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We discuss flavor mixing and resulting flavorchanging neutral current in a five-dimensional

SUð3Þcolor � SUð3Þ � U0ð1Þ gauge-Higgs unification. Flavor mixing is realized by the fact that the bulk

and brane-localized mass terms are not diagonalized simultaneously. As the concrete flavor-changing

neutral current processes, we calculate the rate of B0
d � �B0

d mixing and B0
s � �B0

s mixing due to the

exchange of nonzero Kaluza-Klein gluons at the tree level. We obtain a lower bound on the compacti-

fication scale of order OðTeVÞ by comparing our prediction on the mass difference of neutral B meson

with the recent experimental data.

DOI: 10.1103/PhysRevD.85.096001 PACS numbers: 11.10.Kk, 12.15.Ff, 12.60.Fr, 14.40.Nd

I. INTRODUCTION

In spite of the great success of the standard model (SM),
the origin of electroweak gauge symmetry breaking is still
unknown in particle physics. Though in the SM, the Higgs
boson is assumed to play a role for the symmetry breaking,
it seems to have various theoretical problems such as the
hierarchy problem and the presence of many theoretically
unpredicted arbitrary coupling constants in its interactions.

Gauge-Higgs unification (GHU) [1] is one of the
fascinating scenarios beyond the SM. It provides a possible
solution to the hierarchy problem without supersymmetry.
In this scenario, the Higgs boson in the SM is identi-
fied with the extra spatial components of the higher-
dimensional gauge fields. A remarkable fact is that the
quantum correction to Higgs mass is UV-finite and calcu-
lable due to the higher-dimensional gauge symmetry, re-
gardless of the nonrenormalizability of the theory. This has
opened up a new avenue to solve the hierarchy problem [2].
The finiteness of the Higgs mass has been studied and
verified in various models and types of compactification
at one-loop level1 [4] and even at the two-loop level [5].
The fact that the Higgs boson is a part of gauge fields
implies that Higgs interactions are restricted by gauge
principle and may provide a possibility to solve the arbi-
trariness problem of Higgs interactions as well.

From such point of view, it seems that the following
issues are particularly important for the GHU to be phe-
nomenologically viable. The first one is whether there is
any characteristic prediction on the observables subject to
precision tests. The second one is how CP violation is
achieved, since the Higgs interactions are given by gauge
interactions with real couplings. The last one is how flavor
mixing is generated, since Yukawa coupling in GHU is

given by gauge interactions, which are universal for all
flavors.
As for the first issue, it will be desirable to find finite

(UV-insensitive) and calculable observables, in spite of the
fact that the theory is nonrenormalizable and observables
are very UV-sensitive in general. Works on the oblique
electroweak parameters and fermion-anomalous magnetic
moment from such a viewpoint have been already done in
the literature [6–8]. The second issue has been addressed in
our previous papers [9,10], where CP violation is claimed
to be achieved spontaneously either by the vacuum expec-
tation value of the Higgs field or by the complex structure
of the compactified extra space.
In this paper, we focus on the remaining issue concerning

the flavor physics in the GHU scenario. It is highly nontrivial
problem to explain the variety of fermion masses and flavor
mixings in this scenario, since the gauge interactions should
be universal for all matter fields, while the flavor symmetry
has to be broken eventually in order to distinguish each flavor
and to realize their mixings. In our previous papers [11,12],
we addressed this issue and have clarified the mechanism to
generate the flavor mixings by the interplay between bulk
masses and the brane-localized masses.
An important point is that such introduced two types of

mass terms generically may be flavor nondiagonal without
contradicting with gauge invariance, which leads to the
flavor mixing in the up- and down-types of Yukawa cou-
plings [13]. We may start with the base where the bulk
mass terms are diagonalized, since the bulk mass terms are
written in the form of Hermitian matrix, which may be
diagonalized by suitable unitary transformations, keeping
the kinetic and gauge interaction terms of fermions invari-
ant [11,12]. Even in this base, however, the brane-localized
mass terms still have off-diagonal elements in the flavor
base in general. Namely, the fact that two types of fermion
mass terms cannot be diagonalized simultaneously leads to
physical flavor mixing.1For the case of gravity-gauge-Higgs unification, see [3].
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Once the flavor mixings are realized, it will be important
to discuss flavor-changing neutral current (FCNC)
processes, which have been playing a crucial role for check-
ing the viability of various new physics models, as is seen in
the case of supersymmetry model. This issue was first
discussed in [14] in the context of extra dimensions. Since
our model reduces to the SM at low energies, there is no
FCNC processes at the tree level with respect to the zero-
mode fields. However, it turns out that the exchange of
nonzero Kaluza-Klein (KK) modes of gauge bosons causes
FCNC at the tree level, though the rates of FCNC are sup-
pressed by the inverse powers of the compactification scale
(‘‘decoupling’’) [11,12]. The reason is the following. The
gauge couplings of nonzero KK modes of gauge boson,
whose mode functions are y-dependent, to zero-mode fer-
mions are no longer universal since the overlap integral of
mode function of fermion and KK gauge boson depends on
the bulk massM different from flavor by flavor in general.

In the previous papers, as typical processes of FCNC, we
have calculated the K0 � �K0 mixing and the D0 � �D0

mixing amplitude at the tree level via nonzero KK gluon
exchange and obtained the lower bounds for the compactifi-
cation scale as the predictions of our model [11,12].
Interestingly, the obtained lower bounds of Oð10Þ TeV
were much milder than what we naively expect, assuming
that the amplitude is simply suppressedby the inverse powers
of the compactification scale, say Oð103Þ TeV. We pointed
out the presence of suppression mechanism of the FCNC
processes, which is operative for light fermions in the GHU
model. In the analysis, we focused on the simplified two-
generation scheme in order to estimate the mass difference
and the lower bound on the compactification scale.

On the other hand, this suppression mechanism in the
third generation containing top and bottom quarks does not
work so strongly by the absence of bulk masses, as we will
discuss in the main text. Then it is expected that the danger-
ous large FCNC containing the third generation such as
B0 � �B0 mixing arises and more stringent constraints will
be obtained. Thus it would be more desirable to discuss the
FCNC process in the three-generation scheme.

