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Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact

expression for the differential emission probability of the two-photon Compton process in a pulsed intense

laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of

the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is

2 orders of magnitude stronger than expected from a perturbative estimate.
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Recently, experiments on two-photon emission by elec-
trons in an intense laser field have been proposed [1,2]. The
motivation of such experiments is seen in [1,3] in an
attempt to verify the Unruh radiation [4,5] that is related
to the physical vacuum experienced by accelerated observ-
ers in a flat space-time and manifests as the emission of
entangled photon pairs off accelerated charges. The rela-
tion between the QED two-photon Compton process and
Unruh radiation has been analyzed further in [6]. As the
intensity of the Unruh radiation increases with the accel-
eration [7], e.g. caused by a strong electromagnetic field,
one is naturally lead to think of strong laser fields as the
driving force. High field strengths are nowadays achieved
by the temporal compression of laser pulses to a few
femtoseconds. The temporal structure of the laser pulse
has a strong impact on the nonlinear Compton spectrum [8]
(hereafter termed one-photon Compton scattering) and its
cross channels [9,10].

The theoretical description of the two-photon Compton
process (also termed double Compton scattering) in the
perturbative (weak-field) regime had been accomplished
first in [11,12] and was verified experimentally soon after-
wards [13]; for a more recent experiment cf. [14].

In second-order strong-field processes (e.g. [15–18]),
intermediate particles can become real (i.e. go on their
mass shell) due to the presence of the background field.
The on-shell contributions have been discussed [19,20] as
Oleinik resonance singularities. The relation of the on- and
off-shell processes in the case of a photon propagator has
been analyzed recently in [18,21] for the trident pair pro-
duction with respect to the interpretation of the SLAC
E-144 data [22].

In this paper, we provide a complete description of the
nonperturbative two-photon Compton process in a pulsed
intense laser field. We show the significant modification of
the two-photon Compton process by short laser pulses
when compared to infinite plane-wave fields considered
previously [15]. For the first time, an exact description of
this process involving a temporally shaped laser-dressed

Dirac-Volkov propagator within the Furry picture is given.
We calculate the photon pair emission probability and
compare it to the one-photon Compton probability, finding
a substantially increased two-photon yield in short intense
laser pulses as compared to perturbative estimates.
The Feynman diagrams in Fig. 1 correspond to the S

matrix

S ¼ �ie2
Z

d4xd4y ��p0 ðyÞ6��2
eik2�yffiffiffiffiffiffiffiffiffi
2!2

p Gðy; xÞ6��1
eik1�xffiffiffiffiffiffiffiffiffi
2!1

p �pðxÞ

þ ð1 $ 2Þ; (1)

where (1 $ 2) means exchange of photons 1 and 2 ac-
counting for the symmetrization of the two-photon wave

function. �p ( ��p0) is the Volkov wave function for an

electron in the entrance (exit) channel with momentum p
(p0), and Gðy; xÞ denotes the dressed electron propagator
[23], ki (�i) stand for the four momenta (four polarizations)
of the emitted photons. A dot, e.g. in k1 � x, denotes the
scalar product of four vectors, and 6�i ¼ � � �i.
We describe a linearly polarized laser pulse by the four-

potential A� ¼ E0��að�Þ=!with polarization four-vector

�� ¼ ð0; 1; 0; 0Þ and four-momentum k� ¼ ð!; 0; 0;�!Þ
with � � k ¼ 0, phase � ¼ k � x, að�Þ ¼ gð�Þ cos�, and
temporal envelope function gð�Þ that vanishes as j�j!1.
The nonlinearity parameter is a0 ¼ eE0=m! with laser
frequency !, electron mass m, charge e, and peak electric
field E0. The perturbative regime corresponds to a0 � 1.
Both, �pðxÞ and Gðx; yÞ, depend on the Volkov matrix

functions EpðxÞ ¼ �pð�Þ expf�ip � x� ifpð�Þg with

�p ¼ 1þ e6k 6A=ð2k � pÞ and the nonlinear phase

FIG. 1. Feynman diagrams for the two-photon Compton pro-
cess, where two photons (wavy lines) are emitted. The double
lines representing laser-dressed Volkov in and out states and the
Dirac-Volkov propagator between the two vertices, respectively.
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fpð�Þ ¼ �p

Z �

0
d�0að�0Þ þ �p

Z �

0
d�0a2ð�0Þ; (2)

with coefficients �p ¼ ma0ðp � �Þ=ðp � kÞ and �p ¼
m2a20=ð2p � kÞ. We employ light cone coordinates

with p� ¼ p0 � p3, p? ¼ ðp1; p2Þ, and p ¼ ðpþ;p?Þ
such that k� is the only nonvanishing component of the
laser four-momentum with � ¼ k�xþ=2 and d4x ¼
k�1� d�dx�dx?.

