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Generalized parton distributions in an AdS/QCD hard-wall model
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We use a matching procedure of sum rules relating the electromagnetic form factors to generalized
parton distributions and anti-de Sitter modes. In this way, in the framework of an AdS/QCD hard-wall
model, the helicity-independent generalized parton distributions of quarks for the nucleon in the zero

skewness case are calculated.
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I. INTRODUCTION

Light front holography (LFH) [1-3] is a semiclassical
approximation to QCD based on the gauge/gravity duality
that provides a precise mapping of the string modes ®(z) in
the anti-de Sitter (AdS) fifth dimension z to the hadron
light-front wave functions in physical space-time. This
approach has been successfully applied to the description
of the mass spectrum of mesons and baryons (e.g. repro-
ducing the Regge trajectories), the pion leptonic constant,
the electromagnetic form factors of pion and nucleons, etc.
[4-14]. The mapping that allows to relate AdS modes to a
light-front wave function is obtained by matching certain
matrix elements (e.g. the electromagnetic pion form factor)
in the two approaches—string theory in AdS and light-
front QCD in Minkowski space-time.

The same idea can be used to calculate the generalized
parton distributions (GPDs) of the nucleon [9-11], which
encode important information about the hadronic structure.
This is a new subject in the application of the gauge/gravity
correspondence to hadronic properties in the strong cou-
pling limit where QCD cannot be used in a straightforward
way.

GPDs are of nonperturbative nature and therefore cannot
be easily calculated from quantum chromodynamics
(QCD). We have essentially three ways to access the
GPDs (for reviews see e.g. [15,16]): extraction from the
experimental measurement of hard processes, a direct cal-
culation in the context of lattice QCD and different phe-
nomenological models and methods. An example of the
latter procedure is based on a parametrization of the quark
wave functions/GPDs using constraints imposed by sum
rules [17,18], which relate the parton distributions to nu-
cleon electromagnetic form factors (some examples of this
procedure can be found e.g. in [19-21]).

In a previous work [9] we showed how to obtain the
quark GPDs of the nucleon in a soft-wall model. We
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applied a matching procedure similar to the one used in
LFH applications. In this paper we study helicity-
independent GPDs in the version of hard-wall holograph-
ical model suggested and developed in Refs. [22,23], and
then applied for the nucleon sector in [24-29]. During the
last years significant progress in the application of AdS/
QCD models to baryons has been achieved. Different types
of hard-wall models have been suggested and developed in
Refs. [24,26,30]. Solitonic approaches, where stable sol-
itons arise from an effective mesonic action which are five-
dimensional analogues of four-dimensional Skyrmions,
have been suggested in Ref. [31]. Direct derivations of
holographic solitonic approaches for baryons from string
theories have been proposed in Refs. [32,33].

In general, soft-wall models have some advantages com-
pared to hard-wall models. In particular, the hadronic mass
spectrum in soft-wall models has Regge-like behavior, and
most of the calculations can be done analytically. But, as
can be seen e.g. in [26], in hard-wall models the obtained
nucleon form factors are in better agreement with data.
This makes it worthwhile to consider the GPDs in the
context of holographic hard-wall models. Additionally,
we would like to discuss the high momentum transfer limit
(Q* — o) for the physical quantities of our calculations.
Note that in this limit the soft and hard-wall approaches
have the same behavior: the electromagnetic probe prop-
agating in the AdS space decouples from the dilaton.
Something similar happens in the case of the pion form
factor [4].

In this work we consider a procedure similar to the one
discussed in [9] for the soft-wall case, i.e. we perform a
matching of the nucleon electromagnetic form factors
considering two main ideas: we use sum rules, derived in
QCD [17,18], which contain the GPDs for the valence
quarks, and we consider specific integral representations
obtained in the AdS/QCD hard-wall model [26]. As result
of the matching we obtain expressions for the nonforward
parton densities [34] H}(x, 1) = H9(x,0,1) + H1(—x, 0, 1)
and E¥(x, ) = E4(x, 0, t) + E4(—x, 0, t)—flavor combina-
tions of the GPDs (or valence GPDs), using information
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obtained on the AdS side. Again, the calculation for the
GPDs presented here is technically similar to the one of
Ref. [9]. But now due to importance of GPDs for a more
deeper understanding of nucleon structure we do the evalu-
ation in the hard-wall model to complete the phenomenol-
ogy of AdS/QCD approaches in this respect.

