total cost. The up-sampling process is needed at least
for each coarse-bank template, but only for filter group
outputs. Note the number of filter groups is much smaller
than the total number of the IIR filters. Depending on the
type of up-sampling filters, the up-sampling cost can be
negligible compared to the total cost, but can also be in
similar orders as the recombination cost. This requires
further investigation.

F. Implementation for initial, Advanced LIGO
and Einstein telescope

We first investigate the case of initial LIGO to demon-
strate the feasibility of our interpolation method. Taking
into account the fact that even the optimal match between
IIR filter and the real signal is not unity, we need to place
the fine-bank IIR template a little denser than that from
theoretical waveform. Theoretically for the Newtonian

waveform, we have �Afb ¼ 923 (in units of s�5=3) to
have a minimum match of 0.97 for templates based on
the signal waveform. For the IIR filter bank, we need a

smaller spacing of �AIIR
fb ¼ 800 s�ð5=3Þ in order for the

bank to achieve the same match between an IIR template
and the signal at Aþ �AIIR

fb . Figure 4 shows numerically

calculated match as a function of template spacing �A for
templates from the signal waveform (black solid line)
and for the IIR filters (red solid line) for the case of
ð1:4þ 1:4ÞM� binary. Note that the numbers of fine-bank
templates here are slightly different from those given in
Table I, as we use slightly different overlap and also we use
numerically evaluated matches here, instead of ones com-
puted analytically assuming high match (in Sec. IVB).
To test the coarse-bank template placement, for simplic-

ity, we restrict ourselves with the case of subdividing the
frequency band into a total of six segments (or equiva-
lently, six IIR filter groups in the time domain). According
to the idealized theoretical calculations in the frequency
domain (Sec. IVC2), the optimal frequency subdivision
predicts �Acb=�Afb � 26 for a minimum match of 0.97.
This calculation has assumed high match, and divides
signals into parts that are strictly localized within separate
frequency bands. On the other hand, the numerical result
using interpolation method on the IIR filter groups in the
time domain (as prescribed in Sec. IVD) reveals that we

can relax the coarse-bank spacing up to �AIIR
cb ¼

19 845 s�ð5=3Þ (dashed curve in Fig. 4), meaning

�AIIR
cb

�AIIR
fb

� 25: (105)
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FIG. 4 (color online). Matches achievable with a Newtonian-
chirp signal at Aþ�A, by various templates built for A, using
initial LIGO noise spectral density for a ð1:4þ 1:4ÞM� NS-NS
binary. Black solid curves corresponds to the result for a
Newtonian-chirp template, therefore the match is equal to unity
at �A ¼ 0. Red solid curve corresponds to that using IIR filters,
while red dashed curve corresponds to the interpolated match
that can be recovered by using 6 filter subgroups.
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This is in very good agreement with the idealized predic-
tion. Figure 4 shows in dashed line the numerical result of
the match as function of �A for the interpolated IIR filter-
ing method.

We can now evaluate the total computational cost of the
entire filtering-reconstruction process. For filtering, since
we only have

N c ¼ ðAmax � AminÞ=ð2�AIIR
cb Þ ¼ 92 (106)

templates in the coarse bank [26], and the cost for each full
filtering is 2.4 MFLOPS (see Table II), the cost of IIR
filtering is CbankIIR ¼ 221 MFLOPS. Since the number of
templates in the fine bank is

N f ¼ ðAmax � AminÞ=ð2�AIIR
fb Þ ¼ 2281; (107)

while the reconstruction cost for each member is 0.10
MFLOPS, the total cost for reconstruction (for members
in the fine bank but not already in the coarse bank) is
228 MFLOP. Therefore the total cost for searching for
Newtonian chirps in initial LIGO is 449 MFLOPS, or 0.5
GFLOPS.