In this paper, we discuss flavor mixings in the three-
generation model and we especially consider the typical
FCNC processes, i.e., B0

d � �B0
d mixing and B0

s � �B0
s mix-

ing, which is caused by the mixing between down and
bottom quarks or strange and bottom quarks.

We will calculate the dominant contribution to the
B0
d � �B0

d mixing and the B0
s � �B0

s mixing at the tree level

by the nonzero KK gluon exchange. The rate of the FCNC
processes is suppressed by the small mixings between the
third generation and lighter generations. Comparing the
prediction of our model with the data, the lower bound on
the compactification scale is obtained.

This paper is organized as follows. After introducing our
model in the next section, we summarize in Sec. III how
the flavor mixing is realized in the context of the gauge-

Higgs unification, which was clarified and described in
detail in our previous paper [11,12]. In Sec. IV, as an
application of the flavor mixing discussed in Sec. III, we
calculate the mass difference of neutral B-mesons caused
by the B0

d � �B0
d mixing and the B0

s � �B0
s mixing via non-

zero KK gluon exchange at the tree level. We also obtain
the lower bound for the compactification scale by compar-
ing the obtained result with the experimental data. Our
conclusion is given in Sec. V.

II. THE MODEL

The model we consider in this paper is a five-
dimensional (5D) SUð3Þcolor � SUð3Þ �U0ð1Þ GHU model
compactified on an orbifold S1=Z2 with a radius R of S1.
The three-generation model is basically obtained by ex-
tending our previous model, but top-quark mass cannot be
incorporating as it stands. It is known that the fermion
masses have an upper bound in GHU,

mq �
ffiffiffi
n

p
MW ðMW : W-boson massÞ; (2.1)

where n is the number of indices of the representation
the fermion belongs to [15]. Up-type quarks in our model
belong to the totally symmetric tensor representation of
SUð3Þ, i.e., n ¼ 2, in our two-generation model. Thus, we
should modify our model to obtain the correct top mass
mt � 2MW . Obviously, the simplest choice would be a
4-rank tensor representation. The representations of rank

4 of SUð3Þ are known to be 15, 24 and 27 [16]. We modify

our model by using the smallest representation, 15.
Although a small gap still remains between top and twice
of W-boson masses, it is attributed to the quantum correc-
tion of top Yukawa coupling. Focusing on the quark sector,
we introduce three generations of bulk fermion in the 3,
two generations of them in the �6, and one generation of

bulk fermion in the 15 dimensional representations of
SUð3Þ gauge group,
c ið3Þ¼c ið3;3;0Þ¼Qi

3�di ði¼1;2;3Þ; (2.2a)

c ið�6Þ¼c ið3; �6;0Þ¼�i
6�Qi

6�ui ði¼1;2Þ; (2.2b)

c ð15Þ¼c ð3;15;�2=3Þ¼�����15�Q15�t; (2.2c)

where all of the fermions are decomposed into those in
the representations of SUð2Þ subgroup of SUð3Þ gauge
group. Each representation or charge is denoted in the
round bracket and they correspond to (SUð3Þcolor, SUð3Þ,
U0ð1Þ), respectively. An extra U0ð1Þ is required for c ð15Þ
to fix the hypercharges. These sets of fermions contain
ordinary quarks of the SM in the zero-mode sector, i.e.,
Qi

3 and Qi
6 (i ¼ 1, 2) corresponding to the first two-

generation quark doublets, Qi¼3
3 and Q15 corresponding

to the third-generation quark doublet, and di (i ¼ 1, 2, 3),
ui (i ¼ 1, 2), t corresponding to three-generation down-
type quark singlets, the first two-generation up-type quark
singlets, top-quark singlet, respectively. c ið�6Þ have SUð2Þ
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triplet exotic states �i
6 and c ð15Þ also does SUð2Þ quintet,

quartet, triplet exotic states �, �, and �15.
The bulk Lagrangian is given by

L ¼ � 1

2
TrðFMNF

MNÞ � 1

4
BMNB

MN

� 1

2
TrðGMNG

MNÞ þ �c ið3Þfi 6D3 �Mi�ðyÞgc ið3Þ
þ �c i¼3ð3Þi 6D3c

i¼3ð3Þ þ �c ið�6Þfi 6D6 �Mi�ðyÞgc ið�6Þ
þ �c ð15Þi 6D0

15c ð15Þ; (2.3)

where the gauge-kinetic terms for SUð3Þ, U0ð1Þ, SUð3Þcolor
and the covariant derivatives are

FMN ¼ @MAN � @NAM � ig½AM; AN�; (2.4a)

BMN ¼ @MBN � @NBM; (2.4b)

GMN ¼ @MGN � @NGM � igs½GM;GN�; (2.4c)

6D ¼ �Mð@M � igAM � igsGMÞ; (2.4d)

6D0 ¼ �Mð@M � igAM � ig0BM � igsGMÞ: (2.4e)

The gauge fields AM and GM are written in a matrix form,
e.g., AM ¼ Aa

M
�a

2 in terms of Gell-Mann matrices �a. It

should be understood that AM in the covariant derivative
DM ¼ @M � igAM � igsGM acts properly depending on
the representations of the fermions. M, N ¼ 0, 1, 2, 3, 5
denotes indices of the bulk space-time. The five-
dimensional gamma matrices are given by �M ¼
ð��; i�5Þ (� ¼ 0, 1, 2, 3). g, g0 and gs are 5D gauge
coupling constants of SUð3Þ, U0ð1Þ and SUð3Þcolor, respec-
tively. Mi (i ¼ 1, 2) are generation-dependent bulk mass
parameters of the first two generations of fermion accom-

panied by the sign function �ðyÞ. For the third generation,
the bulk mass parameter should be taken to be zero to
reproduce top-quark mass.
The periodic boundary condition is imposed along S1

and Z2 parity assignments are taken for gauge fields as

A�ð�yÞ¼PA�ðyÞP�1; Ayð�yÞ¼�PAyðyÞP�1; (2.5a)

