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We determine the constraints on the isospin and hypercharge of a scalar electroweak multiplet from

partial wave unitarity of tree-level scattering diagrams. The constraint from SUð2ÞL interactions yields

T � 7=2 (i.e., n � 8) for a complex scalar multiplet and T � 4 (i.e., n � 9) for a real scalar multiplet,

where n ¼ 2T þ 1 is the number of isospin states in the multiplet.
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I. INTRODUCTION

Extensions of the scalar sector of the standard model
(SM) beyond the usual single SUð2ÞL-doublet Higgs field
are, as yet, largely unconstrained by experiment. Such
extensions are common in models that address the hier-
archy problem of the SM, such as supersymmetric models
[1] and little Higgs models [2], as well as in models for
neutrino masses, dark matter, etc. Most of these extensions
contain additional SUð2ÞL-singlet, -doublet, and/or -triplet
scalar fields.

Some extensions of the SM contain scalars in larger
multiplets of SUð2ÞL. Such larger multiplets have been
used to produce a natural dark matter candidate [3], which
is kept stable thanks to an accidental globalUð1Þ symmetry
present in the Higgs potential for multiplets with T � 2.
Three different models with a Higgs quadruplet (isospin
T ¼ 3=2) have also been proposed for neutrino mass gen-
eration [4–6]. Scalar multiplets larger than doublets with
significant vacuum expectation values have long been
known to run afoul of the tight experimental constraints
on the � parameter [7]; however, the tree-level relation
� � M2

W=M
2
Zcos

2�W ¼ 1 is automatically satisfied for
multiplets that obey the relation [8,9]

ð2T þ 1Þ2 � 3Y2 ¼ 1; (1)

where T is the isospin of the multiplet and Y is the
hypercharge, related to the electric charge by Q ¼ T3 þ
Y=2. This condition is satisfied by an unlimited number of
ðT; YÞ combinations. The smallest few are T ¼ 1=2, Y ¼ 1
(the usual SM Higgs doublet); T ¼ 3, Y ¼ 4 (a 7-plet
containing a maximally charged state �þ5); T ¼ 25=2,
Y ¼ 15 (a 26-plet containing a maximally charged state
�þ20); etc. Other multiplets are allowed if their vacuum
expectation values are small or zero, or if a cancellation of
their contributions to � is arranged using custodial SUð2Þ
symmetry [10] or fine-tuning.

In this paper we aim to constrain the proliferation of
large scalar multiplets using perturbative unitarity of

tree-level scattering amplitudes. Perturbative unitarity of
tree-level scattering amplitudes has most famously been
used to set an upper limit on the mass of a weakly coupled
Higgs boson [11]. The bounds coming from perturbative
unitarity can be violated at the cost of making the theory
strongly coupled. In our case, a scalar multiplet with a
large weak charge has correspondingly large 2 ! 2 tree-
level scattering amplitudes for scalar pair annihilation into
electroweak gauge bosons. Requiring that the zeroth partial
wave amplitudes remain smaller than the unitarity bound
constrains the maximum isospin and hypercharge of a
large scalar multiplet. Larger multiplets would violate the
unitarity bound at tree level; in this case higher-order cor-
rections to the scattering amplitude must restore unitarity,
implying that the weak sector has become strongly coupled.
In what follows we compute the 2 ! 2 scattering am-

plitudes for scalar pair annihilation into electroweak gauge
bosons, for arbitrary values of the isospin and hypercharge
of the scalar multiplet. We perform the coupled channel
analysis including all relevant initial and final states.
Imposing the unitarity bound, we show that tree-level
perturbative unitarity constrains a complex scalar SUð2ÞL
multiplet to have isospin T � 7=2, and a real scalar SUð2ÞL
multiplet to have T � 4.1 We also set corresponding limits
on the hypercharge.
This paper is organized as follows. In Sec. II we present