We carry out the same procedure for Advanced LIGO
and ETB, with frequency division information listed in

Table III, and interpolation factor as well as breakdown
of filtering and recombination costs listed in Table IV. As
we can read from Table IV, the computational power
required for a real-time search of Newtonian chirps, using
IIR filters and interpolation, in initial, Advanced LIGO and
ET are 0.5 GFLOPS, 1.2 GFLOPS and 4.4 GFLOPS,
respectively. The scaling of cost with fmin is rather mild
as expected, and the cost, even for ET, seems very
manageable.
In summary, it seems possible that to search for tens

to hundreds of thousands of fine-bank templates for
Advanced LIGO or ET, we can have the entire search
done with a few desktop computers and fewer if other
acceleration technique such as the graphics processing
unit [27,28] can be adopted. While our result is based on
the Newtonian chirp, this outcome should be applicable to
post-Newtonian (PN) cases. Note the low-latency pipeline
LLOID with the FIR scheme in combination with down
sampling and singular value decomposition technique
[8,11] also predicts manageable computing power for
Advanced LIGO. The MBTA method [7], on the other
hand, can already perform network analysis to search for
inspiral signals using PN waveforms with a few CPUs for
the initial LIGO. How it scales with advanced detectors

TABLE III. Breakdown of recombination cost required for obtaining one fine-bank template using the interpolation method, for
initial, Advanced LIGO and the Einstein Telescope—assuming a successive twofold down sampling and ignoring the cost of down and
up sampling. The IIR filter information is listed in Table II. For each down-sampling channel, we list the number of filter groups, as
well as each of their upper-bound frequency (i.e., fJ for group J), and the computational cost as computed by Eq. (102). Computational
cost here is measured by MFLOPS, or 106 FLOPS.

Skðs�1Þ 32 64 128 256 512 1024 2048 4096 8192

f=Hz 4–8 8–16 16–32 32–64 64–128 128–256 256–512 512–1024 1024– Cost Total

iLIGO

Ngroup;k 0 0 0 1 2 1 1 0 1

ffJg \ ðfk�1; fk� 52.9 71.0, 97.3 141 244 2000 0.10

Crecomb;k 0.002 0.008 0.008 0.016 0.066

aLIGO

Ngroup;k 0 1 3 2 2 1 0 0 1

ffJg \ ðfk�1; fk� 12.9 16.8, 22.1 29.6 40.1, 55.2 78.5, 122 228 2000 0.090

Crecomb;k 0.0005 0.003 0.004 0.008 0.008 0.066

ETB

Ngroup;k 2 2 2 1 1 1 0 0 1

ffJg \ ðfk�1; fk� 5.1, 6.9 9.3,12.8 17.8, 25.3 37.4 60.3 122 2000 0.083

Crecomb;k 0.0005 0.001 0.002 0.002 0.012 0.008 0.066

TABLE IV. Breakdown of total computational cost in MFLOPS in searching for Newtonian chirps in initial LIGO, Advanced LIGO
and ET, assuming interpolation for inspirals of 1–3M� individual masses. Here we list numbers of templates in both the fine (N fb) and
coarse banks (N cb), the computational cost for each full IIR chain (CIIR, taken from Table II), as well as the recombination cost for
each template (Crecomb, taken from Table III). We then give the total IIR filtering cost (CtotalIIR ), the total recombination cost (Ctotalrecomb), and

the grand total cost. We also list the ratio Ctotal=Cfbtotal, in which Cfbtotal represents computational cost for the full bank without using

interpolation.

�AIIR
fb N fb �AIIR

cb N cb CIIR CtotalIIR Crecomb Ctotalrecomb Ctotal Ctotal=Cfbtotal

iLIGO 800 2281 19 845 92 2.4 221 0.10 228 449 0.082

aLIGO 255 7156 10 500 174 3.0 522 0.090 628 1150 0.054

ET 70 26 069 2713 673 3.3 2221 0.083 2108 4329 0.050
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while maintaining low latency remains to be investigated
(see also Sec. V for a comparison of frequency vs time
domain method). The integration of the time-domain IIR
filtering method with the infrastructure of the LLOID
pipeline is currently under way. Preliminary result for the
application of the IIR filter bank method to PN waveforms
can be found in [29,30].