The paper is organized as follows. First, in Sec. Il we
review the sum rules that relate the GPDs to the nucleon
form factors. After that, in Sec. III we summarize the main
results of Ref. [26] obtained for nucleon form factors in the
framework of the hard-wall model. In Sec. IV we outline
the matching procedure used in [9] now applied to the
hard-wall case. In Sec. V we consider the high Q2 limit,
noticing that we get the same behavior as in the soft-wall
case. Finally, we draw our conclusions in Sec. VI.

I1. GPDS AND ELECTROMAGNETIC FORM
FACTORS FOR THE NUCLEON

The nucleon electromagnetic form factors FY and FY
(N = p, n correspond to proton and neutron) are conven-
tionally defined by the matrix element of the electromag-
netic current as

PN Op) = a(p) Y FYO + 5, PO Julp),

)

where ¢ = p’ — p is the momentum transfer; my is the
nucleon mass; F) and F) are the Dirac and Pauli form
factors, which are normalized to electric charge ey and
anomalous magnetic moment ky of the corresponding
nucleon: FY(0) = ey and FY(0) = ky.

The sum rules relating the electromagnetic form factors
and the GPDs read as [17,18,34]

2 1

FP () = [0 1 dx<§H;g(x, ) = S Hix t)), 2)
2 1

Fi() = jo : dx(gHﬁ(x, ) = S Hi, t)), 3)
2 1

F2(1) = L 1 dx(gEﬁ(x, D - El r)), @)

2 1
Fi(t) = fo ' dx(g Ed(x, 1) — §Ez(x, t)). (5)

Here we restrict to the contribution of the u, d quarks and
respective antiquarks, while the presence of the heavier
strange and charm quark constituents is not considered.

III. ELECTROMAGNETIC FORM FACTORS
FOR THE NUCLEON IN THE ADS/QCD
HARD-WALL MODEL

Here we outline the relevant results for the nucleon form
factors using a hard-wall AdS/QCD model as obtained by
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Abidin and Carlson [26]. In this model a cut off z, is
introduced in the AdS space, which leads to a breaking
of the conformal invariance and thereby simulates confine-
ment. The AdS metric is specified as

1
ds? = gyndxMdxV = ?(nwdx“dx” —dz?), (6)

where u, v =0, 1, 2, 3; 1, = diag(1, =1, —1, —1) is
the Minkowski metric tensor and z is the holographical
coordinate running from zero to z;.

The kind of holographical model used in this paper
considers that the fermionic field propagating on the AdS
side (dual to nucleons) is fundamental. This is different
from holographical models of the nucleon where fermions
are treated as Skyrmions [31-33].

So the relevant terms in the AdS/QCD action which
generate the nucleon form factors are [26]:

S = / d4xdz\/§<\ifeAMFAVM\If

+ % sy Vel N4, TBIFSY >qf), @)

where the basic blocks of the AdS/QCD model are defined
as: g = |detgynl; ¥ and V,, are the five-dimensional
Dirac and vector fields dual to the nucleon and electro-
magnetic fields, respectively; Fyy = Iy Vv — InVus
I = (y*, —iy®); el = z6% is the inverse vielbein; 7y
are the couplings constrained by the anomalous magnetic
moment of the nucleon (see below). Here the indices S, V
denote isoscalar and isovector contributions to the electro-
magnetic form factors. Note that the nonminimal coupling
of the fermion field with the stress tensor of the vector field
is related to the ratio of the z-dependent Yang-Mills gauge
coupling e(z) and pgaryon—the size of the holographic
baryon squared [32].

Finally, results for the nucleon form factors in AdS/QCD
are given in [26]. For the proton we get:

F(Q%) = C1(Q%) + 1,C5(Q7), ®)

F}(Q%) = 7,C5(Q?), 9)
and for the neutron

F{(Q%) = 1,C,(0%), (10)

F3(0%) = ,C5(Q%). (11)

In above expressions we have 7, = (ns + nv)/2, 9, =
(ps — my)/2, Q> = —tand the C, are integrals defined by:
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V(Q 2)