the scattering amplitudes for a generic scalar SUð2ÞL mul-
tiplet scattering into electroweak gauge bosons. In Sec. III
we perform the coupled channel analysis, derive general
expressions for the largest amplitude eigenvalues, and
apply the unitarity constraint. Finally, in Sec. IV we discuss
the implications of our results and conclude. Details of the
matrix element calculations are given in the Appendix.
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1For comparison, we note that Ref. [3] quotes an upper bound
of T � 3 for a real scalar multiplet at the TeV scale, derived by
assuming that the scalar multiplet is the only addition to the
theory beyond the SM and requiring that its contribution to the
renormalization group running of the SUð2ÞL gauge coupling
does not drive this coupling to nonperturbative values below the
Planck scale. From the same requirement we find an upper
bound of T � 5=2 for a complex scalar multiplet. Our limit
from tree-level unitarity is less constraining but more generally
applicable.

PHYSICAL REVIEW D 85, 095017 (2012)

1550-7998=2012=85(9)=095017(7) 095017-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.095017


II. COUPLINGS AND MATRIX ELEMENTS

To obtain the desired unitarity constraints, we study
scattering of two scalars into two electroweak gauge
bosons in the high-energy limit, for overall electrically
neutral initial and final states. We are interested in the
constraints that arise from large electroweak charges;
therefore, we ignore electroweak symmetry breaking and
work in the unmixed SUð2ÞL � Uð1ÞY basis. This has the
advantage of allowing us to cleanly separate the constraints
due to the SUð2ÞL and Uð1ÞY interactions. We also thus
consider only the transverse polarization states of the
gauge bosons and ignore the gauge boson masses.

The gauge interactions of the scalars arise from the
scalar gauge-kinetic terms,

L �
8<
:
ðD�XÞyðD�XÞ for X complex;

1
2 ðD��ÞyðD��Þ for � real:

(2)

We will express the complex and real scalar multiplets in
the charge basis as

X ¼

�1

�2

..

.

�n

0
BBBBBB@

1
CCCCCCA; � ¼

�Q

..

.

�0

..

.

��Q

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (3)

Note that for the real multiplet, Y must be zero and T must
be an integer. Note also that �0 is a real scalar, while the
neutral member of X (if one exists) is a complex scalar. The
positively and negatively charged states in� are related by
ð�QÞ� ¼ ð�1ÞQ��Q. For X we also have T3�1 ¼ T�1,
T3�n ¼ �T�n, etc., where T is the total isospin of the
multiplet X and T3 is the third component of the isospin.

The covariant derivative is given as usual by

D�¼@�� igWa
�T

a� ig0B�

Y

2

¼@�� i
gffiffiffi
2

p ðWþ
�T

þþW�
�T

�Þ� igW3
�T

3� ig0B�

Y

2
;

(4)

where Ta are the SUð2Þ generators and W� and T� are
given by

W�
� ¼ 1ffiffiffi

2
p ðW1

� 	 iW2
�Þ; T� ¼ T1 � iT2: (5)

The partial wave amplitudes are related to scattering
matrix elements according to

M ¼ 16�
X
J

ð2J þ 1ÞaJPJðcos�Þ; (6)

where J is the orbital angular momentum of the final state
and PJðcos�Þ is the corresponding Legendre polynomial.
Tree-level partial wave unitarity dictates that

jRea0j � 1=2: (7)

We will use only the zeroth partial wave amplitude, a0, to
set our unitarity limits.
The contributing Feynman diagrams are shown in

Fig. 1. Diagrams (a), (b), and (c) contribute to the processes
��� ! BB, W3W3, and BW3, while all four diagrams
contribute to the process ��� ! WþW�. The matrix ele-
ments are computed in the Appendix. For each final state,
there are four distinct polarization combinations of the
gauge bosons; two combinations give zero for the matrix
element, while the other two each yield the same zeroth
partial wave matrix element in the high-energy limit.
For the complex scalar X we find,

a0ð��
i �i ! BB=

ffiffiffi
2

p Þ ¼ g2

16�

s2W
c2W

Y2

2
ffiffiffi
2

p ;

a0ð��
i �i ! BW3Þ ¼ g2

16�

sW
cW

T3Y;

a0ð��
i �i ! W3W3=

ffiffiffi
2

p Þ ¼ g2

16�

ffiffiffi
2

p ðT3Þ2;

a0ð��
i �i ! WþW�Þ ¼ g2

16�
½TðT þ 1Þ � ðT3Þ2
;