V. TIME DOMAIN VS FREQUENCY
DOMAIN APPROACH

A. General consideration

In terms of template interpolation, the ideas to divide
the template into segments in the time or frequency domain
are equivalent in mathematics—both trying to represent
the template by the superposition of a complete basis
of the continuous real-value function space on real axis.
The functions in the basis are much simpler than the
template, and thus easier to deal with. We can improve
the computational efficiency by processing the basis func-
tions first and then superpose them in the right way to get
the result for a template. Given that the data we get from
the detector is in the time domain, the advantage of work-
ing in the time domain is that we can avoid procedures
required to transform the data into the frequency domain
(e.g., data accumulation in Fourier transformation) and
easily achieve low time latencies. On the other hand, work-
ing in the frequency domain allows us to easily combine
the algorithm with down-sampling technique and reduce
the number of templates. The frequency-domain template
interpolation technique, e.g., that used in MBTA [7], usu-
ally uses Heaviside function to cut the template. So the
template can be superposed smoothly in the frequency
domain while in the time domain the joint of different
basis functions can be quite crude. This means that those
methods with this technique could easily take advantages
of working in the frequency domain, but not both in the
time and frequency domain without substantial additional
cost in computation.

Our algorithm, with IIR filters working in the time
domain and template interpolation designed from the fre-
quency domain, takes advantages of the benefits from both
the time and frequency domain approach. Because we use a
relatively smooth cut in both domains, we can both achieve
low latency in the time domain and reduce the total number
of templates while taking advantages of the down-
sampling technique.

B. Comparison of computational efficiency

When latencies of the analysis are not in concern, the
frequency domain implementation of the cross correlation
of data with templates [Eq. (13)] is probably the most
computationally efficient approach. This is due to the use
of the fast Fourier transform technique that has OðN logNÞ
operation count (N is the number of data points) as com-

pared to the OðN2Þ operation count for the FIR method
described previously. On the other hand, the operation
count of the IIR filter bank method is OðNÞ but multiplied
with a coefficient directly related to the possibly large
number of filters needed to achieve a desired match to
the chirp signal. Here we take latencies into consideration
and compare the computational efficiency of the FFT-
based method with the proposed IIR method.
To obtain low-latencies for the FFT-based matched fil-

tering prescribed in Eq. (13), the most straightforward
approach is to analyze data in overlapping segments. We
consider the analysis of equal-length segments of duration
Tstretch as shown in Fig. 5 with the duration of overlap
equal to that of the longest signal, and the rest termed
Tlatency, that is,

Tstretch ¼ Tlongest þ Tlatency: (108)

Here we assume the same strategy as in the current GW
search pipeline where FFTs are performed with fixed
length that accommodates the longest signal to ensure
the coverage of signals of all possible duration. Note in
practice, longer Tstretch might be needed to take into ac-
count of the windowing effect of the FFTs and issues like
the sharp notch filter problems due to lines in the noise
power spectrum [31]. For each data stretch, the output of
Eq. (13) has also the duration Tstretch, but due to the
wraparound effect of FFTs, only outputs (for signals with
ending time) within the last Tlatency are valid. This means

that to obtain a valid output of duration Tlatency, a data

stretch of at least Tlongest þ Tlatency needs to be processed.

The requirement to perform filtering in real-time implies
that the entire analysis needs to be completed within Tlatency

seconds. The minimum total number of real multiplica-
tions and real additions for the FFT algorithm is about
4Nlog2N [32,33]. Therefore the minimum computational
cost in terms of FLOPS for each template for a real-time
FFT-based matched filtering is at least,

C FFT ¼ 4S � Tstretchlog2ðS � TstretchÞ
Tlatency

; (109)

Tlatency Tstretch

FIG. 5 (color online). Analysis with overlapping data seg-
ments. The two horizontal lines represent two adjacent data
stretches used for FFT. The lower data segment starts data
accumulation with a delay of Tlatency relative to the upper one.

The duration of the overlap between the two stretches is that of
the longest signal in the template bank (see text in Sec. VB).
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where S is the data sampling rate. Here we assume a
uniform sampling rate.