G�ð�yÞ¼G�ðyÞ; Gyð�yÞ¼�GyðyÞ; (2.5b)

B�ð�yÞ¼B�ðyÞ; Byð�yÞ¼�ByðyÞ (2.5c)

where the orbifolding matrix is defined as P ¼
diagð�;�;þÞ and operated in the same way at the fixed
points y ¼ 0, �R. We can see that the gauge symmetry
SUð3Þ is explicitly broken to SUð2Þ �Uð1Þ by the bound-
ary conditions. The gauge fields with Z2 odd parity and
even parity are expanded by use of mode functions,

SnðyÞ ¼ 1ffiffiffiffiffiffiffi
�R

p sin
n

R
y; CnðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�n0�R
p cos

n

R
y;

(2.6)

respectively. Then the gauge bosons are expanded in terms
of the above mode functions Sn andCn; for example, the Z2

even gauge fields (gluon) are extracted as

G�ðx; yÞ ¼
X1
n¼0

GðnÞ
� ðxÞCnðyÞ;

Gyðx; yÞ ¼
X1
n¼1

GðnÞ
y ðxÞSnðyÞ:

(2.7)

The Z2 parities of fermions are assigned for each com-
ponent of the representations as follows:

c ið3Þ ¼ fQi
3Lðþ;þÞ þQi

3Rð�;�Þg � fdiLð�;�Þ þ diRðþ;þÞg ði ¼ 1; 2; 3Þ;
c ið�6Þ ¼ f�i

6Lð�;�Þ þ �i
6Rðþ;þÞg � fQi

6Lðþ;þÞ þQi
6Rð�;�Þg � fuiLð�;�Þ þ uiRðþ;þÞg ði ¼ 1; 2Þ;

c ð15Þ ¼ f�Lð�;�Þ þ�Rðþ;þÞg � f�Lðþ;þÞ þ �Rð�;�Þg � f�15Lð�;�Þ þ�15Rðþ;þÞg � fQ15Lðþ;þÞ
þQ15Rð�;�Þg � ftLð�;�Þ þ tRðþ;þÞg:

The signs in the round bracket stand for eigenvalues of Z2

parities at two fixed points y ¼ 0, �R and vice versa. Thus a
chiral theory is realized in the zero-mode sector by Z2 orbi-
folding. Similar to the gauge bosons, the five-dimensional Z2

even (odd) fermion �i (	i) can be expanded as

�iðx; yÞ ¼ �ið0Þ
L ðxÞfiLðyÞ þ

X1
n¼1

f�iðnÞ
L ðxÞfiðnÞL ðyÞ

þ �ðnÞ
R ðxÞSnðyÞg; (2.8)

	iðx; yÞ ¼ 	ið0Þ
R ðxÞfiRðyÞ þ

X1
n¼1

f	iðnÞ
R ðxÞfiðnÞR ðyÞ

þ	iðnÞ
L ðxÞSnðyÞg; (2.9)

where the mode functions2 which are given in [9], are

fiLðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mi

1� e�2�RMi

s
e�Mijyj;

fiRðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mi

e2�RM
i � 1

s
eM

ijyj;

(2.10)

2,For the c ð15Þ case the corresponding mode functions are
easily obtained by Mi ! 0.
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fiðnÞL ðyÞ ¼ n

Rmi
n

�
Cn � RMi

n
�ðyÞSn

�
; fiðnÞR ðyÞ ¼ n

Rmi
n

�
Cn þ RMi

n
�ðyÞSn

�
; (2.11)

where mi
n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMiÞ2 þ ðn=RÞ2p

.
Here we will focus on the zero-mode sector necessary for the argument of flavor mixing. The zero-mode sector of each

component of c ið3Þ, c ið�6Þ and c ð15Þ are written in the following way:

Qi
3 ¼ Qi

3Lf
i
LðyÞ; di ¼ diRf

i
RðyÞ ði ¼ 1; 2; 3Þ; (2.12a)

�i
6 ¼ �i

6Rf
i
RðyÞ; Qi

6 ¼ Qi
6Lf

i
LðyÞ; ui ¼ uiRf

i
RðyÞ ði ¼ 1; 2Þ (2.12b)

� ¼ �RfRðyÞ; � ¼ �LfLðyÞ; �15 ¼ �15RfRðyÞ; Q15 ¼ Q15LfLðyÞ; t ¼ tRfRðyÞ: (2.12c)

uiR, d
i
R correspond to the up- and down-type right-handed

quark, except for the top quark, and tR corresponds to the
right-handed top quark. We notice that there are two left-
handed quark doublets Q3L and Q6LðQ15LÞ per generation
in the zero-mode sector, which are massless before elec-
troweak symmetry breaking. In the one-generation case,
for instance, one of two independent linear combinations
of these doublets should correspond to the quark doublet in
the SM, but the other one should be regarded as an exotic
state. Moreover, having an exotic fermion �6R, �15R, �L

and �R, we therefore introduce brane-localized four-
dimensional Weyl spinors to form SUð2Þ �Uð1Þ invariant
brane-localized Dirac mass terms in order to remove these
exotic massless fermions from the low-energy effective
theory [13,17].3

L BLM ¼ LQ
BLM þL�6

BLM þL�15

BLM þL�
BLM þL�

BLM;

(2.13)

where, for the first two generations,

L�6

BLM ¼
Z �R

��R
dy

ffiffiffiffiffiffiffiffiffiffi
2�R

p
m�6

BLM�ðy� �RÞ
� ��i

6Rðx; yÞ�i
6LðxÞ þ ðH:c:Þ; (2.14a)

and for the third generation,

L�15

BLM ¼
Z �R

��R
dy

ffiffiffiffiffiffiffiffiffiffi
2�R

p
m�15

BLM�ðy� �RÞ
� ��15Rðx; yÞ�15LðxÞ þ ðH:c:Þ; (2.14b)