[‘//L( )+ l/fR(Z)]
0 V(Q z)

cie) = [“az

C2(0?) — f“d LD — i) (2)

cion - [*a: Mm&)m(z),

where the coordinate z runs from zero to a maximum value
70 = (0.245 GeV) ™! =~ 0.81 fm. The latter value was fixed
in Ref. [26] by the p-meson and nucleon masses. The
nucleon magnetic moments are expressed in terms of 7,

and Ny asS pp = 1+ npc3(0) and Mp = 7711C3(O)'
According to [26], ¢, (z) and ¢ x(z) are
2
lﬂL(Z) = M (13)
20J2(myzo)
2
lﬂR(Z) = M (14)

Zofz(mNZo)

and for the bulk-to-boundary propagator of the vector field
in the axial gauge we have [23,26]

K(Qzp)
1y(Qzp)

V(Q.2) = Qz[ 1(02) + Kl(Qz)], (15)

where J,, 1,, K, are the Bessel and modified Bessel
functions [35]. Note that expressions for the nucleon
form factors in AdS/QCD can be obtained after integration
over the variable z. Here we are interested in obtaining
GPDs using a matching procedure that we will discuss in
the next section. In this case we follow the formalism
developed in Ref. [9].

Fixing the nucleon magnetic moments u, = 2.793 and
M, = —1.913 by appropriate choice of the nonminimal
couplings 7, = 0.448 and 7, = —0.478 [26] one can
get a reasonable description of the nucleon form factors
and their slopes. In particular, the electromagnetic radii of
the nucleon are given in the hard-wall model by:

(rp)r = _6(C’1(O) +1,C50) — 1, 237(2)),
N
(rp" = —6nn(cg(0) - j;i?)
! / " / (16)
2y = _C10) + 1,C5(0) + 7,C5(0)
" 1+ ”prC3(0) ’
. C50) + C5(0)
(rap)" = 6W,
where
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cl(0) = —é [ (1 - 2002w o) + wiean)
k0 =5 [*Fo og( )m@ V3]
C4(0) = mzN f dz(l—Zlog( ))«//L(z)wR(z).

7)

Note that in the context of AdS/QCD the nucleon charge
radii have been discussed before in [26]. Here we add the
results for the magnetic radii. Numerical results for the
slopes of the nucleon form factors compare rather well
with data:

(rz)y? = 0.829 fm?(our),
(ry* = —0.101 fm?(our),
(r3;)? = 0.756 fm?(our),
(r3,y" = 0.768 fm?(our),

0.766 fm?(data),
—0.116 fm?(data),
0.731 fm?(data),
0.762 fm?(data). (18)

IV. GPDS AND ADS MODES IN A
SOFT-WALL MODEL

As is explained in [9], the matching procedure is based
on the use of an integral representation for the bulk-to-
boundary propagator. In the present case, according to
(15), we need an integral representation both for 1,(Qz)
[36] and K(Qz) [37]:

1,(Q2) = 2ZQ dx\/l — x? cosh(xzQ), (19)

oz 1 dx
KI(QZ)_EIO(I_ )2 dx 1=/
(20)

With these representations it is possible to calculate some
of the GPDs starting from V(Q, z) and ¢/, (z). The proce-
dure consists in replacing (15), using (19) and (20) in (12),
and after performing the z integration, each C; expression is
now an integral in x, which runs from O to 1. Using this
technique in Egs. (8)—(11), and comparing with Egs. (2)—(5)
we can identify the GPDs involved in the sum rules.

The procedure summarized in the last paragraph was
applied in the soft-wall model to obtain analytical expres-
sions [9] for some GPDs. Unfortunately here it is not
possible to get analytical results, although numerical
calculations can be done without problems using
Mathematica. Numerical results for some Q® values are
shown in Figs. 1 and 2.

(_ 0*(1—x) z%x )

V. NUCLEON GPDS IN IMPACT SPACE

Other interesting quantities to consider are the nucleon
GPDs in impact space. As shown by Burkardt [38,39], the
GPDs in momentum space are related to impact parameter
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FIG. 1 (color online).
different values of Q2.

H(x) in the holographical model for

dependent parton distributions via a Fourier transform.
GPDs in impact space give access to the distribution of
partons in the transverse plane, which is important for the
understanding of the nucleon structure.