(8)

where sW (cW) is the sine (cosine) of the weak mixing
angle defined via g0=g ¼ sW=cW , and we have used the
fact that initial or final states involving two identical par-

ticles receive an extra 1=
ffiffiffi
2

p
normalization.

(a) (b) (c) (d)

FIG. 1. Feynman diagrams contributing to ��� ! V1V2.
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For the real scalar � we find,

a0ð�Q��Q!W3W3=
ffiffiffi
2

p Þ¼ g2

16�

ffiffiffi
2

p ðT3Þ2 forT3¼Q�1;

a0ð�Q��Q!WþW�Þ¼ g2

16�
½TðTþ1Þ�ðT3Þ2


forT3¼Q�1;

a0ð�0�0=
ffiffiffi
2

p !W3W3=
ffiffiffi
2

p Þ¼0;

a0ð�0�0=
ffiffiffi
2

p !WþW�Þ¼ g2

16�

1ffiffiffi
2

p TðTþ1Þ:

(9)

Note that the main difference between the real and com-
plex scalars is in the multiplicity of scalar states.

III. COUPLED CHANNEL ANALYSIS

When nonzero amplitudes exist that couple the same
initial (final) state to multiple final (initial) states, the
strongest unitarity bound comes from applying Eq. (7) to
the largest eigenvalue of the matrix of amplitudes of all the
channels thus coupled.

A. Uð1ÞY interactions

From Eq. (8) we see that the zeroth partial wave

amplitude for ��
i �i ! BB=

ffiffiffi
2

p
is the same for all

n members of the multiplet X. Including only Uð1ÞY
interactions, the coupled channel matrix in the basis

ðBB= ffiffiffi
2

p
; ��

1�1; . . . ; �
�
n�nÞ is thus given by

a0 ¼
ffiffiffi
2

p g2

16�

s2W
c2W

Y2

2
ffiffiffi
2

p

0 1 � � � 1

1 0 � � � 0

..

. ..
. ..

.

1 0 � � � 0

0
BBBBBB@

1
CCCCCCA; (10)

where the
ffiffiffi
2

p
in front comes from the two contributing

gauge boson polarization combinations. The matrix of
integers in the preceding equation has a pair of nonzero
eigenvalues,

ffiffiffi
n

p
and� ffiffiffi

n
p

, as well as n� 1 zero eigenvalues.
The eigenvectors corresponding to the nonzero eigenvalues
are

1ffiffiffi
2

p ½ðBB= ffiffiffi
2

p Þ � ð���Þsym
; (11)

where we define the properly normalized symmetric com-
bination of all n states��

i �i (i.e., the combination with zero
total isospin) according to

ð���Þsym � 1ffiffiffi
n

p X
i

��
i �i: (12)

The nonzero eigenvalues of the zeroth partial wave ampli-
tude matrix involving onlyUð1ÞY interactions are therefore
given by �amax;Uð1Þ

0 , where

amax;Uð1Þ
0 ¼ g2

16�

s2W
c2W

Y2

2

ffiffiffi
n

p
: (13)

Imposing the unitarity bound in Eq. (7) and plugging in
numbers,2 we obtain a constraint on the hypercharge as a
function of the size of the multiplet,

jYj & 19:8

n1=4
: (14)

Note that when more than one hypercharged scalar
multiplet is present, the largest eigenvalue of the coupled
channel matrix is just the sum in quadrature of the largest
eigenvalue for each multiplet Xj:

amax;Uð1Þ
0 ¼

�X
j

ðamax;Uð1Þ;j
0 Þ2

�
1=2

: (15)