L�
BLM ¼

Z �R

��R
dy

ffiffiffiffiffiffiffiffiffiffi
2�R

p
m�

BLM�ðyÞ ��Lðx; yÞ�RðxÞ þ ðH:c:Þ;
(2.14c)

L�
BLM ¼

Z �R

��R
dy

ffiffiffiffiffiffiffiffiffiffi
2�R

p
m�

BLM�ðy� �RÞ
� ��Rðx; yÞ�LðxÞ þ ðH:c:Þ (2.14d)

and for three generations i ¼ 1, 2, 3

LQ
BLM ¼

Z �R

��R
dy

ffiffiffiffiffiffiffiffiffiffi
2�R

p
�ðyÞ �Qi

RðxÞf
ijQ
j
3Lðx; yÞ

þ �ijQ
j
Lðx; yÞg þ ðH:c:Þ; (2.14e)

where

QLðx; yÞ ¼ ½Q1
6Lðx; yÞ Q2

6Lðx; yÞ Q15Lðx; yÞ �T: (2.15)

QR, �6;15L, �R and �L are the brane-localized Weyl
fermions of doublet, triplet, quartet, and quintet of SUð2Þ
respectively. The 3� 3 matrices 
ij, �ij and mBLMs are
mass parameters. These brane-localized mass terms are
introduced at opposite fixed points such that QR, �R

(�6;15L, �L) couples to Q3;6;15L, �L (�6;15R, �R) localized
on the brane at y ¼ 0ðy ¼ �RÞ. Let us note that the ma-
trices 
ij, �ij can be nondiagonal, which are the source of
the flavor mixing [11–13].

III. FLAVOR MIXING

In the previous section we worked in the base where
fermion bulk mass terms are written in a diagonal matrix in
the generation space. Then Yukawa couplings as the gauge
interaction of Ay are completely diagonalized in the gen-

eration space. Thus flavor mixing does not happen in the
bulk and the brane-localized mass terms for the doublets
Q3L and Q6LðQ15LÞ are expected to lead to the flavor
mixing. We now discuss how the flavor mixing is realized
in this model.
First, we identify the SM quark doublet by diagonalizing

the relevant brane-localized mass term,

3At tree level, we assume that there are no brane-localized
kinetic terms for gauge fields. However, they are generated by
quantum corrections in general. Even if we take them into
account, our results are not affected, since it has nothing to do
with flavor sector, although we have to note that 4D effective
gauge coupling should be defined as the sum of the bulk gauge
coupling and brane gauge coupling, i.e., 1=g24D ¼ �R=g25D þ
1=g2brane.
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Z �R

��R
dy

ffiffiffiffiffiffiffiffiffiffi
2�R

p
�ðyÞ �QRðxÞ½
 � � Q3Lðx; yÞ

½3pt�QLðx; yÞ
� �

� ffiffiffiffiffiffiffiffiffiffi
2�R

p
�QRðxÞ½
fLð0Þ �fLð0Þ � Q3LðxÞ

½3pt�QLðxÞ
� �

¼ ffiffiffiffiffiffiffiffiffiffi
2�R

p
�Q0
RðxÞ½mdiag 03�3 � QHLðxÞ

QSMLðxÞ
� �

; (3.1)

where

U1 U3

U2 U4

" #
QHLðxÞ
QSMLðxÞ

" #
¼ Q3LðxÞ

QLðxÞ

" #
; U

�QQRðxÞ ¼ Q0
RðxÞ; (3.2a)

U
�Q½
fLð0Þ �fLð0Þ �

U1 U3

U2 U4

" #
¼ ½mdiag 03�3 �: (3.2b)

In Eq. (3.2), 
fLð0Þ is an abbreviation of a 3� 3 matrix
whose ði; jÞ element is given by 
ijf

j
Lð0Þ, for instance. U3,

U4 are 3� 3 matrices satisfying the unitarity condition

Uy
3U3 þUy

4U4 ¼ 13�3; (3.3)

which indicates how the quark doublets of the SM are
contained in each of Q3LðxÞ and Q6;15LðxÞ and compose a
6� 6 unitary matrix together with U1, U2, which diago-
nalizes the brane-localized mass matrix. The eigenstateQH

becomes massive and decouples from the low-energy pro-
cesses, while QSM remains massless at this stage and is
identified with the SM quark doublet. After this identifica-
tion of the SM doublet, Yukawa couplings are read off from
the higher-dimensional gauge interaction of Ay, whose
zero mode is the Higgs field HðxÞ,

� g4
2
fhHyi �diRðxÞIið00ÞRL Uij

3 Q
j
SMLðxÞ

þ hHtii�2 �uiRðxÞðWIð00ÞRL ÞiUij
4 Q

j
SMLðxÞg þ H:c:; (3.4)

where g4 	 gffiffiffiffiffiffiffi
2�R

p , the matrix W indicates the factorffiffiffi
n

p
in (2.1),

W 	 diagð ffiffiffi
2

p
;

ffiffiffi
2

p
; 2Þ; (3.5)

and Ið00ÞRL is an overlap integral of mode functions of fermi-
ons with matrix elements ðIð00ÞRL Þij ¼ �ijI

ið00Þ
RL ,

Iið00ÞRL ¼
Z �R

��R
dyfiLf

i
R ¼

� �RMi

sinhð�RMiÞ ði ¼ 1; 2Þ
1 ði ¼ 3Þ ; (3.6)

which behaves as 2�RMie��RMi
for �RMi 
 1, thus

realizing the hierarchical small quark masses without
fine-tuning of Mi. We thus know that the matrices of
Yukawa coupling g4

2 Yu and g4
2 Yd are given as

g4
2
Yu ¼ g4

2
WIð00ÞRL U4;

g4
2
Yd ¼ g4

2
Ið00ÞRL U3: (3.7)

These matrices are diagonalized by bi-unitary transforma-
tions as in the SM and Cabibbo-Kobayashi-Maskawa
(CKM) matrix is defined in a usual way [18],

Ŷ d ¼ diagðm̂d; � � �Þ ¼ Vy
dRYdVdL

Ŷu ¼ diagðm̂u; � � �Þ ¼ Vy
uRWYuVuL;