The integrations over the transverse x? and x� compo-
nents provide momentum conserving delta distributions,
such that the S matrix (1) becomes

S ¼ �ie2�2�3ðp0 þ k1 þ k2 � pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1!2ðk � pÞðk � p0Þp Z

d‘d�dc

� eiðs�‘Þ��ifP1 ð�Þþifp0 ð�Þei‘c�ifpðc ÞþifP1 ðc Þ

� �up0 ��p0 ð�Þ6��2�P1
ð�Þ 6P1 þ ‘6kþm

ðP1 þ ‘kÞ2 �m2 þ i"

� ��P1
ðc Þ6��1�pðc Þup þ ð1 $ 2Þ; (3)

with P1¼p�k1 and s¼ðp0�þk1�þk2��p�Þ=k�>0.
For certain pulse profiles a part of the nonlinear phases
fp referring to the ponderomotive energy might be rewrit-

ten to generate explicitly a mass contribution in the de-
nominator, leading to the familiar form of the propagator
with a mass-shift �m2 ¼ m2a20=2 in infinite plane waves,

e.g. in [15]. For our purposes, (3) is more suitable. The
variables s and ‘ are continuous analogues to the number
of exchanged photons. The integral over ‘ in (3) accumu-
lates all possible paths the system may take. It can be
evaluated analytically by the contour integration tech-
nique: The integrand has a single pole at ‘ ¼ ‘1 � i"0
with ‘1 ¼ ðm2 � P2

1Þ=2k � P1 and "0 ¼ "signðP1þÞ. To
safely apply the residue theorem, one has to transform
the integrand according to ‘=ð‘� ‘1 þ i"0Þ !
1þ ‘1=ð‘� ‘1 þ i"0Þ such that the nontrivial part goes
to zero as ‘ ! 1. The result of this procedure,

Z 1

�1
d‘

ð6P1 þ ‘6kþmÞe�i‘ð��c Þ

‘� ‘1 þ i"0

¼ 2��ð�� c Þ6k� 2�i	ð�� c Þe�ið‘1�i"0Þð��c Þ

� ð6P1 þ ‘1 6kþmÞ; (4)

takes the structure of a fermion propagator in light-front
form [24] due to the integration over the light cone com-
ponent k�. In the second line of (4) a time ordering (in the
laser phase) is introduced in the sense that the emission at
the second vertex has to happen at a later time than the
emission at the first vertex by means of the step function
	ð�� c Þ. The quantity ‘1 controls the amount of momen-
tum ‘1k transferred to the electron such that the propagator
momentum is on its mass shell, i.e. ðP1 þ ‘1kÞ2 ¼ m2.
Additionally (4) includes a part / �ð�� c Þ where both
photons are emitted simultaneously. This ‘‘instantaneous
propagator,’’ which is also known as light-front zero-mode

propagator, is specific to the fermion propagator and does
not appear in the analysis of the trident process [21] with
the photon propagator. The propagator pole in (4) always
lies below the real axis due to momentum conservation. In
particular, we have p0þ ¼ P1þ � k2þ > 0 with k2þ > 0
and therefore P1þ > 0. Negative values of Pþ would shift
the pole to the upper half plane corresponding to the
opposite time ordering 	ðc ��Þ.
The six-fold differential probability of two-photon emis-

sion per incident laser pulse finally reads

d6W ¼ �2jMþ ð1 $ 2Þj2
64�4ðk � pÞðk � p0Þ

Y2
i¼1

!id!id�i; (5)