B. SUð2ÞL interactions

We first consider the complex multiplet X. The coupled
channel analysis for the SUð2ÞL interactions is complicated
by the fact that the scattering amplitude is not the same for
all n initial states ��

i �i. The coupled channel matrix in the

basis ðWþW�; W3W3=
ffiffiffi
2

p
; ��

1�1; . . . ; �
�
n�nÞ is given by

a0 ¼
ffiffiffi
2

p g2

16�

0 0 A1 � � � An

0 0 B1 � � � Bn

A1 B1 0 � � � 0

..

. ..
. ..

. ..
.

An Bn 0 � � � 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; (16)

where again the
ffiffiffi
2

p
in front comes from the two contrib-

uting gauge boson polarization combinations, and

Ai ¼ TðT þ 1Þ � ðT3Þ2; Bi ¼
ffiffiffi
2

p ðT3Þ2; (17)

with T3 evaluated for the appropriate state ��
i �i.

The matrix in Eq. (16) has two pairs of nonzero eigen-
values, together with n� 2 zero eigenvalues. The first (and

largest) pair is �amax;SUð2Þ
0 , where

amax;SUð2Þ
0 ¼ g2

16�
2TðTþ1Þ

ffiffiffi
n

3

r
¼ g2

16�

ðn2�1Þ ffiffiffi
n

p
2

ffiffiffi
3

p : (18)

The eigenvectors corresponding to the first pair of eigen-
values are

1ffiffiffi
2

p ½ðWWÞsym � ð���Þsym
; (19)

where ð���Þsym is given in Eq. (12) and ðWWÞsym is the

symmetric (isospin zero) combination of the SUð2ÞL gauge
fields given by

2We use �em ¼ s2Wg
2=4� ’ 1=128 and s2W ’ 0:231. These

values are valid at the weak scale; logarithmic renormalization
group running of g and g0 will cause numerical variations in our
results at higher mass scales.
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ðWWÞsym ¼ 1ffiffiffi
3

p ½ ffiffiffi
2

p ðWþW�Þ þ ðW3W3=
ffiffiffi
2

p Þ


¼ 1ffiffiffi
6

p ½W1W1 þW2W2 þW3W3
: (20)

A similar analysis for a real multiplet � yields

amax;SUð2Þ
0 ðrealÞ ¼ 1ffiffiffi

2
p amax;SUð2Þ

0 ðcomplexÞ

¼ g2

16�

ðn2 � 1Þ ffiffiffi
n

p
2

ffiffiffi
6

p ; (21)

where for a real multiplet n must be an odd integer. As in
the Uð1ÞY case, when more than one scalar multiplet
carrying isospin is present, the largest eigenvalue of the
coupled channel matrix is the sum in quadrature of the
largest eigenvalue [Eq. (18) or (21)] for each multiplet.

Imposing the unitarity bound in Eq. (7) upon the largest
eigenvalue [Eqs. (18) and (21)] and plugging in numbers,
we obtain an upper bound on the size (or isospin) of a
scalar multiplet from tree-level perturbative unitarity of the
SUð2ÞL interaction alone:

n � 8 ðT � 7=2Þ for a complex multiplet;

n � 9 ðT � 4Þ for a real multiplet:
(22)

For completeness we give here the second (smaller) pair
of nonzero eigenvalues. These are �a?0 , where

3

a?0 ¼ g2

16�

ffiffiffi
2

3

s �X
i

½TðT þ 1Þ � 3ðT3Þ2
2
�
1=2

¼ g2

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn2 � 1Þðn2 � 4Þp

ffiffiffiffiffiffi
30

p ; (23)

where again we have included the extra factor of
ffiffiffi
2

p
coming from the two contributing gauge boson polariza-
tion combinations. The eigenvectors corresponding to
these eigenvalues are

1ffiffiffi
2

p ½ðWWÞ? � ð���Þ?
; (24)

where

ðWWÞ? ¼ 1ffiffiffi
3

p ½ðWþW�Þ � ffiffiffi
2

p ðW3W3=
ffiffiffi
2

p Þ
;

ð���Þ? ¼
P
i
��
i ½TðT þ 1Þ � 3ðT3Þ2
�i

½nðn2 � 1Þðn2 � 4Þ=20
1=2 :

(25)

These are the neutral components of the combinations with
total isospin 2 and are orthogonal to ðWWÞsym and

ð���Þsym, respectively.