VCKM 	 Vy
dLVuL;

(3.8)

where all the quark masses are normalized by theW-boson
mass as m̂f ¼ mf

MW
. A remarkable point is that the Yukawa

couplings g4
2 Yu and g4

2 Yd are related through the unitarity
condition Eq. (3.3); on the contrary those are completely
independent in the SM.
For an illustrative purpose to confirm the mechanism of

flavor mixing, we will see how the realistic quark masses
and mixing are reproduced. Here we leave aside CP vio-
lation, since the issue discussed in this paper is indepen-
dent of it and assume thatU3,U4 are real. Let us notice that
3� 3 matrices U3;4 can be parametrized because of (3.3)

without loss of generality as

U4 ¼ Ru

a1 0 0
0 a2 0
0 0 a3

2
64

3
75;

U3 ¼ Rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a21

q
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a22

q
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a23

q
2
66664

3
77775;

(3.9)

where Ru and Rd are arbitrary 3� 3 rotation matrices
parametrized as
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Ru ¼
1 0 0

0 cos�02 sin�02
0 � sin�02 cos�02

2
664

3
775

cos�03 0 sin�03
0 1 0

� sin�03 0 cos�03

2
664

3
775

cos�01 � sin�01 0

sin�01 cos�01 0

0 0 1

2
664

3
775; (3.10a)

Rd ¼
1 0 0

0 cos�2 sin�2

0 � sin�2 cos�2

2
664

3
775

cos�3 0 sin�3

0 1 0

� sin�3 0 cos�3

2
664

3
775

cos�1 � sin�1 0

sin�1 cos�1 0

0 0 1

2
664

3
775: (3.10b)

Actually the most general forms of U3 and U4 have a
common orthogonal matrix multiplied from the right,
which can, however, be however by suitable unitary trans-
formations among the members of QSMLðxÞ.

Now physical observables m̂u, m̂c, m̂t, m̂d, m̂s, m̂b and
the angles of the CKM matrix are expressed in terms of ai,

bið	 Iið00ÞRL Þ and six rotation angles in Ru and Rd. Note that
our theory has two free parameters which cannot be de-
termined by the observables since nine physical observ-
ables are written in terms of 11 parameters.

As we have discussed in the previous paper [12], if the
large mixings between the 1–3 and 2–3 generations are
introduced, then the top-quark mass decreases from
160 GeV �2MW . Thus, we expect that the mixing angles
between the third generation and the first two generations
are considered to be small to keep mt � 2MW . Also, the
relation between the masses of top and bottom quarkm2

t þ
ð2mbÞ2 ¼ ð2MWÞ2 for the M3 ¼ 0 holds4 and we must
choose a3 � 1. It implies that the rotation angles �02, �03,

�2, �3 and parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a23

q
should be small, and also

other six parameters a1, a2, b1, b2 and �01, �1 should take
values close to those of the two-generation model [12].

Actually, for the case of Ru ¼ 13�3, where the up-type
quark mixings vanish, this case gives almost the most
stringent lower bound from K0 � �K0 mixing; for example,
these parameters are numerically found as

a21�0:1023 b21�4:355�10�9 sin�1��2:587�10�2

a22�0:9887 b22�1:302�10�4; sin�2�2:224�10�2

a23�0:9966; sin�3�2:112�10�4: (3.11)

Also, for the another case of Rd ¼ 13�3 where the down-
type quark mixings vanish, these parameters are numeri-
cally found as

a21�0:0650 b21�3:973�10�9 sin�01�0:6704

a22�0:9931 b22�2:235�10�4; sin�02��3:936�10�2

a23�0:9966 sin�03�1:773�10�2: (3.12)

These two results show that the mixing angles �2, �3, �
0
2,

�03 
 1, which is completely consistent with the above

argument.

IV. B0 � �B0 MIXING

In this section, we apply the results of the previous
section to representative FCNC processes, B0

d � �B0
d mixing

and B0
s � �B0

s mixing responsible for the mass difference of
two neutral B mesons.5

We focus on the FCNC processes of zero-mode down-
type quarks due to gauge boson exchange at the tree level.
First let us consider the processes with the exchange of
zero-mode gauge bosons. If such types of diagrams exist
with a sizable magnitude, it will easily spoil the viability of
the model.
Concerning the Z-boson exchange, it is in principle

possible for the tree-level FCNC to occur. Since the
mode function of the zero-mode gauge boson is
y-independent, the overlap integral of mode functions is
generation-independent. Thus the gauge coupling of zero-
mode gauge boson depends on only the relevant quantum
numbers, such as the third component of weak isospin I3.
Therefore, the condition proposed by Glashow-Weinberg
[20] to guarantee natural flavor conservation for the theo-
ries of 4D space-time is relevant.
Although there are right-handed down-type quarks be-

longing to different representations in our model, for
example, the SUð2Þ singlet dR in c ð3Þ and one of com-

ponents of the triplet �R in c ð�6Þ or c ð15Þ, these are
known to have the same quantum number I3 ¼ 0, and
thus the Glashow-Weinberg condition is satisfied in this

sector [11]. However, the quintet �R in c ð15Þ also con-
tains the right-handed down-type quark, and this has the
different quantum number I3 ¼ 1 from that of diR belong-
ing to c ð3Þ.
What is worse, the quartet �L in c ð15Þ contains left-

handed down-type quark with the different quantum num-
ber I3 ¼ 1

2 from that of diL belonging to the doublet QL in

c ð3Þ, c ð�6Þ or c ð15Þ with the quantum number I3 ¼ � 1
2 .

Thus, the condition of Glashow-Weinberg is not satisfied in
the down-type quark sector and FCNC process due to the
exchange of the zero-mode Z-boson arises at the tree

4As has been discussed in [16], it is expected that the differ-
ence between the top-quark mass and tree-level prediction mt �
2MW is compensated by the QCD correction.