In the FFT method, the actual delay Tdelay between the

end time of a GW signal and the event triggering depends
on where the signal lies in the data stretch. The longest
delay occurs when the ending time of a signal lies
(Tlatency � dt) before the end of a data stretch where dt �
1=S is the sampling interval. In this case, after the signal
ends, it takes the segment further (Tlatency � dt) time to

finish accumulating data, and then another Tlatency to be

processed, resulting in a delay of,

TFFT;worst
delay ¼ 2Tlatency � dt � 2Tlatency (110)

The shortest latency is achieved when the ending time of
a signal lies just at the end of the data stretch, in which case
the waiting time for the data to be analyzed is zero and the
delay time of obtaining the trigger is simply the analysis
time,

TFFT;best
delay ¼ Tlatency: (111)

Therefore, for the FFT method, the delay time between the
end of the signal and the event triggering is about 1–2 times
of Tlatency. Although in previous LIGO inspiral search

pipelines Tlatency is usually chosen so that adjacent data

stretches are overlapped by 50%, it can be chosen so that
Tlatency is much smaller, meaning data segments are ana-

lyzed with larger overlaps and higher computational cost.
In comparison, for the IIR method, every new data point

will be processed immediately when it is available. The
delay time between the end of the signal and the triggering
time can therefore in principle be as small as the data
sampling interval. For real-time processing, the analysis
time of the IIR filters at each time step should also be
within one sampling interval, dt. As discussed previously,
for each output of an IIR filter in (19), a total of 12 floating
point operations are needed. Hence to produce the IIR filter
bank output in real time without down sampling for one
template requires the floating point operation per unit
time of

C �
IIR ¼ 12S � NIIR; (112)

and the delay

TIIR
delay ¼ dt: (113)

Here asterisk is used to indicate the computational cost
of the IIR filter method without the down-sampling
technique.

Figure 6 shows the computational cost of one template
for the FFT method as a function of Tlatency when searching

for a GW from a ð1:4þ 1:4ÞM� NS-NS binary and its
comparison to that of the IIR filter method with and
without down-sampling technique. It shows that the com-
putational cost of the FFT-based method increases as
latencies decreases, the increase is particularly significant

at latencies less than hundreds to thousands of seconds
(Eq. (109)), whereas IIR methods (Eq. (47) and (112)) have
an inherent latency of the sampling interval (i.e., not a
function of latency). It is clear that the IIR filter method
presented in this paper has significant advantage over the
FFT method in computational efficiency when low laten-
cies are in demand. In particular, for Advanced LIGO, the
IIR method can be much more efficient at latencies less
than a few �102 seconds. For the Einstein Telescope, IIR
filter method can be much more efficient at latencies less
than a few �103 seconds.
It should be mentioned that we compare only the core

computational cost for the IIR and the FFT method for one
template. We purposely leave out the cost of whitening or
the cost to take care of other FFT effect such as windowing
effect as they are very much implementation-dependent.
We also do not include template interpolation method for
both methods as they are very much implementation-
dependent. In practice, both methods require that the raw
data be conditioned, transported, prewhitened before they
are ready to be analyzed. These are expected to cause
additional latencies on the order of tens of seconds.

VI. CONCLUSION

In this paper, we show that a time-domain search algo-
rithm, with the flexibility of being able to detect a (non-
precessing) compact binary coalescence even before the

FIG. 6. Computational cost as a function of Tlatency for a
straightforward FFT analysis with overlapping data segments
(solid line) and for the IIR filter method with down-sampling
technique (‘‘þ’’ symbols) and without (‘‘�’’ symbols) for real-
time filtering with one template of a ð1:4þ 1:4ÞM� binary. The
upper panel shows the cost for aLIGO and the lower one for ET.
The dotted lines illustrate the equal cost between the FFTand IIR
method and the corresponding latencies. The computational cost
of the FFT method is calculated from Eq. (109) with the longest
template taken to be that of ð1þ 1ÞM� binary and sampling rate
S ¼ 4096 Hz. The IIR data are from Table II (column 15) [with
down sampling] and Eq. (112) [without down sampling].
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final merger, is not only feasible for advanced and even
future ground-based gravitational-wave detectors—but in
fact can be realizable by a small number of state-of-the-art
personal computers.