C. Combined electroweak gauge interactions

Complex scalar multiplets that carry both isospin
and hypercharge couple the SUð2ÞL and Uð1ÞY channels
together, as well as introducing the additional BW3

channel.
First, we observe that the BW3 channel is not coupled to

the other channels. This is because, after diagonalization of
the coupled channel matrix, BW3 couples to the linear
combination of scalars,

ð���ÞT3 ¼
P
i
��
i T

3�i

½P
i
ðT3Þ2
1=2 ¼

P
i
��
i T

3�i

½nðn2 � 1Þ=12
1=2 ; (26)

where the sums run over the n members �i of the
multiplet. This linear combination of scalars is the neutral
component of the combination with total isospin 1 and is
orthogonal to ð���Þsym and ð���Þ?. The pair of nonzero

eigenvalues corresponding to the BW3 channel are�aBW
3

0 ,

where

aBW
3

0 ¼ g2

16�

sW
cW

Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn2 � 1Þp

ffiffiffi
6

p ; (27)

where again we have included the extra factor of
ffiffiffi
2

p
coming from the two contributing gauge boson polariza-
tion combinations. For any values of Y and n, this eigen-
value is always smaller than the one wewill find in Eq. (29)
below.
Second, we recall that the combination of scalars

ð���Þ? that couples to ðWWÞ? is orthogonal to

ð���Þsym; therefore, it does not couple to the ðBB= ffiffiffi
2

p Þ
channel. The corresponding eigenvalue a?0 is always

smaller than the one corresponding to ðWWÞsym, so it is

not of interest to us.

Finally, we observe that ðBB= ffiffiffi
2

p Þ and ðWWÞsym both

couple to the same linear combination of scalars,
i.e., ð���Þsym. The corresponding eigenvalue, which is

the largest eigenvalue of the full coupled channel
system, is then obtained by adding in quadrature the
corresponding eigenvalues for the Uð1ÞY and SUð2ÞL
couplings:4

amax;sym
0 ¼ ½ðamax;Uð1Þ

0 Þ2 þ ðamax;SUð2Þ
0 Þ2
1=2; (29)

3In the second equality we used
P

N
j¼1 j

2 ¼ NðN þ 1Þð2N þ
1Þ=6 and

P
N
j¼1 j

4 ¼ NðN þ 1Þð2N þ 1Þð3N2 þ 3N � 1Þ=30.

4Or equivalently, by diagonalizing the matrix

amax;sym
0 ¼

0 0 amax;Uð1Þ
0

0 0 amax;SUð2Þ
0

amax;Uð1Þ
0 amax;SUð2Þ

0 0

0
BB@

1
CCA; (28)

in the basis ½ðBB= ffiffiffi
2

p Þ; ðWWÞsym; ð���Þsym
.
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where amax;Uð1Þ
0 and amax;SUð2Þ

0 are the eigenvalues given in

Eqs. (13) and (18), respectively.
This upper bound is most relevant for scalar multiplets

that carry both isospin and hypercharge. In Table I we give
the upper limit on the hyperchargeY allowed by perturbative
unitarity for a single complex scalar multiplet with isospin