5For the studies of B0 � �B0 mixing in other new physics
models, see for instance [19].
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level.6 However, the quintet �R (quartet �L) is an exotic
fermion and acquires large SUð2Þ invariant brane mass.
Thus the mixing between diR (diL) and�R (�L) is inversely
suppressed by the power of mBLM and the FCNC vertex of
Z-boson can be safely neglected. We may say that the
condition of Glashow-Weinberg is satisfied in a good
approximation in the processes via the zero-mode gauge
boson exchange.

One may worry that Z0 gauge boson exchange gives
rise to FCNC processes, since an extra Uð1Þ gauge sym-
metry is indispensable for getting a realistic Weinberg
angle. Note that the extra Uð1Þ gauge symmetry is ex-
plicitly broken by an anomaly and the gauge boson of
the extra Uð1Þ gauge symmetry acquires a mass of the
cutoff-scale order. In our model, the cutoff scale is a 5D
Planck scale, which is larger than the intermediate scale
1013 GeV. Therefore, the FCNC effects by Z0 gauge
boson exchange can be safely neglected, comparing to
the process by nonzero KK gluon exchanges, which is
considered later.

Hence, the remaining possibility is the process via the
exchange of nonzero KK gauge bosons. In this case, the
mode functions of KK gauge bosons are y-dependent and
their couplings to fermions are no longer universal because
of nondegenerate bulk masses, even if the condition of
Glashow-Weinberg is met.

Therefore, such progresses lead to FCNC at the tree
level. In our previous papers [11,12], we have calculated
K0 � �K0 mixing and D0 � �D0 mixing via the nonzero KK
gluon exchange at the tree level and obtained a lower
bound of the compactification scale as the prediction of
our model. Along the same line of the argument as in our
previous papers, we here study B0

d � �B0
d and B0

s � �B0
s

mixings in the down-type quark sector by the nonzero
KK gluon exchange at the tree level as the dominant
contribution to these FCNC processes.
For such purpose, let us derive the four-dimensional

effective QCD interaction vertices for the zero modes of
down-type quarks relevant for our calculation,

L s � gs

2
ffiffiffiffiffiffiffiffiffiffi
2�R

p Ga
�ð �diR�a��diR þ �diL�

a��diLÞ

þ gs
2
GaðnÞ

�
�diR�

a��djRðVy
dRI

ð0n0Þ
RR VdRÞij

þ gs
2
GaðnÞ

�
�diL�

a��djLð�1ÞnfVy
dLðUy

3 I
ð0n0Þ
RR U3

þUy
4 I

ð0n0Þ
RR U4ÞVdLgij; (4.1)

where Iið0n0ÞRR and Iið0n0ÞLL are overlap integrals relevant for
gauge interaction,

Iið0n0ÞRR ¼ 1ffiffiffiffiffiffiffi
�R

p
Z �R

��R
dyðfiRÞ2 cos

n

R
y ¼ 1ffiffiffiffiffiffiffi

�R
p ð2RMiÞ2

ð2RMiÞ2 þ n2
ð�1Þne2�RMi � 1

e2�RM
i � 1

; (4.2a)

Iið0n0ÞLL ¼ Iið0n0ÞRR jMi!�Mi ¼ ð�1ÞnIið0n0ÞRR ; (4.2b)

since the chirality exchange corresponds to the exchange of two fixed points. We can see from (4.1) that the FCNC appears
in the couplings of nonzero KK gluons due to the fact that Ið0n0ÞRR is not proportional to the unit matrix in the generation
space, while the coupling of the zero-mode gluon is flavor-conserving, as we expected.

The Feynman rules necessary for the calculation of B0
d � �B0

d mixing can be read off from (4.1).

6The FCNC due to the exchanges of zero-mode photon and gluon trivially vanish because the fermions of our interest have the same
electric charge and color.

B0 � �B0 MIXING IN GAUGE-HIGGS UNIFICATION PHYSICAL REVIEW D 85, 096001 (2012)

096001-7



Those for B0
s � �B0

s mixing are easily obtained by the replacements d $ s and 31 $ 32 in the matrix element of the
vertices. The nonzero KK gluon exchange diagrams providing the dominant contribution to the process of B0

d � �B0
d and

B0
s � �B0

s mixing are depicted in Fig. 1.7

By noting the fact k2 
 ðnRÞ2 for n � 0 being the mass of n-th KK gluon and k� being internal momentum, the

contributions from each type diagram of the B0
d � �B0

d mixing in Fig. 1 are written in the form of effective four-Fermi

Lagrangian obtained by use of Feynman rules listed above,

Similarly, those for B0
s � �B0

s mixing are obtained by the
replacements d $ s and 31 $ 32 in the matrix element of
the vertices. The sum over the integer n is convergent and
the coefficients of the effective Lagrangian (4.4) for the
B0
d � �B0

d mixing and (4.4) after the replacements of d $ s
and 31 $ 32 for the B0

s � �B0
s mixing are suppressed by the

compactification scale as 1=M2
c ¼ R2.

One may wonder about the exchange of an extra space

component of gluon, GaðnÞ
y . However, we found that such

contribution is relatively suppressed by small masses of
external quarks mqðmq ¼ md;ms;mbÞ, as we have men-

tioned before [11]. Let us note that the zero mode of GaðnÞ
y

(n ¼ 0) is ‘‘modded out’’ by orbifolding and nonzero KK

modes of GaðnÞ
y (n � 0) are absorbed as the longitudinal

components of massive gluons GaðnÞ
� through Higgs-like

mechanism. In the unitarity gauge, the contribution of such

longitudinal components are taken into account by adding

to the propagator Eq. (4.3c) a piece proportional to
k�k

M2

n
,

where k� is the momentum transfer. By use of equations of

motion for external quarks, its contribution to the ampli-

tude is relatively suppressed by a factor
m2

q

M2
n
¼ Oðm2

qR
2Þ and

we can safely neglect the contribution of GaðnÞ
y exchange.

Comparing the results with the experimental data, we
can estimate a lower bound on the compactification scale.
The most general effective Hamiltonian for �B ¼ 2 pro-
cesses due to some ‘‘new physics’’ at a high scale �NP 

MW can be written as follows:

FIG. 1. The diagrams of B0
d � �B0

d mixing via KK gluon ex-
change. Those of B0

s � �B0
s mixing via KK gluon exchange are

obtained by the replacements d $ s.