As an example we consider the nucleon GPDs in impact
space [19,38-40] as

dzkl 2\,—ib k
qx,by) = (277)2Hq(x’kl)e ko
d’k .
eq(x, bJ_) = ﬁEq(X, ki)e_le‘kJ‘, (21)

and the parton charge (pg(b;)) and magnetization
(o (b)) densities in transverse impact space

1
pe(by) = geq j; dxq(x,b ).

1
pub1) = Ye, [ drertxb) 22)
q 0

Results for both flavors of g(x, b ) with x = 0.1 are shown
in Fig. 3. In Fig. 4 we give the results for the parton charge
and magnetization densities in transverse impact space.

VI. COMPARISON WITH THE SOFT-WALL
MODEL IN THE HIGH Q? LIMIT

In the high Q? limit only the second term in (15) is
important with V(Q, z) — QzK,;(Qz). Since the Bessel
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FIG. 2 (color online).
different values of Q2.

E%(x) in the holographical model for

function K,(Qz) decreases exponentially in the high Q?
limit, we only need to consider its value near z = 0. We
therefore need ¢, (z) and x(z) near z = 0, i.e.

i) =1 N;"N P (23)
yr2) = fnz’, (24)
where
my
- 25
I Zofz(mNZo)\/i 23)

Note that in the high Q2 limit the integral that appears in
(12) has the same form as in the soft-wall case. To clarify
this point we use some results from [9,26].

In the soft-wall case the C;(Q?) are defined as (adding a
superscript SW to avoid possible confusion):

V(Q,2)

273

CS¥(0?) = fo " dzet O L 2 MY ()P + (P ()P

@) = [ dze 0L Gy - (pa)
C§W(Q2)=[)mdze”("’)%z(Q’Z)lﬂﬁw(z)wiw(z), (26)
where ¢(z) is the dilaton field. 3V (z) and 3V (z) are

the normalizable wave functions, which are dual to the
left- and right-handed nucleon wave functions:
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FIG. 3 (color online).
x=0.1.

PV (z) = K32 PV () = k22 )
and which have the same form as in (23) and (24). We also
need to take the high Q? limit of the axial gauge vector

field bulk-to-boundary propagator in the soft-wall model:

2 2

VSW(Q, z) = F(l + 4Q—K2)U<m, 0, KZZZ), (28)
where I'(a) and U(a, b, 7) are the Gamma and Kummer
functions [35]. As can be seen in [4], we have VSV(Q, 7) —
zQK,(zQ) for high Q?, i.e. in this limit (Q?> > 4«?) the
current decouples from the dilaton field. Additionally,
since we only need the expressions near z = 0 we can
take e~ #@ = 1, where we are considering a quadratic
dilaton ¢(z) = x?z%>. With all these ingredients we can
see that
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by [fm]

Plots for g(x, b ). The upper ones correspond to u(x, b;) and the lower to d(x, b ). Both cases are for

CHV = W, high Q7 limit. (29)

Note that the parameters of the soft-wall model are the
same as those used in [9,26], i.e. kK =350 MeV, 7, =
0.224, n,, = —0.239, which were fixed in order to repro-
duce the mass my = 2k+/2 and the anomalous magnetic
moments of the nucleons.

VII. CONCLUSIONS

We determined numerically the generalized parton
distributions of nucleons in an AdS/QCD formalism
based on a hard-wall scenario of conformal symmetry
breaking (holographic hard-wall model). We considered a
procedure similar to the one used in some applications
of LFH and applied previously in [9] for the soft-wall
case. Although soft-wall models in general give a better

096004-5



VEGA, et al.

0.05 A

0.04 |

PEP

0.025 : : : .
0.020 | ]

0015 | ]

PMP

0010 | ]

0.005 | ]

o000 o
0.0 05 1.0 15 2.0

b. [fm]

FIG. 4 (color online).

hadronic Regge spectrum than in the hard-wall case, the
latter sometimes is more successful in the description of
hadronic form factors. It provides a strong motivation for
the present work. Of course, the soft-wall model can also
be improved by considering more complicated dilaton
profiles.

Another interesting fact is that in the high Q? limit the
form factors have the same form in both approaches (hard-
and soft-wall models), i.e. the dilaton decouples in this
limit, a property noted in [4] for the pion form factor. So
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Parton charge (pz(b)) and magnetization (p,,(b, )) densities in transverse impact space.

the GPDs must be equal in both kinds of holographical
approaches at high Q2.
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