T. Note, in particular, that in all cases a multiplet with Y ¼
2T is allowed; in such amultiplet the state�nwithT

3 ¼ �T
is electrically neutral. Note also that the multiplet with T ¼
3, Y ¼ 4, which can have a nonzero vacuum expectation
value while preserving � ¼ 1 at tree level, is allowed.
We finally note that, when more than one scalar multi-

plet is present, the largest eigenvalue of the coupled chan-
nel matrix can be found efficiently as follows. First, the
maximum eigenvalues for the Uð1ÞY and SUð2ÞL interac-
tions can be computed separately for each multiplet using
Eqs. (13) and (18). Then the largest eigenvalue of the full
coupled channel system is just the largest eigenvalue of the
following matrix:

amax;sym
0 ¼

0 0 amax;Uð1Þ;1
0 � � � amax;Uð1Þ;N

0

0 0 amax;SUð2Þ;1
0 � � � amax;SUð2Þ;N

0

amax;Uð1Þ;1
0 amax;SUð2Þ;1

0 0 � � � 0

..

. ..
. ..

. ..
.

amax;Uð1Þ;N
0 amax;SUð2Þ;N

0 0 � � � 0

0
BBBBBBBB@

1
CCCCCCCCA
; (30)

where we work in the basis ½ðBB= ffiffiffi
2

p Þ; ðWWÞsym;
ð���Þsym;1; . . . ; ð���Þsym;N
 and the index 1; . . . ; N counts
the scalar multiplets.

IV. CONCLUSIONS

In this paper we have derived upper limits on the isospin
and hypercharge of a complex or real scalar transforming
under SUð2ÞL � Uð1ÞY by requiring that tree-level scatter-
ing amplitudes for two scalars annihilating into two elec-
troweak gauge bosons satisfy the unitarity bound.
Violation of this condition implies that the weak gauge
sector becomes strongly coupled at energies above the
scalar’s mass. Our main results are the expressions for
the largest eigenvalue of the coupled channel scattering
amplitude matrix [Eq. (13) for hypercharge and Eqs. (18)
and (21) for SUð2ÞL] and the procedure for combining the
amplitudes from multiple scalars [Eq. (30)].

We find that the perturbative unitarity bound is satisfied
for a complex scalar multiplet with T � 7=2 (i.e., n � 8)
or a real scalar multiplet with T � 4 (i.e., n � 9; recall that
real multiplets must have integer T). In particular, of the
multiplets whose vacuum expectation values preserve � ¼
1 at tree level [see Eq. (1)], only the SM doublet and the
complex scalar with T ¼ 3, Y ¼ 4 are allowed in a weakly
coupled theory; larger representations violate perturbative
unitarity.

The constraints become more stringent if more than one
large multiplet is present. For example, perturbative uni-
tarity of the SUð2ÞL interactions allows only one complex
8-plet (T ¼ 7=2). Similarly, perturbative unitarity allows
two complex 7-plets, but adding a third violates perturba-
tive unitarity; in particular, this implies that a color-triplet

7-plet is forbidden if SUð2ÞL is to remain weakly coupled.
Finally, a real color-octet scalar must have T � 2 in order
to preserve perturbative unitarity of SUð2ÞL.
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APPENDIX A: CALCULATION OF
SCATTERING AMPLITUDES

For concreteness we define the scattering process in the
x-z plane, with momenta

p�
1 ¼ ðEp1

; j ~p1j sin�; 0; j ~p1j cos�Þ;
p�
2 ¼ ðEp2

;�j ~p2j sin�; 0;�j ~p2j cos�Þ;
k
�
1 ¼ ðEk1 ; 0; 0; j ~k1jÞ;
k
�
2 ¼ ðEk2 ; 0; 0;�j ~k2jÞ;

(A1)

where p1 and p2 are the incoming four-momenta of �i and
��
i ; k1 and k2 are the outgoing four-momenta of V1 and V2,

respectively; and � is the scattering angle. We also define
transverse polarization basis vectors for the gauge bosons
according to

�
�
outðk1Þ ¼ ð0; 0; 1; 0Þ; �

�
outðk2Þ ¼ ð0; 0;�1; 0Þ;

�
�
inðk1Þ ¼ ð0; 1; 0; 0Þ; �

�
inðk2Þ ¼ ð0; 1; 0; 0Þ; (A2)

TABLE I. Upper limit on the hypercharge Y allowed by per-
turbative unitarity for a complex n-plet of SUð2ÞL.
n 1 2 3 4 5 6 7 8

T 0 1=2 1 3=2 2 5=2 3 7=2
jYmaxj 19.8 16.7 15.1 14.0 13.0 12.1 10.8 8.3
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where the subscripts ‘‘out’’ and ‘‘in’’ refer to polarizations
out of and in the scattering plane, respectively. The signs
are chosen for later convenience.