M ¼ 1

2k � P1

�X2
n¼0

AnðsÞ �up0Tnup

� i
X2
n;l¼0

Bnlðs; ‘1Þ �up0Unlup

�
; (6)

with � ¼ e2=4� and the phase integrals

AnðsÞ ¼
Z

d�anð�Þeis��ifpð�Þþifp0 ð�Þ; (7)

Bnlðs; ‘1Þ ¼
Z

d�dc 	ð�� c Þanð�Þalðc Þ
� eiðs�‘1Þ��ifP1 ð�Þþifp0 ð�Þei‘1c�ifpðc ÞþifP1 ðc Þ;

(8)

and the Dirac structures T0 ¼ 6��2 6k6��1, T1 ¼ ð �Xp0 6��2 6k6��1 þ
6��26k6��1XpÞ, T2 ¼ 4dpdp0 ð��2 � kÞð��1 � kÞ6k, U00 ¼ 6��2G1 6��1,
U01 ¼ 6��2G1ð �XP1

6��1 þ 6��1XpÞ, U10¼ð �Xp0 6��2þ6��2XP1
ÞG1 6��1,

U11 ¼ ð �Xp0 6��2 þ 6��2XP1
ÞG1ð �XP1

6��1 þ 6��1XpÞ, U02 ¼
6��2G1

�XP1
6��1Xp, U20 ¼ �Xp0 6��2XP1

G1 6��1, U12 ¼ ð �Xp0 6��2 þ
6��2XP1

ÞG1
�XP1

6��1Xp, U21 ¼ �Xp0 6��2XP1
G1ð �XP1

6��1 þ 6��1XpÞ,
U22 ¼ 8dpdp0d2P1

ð��2 � kÞð��1 � kÞðP1 � kÞ6k, where the abbre-
viations Xp ¼ dp 6k6�, dp ¼ a0m=ð2k � pÞ, and G1 ¼ 6P1 þ
‘16kþm are employed. The phase integrals A0, B0l, Bn0,
and B00 are numerically nonconvergent because of the
missing preexponential factor. However, these integrals
can be defined as a superposition of convergent phase
integrals by applying a quantum gauge transformation
�i ! �i þ 
iki [21], yielding, e.g. ðs� ‘1ÞB0lðs; ‘1Þ ¼
iAlðsÞ þ ð�P1

� �p0 ÞB1lðs; ‘1Þ þ ð�P1
� �p0 ÞB2lðs; ‘1Þ.

Thus, gauge invariance reduces the number of independent
phase integrals from 12 to 6 well-behaved ones.
Applying the Sokhotsky-Weierstrass theorem,

ð‘� ‘1 þ i"Þ�1 ¼ P ð‘� ‘1Þ�1 � i��ð‘� ‘1Þ, in (4)
one identifies the imaginary part of M as the contribution
of real (on-shell) electrons with the aid of the delta distri-
bution. By recalling that principal value integration (P )
effectively means cutting out a small interval around zero,
it becomes clear that the real part ofM refers to the virtual
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(off-shell) process. The phase integrals An contribute only
to the off-shell process. Employing the completeness rela-
tion for spinorsG1 ¼ P

�uP1þ‘1k;�
�uP1þ‘1k;� to the numera-

tor of the propagator (� is the spin of the intermediate
electron), the on-shell part of S yields a factorization on
the amplitude level

Son ¼
Z dqþd2q?

2ð2�Þ3
X

�¼1;2

Sð1Þðqþ ðs0 � ‘1Þk! p0 þ k2Þ

� Sð1Þðpþ ‘1k! qþ k1Þ þ ð1$ 2Þ; (9)

whereSð1Þ denotes theSmatrix for the one-photonCompton
process with the given energy-momentum conservation
(cf. equation (29) in [8]) integrated over all intermediate
states. Numerically, the interference between the two
Feynman diagrams in Fig. 1 turns out to be of the same
order of magnitude as the noninterference terms.