In addition to employing the multirate technique for
time-domain filtering, we have developed two additional
key techniques in order to bring down the computational
cost into the realm of feasibility: (i) the conversion of a
chirp signal into a chain of IIR filters, and (ii) an algorithm
that allows the reconstruction of filtering results of a finely
spaced template bank from a much coarser bank, when
each template in the coarse bank is divided into subtem-
plates. In order to illustrate the main techniques, we have
restricted ourselves to the Newtonian chirp, but it is rather
straightforward to generalize our algorithms into post-
Newtonian templates.

Our main results on computational cost of the time-
domain algorithm, for initial, advanced and future detec-
tors, are summarized in Table IV. With a simple compari-
son, we also conclude that our time-domain algorithm
should require less computational resources than the
conventional frequency-domain approach, when a short
latency of less than hundreds to thousands of seconds is
required—as shown in Fig. 6.

Besides being computationally efficient at low (or even
negative) latencies, the IIR filter bank method is also much
simpler to implement than the FFT-based methods, making
it ideal for parallel computing, e.g., with graphics process-
ing units [27].

Two further ingredients must be added into the search
pipeline before we can set up an early-warning system for
EM follow-ups of compact binary coalescence: (1) a reli-
able veto strategy, and (2) an efficient algorithm for sky
localization. The fact that our numerical results for IIR
filter groups agree so well with frequency-domain analyti-
cal estimates (Sec. IVC) assuming sharp divisions in fre-
quency indicates that the sub-IIR-groups can be well
approximated as independent contributions to the SNR.

This means a 
2-like test that compares relative SNR
contributions from filter subgroups to their expectations
would be a promising veto strategy (see also [34] for other
strategies that might be applicable for further efficiency
improvement.)
As for localization, we could in principle adopt the

existing algorithm already in place in the LIGO/VIRGO
pipeline, which is based on coincidences of SNRs among
multiple detectors. Alternatively, the fact that IIR filters are
separated in both time and frequency may provide a pos-
sibility of developing a coherent search pipeline with
feasible computational cost. The reason for the high num-
ber of templates in a coherent search is directly due to the
multiplication of the high number of templates along the
direction of mass parameters and the high number of sky
locations. However, as we divide each template into fre-
quency segments, we find that in low frequencies, although
there is a large number of cycles, and hence a requirement
for a finer separation in mass parameters, the sky resolution
of a detector network is low and there does not need a high
number of sky patches; in high frequencies, we need a fine
grid in the sky, but a coarse grid in mass parameters. As a
consequence, we may need a much lower number of sub-
templates are required for each frequency segment. This is
currently being investigated.

ACKNOWLEDGMENTS

We thank R. Adhikari for introducing us to the concept
of IIR filters and for suggesting us to consider using IIRs
for compact binary coalescence searches. We are grateful
for inspiring discussions with K. Cannon, C. Hanna, D.
Keppel, A. Weinstein, P. Brady, S. K. Chung, D. Blair, B.
Mours, L. Singer, P. Shawhan, B. Allen, and N.
Fotopoulos. This work has been supported in part by the
NSF under grant Nos. PHY1068881, PHY-0601459, PHY-
0653653, (LIGO) and CAREER Grant PHY-0956189 and
the David and Barbara Groce start-up fund at Caltech, and
by the Australian Research Council (ARC).

[1] R. O’Shaughnessy, V. Kalogera, and K. Belczynski,
Astrophys. J. 716, 615 (2010).

[2] J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T.
Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith,
B. Allen et al., Classical Quantum Gravity 27, 173001
(2010).

[3] D. B. Fox, D.A. Frail, P. A. Price, S. R. Kulkarni, E.
Berger, T. Piran, A.M. Soderberg, S. B. Cenko, P. B.
Cameron, A. Gal-Yam et al., Nature (London) 437, 845
(2005).

[4] E. Nakar, Phys. Rep. 442, 166 (2007).
[5] L. S. Finn, Phys. Rev. D 46, 5236 (1992).
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