7In this calculation, the contributions of radiative corrections
of QCD, which are known as the operator mixings or anomalous
dimensions, are ignored, since the mass scale of B meson is
sufficiently larger than the �QCD. In fact, these effects change
only Oð10%Þ of our results.
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H �B¼2
eff ¼ 1

�2
NP

�X5
i¼1

zqi Q
q
i þ

X3
i¼1

~zqi
~Qq
i

�
(4.5)

where the 4-Fermi operators relevant for B0
d � �B0

d mixing

are given as

Qd
1 ¼ �d�L��b

�
L
�d�L�

�b�L; Qd
2 ¼ �d�Rb

�
L
�d�Rb

�
L;

Qd
3 ¼ �d�Rb

�
L
�d�Rb

�
L; Qd

4 ¼ �d�Rb
�
L
�d�Lb

�
R; Qd

5 ¼ �d�Rb
�
L
�d�Lb

�
R;

(4.6a)

and for B0
s � �B0

s mixing,

Qs
1 ¼ �s�L��b

�
L �s

�
L�

�b�L; Qs
2 ¼ �s�Rb

�
L �s

�
Rb

�
L;

Qs
3 ¼ �s�Rb

�
L �s

�
Rb

�
L; Qs

4 ¼ �s�Rb
�
L �s

�
Lb

�
R;

Qs
5 ¼ �s�Rb

�
L �s

�
Lb

�
R:

(4.6b)

Indices �, � stand for the color degrees of freedom. The

operators ~Q1;2;3 are obtained from theQ1;2;3 by the chirality

exchange L $ R. Since the SM contribution is poorly
known, we can get the constraint on the new physics
directly from the experimental data, assuming that there
is no accidental cancellation between the contributions of
the SM and new physics. If we assume one of these
possible operators gives dominant contribution to the
mixing, each coefficient is independently constrained as
follows, with the same constraints for ~zqi as those for zqi
(i ¼ 1, 2, 3) [21],

jzd1j � 2:3� 10�5

�
�NP

1 TeV

�
2
;

jzs1j � 1:1� 10�3

�
�NP

1 TeV

�
2
;

jzd2j � 7:2� 10�7

�
�NP

1 TeV

�
2
;

jzs2j � 5:6� 10�5

�
�NP

1 TeV

�
2
;

jzd3j � 2:8� 10�6

�
�NP

1 TeV

�
2
;

jzs3j � 2:1� 10�4

�
�NP

1 TeV

�
2
;

jzd4j � 2:1� 10�7

�
�NP

1 TeV

�
2
;

jzs4j � 1:6� 10�5

�
�NP

1 TeV

�
2
;

jzd5j � 6:0� 10�7

�
�NP

1 TeV

�
2
;

jzs5j � 4:5� 10�5

�
�NP

1 TeV

�
2
:

(4.7)

where the new physics scale �NP is regarded as the com-
pactification scale in our case. All we have to do is to

represent (4.4) and its replacements d $ s and 31 $ 32 of
(4.4) by use of (4.6) and to utilize these constraints (4.7).
We can rewrite each type effective Lagrangian for

B0
d � �B0

d mixing (4.4) in terms of effective Hamiltonian

by using the Fierz transformation and the completeness
condition for Gell-Mann matrices

H �B¼2
eff;LL ¼ zd1Q

d
1

R�2
; H �B¼2

eff;RR ¼ ~zd1
~Qd
1

R�2
;

H �B¼2
eff;LR ¼ zd4Q

d
4 þ zd5Q

d
5

R�2
;

(4.8)

where

zd1 ¼
8��s

3
�R

X1
n¼1

1

n2
fVy

dLðUy
3 I

ð0n0Þ
RR U3

þUy
4 I

ð0n0Þ
RR U4ÞVdLg231; (4.9a)

~zd1 ¼
8��s

3
�R

X1
n¼1

1

n2
ðVy

dRI
ð0n0Þ
RR VdRÞ231; (4.9b)

zd4 ¼ �8��s�R
X1
n¼1

ð�1Þn
n2

fVy
dLðUy

3 I
ð0n0Þ
RR U3

þUy
4 I

ð0n0Þ
RR U4ÞVdLg31ðVy

dRI
ð0n0Þ
RR VdRÞ31; (4.9c)

zd5 ¼
8

3
��s�R

X1
n¼1

ð�1Þn
n2

fVy
dLðUy

3 I
ð0n0Þ
RR U3

þUy
4 I

ð0n0Þ
RR U4ÞVdLg31ðVy

dRI
ð0n0Þ
RR VdRÞ31: (4.9d)

We note that there exist only the operators Q1;4;5 or ~Q1,

even though the QCD corrections are considered. More

precisely, in this model, the operators Q2;3 or ~Q2;3, which

are generated by the pseudoscalar type diagrams accom-

panied with the extra component of the gluon GaðnÞ
y cer-

tainly exist; however, they are strongly suppressed, as was
discussed before, and we can ignore them.
The four-dimensional �s is defined by

�s ¼ ðg4Ds Þ2
4�

¼ 1

2�R

g2s
4�

: (4.10)

The constant �s should be estimated at the scale �b ¼
mb ¼ 4:6 GeV, where the �B ¼ 2 processes are actually
measured [21]. So we have to take into account the renor-
malization group effect from the weak scale down to �b,

��1
s ðmbÞ ¼ ��1

s ðMZÞ � 23

6�
ln
MZ

mb

! �sðmbÞ � 0:207;