In the weak-field limit a0 � 1, the off-shell part of the S
matrix is proportional to a0 in lowest order corresponding
to the absorption of one laser photon reproducing the
known perturbative result. Contrarily, the leading order
contribution to the on-shell part is / a20, since at least

two laser photons are needed to satisfy the on-shell
energy-momentum conservation. In the limit of infinite
laser waves the on-shell part of the two-photon rate gives
rise to Oleinik resonances [19] at frequencies

!res
i ð‘Þ ¼ ‘k � p

½pþ ð‘þ m2a2
0

4k�pÞk� � ni
; (10)

where ni ¼ ð1; cos’i sin	i; sin’i sin	i; cos	iÞ is the unit
vector in the direction of ki (with 	i and ’i denoting the
usual polar and azimuthal angles of the emitted photons
and integer ‘). The resonances for !1 (!2) emerge when
the propagator of the first (second) Feynman diagram in
Fig. 1 comes on its mass shell. A detailed discussion of the
resonance behavior will be given elsewhere; it has its own
right but does not affect the following results.

For our numerical evaluations we consider electrons
with a Lorentz factor � ¼ p0=m ¼ 104, available, e.g. at
the European x-ray free electron laser (XFEL) electron
beam [25], in head-on collisions with the laser pulse.
Calculations have been performed for a0 ¼ 1 and a pulse

shape gð�Þ ¼ cos2ð��2� Þ for �� � � � � and zero other-

wise, such that � is the dimensionless FWHM pulse length
with � ¼ 20 corresponding to 9 fs FWHM for ! ¼
1:55 eV. (A similar kinematic situation with the same
center-of-mass energy could be achieved by colliding an
XFEL x-ray pulse [25] with low energy electrons, e.g. � ¼
10, provided by an optical laser acceleration setup [26].) In
Fig. 2, results are exhibited for the differential probability
for two-photon emission as a function of !1 and !2. Since
the motion of the electron is relativistic, the radiation is
produced in a cone around the spatial direction of p with a
typical opening angle of 1=�. We show the differential

probability at angles 	1;2 ¼ 1=� and ’1 ¼ �=2 and ’2 ¼
3�=2, i.e. the two photons are emitted in a plane perpen-
dicular to the polarization plane of the laser. The left panel
in Fig. 2 shows the complete differential probability as the
sum of on- and off-shell parts, while in the right panel the
off-shell part is exhibited. The probability distributions
display complex characteristic patterns. The differential
spectrum in Fig. 2(a) is dominated by the on-shell part in
almost the whole !1-!2 phase space for both !i >
200 MeV, where it is roughly 1 order of magnitude larger
than the off-shell part. This is a generic feature also for
different scattering angles. The on-shell part shows a rect-
angular pattern, which is aligned parallel to the coordinate
axes. The spectrum has maxima in regions where the
Oleinik resonances (10) would occur for infinite plane
waves and is particularly strong where both types of reso-
nances intersect. The resonances (10) for ‘ ¼ 1 are indi-
cated in Fig. 2(a) as dotted lines. The off-shell part exceeds
the on-shell part for at least one of the !i below 200 MeV,
where the maxima of the distribution are roughly aligned
with the different harmonics ‘ of the infinite plane-wave
energy correlations that read

!2ð‘Þ ¼
‘k � p� p � k1 � ð‘þ m2a20

4k�pÞk � k1
½pþ ð‘þ m2a2

0

4k�pÞk� k1� � n2
; (11)

these are shown as dotted lines for ‘ ¼ 1, 2 in Fig. 2(b). For
higher photon energies the pattern is more irregular but still
symmetric with respect to an exchange of !1 and !2.
Figure 2 evidences the striking differences to the infinite
plane-wave case: The strict!2ð!1Þ correlation of (11) gets
completely lost. Instead, resonance like structures with
subpeaks appear which are produced by the ponderomotive
broadening mechanism, resembling the ones observed in
the one-photon Compton process [8].
In Fig. 3 we exhibit the inclusive spectrum

d3W=d!1d�1 arising from (5) by integrating over the
phase space of photon 2. For soft photons !2 ! 0 the

FIG. 2 (color online). Intensity distribution for two-photon
emission in the !1-!2 plane. We show the complete emission
probability (a) and the off-shell contribution (b). The color code
represents the logarithm of the six-fold differential probability in
eV, log10ðd6W=d!1d�1d!2d�2 ½eV�Þ. For parameters see
the text.
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emission probability of two-photon emission becomes
divergent. The cancellation of this infrared divergence by
soft virtual photons due to loop corrections of one-photon
scattering is ensured by the Bloch-Nordsieck theorem [27]
as in the perturbative case. For practical purposes, how-
ever, we include an infrared cutoff !min

2 ¼ 100 keV to

avoid the soft-photon divergence in the spirit of [15]. The
value of the integral is rather insensitive to a variation of
the cutoff in the range of 1–1000 keV.