We first consider the process ��
i �i ! B�B	 for a state

�i in a complex scalar multiplet. The first three diagrams in
Fig. 1 contribute. The relevant couplings are given by

�i�
�
i B�B	: ig02

Y2

2
g�	;

�iðq1Þ��
i ðq2ÞB�: � ig0

Y

2
ðq1 � q2Þ�;

(A3)

with all particles and momenta incoming. The matrix
elements for the four-point, t-channel, and u-channel dia-
grams are

Ma¼g02
Y2

2
��ðk1Þ��ðk2Þ;

Mb¼�g02
Y2

4
ðp1þqÞ���ðk1Þðq�p2Þ	�	ðk2Þ 1

q2�m2
i

;

Mc¼�g02
Y2

4
ðq0 �p2Þ���ðk1Þðp1þq0Þ	�	ðk2Þ 1

q02�m2
i

;

(A4)

where q ¼ p1 � k1 ¼ k2 � p2 and q0 ¼ p1 � k2 ¼ k1 �
p2 are the t- and u-channel momenta, respectively, and mi

is the mass of �i.
We now evaluate these matrix elements for the four

transverse polarization combinations of the gauge bosons.
For both gauge bosons polarized out of the scattering plane
we have Mb ¼ Mc ¼ 0 and

M a ¼ Mtot ¼ g02
Y2

2
: (A5)

When one gauge boson is polarized out of the scattering
plane and the other is polarized in the plane, all three
diagrams give zero. Finally, when both gauge bosons are
polarized in the scattering plane, we have

Ma ¼ �g02
Y2

2
;

Mb ¼ �g02Y2 j ~p1jj ~p2jsin2�
q2 �m2

i

;

Mc ¼ �g02Y2 j ~p1jj ~p2jsin2�
q02 �m2

i

:

(A6)

The second and third amplitudes simplify significantly in
the high-energy limit. Working in the center-of-mass
frame we can substitute j ~p1j ¼ j ~p2j ¼

ffiffiffi
s

p
=2, q2 ¼ t ¼

�sð1� cos�Þ=2, and q02 ¼ u ¼ �sð1þ cos�Þ=2. We
can neglect the m2

i in the propagators without danger
from the t- and u-channel singularities because the sin2� ¼
ð1þ cos�Þð1� cos�Þ in the numerator cancels the diver-
gences in the dangerous regions of phase space. In the
high-energy limit we then obtain,

M b¼g02
Y2

2
ð1þcos�Þ; Mc¼g02

Y2

2
ð1�cos�Þ: (A7)

The total amplitude for both gauge bosons polarized in the
scattering plane is then

M tot ¼ g02
Y2

2
; (A8)

which is the same as that for both gauge bosons polarized
out of the plane.
The matrix element calculations for ��

i �i ! W3
�W

3
	 and

��
i �i ! B�W

3
	 go through in exactly the same way, with

the coupling replacements�
g0
Y

2

�
2 ! ðgT3Þ2 for W3W3;

�
g0
Y

2

�
2 !