(4.11)

where �sðMZÞ � 0:1184 has been put [22].
Similarly, each type effective Hamiltonian for B0

s � �B0
s

mixing are, respectively, rewritten by replacements d $ s
and 31 $ 32 of (4.8) and (4.9).
Combining these results, we obtain the lower bounds for

the compactification scale from the constraint (4.7). First
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let us assume that only one of the three types of diagrams
(LL, RR, LR) gives dominant contribution to the mixing.
Then we get lower bound on the compactification scale by
use of the upper bound on the relevant coefficients zq1 , ~z

q
1

and zq4 given in (4.7) in the unit of TeV

LL :
1

R
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzd1j

2:3� 10�5

s
½TeV�

LL:
1

R
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzs1j

1:1� 10�3

s
½TeV�

RR:
1

R
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~zd1j

2:3� 10�5

s
½TeV�

RR:
1

R
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~zs1j

1:1� 10�3

s
½TeV�

LR:
1

R
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzd4j

2:1� 10�7

s
½TeV�

LR:
1

R
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzs4j

1:6� 10�5

s
½TeV�:

(4.12)

Let us note that LR-type diagrams yield both ofQq
4 andQ

q
5

operators, as is seen in (4.8). We can, however, safely
ignore the contribution of Qq

5 to the mixing, because the

coefficients of the operator (4.9d) are smaller than that of
Qq

4 and also because the magnitude of the hadronic matrix

element ofQq
4 is known to be greater than that ofQ

q
5 , as the

constraint for zq4 is more severe that that for Qq
5 in (4.7).

This is why we used the constraint for zq4 alone to get the
lower bound for the case of LR-type diagrams.

Since there is no bulk mass of third generation in this
model, the ‘‘GIM-like’’ suppression mechanism from the
large bulk masses, which acts much more severely on the
contribution of the LR-type diagram [12], does not occur.
Thus the contribution of the LR-type diagram is not ex-
pected to be smaller than those of the LL and RR diagram
in general. Actually, for the case of Ru ¼ 13�3 in (3.9),
which gives almost the most stringent lower bound from
K0 � �K0 mixing, the LR-type contribution is dominant for
B0
s � �B0

s mixing while the LL type contribution is domi-
nant for B0

d � �B0
d mixing

R�1 * 1:71 ½TeV� for B0
d � �B0

d mixing; (4.13a)

R�1 * 2:54 ½TeV� for B0
s � �B0

s mixing: (4.13b)

In the second case, Rd ¼ 13�3, the contributions from
the LR- and RR-type diagram vanish. This is because the
down-type Yukawa coupling becomes diagonal: VdL ¼
VdR ¼ 13�3, namely, the mixings in the down-quark sector
disappear. Note, however, that the lower bound obtained
from the LL-type contribution, which does not vanish even
though VdL ¼ 13�3. Actually, we obtain the lower bound
on R�1 for Rd ¼ 13�3;

R�1 * 0:92 ½TeV� for B0
d � �B0

d mixing; (4.14a)

R�1 * 1:79 ½TeV� for B0
s � �B0

s mixing: (4.14b)

This is because VuL relevant for up-type quark mixing also
contributes to the left-handed FCNC current. Namely, be-
cause of the mixing between Q3L and Q6L (Q15L), U4 also
contributes to the FCNC vertex (4.3b) Thus even in the case
of VdL ¼ 13�3 we get a meaningful lower bound on Mc

A comment is given. The obtained lower bounds are
smaller than what we naively expect, assuming that the
tree-level diagram relevant for the FCNC process is simply
suppressed by 1=M2

c [21],

Mc * Oð103Þ ½TeV� for B0
d � �B0

d mixing; (4.15a)

Mc * Oð102Þ ½TeV� for B0
s � �B0

s mixing; (4.15b)

which is much more stringent than the lower bound we
obtained, in spite of the absence of the suppression by the
large bulk masses. The obtained lower bounds also are
milder than those from K0 � �K0 and D0 � �D0 mixings.
This apparent discrepancy may be attributed to the very
small mixing between the third generation and the first two
generations.

V. SUMMARY

In this paper, we have discussed the B0
d � �B0

d and

B0
s � �B0

s mixing in the framework of five-dimensional
SUð3Þcolor � SUð3Þ �U0ð1Þ gauge-Higgs unification sce-
nario. In this model, several representations of SUð3Þ are
introduced in order to reproduce the quark sector of the
standard model. Especially, the top quark t is embedded in

15 to realize its mass mt � 2MW . And the flavor mixings
appear as a breaking of flavor symmetry by the nondegen-
erate bulk mass terms of quarks. However, if the large
flavor mixings between the 1–3 and 2–3 generations exist,
the top-quark mass mt in this model becomes smaller so
that such mixings should be small. Then, it gives a natural
explanation that top-quark mass is so large compared with
those of other quarks and the smallness of the 1–3 and 2–3
generation, simultaneously.
In our previous studies [11,12], we pointed out that tree-

level FCNCs appear and found a kind of suppression
mechanism for light quarks what is called the ‘‘GIM-like
mechanism.’’ Thus, the neutral meson mixings for the light
quarks, namely K0 � �K0 or D0 � �D0 mixing are strongly
suppressed.
In the main text, we have calculated the contributions to

B0
d � �B0

d and B0
s � �B0

s mixings by the nonzero KK gluon

exchange at the tree level in the light of the recent progress
in the measurements of B0 � �B0 mixing. For the processes
with respect to the third generation, the ‘‘GIM-like’’ sup-
pression mechanism, which is operative for the light first
two-generation quarks, does not work since their bulk mass
has to be vanished to realize top-quark mass. Therefore, we
can anticipate large FCNC effects to arise and we are likely
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to obtain strong constraints for B-physics. The prediction
of our model is that the lower bounds of compactification
scale have been found to be of order OðTeVÞ, which is
milder than those obtained from our study of K0 � �K0 and
D0 � �D0 mixings in our previous paper [11,12] and from a
naive expectation (� 1000 TeV) where the dimension-six
operator is simply suppressed by 1=M2

c in spite of the
absence of the GIM-like suppression by the large bulk
masses. This is because the smallness of the mixings
between 1–3 and 2–3 generations, i.e., �2, �3, �02,
�03 
 1. In our model, they should be small to reproduce

the realistic top-quark mass �2MW , and then the induced

�B ¼ 2 effective Hamiltonian are strongly suppressed.
Thus the lower bound of compactification scale becomes
small.
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