This inclusive spectrum accounts for the experimental
observation of only one of the two photons. To compare
with one-photon Compton backscattering, we choose 	1 ¼
’1 ¼ 0. In the case of strong laser fields, e.g. for a0 ¼ 1,
the inclusive spectrum is found about 2 orders of magni-
tude below the one-photon spectrum for !1 > 200 MeV.
At photon energies !1 < 200 MeV, the two-photon pro-
cess exceeds the one-photon process (see Fig. 3), opening,
at least in principle, a window to access its observation
without coincidence measurements.

Approximating dW
d!1

¼ R
d�1

dW
d!1d�1

	 2�
�2

dW
d!1d�1

j	1¼0
’1¼0

and integrating over !1, one can estimate the total number
of produced pairs as 1:1� 10�3 per pulse and electron as
compared to 5� 10�2 coming from the single photon
process. With an assumed laser repetition rate of 10 Hz
one can expect 950 two-photon events as compared to
43 000 single photon events in 1 day, which should be
sufficient for an experimental observation. The coinci-
dence detection of rare two-photon events, where both
photons are emitted within a small opening angle, was
successfully demonstrated in the photon splitting process
[28] ten years ago. The experimental sensitivity might be
increased by a simultaneous detection of the scattered
electrons (like in photon tagging). The electron beam
should be a dilute beam tuned to one interaction per laser
pulse.

In the weak-field regime the rate of the two-photon
Compton process is suppressed by a factor of
�ðk � p=m2Þ2 relative to the one-photon Compton process
for k � p � m2 [11], as for our kinematics. For the mo-
menta considered here the estimated suppression in the
weak-field regime is 3� 10�5. To discuss the relevance
of the two-photon emission in strong laser fields we define

the two-photon to one-photon ratio as R ¼ ðdWð2Þ
d�1

Þ=ðdWð1Þ
d�1

Þ.
For � ¼ 10 we obtain a value of R ¼ 10�2 at a0 ¼ 1,
which is about 2 orders of magnitude larger than the
perturbative estimate. For lower values of a0 < 0:1 the
suppression of the two-photon probability rapidly ap-
proaches a constant value of R ¼ 10�4 as anticipated in
[11]. Considering the different contributions we find that
the ratio for the on-shell processRon ¼ 0:01a20 for a0 < 1;
the on-shell ratio is independent of a0 for a0 < 0:1,
and above a0 > 0:1 the value increases and reachesRoff ¼
10�3 at a0 ¼ 1.
Our approach furthermore opens the avenue towards a

detailed study of the two-photon polarization that is con-
sidered as a signature of the Unruh effect in [1,3]. The
two-photon emission as a QED process in itself is also
interesting with respect to the quantum radiation reaction
[29] as multiple incoherent one-photon Compton scatter-
ings. The sequential Compton scattering appears thereby
as a factorization of the resonant on-shell part of the
scattering matrix element on the amplitude level and is
complemented by the possibility of coherent emission due
to the off-shell part. Our numerical calculations show that
up to 30% of the total photons are due to the off-shell
process and therefore beyond a description based solely on
real intermediate photons.
In summary we provide the first complete evaluation of

the differential probability of two-photon emission by an
electron in a short intense laser pulse. The on-shell part of
the matrix element factorizes into subsequent one-photon
Compton processes and gives naturally a finite contribution
to the differential probability due to the temporal pulse
structure. Our result allows for the first time an unambig-
uous comparison of the probability of the two-photon pro-
cess in relation to the one-photon process. We find an
increased two-photon yield by 2 orders of magnitude as
compared to the perturbative estimate of two-photon
Compton scattering even for moderately strong laser
fields a0 
 1 that are available presently at various laser
facilities.

The authors gratefully acknowledge discussions
with T. E. Cowan, R. Sauerbrey, R. Schützhold, and T.
Stöhlker.

FIG. 3 (color online). Inclusive spectrum vs the one-photon
Compton spectrum as a function of the emitted photon
frequency !1.
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