�
g0
Y

2

�
ðgT3Þ for BW3:

(A9)

The matrix element calculation for ��
i �i ! Wþ

�W
�
	 is

more complicated due to the presence of the fourth dia-
gram in Fig. 1 involving the s-channel exchange of W3.
Furthermore, the scalars exchanged in the t- and u-channel
diagrams have different masses in general. The relevant
couplings are

�i�
�
i W

�
�W

þ
	 : i

g2

2
½TþT�þT�Tþ
g�	;

�iðq1Þ��
iþ1ðq2ÞW�

� : � i
gffiffiffi
2

p T�ðq1�q2Þ�;

�iðq1Þ��
i�1ðq2ÞWþ

� : � i
gffiffiffi
2

p Tþðq1�q2Þ�;

�iðq1Þ��
i ðq2ÞW3

�: � igT3ðq1�q2Þ�;
W3

�ðpÞW�
� ð�k1ÞWþ

	 ð�k2Þ: ig½g�	ðk2�k1Þ�
þg	�ð�p�k2Þ�
þg��ðpþk1Þ	
; (A10)

with all particles and momenta incoming. Here �iþ1 (�i�1)
is the state with T3 value one unit lower (higher) than �i.
We write the couplings involving W� in terms of the
generators T� for later convenience. Note that from
Eq. (5) we can write

T�T	 ¼ ðT1 � iT2ÞðT1 	 iT2Þ
¼ T1T1 þ T2T2 	 i½T1; T2

¼ ð ~TÞ2 � ðT3Þ2 � T3

¼ TðT þ 1Þ � ðT3Þ2 � T3; (A11)

where we used the SUð2Þ commutation relation and ap-

plied the ð ~TÞ2 operator. From this we obtain ½TþT� þ
T�Tþ
 ¼ 2½TðT þ 1Þ � ðT3Þ2
.
For bothW bosons polarized out of the scattering plane,

we have Mb ¼ Mc ¼ 0 as before,
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Ma¼g2

2
½TþT�þT�Tþ
¼g2½TðTþ1Þ�ðT3Þ2
; (A12)

and

M d ¼ �g2T3 1

p2
ðp1 � p2Þ�ðk2 � k1Þ�; (A13)

where p ¼ p1 þ p2 ¼ k1 þ k2 is the s-channel four-
momentum. Here we have used the Feynman-gauge propa-
gator for a massless gauge boson, �ig�
=p2, for the
s-channel W3. This is legitimate because we are working
in the electroweak theory before electroweak symmetry
breaking. Ghosts do not contribute. Working in the center-
of-mass frame and taking the high-energy limit, the mo-
mentum dot product in Eq. (A13) becomes

ðp1 � p2Þ�ðk2 � k1Þ� ¼ 4 ~p1 � ~k1 ¼ s cos�: (A14)

Thus the matrix element for the s-channel diagram is

M d ¼ �g2T3 cos�: (A15)

This is proportional to the first Legendre polynomial
P1ðcos�Þ ¼ cos� and thus contributes only to the first
partial wave amplitude a1. Our result for the matrix ele-
ment contributing to the zeroth partial wave, for both W
bosons polarized out of the scattering plane, is therefore

M tot;0 ¼ g2½TðT þ 1Þ � ðT3Þ2
: (A16)

When oneW boson is polarized out of the scattering plane
and the other is polarized in the plane, all four diagrams
give zero. Finally, when bothW bosons are polarized in the
scattering plane, we have in the high-energy limit,

Ma ¼ �g2

2
½TþT� þ T�Tþ
;

Mb ¼ g2TþT�ð1þ cos�Þ;
Mc ¼ g2T�Tþð1� cos�Þ;
Md ¼ g2T3 cos�;

(A17)

where we have followed the same steps as before to sim-
plify the t-, u-, and s-channel diagrams. Once again Md

contributes only to the first partial wave amplitude, as do
the parts ofMb andMc that are proportional to cos�. The
angle-independent parts of the first three diagrams sum
up to yield a matrix element contributing to the zeroth
partial wave, for bothW bosons polarized in the scattering
plane, of

Mtot;0 ¼ g2

2
½TþT� þ T�Tþ
 ¼ g2½TðT þ 1Þ � ðT3Þ2
:

(A18)

Once again, this is the same as the matrix element for both
W bosons polarized out of the scattering plane.
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